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Abstract

In this work we study the Generalized Lane-Emden equation and the interplay

between the exponents involved and their consequences on the existence and non

existence of radial solutions on a unit ball in n dimensions. We extend the analysis

to the phase plane for a clear understanding of the behavior of solutions and the

relationship between their existence and the growth of nonlinear terms, where we

investigate the critical exponent p∗ and a sub-critical exponent, which we refer

to as p̂. We discover a structural change of solutions due the existence of this

sub-critical exponent which we relate to the same change in behavior of the Lane-

Emden equation solutions, for α, β = 0, andp = 2, due to the same sub-critical

exponent. We hypothesize that this sub-critical exponent may be related to a

weighted trace embedding.

Key words: p-laplacian, critical Sobolev exponents, weighted Sobolev spaces.
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Chapter 1
Introduction and Scope of Thesis
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1.1 Introduction

This work examines the behavior and multiplicity of the radial solutions to the

Dirichlet problem

∇ · (|x|α |∇u|p−2∇u) + |x|β |u|q−1 u = 0, x ∈ Ω (1.1)

u|∂Ω = 0, q > 1, 1 < p ≤ 2, α, β ≥ 0

where Ω = Bn = {x ∈ Rn : |x| ≤ 1} denotes the unit ball in Rn.

We are interested in the interplay between the exponents α, β, p and q and

consequences for the existence and nonexistence of radial solutions to equation

(1.1).

This equation serves as a generalization to the Lane-Emden equation which has

attracted great interest in the literature and has undergone extensive research due

to its frequent use in mathematics and astrophysics.

The aim of studying the generalized form of the Lane-Emden equation and its

solutions is to develop a broader understanding of the general equations and to

develop analytical tools to analyze these equations to cover more applications as

they arise in the future.
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1.2 Literature Review

The Lane–Emden equation,

∆u+ uq = 0, x ∈ Rn, q > 1, (1.2)

has for many years received attention by the scientific and mathematical commu-

nities for its frequent appearance in physical and astrophysical applications. It was

first introduced in 1869 by Homer Lane, [25], in his attempt to compute both the

temperature and the mass density in portions of the sun. In spite of the fact that

the results he obtained were incorrect near the surface of the sun, the values for

both quantities were reasonable at the interior, [4]. As a result the Lane–Emden

equation is still in use today to compute the structure of the interior of polytropic

stars.

The study of equation (1.2) came in to use again when it was initiated by R.

Emden in 1897 in problems of meteorology, [37]. In the 1920’s, it was extensively

studied by Thomas Fermi in the theory of atoms and electronic potential for a

value of q = 5
2

and n = 3, [37] . Chandrasekhar subsequently introduced the Lane–

Emden equation to astrophysics, for star equilibrium problems with n = 3, in 1937,

[10].

Later, mathematicians including Nirenberg, Ni and Serrin, [21], [22], studied

detailed properties of the Lane–Emden equation in Rn, for general n.

Following Emden’s solution in R3 to (1.2) for the value q = 5, (his solution reads

u = u(r) =
1

(1 + 1
3
r2)

1
2

where

r =
√
x2

1 + x2
2 + x2

3, x = (x1, x2, x3) ∈ R3)

3
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For q < n+2
n−2

, equation (1.2) no longer has solutions, radial or non radial, while

for q = n+2
n−2

, the equation has been completely solved. Remarkably only radially

symmetric, fast-decay solutions can exist, [24], [37].

Serrin and Zou later studied equation (1.2) on the deleted domain Rn\ {0}. They

established nonexistence of solutions for q < n
n−2

, however they found existence

and uniqueness of slowly decaying solutions for n
n−2

< q < n+2
n−2

, [38].

The closely related Dirichlet problem,

∆u+ uq = 0 in IBn, (1.3)

u > 0 in IBn, u = 0 on ∂IBn,

has also been studied extensively by Serrin, [17]. He was able to prove that the

Sobolev critical exponent n+2
n−2

“sets up a dividing number” for the existence and

nonexistence of positive solutions for (1.3). He showed that only for q < n+2
n−2

there

exist radial positive solutions to (1.3) while for q > n+2
n−2

, equation (1.3) has neither

radial nor non radial solutions on a ball of radius r > 0, [17].

In 1979, [21], Ni, Nirenberg and Gidas studied the Dirichlet problem,

∆u+ f(u) = 0, (1.4)

|x| < R, u = 0 on ∂Ω,

where Ω = {x ∈ Rn : |x| < R}, and showed that for a finite ball of radius R > 0

and f ∈ C1, if u > 0 is a positive solution in C2(Ω) of (1.4) then u is radially

symmetric and ∂u
∂r
< 0 for 0 < r < R, [21].

Gidas, Ni and Nirenberg followed up their paper on the Dirichlet problem in

1981, by extending the domain to all of Rn to prove radial symmetry of positive

solutions in Rn, [22].
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Since then there has been considerable interest in positive solutions of the semi-

linear equation (1.4) in Rn, where the Rn case has been approached as a limiting

case of a finite ball. After Gidas , Ni and Nirenbergs contribution to the symmetry

of radial solutions of (1.4) in Rn, it became natural to look at radial solutions of

such problems on different types of domains and with differing conditions on u.

