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Abstract 

            

 A central problem in the bioinformatics is to find the binding sites for regulatory motifs. 

This is a challenging problem that leads us to a platform to apply a variety of data mining 

methods.  

  

 In the efforts described here, a combined motif discovery method that uses mutual 

information and Gibbs sampling was developed. A new scoring schema was introduced 

with mutual information and joint information content involved. Simulated tempering 

was embedded into classic Gibbs sampling to avoid local optima.  

  

 This method was applied to the 18 pieces DNA sequences containing CRP binding sites 

validated by Stormo and the results were compared with Bioprospector. Based on the 

results, the new scoring schema can get over the defect that the basic model PWM only 

contains single positioin information. Simulated tempering proved to be an adaptive 

adjustment of the search strategy and showed a much increased resistance to local 

optima. 
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Chapter 1 Introduction 

 

Uncovering the hidden mechanism of gene transcription control is a huge effort in the 

post genomic era. Various methods have been invented to decipher the information 

encoded in DNA sequences. The approaches come from two ways: the biological 

experimental way or computational biology way. 

 

Biology experiment is accurate in locating the functional DNA subsequences in the 

genome sequences, but is time and labour consuming. Conversely, the computational way 

is high throughput and time saving, but needs a large amount of DNA sequences as 

prerequisite and is not very accurate.  

 

Motif discovery by computer programs, however, became feasible as the publicly 

available biosequences databases grow in site and high performance computers become 

cheaply available. Consequently, many fundamental computational methods to discover 

functional biosequences have been developed. Those methods include the Gibbs 

sampling method introduced by Lawrence [1] and EM method used by Elkan [2]. 

Although these methods achieve some degree of success, and many computer programs 

have been developed based on them, the problem of motif discovery from DNA 

sequences still remains difficult because of its complex nature. 

 

In addition, the search strategy differs largely also. Some basic algorithms like consensus 

[3], EM [4] and Gibbs sampler [5] brought solutions to this problem, but the result was 

not satisfactory enough. The enhanced computer programs based on them such as MEME 

[6], AlignAce [7], and Bioprospector [8] are more powerful in dealing with true data, 

since these programs are enhanced by using more complex models and considering more 

parameters. After considering the above algorithms, we found a varied Gibbs sampling 

method similar to Bioprospector with some advantages. A new scoring schema was 

introduced with further incorporation of a novel mutual information motif finder to 

strengthen the overall method. Simulated tempering was also embedded into classic 

Gibbs sampling to avoid local optima. 
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Chapter 2 Gibbs Sampling 

 

Gibbs sampling is a Markov chain Monte Carlo method for joint distribution estimation 

when the full conditional distributions of all the relevant random variables are available. 

The Gibbs sampling procedure iteratively draws samples from the full conditional 

distributions. The samples collected in this way are guaranteed to converge to the true 

joint distribution as long as there is no zero-probability in the target joint distribution. 

 

Gibbs sampling strategy has been applied to Bayesian hierarchical models in 

bioinformatics. The first introduction of the methodology is its application to the motif 

discovering problem in DNA sequence analysis [5].  

 

This chapter serves as a brief review for the applications of Gibbs sampling in the field of 

bioinformatics. The working mechanism of Gibbs sampling was discussed and some 

essential concepts needed for understanding this method was introduced.  

 

 

2.1 Introduction to Gibbs Sampling 

Gibbs sampling is a technique to draw samples from a join distribution based on the full 

conditional distributions of all the associated random variables. Though the idea goes 

back to the work of Hasting (1970) [9], whose focus was on its Markov chain Monte 

Carlo (MCMC) nature, the Gibbs sampler was first formally introduced by Geman and 

Geman [10] to the field of image processing. The work caught the attention of the 

statistics society (especially boosted by the thesis of Gelfand and Smith (1992) [11]).  

 

Since then, the applications of Gibbs sampling have covered both the Bayesian world and 

the world of classical statistics. In the former case, Gibbs sampling is often used to 

estimate posterior distributions, and in the latter, it is often applied to likelihood 

estimation [12]. In particular, Gibbs sampling has become a popular alternative to the 

expectation-maximization (EM) for solving the incomplete-data problem in the Bayesian 
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context, where the associated random variables of interest include both the hidden 

variables (i.e., the missing data) and the parameters of the model that describe the 

complete data.  

 

To provide answers to this type of questions, EM is a numerical maximization procedure 

that climbs in the likelihood landscape aiming to find the model parameters and the 

hidden variables that maximize the likelihood function. In contrast, Gibbs sampling 

provides the means to estimate the target joint distribution of the hidden variables and the 

model parameters as a whole, and leave the estimation of the random variables for later 

(i.e. after the samples are drawn), where maximum a posterior (MAP) estimates are often 

used. Thus, Gibbs sampling suffers less from the problem of local maxima than EM. This 

property makes Gibbs sampling a suitable candidate for solving the model-based 

problems in bioinformatics, where the likelihood function usually consists of a large 

amount of modes due to the high complexity of the data. 

 

In the remainder of this chapter, the applications of Gibbs sampling to the hierarchical 

Bayesian models were shown that address an important problem in systems biology. The 

goal is to discover regulation mechanism of genes. A typical framework by means of 

computational biology for this kind of study is composed of two steps. In the first step 

groups of genes that share similar expression profiles (which measured by the microarray 

technology) are found. (These genes are called to be coexpressed). This is done by 

performing clustering algorithms to the gene expression profiles (i.e., microarray data). 

The second step is based on the general assumption that coexpression implies 

coregulation. For each group of genes found in the first step, the DNA sequences that are 

related to the regulation of these genes are extracted and common patterns of these 

sequences (called motifs) are seeked. The positions of these conserved motifs are likely 

to be the binding sites of transcription factors, which are the executors of the gene 

regulation mechanism. We show in this thesis that the Gibbs sampling strategy can be 

applied to both the motif finding problem of DNA sequences and other bioinformatics 

problems such as the clustering of microarray. 
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We will first review the working mechanism of Gibbs sampling. Then some basic 

biological concepts for understanding the biological problems of interest are introduced.  

 

 

2.2 Explanation in Mathematical Terms 

2.2.1 Parameters 

The first requirement for the Gibbs sampling is the observable data.  The observed data 

will be denoted Y.  In the general case of the Gibbs sampling, the observed data remains 

constant throughout. Gibbs sampling requires a vector of parameters of interest that are 

initially unknown. 

 

These parameters will be denoted by the vector Φ. Nuisance parameters, Θ, are also 

initially unknown. The goal of Gibbs sampling is to find estimates for the parameters of 

interest in order to determine how well the observable data fits the model of interest, and 

also whether or not data independent of the observed data fits the model described by the 

observed data. Gibbs sampling requires an initial starting point for the parameters. In our 

situation, this is set randomly. Then, one at a time, a value for each parameter of interest 

is sampled given values for the other parameters and data.   

 

Once all of the parameters of interest have been sampled, the nuisance parameters are 

sampled given the parameters of interest and the observed data.  At this point, the process 

is started over. The power of Gibbs sampling is that the joint distribution of the 

parameters will converge to the joint probability of the parameters given the observed 

data.  

 

The Gibbs sampler requires a random starting point of parameters of interest, Φ, and 

nuisance parameters, Θ, with observed data Y, from which a converging distribution can 

be found.  For the sampler, there is an initial starting point.  
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( (0)

1 , (0)

2 ,..., (0)

D , (0)  ), 

 

Steps a-d are then repeatedly run.  

 

a) Sample ( 1)

1

i  from ( ) ( ) ( )

1 2( | ,..., , , )i i i

Dp Y     

b) Sample ( 1)

2

i  from ( 1) ( ) ( ) ( )

2 1 3( | , ,..., , , )i i i i

Dp Y      

…… 

…… 

c) Sample ( 1)i

D

   from ( 1) ( 1) ( )

1 1( | ,..., , , )i i i

D Dp Y 

     

d) Sample ( 1)i   from ( 1) ( 1)

1( | ,..., , )i i

Dp Y   
 

 

2.2.2 ParametersMultiple Alignments 

One application of Gibbs sampling useful in computational molecular biology is the 

detection and alignment of locally conserved regions (motifs) in sequences of amino 

acids or nucleic acids assuming no prior information in the patterns or motifs.   Gibbs 

sampling strategies claim to be fast and sensitive, avoiding the problem that EM 

algorithms fall into as far as getting trapped by local optima. 

 

2.3 Algorithm Scheme  

First the basic multiple alignment strategy is examined where a single motif is desired. 

The most basic implementation, known as a site sampler, assumes that there is exactly 

one motif element located within each sequence. 

 

2.3.1 Notation 

 

•  N: number of sequences 

• 
1... nS S : set of sequences 

• W: width of motif to be found in the sequences 

• J: the number of residues in the alphabet.  J = 4 for nucleic acid sequences and 20 for 

amino acid sequences. 
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• 
, ,i j kc : Observed counts of residue  j in position i of motif k .  j ranges from 1…J. i 

ranges from 0..W where 
0, jc  contains the counts of residue  j in the background. If it is 

assumed that only a single motif is searched for, the k term can drop out. 

• 
,i jq  : frequency of residue  j  occurring in position i of the motif. i ranges from 0..W as 

above. 

• 
ka : vector of starting positions of the motifs within the sequences. k ranges from 1. .N .  

• 
jb : pseudocounts for each residue – needed according to Bayesian statistical rules to 

eliminate problems with zero counts. 

• B : The total number of pseudocounts.  j

j

B b . 