There has been considerable amount of literature on the radial solutions of equa-

tion (1.4). For example, Atkinson and Peletier, [1], [2] have established the existence

of ground state solutions, which tend to zero as the |x| → ∞, using the shooting

method for equation (1.4) in Rn. This type of problem arises in phase transition

theory, in population genetics and the theory of nucleon cores with various differ-

ent forms of the nonlinearity f(u). Ground state is a term borrowed from physical

context in which this equation arises and by ground states mathematicians mean

solutions that tend to zero as x approaches infinity. The shooting method involves

varying of u(0), and the problem is to show that if u(0) is chosen sufficiently large

then the associated radially symmetric solution has a zero, that is, the Dirichlet

problem on some finite ball has a solution. Serrin and Mccloed have also studied

the uniqueness of ground states of (1.4) for the case when f(u) = −u+ uq, where

q is a constant and q > 1, [39]. They have shown that for n = 2, there is at most

one solution for any given q, while when n = 3, there is at most one solution for

1 < q < 3. In both cases the solution is radially symmetric and monotonically

decreasing as one moves outward from the center, [39].

In 1973, M. Henon proposed a model to study rotating stellar systems and

derived the following generalization of the Lane- Emden equation

∆u+ |x|l uq = 0, in Ω (1.5)

u > 0 in Ω and u = 0 on ∂Ω

6



where Ω is a bounded smooth domain in Rn.

This equation is also referred to as Emden- Fowler equation in astrophysics. Here

u represents the density of a single star, [33].

This inspired the mathematicians thereafter to study the following problem

∆u+ f(u, |x|) = 0, in Ω (1.6)

u > 0 in Ω, u = 0 on ∂Ω

Where Ω is a smooth bounded domain in Rn and f(u, |x|) behaves as (|x|l uq).

Ni was interested in studying three types of positive radial solutions for equation

(1.5) with q > 1 and l > −2. These solutions were the E-solutions, F-solutions and

M solutions as termed by Chandrasekhar, [33].

An E- solution is a classical solution of (1.6) when the domain is a ball. An

F-solution is a classical solution of (1.6) when the domain is an annulus and an

M-solution is a solution to (1.7) where the domain is a punctured ball at zero.

Equation (1.7) is given as follows

∆u+ f(u, |x|) = 0, in Ω\ {0} (1.7)

u > 0 in Ω\ {0}, u = 0 on ∂Ω , u→∞ as |x| → 0

The E,F and M solutions are shown in Figure 1.2, [33].

7
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In the context of our earlier discussion, the Lane-Emden problem in (1.2) con-

sidered on a bounded domain

∆u+ uq = 0 in Ω (1.8)

u > 0 in Ω and u = 0 on ∂Ω

E- solutions exist if and only if q < n+2
n−2

. It is a different case if the non-linearity

depends on |x|. The Sobolev ”cut off exponent ”in this case is changed, in partic-

ular, for

∆u+ |x|l uq = 0 , q > 1.

A positive E-solution exists if and only if q < n+2+2l
n−2

.

On the existence of F-solutions for equation (1.8), an F-solution exists for any

q > 1 and on an annulus. When the domain is a punctured ball at zero, with

l > −2, and 1 < q < n+2+2l
n−2

there exists infinitely many M-solutions while for

q > n+2+2l
n−2

, there exists no M-solutions. In general the solvability of such Dirichlet

problems depends not only on the nonlinearity, but also on the geometry of the

domain, [33].

The following equation arises in geometry and physics and has been studied

extensively in recent years:

∆u+K(x)uq = 0, x ∈ Rn (1.9)

There has been a substantial body of research in to the question of existence

and non-existence of positive solutions decaying to zero as |x| → ∞ of (1.9). Much

of this research focused on the range of q values not including the Sobolev critical

exponent p∗ = n+2
n−2

at which variational methods fail to prove the existence of

9



positive, decaying solutions. For q > p∗, variational methods are sufficient to prove

the existence of such positive decaying solutions. Ni and Nirenberg have shown

that for K(r) bounded, positive and increasing eventually, equation (1.9) has no

positive radial solutions and for K(r) decreasing, equation (1.9) has infinitely many

solutions satisfying that
∫

Rn Ku
2n
n−2dx = +∞, [29].

Radially symmetric solutions to equation (1.10)

∆u+K(x)uq = 0, (1.10)

q > 1 in Rn, n > 2

Satisfying the following ordinary differential equation corresponding to it

urr +
n− 1

r
ur +K(r)up = 0, r ∈ (0,∞) (1.11)

u(0) = α > 0

where r = |x|, u+ = max {u, 0}.

It is known that this ordinary differential equation under certain conditions on

K subject to the initial condition u(0) = α > 0 has a unique radial solution u(r).

This solution has been classified according to its behavior as r approaches infinity

as a crossing, slowly or rapidly decaying solution, [44].