 

2.3.2 Initialization 

Once the sequences are known, the counts for each residue can calculated. Initially, 
0, jc

will contain the total counts of residue j within all of the sequences and
,i jc  is initialized 

to 0 for all other values of i.  This is a summary observed data.   The site sampler is then 

initialized by randomly selecting a position for the motif within each sequence and 

recording these positions in
ka . The counts are updated according to this initial alignment. 

After the observed counts are set,
,i jq can be calculated.  

                        

,

,
1

i j j

i j

c b
q

N B




   

 

                 Equation 1: Motif Residue Frequencies 

 

,

0,

0,

1

o j j

j j

k

k

c b
q

c B






 

 

                Equation 2 : Background Residue Frequencies 
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2.3.3 Predictive Update Step 

The first step, known as the predictive update step, selects one of the sequences and 

places the motif within that sequence in the background and updates the residue counts. 

One of the N sequences, z, is chosen.  The motif in sequence z is taken from the model 

and placed in the background.  The observed counts 
,i jc are updated as are the 

frequencies
,i jq .  The selection of z can be random or in a specified order. 

 

2.3.4 Sampling Step 

In the sampling step, a new motif position for the selected sequence is determined by 

sampling according to a weight distribution.  All of the possible segments of width W. 

within sequence z are considered.  For each of these segments x, a weight 
xA  is 

calculated according to the ratio x
x

x

Q
A

P
  where ,

1
i

W

x i r

i

Q q


 is the model residue 

frequency according to equation 1 if segment x is in the motif model, and 0,

1
i

W

x r

i

P q


  is 

the background residue frequency according to equation 2.  
ir  refers to the residue 

located at position i of segment  x . Once 
xA is calculated for every possible x, a new 

position 
za  is chosen by randomly sampling over the set of weights 

xA . Thus, possible 

starting positions with higher weights will be more likely to be chosen as the new motif 

position than those positions with lower weights.  Since this is a stochastic process, the 

starting position with the highest weight is not guaranteed to be chosen. Once the 

iterative predictive update and sampling steps have been performed for all of the 

sequences, a probable alignment is present.  For this alignment, a maximum posteriori 

(MAP) estimate can be calculated using equation 3: 

 

                 
,

,

1 1 0,

log
W J

i j

i j

i j j

q
F c

q 

  

 

     Equation 3: Alignment conditional log-likelihood 
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2.3.5 Explanation 

The idea is that the more accurate the predictive update step is, the more accurate the 

sampling step will be since the background will be more distinguished from the motif 

description.  Given random positions 
ka in the sampling step, the pattern description 

,i jq  

will not favor any particular segment.  Once some correct 
ka  have been selected by 

chance, the
,i jq begins to favor a particular motif. 

 

  

globalMaxAlignmentProb = 0 

For Iteration = 1 to N 

  Initialize Random alignment 

  localMaxAlignmentProb = 0; 

      while (not in local maximum  

    and  

        innerloop < MAXLOOP)   

        do 

   for each sequence do{ 

     Predictive Update   

     Sample   

   } 

 calculate AlignmentProb 

 if(AlignmentProb 

          >localMaxAlignmentProb){ 

 

    localMaxAlignmentProb=AlignmentProb; 

  not in local maximum=true; 

 } 

 Innerloop++; 

} 

If(localMaxAlignmentProb 

  ==globalMaxAlignmentProb) 

  exit -> max found twice 

 

else if (localMaxAlignmentProb >        

globalMaxAlignmentProb) 

 globalMaxAlignmentProb= 

                 localMaxAlignmentProb 

} 

 

Fig 2.1   Gibbs Sampling Algorithm Sketch 
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Chapter 3 Simulated Tempering 

 

3.1 Simulated Annealing  

Simulated annealing is a generalization of a Monte Carlo method for examining the 

equations of state and frozen states of n-body systems [13]. The concept is based on the 

manner in which liquids freeze or metals recrystalize in the process of annealing. In an 

annealing process a melt, initially at high temperature and disordered, is slowly cooled so 

that the system at any time is approximately in thermodynamic equilibrium. As cooling 

proceeds, the system becomes more ordered and approaches a "frozen" ground state at 

T=0. Hence the process can be thought of as an adiabatic approach to the lowest energy 

state. If the initial temperature of the system is too low or cooling is done insufficiently 

slowly the system may become quenched forming defects or freezing out in metastable 

states (ie. trapped in a local minimum energy state).  

 

The original Metropolis scheme was that an initial state of a thermodynamic system was 

chosen at energy E and temperature T, holding T constant the initial configuration is 

perturbed and the change in energy dE is computed. If the change in energy is negative 

the new configuration is accepted. If the change in energy is positive it is accepted with a 

probability given by the Boltzmann factor exp -(dE/T). This processes is then repeated 

sufficient times to give good sampling statistics for the current temperature, and then the 

temperature is decremented and the entire process repeated until a frozen state is 

achieved at T=0.  

 

By analogy the generalization of this Monte Carlo approach to combinatorial problems is 

straightforward [14, 15]. The current state of the thermodynamic system is analogous to 

the current solution to the combinatorial problem, the energy equation for the 

thermodynamic system is analogous to at the objective function, and ground state is 

analogous to the global minimum. The major difficulty (art) in implementation of the 

algorithm is that there is no obvious analogy for the temperature T with respect to a free 

parameter in the combinatorial problem. Furthermore, avoidance of entrainment in local 
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minima (quenching) is dependent on the "annealing schedule", the choice of initial 

temperature, how many iterations are performed at each temperature, and how much the 

temperature is decremented at each step as cooling proceeds.  

 

There are certain optimization problems that become unmanageable using combinatorial 

methods as the number of objects becomes large. A typical example is the traveling 

salesman problem, which belongs to the NP-complete class of problems. For these 

problems, there is a very effective practical algorithm called simulated annealing (thus 

named because it mimics the process undergone by misplaced atoms in a metal when it’s 

heated and then slowly cooled). While this technique is unlikely to find the optimum 

solution, it can often find a very good solution, even in the presence of noisy data.  

The traveling salesman problem can be used as an example application of simulated 

annealing. In this problem, a salesman must visit some large number of cities while 

minimizing the total mileage traveled. If the salesman starts with a random itinerary, he 

can then pairwise trade the order of visits to cities, hoping to reduce the mileage with 

each exchange. The difficulty with this approach is that while it rapidly finds a local 

minimum, it cannot get from there to the global minimum.  

Simulated annealing improves this strategy through the introduction of two tricks. The 

first is the so-called "Metropolis algorithm" [16], in which some trades that do not lower 

the mileage are accepted when they serve to allow the solver to "explore" more of the 

possible space of solutions. Such "bad" trades are allowed using the criterion that  

/ (0,1)D Te R   

where D is the change of distance implied by the trade (negative for a "good" trade; 

positive for a "bad" trade), T is a "synthetic temperature," and (0,1)R is a random number 

in the interval 0,1 . D is called a "cost function," and corresponds to the free energy in 

the case of annealing a metal (in which case the temperature parameter would actually be 

the kT, where k is Boltzmann's Constant and T is the physical temperature, in the Kelvin 
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absolute temperature scale). If T is large, many "bad" trades are accepted, and a large part 

of solution space is accessed. Objects to be traded are generally chosen randomly, though 

more sophisticated techniques can be used.  

The second trick is, again by analogy with annealing of a metal, to lower the 

"temperature." After making many trades and observing that the cost function declines 

only slowly, one lowers the temperature, and thus limits the size of allowed "bad" trades. 

After lowering the temperature several times to a low value, one may then "quench" the 

process by accepting only "good" trades in order to find the local minimum of the cost 

function. There are various "annealing schedules" for lowering the temperature, but the 

results are generally not very sensitive to the details.  

There is another faster strategy called threshold acceptance [17]. In this strategy, all good 

trades are accepted, as are any bad trades that raise the cost function by less than a fixed 

threshold. The threshold is then periodically lowered, just as the temperature is lowered 

in annealing. This eliminates exponentiation and random number generation in the 

Boltzmann criterion. As a result, this approach can be faster in computer simulations. 
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3.2 Simulated Tempering 

To alleviate the vulnerability of Gibbs sampling to local optima trapping, we propose to 

combine a thermodynamic method, called simulated tempering, with Gibbs sampling. 

The combined method was validated using synthetic data and actual promoter sequences 

extracted from CRP binding site of E.Coli. It is noteworthy that the marked improvement 

of the efficiency presented here is attributable solely to the improvement of the search 

method. 

 

Simulated tempering is an accelerated version of simulated annealing and has two main 

features. First, the temperature of the system is continuously adjusted during the 

optimization process and may be increased as well as decreased. Second, the adjustment 

of temperature is performed without detailed analysis of the potential landscape. 

Temperature control is performed by introducing a second Markov chain. 

 

In this section, we demonstrate that simulated tempering (ST) [18], which is one of many 

proposals from the field of thermodynamics for the systematic avoidance of local optima 

in multivariate optimization problems, is quite useful for reducing the vulnerability of 

Gibbs sampling to local optima. The application of ST to a genetics problem has already 

been reported [19]. SA and potential deformation [20,21], which has already succeeded 

in other problems of bioinformatics, are also rooted in the field of thermodynamics. ST 

and SA employ a temperature parameter T, the introduction of which into a local 

alignment problem has already been reported [22].  