This classification is as follows:

i) u(r, α) is a crossing solution if u(r, α) has a zero in (0,∞).

ii) u(r, α) is a slowly decaying solution if u(r, α) > 0 on [0,∞) and rn−2u(r, α)→ ∞

as r →∞.

iii) u(r, α) is a rapidly decaying solution if u(r, α) > 0 on [0,∞) and limr→∞r
n−2u(r, α)

exists and is finite and positive.

10



Where the conditions on K were taken to be:

1) K(r) is continuous on (0,∞).

2) K(r) ≥ 0 and K(r) 6= 0 on (0,∞).

3) rK(r) ∈ L1(0, 1)

A related problem with q = n+2
n−2

∆u+K(x)u
n+2
n−2 = 0, in Rn (1.12)

has been studied separately. The main existence result on positive solutions to

(1.12), given in [32] by Ni, can be summarized as follows. Let K(x) be bounded,

if |K(x)| decays faster than C
|x|2 at infinity for some constant C > 0, then (1.12)

has infinitely bounded solutions in Rn with positive lower bound. Also if K(x) is

negative and decays slower than C
|x|2 at infinity then (1.12) has no positive solutions

in Rn. Ni showed that for K(x) greater than or equal to C
|x|2 at infinity, (1.12) has

no positive solutions in R2.

In [13], Ding and Ni treat the case where K(x) is bounded and nonnegative and

obtain existence of infinitely many positive solutions.

As an application to the Lane-Emden equation consider the following astrophys-

ical problem which has been proposed by two astrophysicist, Bertin and Ciotti, as

model describing the dynamics of galaxies.

−∆u(x) = Φ(r) |u|q−2 u, in R3 (1.13)

u(x) > 0 in R3∫
R3 Φ(r)uq−1dx < +∞

11



with q > 1 in cylindrical coordinates in R3, (x1, x2, x3) ∈ R3, r =
√
x2

1 + x2
2,

z = x3 and u = u(r, z). The weight function is a non negative continuous function

depending on r only, vanishing both at zero and at infinity, where

Φ(r) = r2α

(1+r2)
1

2+α
(α ≥ 0)

and the condition
∫

R3 Φ(r)uq−1dx < +∞ guarantees that the solution carries a

finite total mass, [3].

Various other equations similar to (1.13) have been proposed to model other phe-

nomena of interest in astrophysics. As a second example we mention the Matukuma

equation which is used to model globular clusters of stars.

In 1930, T. Matukuma proposed the mathematical model

∆u+
uq

1 + |x|2
= 0, x ∈ R3 (1.14)

Based on his physical intuition to describe the dynamics of globular clusters of

stars, where u > 0 is the gravitational potential with

∫
R3

uq

4π[1+|x|2]
dx

In representing the total mass, [26], [27], radial symmetry provides a natural as-

sumption for clusters of stars and for most analysis of the Matukuma equation

mathematicians have examined radial solutions, [33].

A more general form of all of the above equations is the nonlinear equation

∆pu+ f(|x| , u) = 0, x ∈ Rn, p > 1 (1.15)

where ∆pu is the p-laplace operator.

12



Over many years a significant amount of research has been invested in studying

the p-laplace operator. This is due to the enormous richness in applications of this

nonlinear operator.

The p-laplacian operator [∇ · (|∇u|p−2 u)] and its generalizations arise in the

motion of incompressible non-newtonian fluids (p 6= 2), pseudoplastic fluids (p < 2)

and dilatant fluids (p > 2). Other applications of the p-laplace operator appear

in flow through porous media (p = 3/2), Nonlinear Elasticity (p ≥ 2), Glaciology

(1 < p ≤ 4
3
), reaction diffusion problems, petroleum extraction and Astronomy,

[31]. When p = 2 one recovers the Laplace equation and its generalizations, [31],

[11].

Serrin, Gazzola and Tang have proved the existence of nonnegative, nontriv-

ial (ground state) radial solutions to a general equation involving the p-laplace

operator, [20]

∆pu+ f(u) = 0, u > 0, in Rn (1.16)

Also they have proved the existence of positive radial solutions of the associated

homogeneous Dirichlet- Neumann free boundary problem

∆pu+ f(u) = 0, u > 0 in BR (1.17)

u = ∂u
∂n

= 0 on ∂BR

where BR is an open ball in Rn with radius R > 0. The nonlinearity f(u) defined

for u > 0 is required to be Lipschitz continuous on (0,∞) in L1 on (0, 1) with∫
BR
f(s)ds < 0 for small u > 0.

Citti proved existence of ground states when 1 < p < n, f(0) < 0, then the

ground states connot exist for both cases when p = 2 and p 6= 2, [12].

13



The uniqueness of positive radial solutions to the Dirichlet problem

∇ · (|∇u|p−2∇u) + f(u) = 0, in BR (1.18)

u > 0 in BR , u = 0 on ∂BR

On the finite ball of radius R > 0, n ≥ 3, 1 < p ≤ n, where f(u) is taken to be

the function µup + uq, µ > 0 and 1 ≤ p < q ≤ n+2
n−2

, has been proved by Erbe and

Tang, [17].

The case where the nonlinearity f(u) is (|u|q−1 u), has been studied in Rn and

on the unit ball. Saxton and D.Wei have studied the nonlinear p-harmonic (1.18)

Dirichlet problem, adapting to the case p 6= 2 in [19], and have shown that for p

and q satisfying the sub-critical Sobolev embedding condition, (1.18) has infinitely

many radially symmetric solutions,[36]. In chapter 2 of this thesis we follow the

approach used in [36].

The existence and multiplicity of positive radial solutions to the Dirichlet prob-

lem

−∆pu = q(|x|)f(u) (1.19)

x ∈ B1, u = 0, for x ∈ ∂B1

Where B1 is the unit ball and the functions q : (0, 1) → R+ and f : R → R are

continuous, has been established by Ercole and Zumpano in [16].

14



As an application of the p-laplacian we mention the following example given in

[41] which shows how the p-laplacian operator my govern fluid flow in a porous

medium. A description used for fluid flow in rock-filled dams is the Missbach’s

exponential law, which in R2 states that

−κ∇Φ = |v|m−1 v 1 ≤ m ≤ 2 (1.20)

where κ denotes the permeability, Φ the piezometric head and v = (u, v, 0) the

average seepage velocity vector.

The component-wise form equation (1.20) is

−κ(∇Φ)x = |v|m−1 u, −κ(∇Φ)y = |v|m−1 v (1.21)

Where κ∇Φ = |v|m

Therefore

u = −1/κ |∇Φ|
1−m
m Φx and v = −1/κ |∇Φ|

1−m
m Φy. (1.22)

Substituting the last two equations in the continuity equation one obtains the

p-harmonic equation

∇ · (|∇Φ|p−2∇Φ) = 0 (1.23)

where p = (1 + 1
m

), [41].

The p-laplacian also appears in the power-law stokes equation to model the

steady flow of a non-Newtonian fluid. The power-law stokes equation reads

−k∇ · (|∇(u)|p−2∇(u)) +∇ν = f (1.24)

Where u(x) = (u1(x), ..., un(x)) denotes the velocity of a fluid particle at

x = (x1, ...xn) ∈ Ω, f = (f1, ...fn) denotes the body force and ν is the scalar

pressure. This model of non-Newtonian flow is very popular in chemical engineer-

ing, [8], as well as in geophysics, [40], for the design of the extrusion dies, [5], [30],

and for the study of lithosphere, [14], [15].
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1.3 The Generalized Lane-Emden equation as a

general model

The generalized Lane-Emden equation

∇ · (|x|α |∇u|p−2∇u) + |x|β |u|q−1 u = 0, (1.1)

u|∂Ω = 0 , q > 1, 1 < p ≤ 2, α, β ≥ 0.

Generalizes the above equations and their applications for appropriate choices of

α, β, p and q.

Equations (1.2) , (1.3) and (1.8) can be obtained from equation (1.1) by choosing

α, β = 0 and p = 2.

Equation (1.5) can be obtained from (1.1) by setting α = 0, β = l > 0 , and

p = 2.

Equation (1.4) can be obtained from (1.1) be choosing α, β = 0 and p = 2,

where f(u) may involve the non-linearity (|u|q−1 u) or other functions of u. When

f(u) = λu+ |u|q−1 u, where λ ≥ 0 is a constant, the equation is referred to as the

eigenvalue problem.

Equations (1.6) and (1.7) are obtained from the equation (1.1) by setting α = 0,

p = 2, and β = 0 or not depending on the nature of the function f(|x| , u).

Equations (1.9), (1.10) and (1.12) are obtained from the equation (1.1) by choos-

ing α = 0, p = 2, and β = 0 or not depending on the nature of the function K(x).

The functionK(x) takes the form of Φ(r) in the model (1.13) or the form (1+|x|2)−1

in the model (1.14) representing the Matukuma equation.

Equations (1.16), (1.17) and (1.18) are obtained from (1.1) by setting α, β = 0

and p 6= 2.

Equations (1.15) and (1.19) are obtained from (1.1) by setting α = 0 , p 6= 2,

and β = 0 or not depending on the nature of the function f(|x| , u).
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1.4 The Generalized Lane-Emden equation and

applications

In this thesis we will consider two application models of the Generalized Lane-

Emden equation from two different fields of science, Astronomy and Engineering.

The first application is given by the equation

∆u+ |x|β |u|q−1 u = 0 (1.25)

u|∂Ω = 0

q > 1, β ≥ 0, n > 2

The second application is given by the equation

−∇ · (|x|−ap |∇u|p−2∇u) = |x|−(a+2)p+c |u|q−1 u (1.26)

u|∂Ω = 0

1 < p ≤ 2, q > 1, a < −1, c > 0

Where Ω is the unit ball in Rn.

1.4.1 The first application and literature

The equation

∆u+K(|x|)f(u) = 0 (1.27)

was proposed as a model describing the dynamics of Galaxies by G.Bertin, [6].

Based on the assumption that galaxies are axial symmetric, a cylindrical symmetry

of the problem was derived where f(u) = uq, u = u(r, z), K(|x|) = Ψ(r), where

Ψ(r) = r2α

(1+r2)1/2+α , α ≥ 0 and r =
√
x2

1 + x2
2, z = x3, [3].