 

The novelty of ST is that it attempts to adjust the value of adaptively to the current score 

of alignments. By changing T, ST adopts continuously changing search methods ranging 

from a fast deterministic-like search to a random-like search, reducing the possibility of 

being trapped in local optima. This principal is schematically shown in Fig. 1.  In the 

present work, we implemented and tested an ST-enhanced Gibbs sampling algorithm for 

TFBS discovery, which we call GibbsST. The validation of our algorithm is also 

presented on synthetic test data and promoter sequences of Saccharomyces cerevisiae. 
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Fig 3.1     Avoid local optimum via simulated tempering 
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3.3 Gibbs Sampling with Simulated Tempering 

3.3.1 Gibbs sampling with temperature 

In this section, we introduce a temperature, T, into the "classic" Gibbs sampling 

algorithm proposed by Lawrence et al. The details of the algorithm (row selection order, 

pseudocount, etc.) will be introduced later along with the implementation of our 

algorithm. For simplicity, it is assumed that all N of input sequences have exactly one 

occurrence (the OOPS-model) of the pattern, which is always 
mW  bp long, and negative 

strands are not considered. 

 

The algorithm holds a current local alignment, A, and a current PWM (Position Weight 

Matrix),
,i jq , which are iteratively updated as a Markov chain until the convergence to a 

pattern. The alignment A is represented by the starting points of aligned segments,
kx , 

which form a gapless sequence block. The first half of an iterative step is the 

recalculation of elements of the current PWM according to the current alignment, 

excluding the k-th row. Then in the second half of a step, the k-th row of the current 

alignment is updated by sampling a new value of 
kx according to weights derived from

,i jq . Let l(1), l(2), ... denote the entire sequence of the row to be updated. We set the 

probability of the new starting point being x proportional to  ( ) , 1/x

x

Q
T

P

         

where 

1

( ),

0

mW

x l x i i

i

Q q






  is the likelihood that the x-th substring   

(x  ~  x  - 1 + 
mW -th letters) of the  k-th input sequence comes from the probabilistic 

model represented by the current PWM, and 

1

( )

0

mW

x l x i

i

P p






  is the likelihood that the 

same subsequence comes from a totally random sequence of the base composition 

observed for the entire input, 0,1,2,3p  (that is, , , ,G A C Tp ). The T is a positive value which 

is the "temperature" of the system. Note that the computational complexity of the single 

step of the optimization is not changed by introducing the temperature.  
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It is easy to see that the above introduced iteration step maximizes 
1

( ), ( )

0

( / )
mW

l x i i l x i

i

q p 


 



  

unless T is extremely large. Since k circulates all N of input sequences, this is a 

maximization of , ,log( / )i j i j iq q p  after all. Hence, the Gibbs sampling 

introduced here has the relative entropy of the pattern PWM against the background 

model as its objective-function (or score) to be maximized, and so does our algorithm. 

Following the convention of statistical physics, however, we refer to TFBS discovery as a 

minimization of the potential U, which is currently (negative relative entropy). Because 

we are not proposing a new definition of U, we do not evaluate the sensitivity and 

specificity of our new algorithm. In principle, the sensitivity and specificity must be 

independent from the search method in the limit of large step number.  

 

When  T = ß = 1, the method is reduced to the classic Gibbs sampling without the idea of 

temperature. In this case, there always is a finite probability of selection of non-optimal 

x, which gives rise to the escape from the local minima. However, the magnitude of the 

escape probability may not be sufficient for deep local minima, because the probability is 

ultimately limited by the pseudocount. The temperature strongly affects the behavior of 

the optimization algorithm. It is easy to see that when T is large enough, the x selection is 

almost random (T → ∞ means that the probabilities of all x are 1), and the algorithm is 

very inefficient despite the high immunity to the local minima problem. When T → 0, on 

the other hand, a very quick convergence to local minima only results, because the 

movement in the solution space is a "steepest-descent" movement. In simulated 

annealing, the temperature is initially set to an ideally large value,
hT , where essentially 

no barrier exists in the potential landscape, and then slowly lowered. There is a 

theoretical guarantee that SA converges to the global minimum when the temperature 

decreases slowly enough [23]. However, it is frequently unrealistic to follow the theory 

because of the large number of iterations required for annealing.  
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3.3.2 Temperature scheduling 

Simulated tempering is an accelerated version of simulated annealing and has two main 

features. First, the temperature of the system is continuously adjusted during the 

optimization process and may be increased as well as decreased. Second, the adjustment 

of temperature is performed without detailed analysis of the potential landscape. 

Temperature control is performed by introducing a second Markov chain (i.e. a random 

walk along the temperature axis) that is coupled with U. 

 

In simulated tempering, the temperature of the system takes one of the 
TN  temperature 

levels, 
0 1 2 1...

TNT T T T     (usually, it is required that
1 ~

TN hT T
).During the 

optimization, the temperature is updated accordingly to the transition rates, R, given by a 

Metropolis-Hastings-like formula: 

 

1

1

( ) 1/ (1 )

( ) / (1 )

i i

i i

R T T S

R T T S S

 

  

  

  
 

 

where S
 is given by 

1

1

exp( )

exp( )

i

i

i

i

U

T

Z

U

T

Z







 

 

iZ  is a normalizing factor usually called the partition function of the system, defined as 

exp( ).i

i

U
Z

T
   

 

How should the temperature levels be decided in ST? Unlike the case of simulated 

annealing, no conclusive theory or rule is known for the decision of algorithmic 
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parameters of simulated tempering, except for the requirement of small temperature 

intervals. According to the equations above, the equilibrium distributions of U defined for 

neighboring values of 
iT  must be overlapped to ensure finite transition rates between 

these temperature levels. This mainly requires small temperature intervals.  

 

The temperature levels must be decided empirically, which leaves us a vast combination 

of 
iT  to explore. However, considering the success of classic Gibbs sampling (and our 

preliminary test, whose data are not shown), we can safely assume that 1hT   for the 

current problem. 

 

Moreover, a good starting point has already been pointed out by Frith et al. [7]. In their 

thesis, they introduced temperature in a manner similar to ours, and reported that a slight 

improvement of performance was observed only when they fixed the temperature to 

slightly lower than 1. 

So, in this thesis, we chose the result from their work. 

 

  

 

Fig 3.2 TLC 5 = 0.50, 0.62, 0.74, 0.86, 0.98 
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     Chapter 4 Mutual Information & Joint Information 

 

4.1 Mutual Information 

The concept of entropy is very important in information theory. It is characterized by the 

quantity of a random process’ uncertainty. If the entropy of the source is less than the 

capacity of the channel, then asymptotically error free communication can be achieved. 

The entropy of a discrete random variable X with a frequency p(x) is defined by: 

 

 2( ) ( ) log ( )
x

H X p x p x   

 

The joint entropy of two discrete random variables X and Y with frequency p(x) and p(y), 

respectively, is defined by: 

 

 2

,

( , ) ( , ) log ( , )
x y

H X Y p x y p x y   

 

Conditional entropy H (X|Y) is the entropy of a random variable X, given another 

random variable Y, which is def ined by: 

 

 2

,

( | ) ( , ) log ( | )
x y

H X Y p x y p x y   

 

The relative entropy D(p||q) is a measure of the distance between two distributions. The 

relative entropy (or Kullback Leibler distance) between two frequency p(x) and q(x) is 

defined as  

  

 2

( )
( || ) ( ) log

( )

p x
D p q p x

q x
  
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The relative entropy is always non-negative and is zero if and only if p = q. However, it is 

not a true distance between distributions since it is not symmetric and does not satisfythe 

triangle inequality. 

 

The reduction in uncertainty X due to the knowledge of random variable Y is called the 

mutual information. For two random variables X and Y, this reduction is: 

  

 2

,

( , )
( ; ) ( , ) log

( ) ( )x y

p x y
I X Y p x y

p x p y
  

 

Where p(x, y) is the joint frequency, p(x) and p(y) are marginal frequency of x and y, 

respectively, and I(X; Y) is a measure of the dependence between the two random 

variables. It is symmetric in X and Y and is always non-negative. 

 

Therefore, a recursive style mutual information concept was proposed. The main purpose 

is to capture more information given more joint frequency. Thus, for a third random 

variable Z, the accumulative mutual information is defined as: 

 

       2

, ,

( , , )
( , ; ) ( , , ) log

( , ) ( )x y z

p x y z
I X Y Z p x y z

p x y p z
  

 

The meaning of accumulative mutual information is that given a single random varable 

and joint frequency of a group of random varables, it can calculate the intense of linkage 

between them. 
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4.2 Scoring Schema  

As mentioned in previous section, one of the important problems in motif discovery area 

is finding the known TFBSs in a given DNA sequence or promoter region (known motif 

prediction). In this section we focus on this problem and at first, some definitions and 

notations further used in this thesis are introduced.  

 

Let { , , , }N A C G T  be the four nucleotide letters' of which DNA sequences are 

composed. We have the DNA sequence 
1,..., nD d d (a promoter region) on N , and let us 

suppose that we have t  known TFBSs of the length l  which are represented by a matrix 

t lB 
 for a given TF, and we intend to investigate by B , where D  possesses a motif 

instance or transcription factor binding site corresponding to the given TF. For finding 

the position of this motif instance in D , we first create a position weight matrix W of B , 

and then we scan all subsequences 
1,...,i i lR d d    for 1,..., 1i n l    of D , and align 

position weight matrix W with each R . All the subsequences which score is greater than 

a cutoff are reported as motif instances. The creation of position weight matrix W from 

TFBSs and calculating the score of alignment W with a subsequence are called scoring 

schema. 

 

The accuracy of the solution in this search problem depends on how we design the 

scoring schema, and how the position weight matrix is constructed. In this section we 

first discuss two existing scoring schemas which are employed for ranking known motifs 

and predicting TFBSs, later a new scoring schema is presented.  

 

4.2.1 Independent scoring schema 

The first scoring schema is a conventional method and is employed in many theses. In 

this scoring schema, it is assumed that all positions in a given motif are completely 

independent. This scoring schema is defined as follows. 
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Suppose we have a promoter region D  and a TFBS matrix B  of some known motifs. 

Assume that ( , )F b j  (b N and1 j l  ) shows the occurrences of nucleotide b  in 

column j  of the matrix B . Employing this function, a frequency P  is made as follows: 

 

( , )
( , ) ( ) 1 ,

F b j
P b j a b b N j l

t
       

where ( )a b  is the smoothing parameter ( ( ) 0.01a b  ). Later, a position weight matrix 

4 lW 
is made as follows: 

 

,

( , )
log 1 ,

( )
b j

P b j
W b N j l

p b
      

where each ( )p b  shows the occurrence frequency of nucleotide b (independent of 

nucleotides in the other position) in a random sequence (obviously ( ) 0.25p b   for every

b N ). 

 

Now, let R be a DNA subsequence with the length l  of a promoter region D  (

1,..., lR r r and 
ir N  for 1 i l  ). For computing the score of R , we align position 

weight matrix W  with R and calculate 
1( )Score R  as follows: 

 

    
1 ,

1

( )
i

l

r i

i

Score R W


  

 

This score can be normalized as follows: 

 

1 1
1

1 1

( )
( ) ,

Score R MinScore
NScore R

MaxScore MinScore





 

 

where 
1MaxScore  and 

1MinScore  are calculated as follows: 

1 ,

1

max{ },
l

b j
b N

j

MaxScore W




  and 
1 ,

1

min{ }.
l

b j
b N

j

MinScore W




  
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4.2.2 Dependent scoring schema 

The second scoring schema was first introduced in [24]. In this scoring schema, 

dependency between some positions in a given TFBS is assumed. This method uses a 

statistical approach to find dependent positions in a set of known TFBSs. Therefore, if the 

dependent positions of a set of TFBSs are available, then this scoring schema is defined 

as follows.  

 

Similar to the previous definition, we have a promoter region D  and t  binding sites of 

the length l  which are represented by a matrix 
t lB 

 for a given TF. Also, assume that

1 1([ ,..., ],[ ,..., ])m mF b b j j  shows the occurrences of bases 
1,..., ( 1 )m ib b b N for i m    in 

dependent positions 
1,..., mj j  in the matrix B (positions 

1,..., mj j  are determined by 

statistical approaches [24]). As an example, ([ , , , ],[3,4,8,11])F A C A T  represents the 

number of occurrences of A, C, A, and T in the positions 3, 4, 8, and 11 in a given matrix

B . It should be noted that the positions 
1,..., mj j  are dependent and not necessarily 

consecutive. 

 

The corrected frequency for the bases 
1,..., mb b in positions 

1,..., mj j  is defined as: 

1 1
1 1 1

([ ,..., ],[ ,..., ])
([ ,..., ],[ ,..., ]) ( ,..., ),m m

m m m

F b b j j
P b b j j a b b

t
   

where 
1( ,..., )ma b b is a smoothing parameter and can be calculated as follows: 

 

1 1( ,..., ) ( ) ... ( ).m ma b b a b a b    

 

Now, the position weight matrix W corresponding to the binding sites is calculated as: 

 

1 1

1 1
[ ,..., ],[ ,..., ] 2

1

([ ,..., ],[ ,..., ])
log

( ) ... ( )m m

m m
b b j j

m

P b b j j
W

p b p b



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Finally, for a given subsequence 
1,..., lR r r  (

ir N and 1 i l  ) of D , we align position 

weight matrix W with R  and calculate 
2( )Score R  as follows: 

 

1 2

1 11 1
2 [ ],[ ] [ , ],[ , ] [ ,..., ],[ , ... , ]

1 1 1

( ) ...
m

j i j j i i j j i i mi i i i i m

kk k

r j r r j j r r j j

i i i

Score R W W W
    

  

     
 

where 
1k  is the number of independent positions, 

2k  is the number of dependent 

positions order 2 (nucleotides at positions 
ij  and 

1ij 
) and 

mk  the number of dependent 

positions order m  (nucleotides at positions 
1 1, ,...,i i i mj j j  

). 

The normalized version of 
2( )Score R can be defined as: 

 

2 2
2

2 2

( )
( ) ,

Score R MinScore
NScore R

MaxScore MinScore





 

where 
2MaxScore  and 

2MinScore can be calculated as follows: 

 

1 2

1 2 , 1 1 ,...,
1 2 1

2 , [ , ],[ ] [ ,..., ],[ ]
[ , ] ( ) [ ,..., ] ( ... )

1 1 1

max max ... max
m

i i i m i i m
m

kk k

b j b b j j b b j j
b N b b N N b b N N

i i i

MaxScore W W W
      

  

     

 

 and 

 

1 2

1 2 , 1 1 ,...,
1 2 1

2 , [ , ],[ ] [ ,..., ],[ ]
[ , ] ( ) [ ,..., ] ( ... )

1 1 1

min min ... min
m

i i i m i i m
m

kk k

b j b b j j b b j j
b N b b N N b b N N

i i i

MinScore W W W
      

  

     
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4.2.3 New scoring schema 

In the previous subsections we presented two scoring schemas. In the first, nucleotides in 

all positions in a given TFBS are considered as independent, but this may not be true in 

all cases because it is shown that dependency between some positions are important 

[25,26]. In the second, dependency between some positions in a TFBS are considered, 

but this model has also two problems: first, calculation of dependency between positions 

is sophisticated, and second, final score is obtained by summation of all the scorings 

obtained by each order dependent positions, which are not in the same range. 

 

As mentioned, all positions in TFBSs may be dependent, because the length of TFBSs are 

short, therefore all positions in TFBS may be involved in the interaction with a factor and 

dependency between all positions are important. TFBSs are short regions in promoter 

region that TFs can be bonded to them to provide initial conditions for gene transcription. 

By mutual comparison of TFBS corresponding to a specific TF, we see that some 

positions in TFBS are mutated and some other ones are conserved. 

 

Since the length of a TFBS is short, therefore it seems that both mutated and conserved 

positions play an important role in binding of TF and TFBS. During a transcription 

process, TFBS region constructs structure by hydrogen bonds and this causes the 

attraction of TF to this region. Thus, with respect to the above feature of this process, it 

seems that the conserved positions and mutated positions cause this attraction. Also, with 

respect to that, the average specific free energy of binding to all binding sites play an 

important role in this attraction, and by considering that this energy is directly related to 

the information content of the preferred binding sites [26], we use the information content 

for TFBS scoring. We also illustrate the original motif discovering via mutual 

information in Appendix A.4. 
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Similar to the previous subsection, suppose that we have a promoter region D  and 

binding site matrix 
t lB 

 for a given TF. Employing information theory, we compute the 

information content (IC) of a set of TFBSs which are represented by the matrix B  with 

position independency as follows: 

 

1

( , ) ( , )
log ,

( )

l

j b N

F b j F b j
IC

t t p b 




  

 

where F  and p  are computed similar to independent scoring schema. From this 

formula, we have 0 2IC l  . Now, we assume that positions are mutually dependent, 

and 
1 2 1 2([ , ],[ , ])F b b j j shows the number of the occurrence of nucleotides 

1b  and 
2b in 

positions 
1j  and 

2j  in the given matrix B . As an example, ([ , ],[3,8])P A T  represents 

the frequency of the occurrence of the pair A and T in the positions 3 and 8 in a given 

matrix B . Clearly, the number of all two combinations of four nucleotides is equal to 16, 

and the number of all two combinations of l  tuples is equal to ( 1) / 2l l  . In this case, the 

joint information content (JIC) is computed as: 

 

1 2

1
1 2 1 2

1 1 1 2

([ , ],[ , ]) ([ , ],[ , ])
log

( ) ( )

l l

j k j b N b N

F b b j k F b b j k
JIC

t t p b p b



    


 

   , 

 

and for this formula we have 0 4JIC l  . 

Obviously, we get more information from JIC when the positions are more conserved. 

Now, the problem is to add up the information of the mutated positions to JIC which have 

not been considered yet. For this reason, we compute the mutual information (MI) as 

follows: 

 

1 2

1
1 2 1 2

1 1 1 2

([ , ],[ , ]) ([ , ],[ , ])
log

( , ) ( , )

l l

j k j b N b N

F b b j k F b b j k
MI

t t F b j F b k



    


 

   
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and from this formula we have 0 2MI l  . The relation of MI and JIC for each position 

pairs is as follows. If MI = 0 then JIC = 4 and consequently MI + JIC = 4, if MI = 2 then 

JIC = 2 and consequently MI + JIC = 4. This condition implies that JIC does show less 

information and by adding up MI we can get more information. Actually MI carries 

meaningful information that can not be discarded. On the other hand, IC = 2 means, 

conservation is low but dependency between positions is high.  

 

With regard to the above discussion, the frequency of the bases 
1b  and 

2b  in positions 
1j  

and 
2j  can be defined as: 

 

1 2 1 2
1 2 1 2 1 2

([ , ],[ , ])
([ , ],[ , ]) ( , )

F b b j j
P b b j j a b b

t
   , 

 

where 
1 2( , )a b b  is a smoothing parameter and can be calculated as: 

 

1 2 1 2( , ) ( ) ( )a b b a b a b  , 

 

Now, for our scoring schema, we make a position weight matrix 
16 (( ( 1))/2)l lW   

 whose each 

entry shows the number of occurrences of a pair of nucleotides in a pair of positions. This 

matrix is defined as: 

 

1 2 1 2

1 2 1 2 1 2 1 2
[ , ],[ , ]

1 2 1 1 2 2

([ , ],[ , ]) ([ , ],[ , ])
log log

( ) ( ) ( , ) ( , )
b b j j

P b b j j P b b j j
W

p b p b p b j p b j
 

 
 , 

 

where 
1 2[ , ] ( )b b N N  , 

1 21 ,j j l   and 
1 2j j . 