Various equations similar to equation (1.27) have been proposed to model several

phenomena of interest in astrophysics, for example the Matukuma equation (1.14).
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These models were used to model globular clusters of stars and so radial symmetry

was the natural symmetry assumption, [3].

Equation (1.27) has it’s roots from many mathematical and physical fields, e.g,

the scalar curvature equation (1.12), as well as the study of Riemannian Geometry

and scalar field equation for the standing wave of nonlinear Schrodinger and Klein-

Gordan equations. For K(|x|) = 1 we have the Lane-Emden equation that plays

an important role in astrophysics, [28].

Extensive research was done on (1.27) and it’s generalizations by many scien-

tists in these fields. For example, in [29], [28], the nonlinearity f(u) is taken to

equal |u|q−1 u in Rn and K(r) is a smooth and positive function on (0,∞) where

K(r) ∈ L1(0, 1) for q > 1, n > 2,

In our application we consider the following equation on a unit ball centered at

zero with K(x) = |x|β

∆u+ |x|β |u|q−1 u = 0, x ∈ Bn (1.28)

u|∂Bn = 0, β ≥ 0, q > 1, n > 2

18



1.4.2 The second application and literature

Degenerate nonlinear elliptic equations of the type

−∇ · (a(x)∇u) = g(λ, x, u), x ∈ Ω. (1.29)

Where λ is a real parameter, Ω is a (bounded or unbounded) domain in Rn (n ≥ 2)

and a(x) is a nonnegative measurable weight function that is allowed to have zeros

at some points, have long history and come from the consideration of standing

waves in anisotropic Schrödinger equation, [35]. Such problems of anisotropic media

can be regarded as equilibrium solutions of the evolution equations

ut = F (λ, u,∇u) in Ω× (0, T ) (1.30)

Where u = u(x, t) is the state of a certain system. The study of nontrivial solutions

of the problem F (λ, u,∇u) = 0 in the given domain is motivated by important

phenomena such as the irrotational flow of a fluid along a flat-bottomed canal

with F (λ, 0, 0) = 0. Other problems of this type also appear in reaction diffusion

processes, [35],[9].

F may be taken to involve the quasilinear differential operator

∆pu = ∇ · (|∇u|p−2∇u), 1 < p <∞ (1.31)

The generalized Lane-Emden equation appears as an application in fluid mechan-

ics as a physical phenomena related to equilibrium of anisotropic media which pos-

sible are perfect insulators. For instance, if Ť is the sheer stress and ∇pu is the ve-

locity gradient then these quantities obey a relation of the form ˇT (x) = a(x)∇pu(x)

where ∇pu = |∇u|p−2∇u is the p-laplacian operator, p > 1 is an arbitrary number.

The case p = 2 (respectively p < 2, p > 2) corresponds to a Newtonian (respec-

tively pseudo plastic, dilatant) fluid. The resulting equations of motion then involve
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the nonlinear, inhomogeneous expression ∇ · (a∇pu), which reduces to a∇ · (∇pu)

for a being a constant, [7], [31].

For example, several existence results for the following eigenvalue problem in-

volving a p-laplacian and a nonlinear boundary condition on unbounded domains

appears in [31],

−∇ · (a(x) |∇u|p−2∇u) = λf(x) |u|p−2 u+ q(x) |u|q−2 u x ∈ Ω (1.32)

a(x) |∇u|p−2∇u · ν + b(x) |u|p−2 u = f(x, u) , x ∈ ∂Ω

Where ν denotes the unit outward normal on the smooth boundary ∂Ω, Ω ⊂ Rn

is an unbounded domain, λ � 0, the functions a,b and h are positive while f and

g are subcritical nonlinearities, 0 < a0 < a ∈ L∞(Ω), while b : ∂Ω → R is a

continuous function satisfying

c

(1 + |x|)p−1
≤ b(x) ≤ C

(1 + |x|)p−1
(1.33)

for some constants 0 < c ≤ C, p, q, n ∈ R, 1 < p < q < p∗ = np
n−p . For further

examples see [11].

Quasilinear problems with variable coefficients also appear in the mathematical

model of the torsional creep ( elastic for p = 2, plastic as p approaches infinity ).

This study is based on the observation that a prismatic material rod subject to

torsional moment at sufficiently high temperatures and for an extended period of

time exhibits a permanent deformation called creep, [31].

A specific example of the equation above that has been under study by many

scientists is the degenerate problem

−∇ · (|x|−ap |∇u|p−2∇u) = |x|−(a+1)p+c f(u), in Ω (1.34)

u = 0 on ∂Ω
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Where Ω ⊂ Rn is an open bounded domain with C1 boundary and 0 ∈ Ω,

1 < p < n, 0 ≤ a < n−p
p

, c > 0, [42].

The existence of multiple solutions to equation (1.34) with asymptotically linear

term at infinity has been studied by Xuan, B in [42], where the asymptotically

linear term is lim|t|→∞
f(t)
t

= l <∞.