 

Finally, for a given subsequence 
1,..., ( 1 )l iR r r r N and i l     of D , we align position 

weight matrix  W  with R  and evaluate 
3( )Score R  as follows: 
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1 21 2

1 2 1

1

3 [ , ],[ , ]

1 1

( )
j j

l l

r r j j

j j j

Score R W


  

  . 

The normalized version of 
3( )Score R can be defined as: 

 

3 3
3

3 3

( )
( )

Score R MinScore
NScore R

MaxScore MinScore





 , 

 

where 
3MaxScore  and 

3MinScore are formulated as follows: 

 

1 2 1 2
1 2

1 2 1

1

3 [ , ],[ , ]
[ , ] ( )

1 1

max { }
l l

b b j j
b b N N

j j j

MaxScore W


 
  

   , 

and 

1 2 1 2
1 2

1 2 1

1

3 [ , ],[ , ]
[ , ] ( )

1 1

min { }
l l

b b j j
b b N N

j j j

MinScore W


 
  

   . 

 

4.3 Relative Entropy 

And Relative entropy is applied as the current score of the alignments when simulated 

tempering attempts to adjust the temperatur T adaptively.  

 

log( )i
i

i i

p
RL p

q
  

 

Relative entropy is a non-symmetric measure of the difference between two frequency 

distributions P and Q. Relative entropy measures the expected number of extra bits 

required to code samples from P when using a code based on Q, rather than using a code 

based on P.  

 

Typically P represents the "true" distribution of data, observations, or a precise calculated 

theoretical distribution. The measure Q typically represents a theory, model, description, 

or approximation of P.  
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In our method, P represents the current alignment matrix whereas Q represents the 

background model. Relative entropy is also called the Kullback-Leibler distance, 

meaning how different the current alignment matrix is from the background matrix. If

i ip q , RL=0, meaning there is no difference. In our case, we are search the high relative 

entropy, which means the current alignment matrix is quite different from the 

background, suggesting a common motif is captured in most sequences. 
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Chapter 5 Method and Result 

 

In this chapter, a combind motif discovery method was described in detail and its result 

compared with another motif finding method --- Bioprospector, follows. 

 

5.1 Method Sketch  

The novelty of Simulated Tempering is that it attempts to adjust the value of T adaptively 

to the current score of alignments. The multivariate 4-nomial distribution matrix 
N lW 

 

was then constructed. The trick is to try to match the relative entropy of the current 
N lW 

 

to different temperature levels. If the current status is stable, suggesting a common motif 

is captured in most sequences, and then the relative entropy of this current alignment 

matrix will be high. Based on this, we tune the temperature low for a quick convergence. 

If the current status is unstable, suggesting no difference between current matrix and 

matrix generated from background, then the relative entropy of this current alignment 

matrix will be low. Based on this, we tune the temperature high for an almost-random 

search for next step.  

 

By changing T, Simulated Tempering adopts continuously changing search methods 

ranging from a fast deterministic-like search to a random-like search, reducing the 

possibility of being trapped in local optima. A brief flowchart about the mechanism 

explained above is shown as below: 
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Random initialization, 
0 0.98T   

Construct background matrix, 

4 lW 
 and 

16 ( ( 1)/2)l lW  
 

from n-1 sequences 

Sampling Step using scroing 

function: 

 

1 21 2

1 2 1

1

3 [ , ],[ , ]

1 1

( )
j j

l l

r r j j

j j j

Score R W


  

 

 

 

Choose motif position by 

probability: 

 

exp( ( ) / )

exp( ( ) / )

i

i

j

Score i T

Score j T  

( )Score i is chosen 

by the new 

scoring schema 

 

Adjust temperature 
iT  : 

 

1

1

( ) 1/ (1 )

( ) / (1 )

i i

i i

R T T S

R T T S S

 

  

  

  
 

1 1

1 1

;

i i

i i

U U
T T

i i

U U
T T

i i

e e

Z Z
S S

e e

Z Z

 

 

  

 

   

 

where    

 
/ iU T

iZ e


  

Fig 5.1   Method flowchart 
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5.2 Testing Data  

 

According to the above steps, a motif discovery program was developed. The test data 

used was a set of DNA sequences comprising CRP binding site. CRP is a protein of 

E.coli; it takes an important role in metabolism by combining to special DNA sequences 

and forming DNA-protein complex which regulates some gene transcription. Stormo has 

collected 18 pieces of DNA sequence; all of them have the ability to combine to CRP.  

The location of the binding site in each DNA sequences was validated by experiments 

(Stormo and Hartzell, 1989).  

 

The consensus sequence is TGTGAnnnnnnTCACA; the length is 16. In order to simulate 

the true situation that some sequences have no motif instance, we have added two 

computer generated sequences according to a background base distribution. Altogether 

there are 20 sequences to form the data set, and each sequence is at the length of 105bp. 

Then we used these data serving as input data to perform the discovery.  

 

  

 

Fig 5.2   Test data in FASTA format 
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5.3 Result 

Our combined method, as well as Bioprospector, was run on the same testing data. 

Results are shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The table listed the locations and the found motifs in each sequence, altogether there are 

18 sequences identified motifs. The program did not found any motif instances from the 

two artificial sequences (not listed in the table). Actually, there are 24 motifs in this data 

set, and the program found out 23 copies where of which 21 copies are true motif. There 

are also 2 false positives and 3 true negatives. 

 

The Sensitivity 
TP

Se
TP FN




 = 0.87, Specificity p

TP
S

TP FP



 = 0.91. The defination 

 

 of Sensitivity and Specificity is shown in Fig 5.4  

 

 
 

Table 5.1  Results from testing data 

Table 5.2  Sensitivity and Specificity 
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To make comparison, we used other programs to discover motifs from the same data set. 

The first program used is Bioprospector (Liu et al., 2001), the service is at 

http://bioprospector.stanford.edu. This program discovered 23 motifs, of which 12 motifs 

are exactly matches and 12 are missed. The sensitivity and specificity of this program are 

0.5 and 0.52. 
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Chapter 6 Conclusion and Discussion 

 

This thesis brought out a combined method to discover conserved TFBS motif of 

functional DNA sequences. The combined method is a mixture of a new scoring schema 

with mutual information and joint information content involved. It gets over the defect 

that the basic PWM model only contained either single position information or just 

neighbourhood base information. In addition, a varied Gibbs sampling algorithm with 

simulated tempering embedded was employed as the discover algorithm. This algorithm 

suits the situation of DNA sequence comprised no copy or multiple copies of motif (Fig ). 

 

 

 

 

 

 

 

 

 

Through the analysis of a set of CRP binding gene sequences, the algorithm found out 

most motif instances of the binding site. The results excel that obtained by Bioprospector 

algorithm using default parameters. Results of the study case indicate that this method is 

feasible in motif discovery. In the implementation of simulated tempering into the 

traditional Gibbs sampling, ST proves to be a powerful solution for local optima 

problems found in pattern discovery. Extended application of simulated tempering for 

various bioinformatic problems is promising as a robust solution against local optima 

problems. 

 

The new scoring schema improves TF binding site discovery and show that the joint 

information content and mutual information provide a better and more general criterion to 

investigate the relationships between positions in the TFBS. The scoring function is 

formulated by simple mathematical calculations and can be induced to perform better 

 

Fig 6.1   Illustration of multi-motif case 
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than methods that do not consider dependencies between positions. Therefore the new 

method with the varied Gibbs sampling algorithm can be further applied in the field such 

as motif discovery or co-expressed gene analysis.  
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Appendix 

A.1 Gibbs Sampling Source Code in PERL 

 

#!/usr/perl/bin 

use strict; 

use FileHandle; 

#-------------------------------------------------------------- 

# MAIN 

#-------------------------------------------------------------- 

# basic parameters 

my $motif_width=6; 

my $num_seq=0; 

my $seq_length; 

my @rawSeq; 

my @M; 

my @startArray; 

my $M_width=$motif_width+1; 

#-------------------------------------------------------------- 

# read in raw genome sequences ,save to @rawSeq 

my $input_data_fh = new FileHandle "<SD.txt"; 

while(<$input_data_fh>){ 

 chomp($_); 

 $rawSeq[$num_seq]=$_; 

 $num_seq++; 

} 

 $num_seq=scalar(@rawSeq); 

#-------------------------------------------------------------- 

my $b=0.000000001; # pseudocounts 

my $B=$b*$num_seq; # total pseudocounts 

#-------------------------------------------------------------- 

$seq_length=length($rawSeq[0]); 

#-------------------------------------------------------------- 

# Random start site for each sequence 

my $possibleStartPostion=$seq_length-$motif_width; 

for (my $i=0;$i<$num_seq ;$i++) { 

 $startArray[$i]=int(rand($possibleStartPostion+1)); 

} 

 

#-------------------------------------------------------------- 
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# Kernel algorithm 

#-------------------------------------------------------------- 

 

my $sthChanged=1; 

 

while($sthChanged){ 

 

 $sthChanged=0; 

  

 my $excluded=0; 

 #################### 

 ## Gibbs Sampling ## 

 #################### 

 while($excluded<$num_seq){ 

  # ----------- predictive update step ----------- 

   

  # initialize matrix to all ZERO 

  setZeroM(); 

   

  # count background and motif position  

  # save to M, which is 4 * (motif_width+1) 

  # 0th column is used to save background 

  calcCountMatrix($excluded);  

   

  # calculate frequency matrix based on count matrix 

  calcFreqMatrix();  

   

  # till now, information is learnt from N-1 and  

  # we got the model matrix M 

 

  # ----------- predictive update step ----------- 

 

  # ---------------- sampling step --------------- 

   

  # the previously excluded sequence 

  my $targetSeq=$rawSeq[$excluded];  

   

  # try all possible start sites in $targetSeq,  

  # choose one with the highest likelihood to our model 

  my $likelihood=0; 

  my $properStart; 

  for(my $i=0;$i<=$seq_length-$motif_width;$i++){ 
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   # calculate likelihood, find MAX Likelihood 

   my $current = calcLikelihood($targetSeq,$i); 

   if($current>$likelihood){ 

    $likelihood=$current; 

    $properStart=$i; 

   } 

  } 

   

  # if some start site is updated,  

  # then switch the flag $sthChanged to TRUE 

  if($properStart != $startArray[$excluded]){ 

   $startArray[$excluded]=$properStart; 

   $sthChanged=1; # TRUE 

  }  

   

  # displayStartArray(); # for testing 

  # ---------------- sampling step --------------- 

   

  $excluded++; #go to next sequence 

 } 

 #################### 

 ## Gibbs Sampling ## 

 #################### 

} 

 

#-------------------------------------------------------------- 

# END : Kernel algorithm  

#-------------------------------------------------------------- 

 

# OUTPUT 

 

my $output_data_fh = new FileHandle ">GibbsResult.txt"; 

 

for (my $i=0;$i<$num_seq ;$i++) { 

 my $currentMotif=substr($rawSeq[$i],$startArray[$i],$motif_width); 

# $output_data_fh->print($startArray[$i]," \t\t ",$currentMotif,"\n"); 

 

# Seq Logos Format 

 $output_data_fh->print($currentMotif,"\n"); 

} 

 

#-------------------------------------------------------------- 
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# All support Functions 

#-------------------------------------------------------------- 

sub calcLikelihood{ 

 my ($targetSeq,$startSite)=@_; 

 my $result=1; 

 for(my $i=$startSite;$i<=$startSite+$motif_width-1;$i++){ 

  my $symbol; 

  my $base=substr($targetSeq,$i,1); 

  if($base eq 'A'){$symbol=0;} 

  if($base eq 'C'){$symbol=1;} 

  if($base eq 'G'){$symbol=2;} 

  if($base eq 'T'){$symbol=3;} 

 

  $result*= $M[$symbol][$i-$startSite+1]/$M[$symbol][0]; 

 } 

  

 # print "\n $targetSeq :result = $result \n"; 

 return $result; 

} 

#-------------------------------------------------------------- 

sub displayStartArray{ 

 print"\n---------------------\n"; 

 for (my $i=0;$i<$num_seq ;$i++) { 

  print $startArray[$i],"\n"; 

 } 

 print"---------------------\n"; 

} 

#-------------------------------------------------------------- 

sub setZeroM{ 

 for (my $i=0;$i<4;$i++) { 

  for (my $j=0;$j<$M_width;$j++) { 

   $M[$i][$j]=0; 

  } 

 } 

} 

#-------------------------------------------------------------- 

sub displayM(){ 

 print "\n--------------------------------\n"; 

 for (my $i=0;$i<4;$i++) { 

  for (my $j=0;$j<$M_width;$j++){ 

   print $M[$i][$j],"\t"; 

  } 
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  print "\n"; 

 } 

 print "--------------------------------\n"; 

} 

#-------------------------------------------------------------- 

sub calcCountMatrix{ 

 my ($excluded)=@_; 

 for(my $iter=0;$iter<$num_seq;$iter++){ 

  #calculate count matrix M for N-1 sequences 

  if($iter==$excluded) {next;} 

  my $currentSeq=$rawSeq[$iter];   

  # scan current Seq, update matrix M; 

  for(my $i=0;$i<$seq_length;$i++){ 

    

   my $base=substr($currentSeq,$i,1); 

   my $symbol; 

   if($base eq 'A'){$symbol=0;} 

   if($base eq 'C'){$symbol=1;} 

   if($base eq 'G'){$symbol=2;} 

   if($base eq 'T'){$symbol=3;} 

   # print "$base "; 

 if($i>=$startArray[$iter] and i<=$startArray[$iter]+$motif_width-1){ 

    my $motif_pos=$i-$startArray[$iter]; 

    $M[$symbol][$motif_pos+1]=$M[$symbol][$motif_pos+1]+1; 

   } 

   else{ 

    $M[$symbol][0]=$M[$symbol][0]+1; 

   } 

  }# print "\nEND\n"; 

  # scan this sequence END 

 } # Have got count Matrix 'M' with excluded sequence excluded :) 

} 

#-------------------------------------------------------------- 

sub calcFreqMatrix{ 

 # calculate freq Matrix from count Matrix 

 for(my $i=0;$i<4;$i++){ 

  my $temp=$M[$i][0]; 

  $M[$i][0]= ($temp+$b)/(($num_seq-1)*($seq_length-$motif_width)+$B); 

 } 

 

 for(my $i=0;$i<4;$i++){ 

  for (my $j=1;$j<=$motif_width ;$j++) { 



45 

 

   $M[$i][$j]=($M[$i][$j]+$b)/($num_seq-1+$B); 

  } 

 } 

 # END : calculate freq Matrix from count Matrix 

} 

#-------------------------------------------------------------- 

 

A.2 Simulated Tempering Code in C++ 

simulatedtempering.h 

 
00066 #ifndef SIMULATEDTEMPERING_H_ 

00067 #define SIMULATEDTEMPERING_H_ 

00068  

00069 #include "mcmc.h" 

00070 #include "simulatedtemperingparams.h" 

00071 #include "maxwalksat.h" 

00072 #include "convergencetest.h" 

00073 #include "gelmanconvergencetest.h" 

00074  

00078 class SimulatedTempering : public MCMC 

00079 { 

00080  public: 

00081  

00085   SimulatedTempering(VariableState* state, long int seed, 

00086                      const bool& trackClauseTrueCnts,  

00087                      SimulatedTemperingParams* stParams) 

00088     : MCMC(state, seed, trackClauseTrueCnts, stParams) 

00089   { 

00090       // User-set parameters 

00091     subInterval_ = stParams->subInterval; 

00092     numST_ = stParams->numST; 

00093     numSwap_ = stParams->numSwap; 

00094       // Number of chains is determined here 

00095     numChains_ = numSwap_*numST_;         

00096     // ------------------------------------------ // 

00097     // Chained method 

00098     //  10 chains: i and i+1 swap attempt at 

00099     //      selInterval*k + selInterval/10*i 

00100     // ------------------------------------------ // 

00101       // 9 possible swaps out of 10 chains 

00102     selInterval_ = subInterval_*(numSwap_ - 1); 

00103  

00104       // invTemp for chain chainIds_[i] 

00105     invTemps_ = new double*[numST_]; 

00106       // curr chainId for ith temperature 

00107     chainIds_ = new int*[numST_]; 

00108       // curr tempId for ith chain 

00109     tempIds_ = new int*[numST_]; 

00110       // We don't need to track clause true counts in mws 

00111     mws_ = new MaxWalkSat(state_, seed, false, stParams->mwsParams); 

00112   } 

00113  

00117   ~SimulatedTempering() 

00118   { 

00119     for (int i = 0; i < numST_; i++) 

00120     { 

00121       delete [] invTemps_[i]; 
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00122       delete [] chainIds_[i]; 

00123       delete [] tempIds_[i]; 

00124     } 

00125     delete [] invTemps_; 

00126     delete [] chainIds_; 

00127     delete [] tempIds_; 

00128     delete mws_; 

00129   } 

00130    

00134   void init() 

00135   { 

00136       // Initialize gndPreds' truthValues & wts 

00137     //state_->initTruthValuesAndWts(numChains_, start); 

00138     initTruthValuesAndWts(numChains_); 

00139  

00140       // Initialize with MWS 

00141     cout << "Initializing Simulated Tempering with MaxWalksat" << endl; 

00142     state_->eliminateSoftClauses(); 

00143       // Set num. of solutions temporarily to 1 

00144     int numSolutions = mws_->getNumSolutions(); 

00145     mws_->setNumSolutions(1); 

00146     for (int c = 0; c < numChains_; c++) 

00147     { 

00148       cout << "for chain " << c << "..." << endl; 

00149         // Initialize with MWS 

00150       mws_->init(); 

00151       mws_->infer(); 

00152       saveLowStateToChain(c); 

00153     } 

00154     mws_->setNumSolutions(numSolutions); 

00155     state_->resetDeadClauses(); 

00156  

00157     // *** Initialize temperature schedule *** 

00158     double maxWt = state_->getMaxClauseWeight(); 

00159     double maxWtForEvenSchedule = 100.0; 

00160     double base = log(maxWt) / log((double)numSwap_); 

00161     double* divs = new double[numSwap_]; 

00162     divs[0] = 1.0; 

00163  

00164     for (int i = 1; i < numSwap_; i++) 

00165     { 

00166       divs[i] = divs[i - 1] / base; 

00167     } 

00168  

00169     for (int i = 0; i < numST_; i++) 

00170     { 

00171       invTemps_[i] = new double[numSwap_]; 

00172       chainIds_[i] = new int[numSwap_]; 