In our application (1.26) we take Ω to be the unit ball in n dimensions and

f(u) = |u|q−1 u, a < −1 and c > 0. This equation appears in physical phenomena

related to equilibrium of anisotropic media which possibly are perfect insulators

or perfect conductors.
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1.5 Organization of the thesis

In this thesis we prove the existence and non-uniqueness of an infinite number of

solutions to the Generalized Lane-Emden equation in relation to a critical Sobolev

exponent using variational analysis as well as a complete phase plane analysis where

there appears another sub-critical exponent influencing the behavior of solutions.

A connection between both settings will be made subsequently.

We start with a weighted Sobolev embedding theorem in chapter 2. Then we

use the Pohozaev’s identity to prove the non-existence of both general and radial

solutions of the Generalized Lane-Emden equation for q + 1 ≥ p∗ = p(n+β)
n+α−p ,

1 < p ≤ 2, q > 1, α, β ≥ 0. Next we use the shooting argument to prove the

existence and non-uniqueness locally and globally of an infinite number of radial

solutions to the corresponding ordinary differential equation for p < q + 1 < p∗,

1 < p ≤ 2, α, β ≥ 0. We end chapter 2 with few properties of these radial

solutions.

In chapter 3 we move to phase plane analysis. We start by transforming the

Generalized Lane-Emden equation and its associated boundary condition in to an

autonomous system in phase plane. We perform complete phase plane analysis

which includes finding the finite critical points of the system, local behavioral

analysis of trajectories, global portraits and critical exponent analysis. In this

chapter we obtain the critical exponents that influence the existence and behavior

of solutions of the Generalized Lane-Emden equation.

We conclude with chapter 4 where we introduce the Lane-Emden equation in to

phase plane to obtain the sub-critical and critical exponents in phase plane with

a complete description of the behavior of solutions for p < q + 1 < p∗, p∗ = 2n
n−2

.

We also include similar results to two applications from the fields of Astronomy

and Engineering.
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We start by providing definitions and notations that are a basis to our work in

this thesis. The symbol Ω will refer to a general domain subset of Rn and ∂Ω will

represent the boundary of the domain.

Definition 1.5.1:

i) A function ω(x) defined on a domain Ω ⊂ Rn is said to be a weight function

if it is strictly positive, finite measurable almost everywhere on Ω.

ii) Let ω(x) be a weight function and 1 ≤ p < ∞, the weighted Lebesgue

space Lp(Ω, ω) is the set of all measurable functions u defined on Ω such that∫
Ω
ω(x) |u(x)|p dx < ∞. The space Lp(Ω, ω) is a Banach space with the norm

‖u‖Lp(Ω,ω) = (
∫

Ω
|u(x)|p ω(x)dx)1/p.

iii) Let 1 ≤ p < ∞, ω is a weight function as defined in i), then the weighted

Sobolev space W 1,p(Ω, ω) is the set of all functions u ∈ Lp(Ω, ω) such that ∂u
∂xi
∈

Lp(Ω, ω) for all i = 1, 2, ...., n. The space W 1,p(Ω, ω) is a Banach space with the

norm

‖u‖Wk,p(Ω,ω) = [‖u‖pLp(Ω,ω) +
∑∥∥∥ ∂u

∂xi

∥∥∥
Lp(Ω,ω)

]
1
p , (Appendix A2).

We will be using the symbol ↪→ for continuous embedding and ↪→↪→ for compact

embedding.

Taking ω(x) to be the function |x|α or |x|β and Ω = Bn, we define the following

norms and function spaces.

Definition 1.5.2:

i) The weighted q + 1 norm is:

‖u‖Lq+1(Bn,|x|β) = (
∫
Bn
|x|β |u(x)|q+1 dx)

1
q+1 for 1 ≤ q + 1 <∞.

and

ii) The weighted p norm:

23



‖∇u‖Lp(Bn,|x|α) = (
∫
Bn
|x|α |∇u(x)|p dx)

1
p for 1 ≤ p <∞.
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Definition 1.5.3:

W 1,p(Bn, |x|α) ≡
{
u ∈ W 1,p

loc (Bn) : ‖∇u‖Lp(Bn,|x|α) =
∫
Bn
|x|α (|u|p + |∇u|p)dx)

1
p <∞

}
and

Lq+1(Bn, |x|β) ≡
{
u ∈ W q+1

loc (Bn) : ‖u‖Lq+1(Bn,|x|β) =
∫
Bn
|x|β |u|q+1 dx)

1
q+1 <∞

}
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Chapter 2
Existence Of Solutions Using Variational
Methods.
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In this chapter we use a shooting argument to prove the existence and nonunique-

ness of radial solutions to (1.1) in W 1,p(Bn, |x|α)∩Lq+1(Bn, |x|β), where for q+1 <

p∗, p∗ = p(n+β)
n+α−p the following inequality ‖u‖Lq+1(Bn,|x|β) ≤ C ‖∇u‖Lp(Bn,|x|α) holds

and the embedding W 1,p(Bn, |x|α) ↪→ Lq+1(Bn, |x|β) is compact, [42]. Then we

prove the non-existence of radial and general solutions on a star shaped domain

to (1.1) using Pohozaev’s identity for q + 1 ≥ p∗.

In this chapter we also prove that the class of all nontrivial solutions are bounded

below for p < q + 1 < p∗ = p(n+β)
n+α−p , 1 < p ≤ 2, q > 1, α, β ≥ 0 by a constant depen-

dent on p, n, α, β. We then prove that the maximum amplitude of radial solutions

to the Generalized Lane-Emden equation occurs at the origin and establish the

existence of a finite number of zeros.

The Generalized Lane-Emden equation (1.1) may be considered as the Euler-

Lagrange equation for the functional

F (u) =

∫
Ω

(
1

p
|x|α |∇u|p − 1

q + 1
|x|β |u|q+1)dx (2.1)

Upon taking the first variation of the functional F (u) in (2.1) we have

δF (u) = δ

∫
Ω

(
1

p
|x|α |∇u|p − 1

q + 1
|x|β |u|q+1)dx (2.2)

where δF (u) = d
dε
F (u+ εw)|ε=0,∀w ∈ C∞0 (Ω) and εw = δu. Since

δ |∇u|p = p |∇u|p−2∇u · ∇ δu and δ |u|q+1 = (q + 1) |u|q−1 uδu, we have

δF (u) =

∫
Ω

(|x|α |∇u|p−2∇u · ∇δu− |x|β |u|q−1 uδu)dx (2.3)

Then

δF (u) = −
∫

Ω

[∇ · (|x|α |∇u|p−2∇u) + |x|β |u|q−1 u]δudx (2.4)

We consider radial solutions regular at the origin satisfying

< F ′(u), u >= 0 (2.5)
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That is ∫
Ω

u(∇ · (|x|α |∇u|p−2∇u) + |x|β |u|q−1 u)dx = 0 (2.6)

This simplifies in to∫
Ω

(−∇u · (|x|α |∇u|p−2∇u) + |x|β |u|q+1)dx = 0 (2.7)

Hence ∫
Bn
|x|α |∇u|p dx =

∫
Bn
|x|β |u|q+1 dx (2.8)

In this thesis we examine solutions for which the terms in this relation are finite.

Solutions to (1.1) satisfying Dirichlet boundary conditions on a domain Ω are

characterized as critical points of the energy functional (2.1). Studying the exis-

tence and qualitative properties of these critical points corresponds to studying

these properties for the solutions of the equation (1.1). This has been known to be

done using variational methods.

We consider the radial equation corresponding to the Generalized Lane-Emden

equation.

r1−n(rn+α−1 |ur|p−2 ur)r + rβ |u|q−1 u = 0 (2.9)

Which after simplification and collecting like terms becomes

(p− 1)rα |ur|p−2 urr + (α + n− 1)rα−1 |ur|p−2 ur + rβ |u|q−1 u = 0 (2.10)
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2.1 Weighted Sobolev embeddings

We start by stating two well known results (Theorems 2.1.1 and 2.1.2) and a

Conjecture. Theorem 2.1.1 and Conjecture 2.1.1 provide us with embedding results

needed for weighted Sobolev spaces and Theorem 2.1.2 is a trace embedding result

for unweighted spaces.

Before stating the theorem and the conjecture we define p̂ as the sub-critical

exponent mentioned in the literature for the Lane-Emden equation (p̂ = 2(n−1)
n−2

),

[17]. In chapter 3 we obtain a sub-critical exponent through phase plane analysis,

again labeled p̂, which corresponds to a change in the structure of solutions to the

Generalized Lane-Emden equation, here p̂ = p(n+β)−(p+β−α)
n+α−p . We also define p∗, the

critical exponent for the Lane-Emden equation (p∗ = 2n
n−2

), [17], where p∗ = p(n+β)
α+n−p

for the Generalized Lane-Emden equation.

Theorem 2.1.1. Weighted Sobolev Embedding Theorem.

Let α, β ≥ 0, 1 < p ≤ 2 and p < q + 1 ≤ p∗, p∗ = p(n+β)
α+n−p . Then

‖u‖Lq+1(Bn,|x|β) ≤ C ‖∇u‖Lp(Bn,|x|α) and the embedding W 1,p(Bn, |x|α) ↪→ Lq+1(Bn, |x|β)

is continuous. If the upper bound for q+ 1 is strict then the embedding is compact,

[42], (see appendix A1 for a proof).

Theorem 2.1.2. Trace Embedding Theorem

Consider a unit ball in n dimensions, Bn. Let 1 ≤ q + 1 ≤ p̂, p̂ = p(n−1)
n−p ,

then W 1,p(Bn) ↪→ Lq+1(∂Bn) is continuous and the inequality ‖u‖Lq+1(∂Bn) ≤

C ‖u‖W 1,p(Bn) holds, [9].

Conjecture 2.1.1. Weighted Trace Embedding Theorem

Let α, β ≥ 0, 1 < p ≤ 2 and p < q + 1 ≤ p̂, p̂ = p(n+β)−(p+β−α)
n+α−p then
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W 1,p(Bn, |x|α) ↪→ Lq+1(∂Bn, |x|β) is continuous and the inequality ‖u‖Lq+1(∂Bn,|x|β) ≤

C ‖u‖Lp(Bn,|x|α) holds. If the upper bound of q+ 1 is strict then the trace embedding

is compact.
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2.2 Non-existence of solutions for q + 1 ≥ p∗

In this section we prove the non existence of solutions for the generalized Lane-

Emden equation, radial and general, for q + 1 ≥ p∗ = p(n+β)
n+α−p using Pohozaev’s

identity.