00173       tempIds_[i]  = new int[numSwap_]; 

00174       for (int j = 0; j < numSwap_; j++) 

00175       {          

00176         chainIds_[i][j] = j; 

00177         tempIds_[i][j] = j; 

00178           // log vs even 

00179         if (maxWt > maxWtForEvenSchedule) 

00180         { 

00181           invTemps_[i][j] = divs[j]; 

00182         } 

00183         else 

00184         { 

00185           invTemps_[i][j] = 1.0-((double)j)/((double) numSwap_); 

00186         } 

00187       } 
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00188     } 

00189     delete [] divs; 

00190        

00191       // Initialize gndClauses' number of satisfied literals 

00192     //int start = 0; 

00193     initNumTrueLits(numChains_); 

00194   } 

00195  

00199   void infer() 

00200   { 

00201     initNumTrue(); 

00202     Timer timer; 

00203       // Burn-in only if burnMaxSteps positive 

00204     bool burningIn = (burnMaxSteps_ > 0) ? true : false; 

00205     double secondsElapsed = 0; 

00206     double startTimeSec = timer.time(); 

00207     double currentTimeSec; 

00208     int samplesPerOutput = 100; 

00209  

00210       // If keeping track of true clause groundings, then init to zero 

00211     if (trackClauseTrueCnts_) 

00212     for (int clauseno = 0; clauseno < clauseTrueCnts_->size();clauseno++) 

00213         (*clauseTrueCnts_)[clauseno] = 0; 

00214  

00215       // Holds the ground preds which have currently been affected 

00216     GroundPredicateHashArray affectedGndPreds; 

00217     Array<int> affectedGndPredIndices; 

00218  

00219     int numAtoms = state_->getNumAtoms(); 

00220     for (int i = 0; i < numAtoms; i++) 

00221     { 

00222       affectedGndPreds.append(state_->getGndPred(i), numAtoms); 

00223       affectedGndPredIndices.append(i); 

00224     } 

00225     for (int c = 0; c < numChains_; c++) 

00226       updateWtsForGndPreds(affectedGndPreds, affectedGndPredIndices, c); 

00227     affectedGndPreds.clear(); 

00228     affectedGndPredIndices.clear(); 

00229  

00230     cout << "Running Simulated Tempering sampling..." << endl; 

00231       // Sampling loop 

00232     int sample = 0; 

00233     int numSamplesPerPred = 0; 

00234     bool done = false; 

00235     while (!done) 

00236     { 

00237       ++sample; 

00238  

00239       if (sample % samplesPerOutput == 0) 

00240       {  

00241         currentTimeSec = timer.time(); 

00242         secondsElapsed = currentTimeSec-startTimeSec; 

00243    cout << "Sample (per pred per chain) " << sample << ", time elapsed =; 

00244         Timer::printTime(cout, secondsElapsed); cout << endl; 

00245       } 

00246  

00247         // Attempt to swap temperature 

00248       if ((sample % selInterval_) % subInterval_ == 0) 

00249       { 

00250         int attemptTempId = (sample % selInterval_) / subInterval_; 

00251         if (attemptTempId < numSwap_ - 1) 

00252         { 

00253           double wl, wh, itl, ith; 
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00254           for (int i = 0; i < numST_; i++) 

00255           { 

00256             int lChainId = chainIds_[i][attemptTempId]; 

00257             int hChainId = chainIds_[i][attemptTempId + 1]; 

00258               // compute w_low, w_high: e = -w 

00259               // swap acceptance ratio=e^(0.1*(w_h-w_l)) 

00260             wl = getWeightSum(i*numSwap_ + lChainId); 

00261             wh = getWeightSum(i*numSwap_ + hChainId); 

00262             itl = invTemps_[i][attemptTempId]; 

00263             ith = invTemps_[i][attemptTempId + 1]; 

00264  

00265           if (wl <= wh || random() <= RAND_MAX*exp((itl - ith)*(wh - l))) 

00266             { 

00267               chainIds_[i][attemptTempId] = hChainId; 

00268               chainIds_[i][attemptTempId+1] = lChainId; 

00269               tempIds_[i][hChainId] = attemptTempId; 

00270               tempIds_[i][lChainId] = attemptTempId + 1; 

00271             } 

00272           } 

00273         } 

00274       } 

00275  

00276         // Generate new truth value based on temperature 

00277       for (int c = 0; c < numChains_; c++)  

00278       { 

00279           // For each block: select one to set to true 

00280         for (int i = 0; i < state_->getDomain()->getNumPredBlocks(); i++) 

00281         { 

00282             // If evidence atom exists, then all others stay false 

00283           if (state_->getDomain()->getBlockEvidence(i)) continue; 

00284   

00285           double invTemp = 

00286             invTemps_[c/numSwap_][tempIds_[c/numSwap_][c%numSwap_]]; 

00287  // chosen is index in the block, block[chosen] is index in gndPreds_ 

00288           int chosen = gibbsSampleFromBlock(c, i, invTemp); 

00289  

00290           const Predicate* pred = 

00291             state_->getDomain()->getPredInBlock(chosen, i); 

00292         GroundPredicate* gndPred = new GroundPredicate((Predicate*)pred); 

00293           int idx = state_->getIndexOfGroundPredicate(gndPred); 

00294  

00295           delete gndPred; 

00296           delete pred; 

00297        

00298             // If gnd pred in state: 

00299           if (idx >= 0) 

00300           { 

00301             bool truthValue = truthValues_[idx][c]; 

00302               // If chosen pred was false, then need to set previous true 

00303               // one to false and update wts 

00304             if (!truthValue) 

00305             { 

00306               int blockSize = state_->getDomain()->getBlockSize(i); 

00307               for (int j = 0; j < blockSize; j++) 

00308               { 

00309                 const Predicate* otherPred =  

00310                   state_->getDomain()->getPredInBlock(j, i); 

00311                 GroundPredicate* otherGndPred = 

00312                   new GroundPredicate((Predicate*)otherPred); 

00313                int otherIdx = state_->getIndexOfGroundPredicate(gndPred); 

00314  

00315                 delete otherGndPred; 

00316                 delete otherPred; 
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00317        

00318                   // If gnd pred in state: 

00319                 if (otherIdx >= 0) 

00320                 { 

00321                   bool otherTruthValue = truthValues_[otherIdx][c]; 

00322                   if (otherTruthValue) 

00323                   { 

00324                     truthValues_[otherIdx][c] = false; 

00325                

00326                     affectedGndPreds.clear(); 

00327                     affectedGndPredIndices.clear(); 

00328                     gndPredFlippedUpdates(otherIdx, c, affectedGndPreds, 

00329                                           affectedGndPredIndices); 

00330                     updateWtsForGndPreds (affectedGndPreds, 

00331                                          affectedGndPredIndices, c); 

00332                   } 

00333                 } 

00334               } 

00335                 // Set truth value and update wts for chosen atom 

00336               truthValues_[idx][c] = true; 

00337               affectedGndPreds.clear(); 

00338               affectedGndPredIndices.clear(); 

00339               gndPredFlippedUpdates(idx, c, affectedGndPreds, 

00340                                     affectedGndPredIndices); 

00341        updateWtsForGndPreds(affectedGndPreds, affectedGndPredIndices, c); 

00342             } 

00343  

00344               // If in actual sampling phase, track the num of times 

00345               // the ground predicate is set to true 

00346             if (!burningIn && tempIds_[c/numSwap_][c%numSwap_] == 0) 

00347               numTrue_[idx]++; 

00348           } 

00349         } 

00350  

00351           // Now go through all preds not in blocks 

00352         for (int i = 0; i < state_->getNumAtoms(); i++)  

00353         { 

00354             // Predicates in blocks have been handled above 

00355           if (state_->getBlockIndex(i) >= 0) continue; 

00356             // Calculate prob 

00357           double invTemp = 

00358             invTemps_[c/numSwap_][tempIds_[c/numSwap_][c%numSwap_]]; 

00359           double p = getProbabilityOfPred(i, c, invTemp); 

00360  

00361             // Flip updates 

00362           bool newAssignment = genTruthValueForProb(p); 

00363           //if (newAssignment != pred->getTruthValue(c)) 

00364           if (newAssignment != truthValues_[i][c]) 

00365           { 

00366             //pred->setTruthValue(c, newAssignment); 

00367             truthValues_[i][c] = newAssignment; 

00368             affectedGndPreds.clear(); 

00369             affectedGndPredIndices.clear(); 

00370             gndPredFlippedUpdates(i, c, affectedGndPreds, 

00371                                   affectedGndPredIndices); 

00372        updateWtsForGndPreds(affectedGndPreds, affectedGndPredIndices, c); 

00373           } 

00374  

00375             // if in actual sim. tempering phase, track the num of times 

00376             // the ground predicate is set to true 

00377           if (!burningIn && newAssignment && 

00378               tempIds_[c/numSwap_][c%numSwap_] == 0) 

00379             //pred->incrementNumTrue(); 
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00380             numTrue_[i]++; 

00381         } 

00382       } 

00383       if (!burningIn) numSamplesPerPred += numST_; 

00384  

00385         // If keeping track of true clause groundings 

00386       if (!burningIn && trackClauseTrueCnts_) 

00387         state_->getNumClauseGndings(clauseTrueCnts_, true); 

00388  

00389       if (burningIn)  

00390       { 

00391         if (   (burnMaxSteps_ >= 0 && sample >= burnMaxSteps_) 

00392             || (maxSeconds_ > 0 && secondsElapsed >= maxSeconds_)) 

00393         { 

00394           cout << "Done burning. " << sample << " samples per chain " << 

endl; 

00395           burningIn = false; 

00396           sample = 0; 

00397         } 

00398       } 

00399       else  

00400       { 

00401         if (   (maxSteps_ >= 0 && sample >= maxSteps_) 

00402             || (maxSeconds_ > 0 && secondsElapsed >= maxSeconds_))  

00403         { 

00404           cout << "Done simulated tempering sampling. " << sample 

00405                << " samples per chain" << endl; 

00406           done = true; 

00407         } 

00408       } 

00409       cout.flush(); 

00410     } // while (!done) 

00411      

00412     cout<< "Time taken for Simulated Tempering sampling = ";  

00413     Timer::printTime(cout, timer.time() - startTimeSec); cout << endl; 

00414  

00415       // update gndPreds probability that it is true 

00416     for (int i = 0; i < state_->getNumAtoms(); i++) 

00417     { 

00418       //GroundPredicate* gndPred = state_->getGndPred(i); 

00419       //gndPred->setProbTrue(gndPred->getNumTrue() / numSamplesPerPred); 

00420       setProbTrue(i, numTrue_[i] / numSamplesPerPred); 

00421     } 

00422      

00423       // If keeping track of true clause groundings 

00424     if (trackClauseTrueCnts_) 

00425     { 

00426         // Set the true counts to the average over all samples 

00427       for (int i = 0; i < clauseTrueCnts_->size(); i++) 

00428        (*clauseTrueCnts_)[i] = (*clauseTrueCnts_)[i] / numSamplesPerPred; 

00429     } 

00430   } 

00431    

00432  private: 

00433   

00441   long double getWeightSum(const int& chainIdx) 

00442   { 

00443     long double w = 0; 

00444     for (int i = 0; i < state_->getNumClauses(); i++) 

00445     { 

00446       long double wt = state_->getClauseCost(i); 

00447       if ((wt > 0 && numTrueLits_[i][chainIdx] > 0) || 

00448           (wt < 0 && numTrueLits_[i][chainIdx] == 0)) 
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00449         w += abs(wt); 

00450     } 

00451     return w; 

00452   } 

00453   

00454   private: 

00455   

00456     // User-set parameters: 

00457     // Selection interval between swap attempts 

00458   int subInterval_; 

00459     // Number of simulated tempering runs 

00460   int numST_; 

00461     // Number of swapping chains 

00462   int numSwap_; 

00463  

00464     // MaxWalksat is used for initialization 

00465   MaxWalkSat* mws_;   

00466  

00467     // 9 possible swaps out of 10 chains 

00468   int selInterval_; 

00469     // invTemp for chain chainIds_[i] 

00470   double** invTemps_; 

00471     // curr chainId for ith temperature 

00472   int** chainIds_; 

00473     // curr tempId for ith chain 

00474   int** tempIds_;  

00475 }; 

00476  

00477 #endif /*SIMULATEDTEMPERING_H_*/ 

 

 

 

A.3 Mutual Information Source Code in PERL 

#!/usr/perl/bin 

use strict; 

use FileHandle; 

use Data::Dumper; 

#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

my @stat; 

 

my @bases=("A","C","G","T"); 

my $output = new FileHandle ">MIresults.txt"; 

my $stat = new FileHandle ">Analysis.txt"; 

 

my $index=1; 

 

F: 

my $start_position=-1; # anchored !!! 

 

my $length=18; 

my $width=21; 

my $order=3; 

 

 

# 

my @start_array; 

toArray(); 

# 

my %p_i;  

get_p_i(); 

# 
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### Get Start position with highest information, i.e., lowest entropy! 

 

my $lowest=999; 

 

 

for (my $ind=0; $ind<$width ;$ind++) { 

  

 my @bases=("A","C","G","T"); 

 

 my $sum=0; 

 

 foreach  my $b (@bases) { 

  my $p = $p_i{$ind}{$b}; 

  $sum = $sum - $p * log2($p) ; 

 } 

 

 if($sum<$lowest){ 

  $lowest=$sum; 

  $start_position=$ind; 

 } 

 

} 

### Get Start position with highest information, i.e., lowest entropy! 

 

print "$start_position *\n"; 

 

my @done_arr=($start_position); 

my @ordered_position=($start_position); 

my @ordered_mi=(); 

my $order_backup=$order; 

 

while($order>0){ 

 my $max_mi=-1; 

 my $max_mi_index=-1; 

 my $current; 

 S:for (my $index=0;$index<$width;$index++) { 

   foreach my $omission (@done_arr) { 

    if($index==$omission){next S;} 

   } 

   $current=MI($index,@done_arr); 

   if($current>$max_mi){ 

    $max_mi=$current; 

    $max_mi_index=$index; 

   } 

  } 

 push @done_arr,$max_mi_index; 

 push @ordered_position,$max_mi_index; 

 push @ordered_mi,$max_mi; 

 $order--; 

} 

 

for (my $i=0;$i<scalar(@ordered_position);$i++) { 

 my $temp=$ordered_position[$i]; 

 $output->print ("$temp\t"); 

 $stat[$temp]++; 

} 

 

 $output->print("\n"); 

 

$index++; 

if ($index<=1000) { 

 goto F; 
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} 

 

foreach my $elem (@stat) { 

 $stat->print("$elem\t"); 

} 

 

#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

sub toArray 

{ 

 my @line_array  = (); 

 my $line_index=0; 

 my $data_fh = new FileHandle "<GibbsResult$index.txt"; 

 while (<$data_fh>) { 

  chomp; 

  @line_array = split ''; 

 

  @{$start_array[$line_index]}=@line_array; 

  $line_index++; 

  @line_array  = (); 

 } 

} 

#-------------------------------------------------------- 

sub get_p_i{ 

 my %P_xi_count; 

 my ($row,$column); 

 

 for ($column=0; $column<$width ;$column++) { 

  my $base; 

  for ($row=0;$row<$length ;$row++) { 

   $base = $start_array[$row][$column]; 

   $P_xi_count{$column}{$base}++; 

  } 

 } 

 

 my @bases=("A","C","G","T"); # calc %p_i 

 for ($column=0; $column<$width ;$column++) { 

  foreach  my $base (@bases) { 

   $p_i{$column}{$base}=$P_xi_count{$column}{$base}/18.0; 

  } 

 } 

 

} 

#-------------------------------------------------------- 

sub log2{ 

 my ($in) = @_; 

 if($in==0){ 

  $in=0.0001; 

 } 

 

 my $result = log($in)/log(2); 

  

 if($result==0){ 

  return 0.0001; 

 } 

 else{ 

  return $result; 

 } 

} 

#-------------------------------------------------------- 

sub MI_atom{ 

 my ($Pxy,$Px,$Py) = @_; 

 if($Px == 0){$Px=0.0001;} 

 if($Py == 0){$Py=0.0001;} 
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 my $p = $Pxy/($Px*$Py); 

 if($p == 0){$p = 0.0001;} 

 return $Pxy * log2($p);  

} 

#-------------------------------------------------------- 

sub MI{ # P(Xi ; X24,X15...) 

# this is the optimized mutual information calculator 

 my ($single,@members)=@_; 

 my (%p_rest_count,%p_combination_count); 

  

 for (my $index=0;$index<$length ;$index++) { 

  my ($head,$rest); 

  $head=$start_array[$index][$single]; 

  foreach my $i (@members) { 

   $rest=$rest.$start_array[$index][$i]; 

  } 

  $p_rest_count{$rest}++; 

 

  my $combination = "$head$rest"; 

  $p_combination_count{$combination}++; 

 } 

 my $mi=0; 

 foreach my $combi (keys %p_combination_count) { 

  my ($head,$rest); 

  $head = substr($combi,0,1); 

  $rest = substr($combi,1); 

  my $Pxy = $p_combination_count{$combi}/$length; 

  my $Py = $p_rest_count{$rest}/$length; 

  my $Px = $p_i{$single}{$head}; 

  $mi += MI_atom($Pxy,$Px,$Py); 

 } 

 return $mi;} 

 

 

A.4 Gibbs Sampling Source Code in PERL 

Mutual Information provides a measure of the interdependence between random 

variables, (X;Y), or groupings of random variables, (A,B;X,Y,Z). For the base definition, 

consider two random variables X and Y with joint distribution p(x,y) and individual 

(marginal) distributions p(x) and p(y), then the MI(X;Y) is: 

 

( , )
( , ) ( , ) log

( ) ( )x y

p x y
MI X Y p x y

p x p y
  

 
If X and Y are independent r.v’s then MI=0. If we have a DNA sequence x

1
….x

i
x

i+1
 

x
i+2

……..x
n
 (where x

k
 ={a,c,g, or t}) then we can get counts on pairs x

i
x

i+1
 for i=1..n, and 

assuming stationarity on the data and large enough n, we can speak of the joint 

probability p(X,Y). Calculation of MI(X,Y) then gives an indication of the linkage 
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between base probabilities in dinucleotide probabilities. This can be extended to linkages 

when the two bases aren’t sequential (have a base gap between them greater than zero), 

such as pairs based on x
i
x

i+2
 (gap=1), etc. This type of statistical framework can then be 

iterated to higher order MI calculations in a variety of ways to explore a number of 

statistical linkages and build towards a motif identifier based on such linkages. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Towards Given ‘ATG’ start coding site in Vibrio Cholarae, the conserved upstream 

regulaton, Shine-Dalgarno sequence, was captured via mutual information. 
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Fig A.4.1 codon structure revealed, hexamer stat’s good 

  

Fig A.4.2 Shine-Dalgarno Sequence caputured by mutual information 
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