2.2.1 Non-existence of radial solutions for q + 1 ≥ p∗

Before we prove the nonexistence of solutions for q+ 1 ≥ p∗ = p(n+β)
n+α−p , consider the

radial form of the Generalized Lane-Emden equation

(p− 1)rα |ur|p−2 urr + (α + n− 1)rα−1 |ur|p−2 ur + rβ |u|q−1 u = 0 (2.10)

Upon multiplying (2.10) by ur we have:

(p− 1)rα |ur|p−2 urrur + (α + n− 1)rα−1 |ur|p−2 urur + rβ |u|q−1 uur = 0. (2.11)

Since

(p− 1)rα |ur|p−2 ururr =
d

dr
[
p− 1

p
rα |ur|p]− α(

p− 1

p
)rα−1 |ur|p , (2.12)

and

rβ |u|q−1 uur =
d

dr
[

1

q + 1
rβ |u|q+1]− β

q + 1
rβ−1 |u|q+1 , (2.13)

Equation (2.11) becomes

d

dr
[
p− 1

p
rα |ur|p +

1

q + 1
rβ |u|q+1] = −(

α

p
+ n− 1)rα−1 |ur|p +

β

q + 1
rβ−1 |u|q+1 .

(2.14)

Integrating both sides of equation (2.14) with respect to r from 0 to r we obtain∫ r
0

d
ds

[p−1
p
sα |us|p + 1

q+1
sβ |u|q+1]ds

=

∫ r

0

[−(
α

p
+ n− 1)sα−1 |us|p +

β

q + 1
sβ−1 |u|q+1]ds (2.15)

and letting E(r) = p−1
p
rα |ur|p + 1

q+1
rβ |u|q+1, we then have

E(r) =

∫ r

0

[−(
α

p
+ n− 1)sα−1 |us|p +

β

q + 1
sβ−1 |u|q+1]ds+ E(0) (2.16)
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We examine bounded solutions such that u(0) and ur(0) are both finite, with α, β ≥

0, 1 < p ≤ 2, q > 1. In particular, let u(0) = σ, |σ| <∞, ur(0) = 0, u(1) = 0,

ur(1) = −δ,−δ ∈ (−∞,∞), consequently E(0) = 0 for α, β > 0. For α, β = 0,

E(r) = p−1
p
|ur|p + 1

q+1
|u|q+1 and E(0) = |σ|q+1

q+1
. For reference on the case α, β = 0

see [36].

Therefore

E(r, σ) =

∫ r

0

[−(
α

p
+ n− 1)sα−1 |us|p +

β

q + 1
sβ−1 |u|q+1]ds (2.17)

Consider (2.14) again, integrating both sides from ε to 1 with respect to r we

have

p− 1

p
rα |ur|p |1ε+

1

q + 1
rβ |u|q+1 |1ε =

∫ 1

ε

[−(
α

p
+n−1)rα−1 |ur|p+

β

q + 1
rβ−1 |u|q+1]dr

(2.18)

Letting ε→ 0, for 1 < p ≤ 2, q > 1, u(0) = |σ| <∞, ur(0) = 0, u(1) = 0,

ur(1) = −δ,−δ ∈ (−∞,∞), the integrand
∫ 1

0
−(α

p
+ n− 1)rα−1 |ur|p dr is finite

for α ≥ 0 and the integrand
∫ 1

0
β
q+1

rβ−1 |u|q+1 dr is finite for β ≥ 0.

Let E1(r, σ) = r−βE(r, σ) = p−1
p
rα−β |ur|p + 1

q+1
|u|q+1, next we prove that

E1(r, σ) is a monotone decreasing function for a fixed value of σ.

Lemma 2.2.1. d
dr
E1(r, σ) ≤ 0 for α, β ≥ 0, 1 < p ≤ 2, q > 1, u(0) = |σ| < ∞, ur(0) = 0,

r ≥ 0.

Proof :

Consider multiplying (2.10) by r−βur, we then have

(p− 1)rα−β |ur|p−2 ururr + (α + n− 1)rα−β−1 |ur|p + |u|q−1 uur = 0 (2.19)

After simplification and collecting like terms equation (2.19) gives

d

dr
[
p− 1

p
rα−β |ur|p +

1

q + 1
|u|q+1] = −(n+ β − 1 +

α− β
p

)rα−β−1 |ur|p (2.20)
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Observe that n− 1 + α
p

+ (p−1)β
p

> 0 for α, β ≥ 0 and 1 < p ≤ 2, hence

dE1

dr
≤ 0 for r ≥ 0 (2.21)

Integrating (2.21) from 0 to r gives

E1(r) ≤ E1(0) for r ≥ 0 (2.22)

Observe that the function, E1(r), is bounded provided that α, β ≥ 0, 1 < p ≤ 2, q > 1,

ur(0) = 0 and u(0) = |σ| are finite, which in return implies that u(r) and ur(r)

are bounded. We therefore have

E1(r) ≤ 1

q + 1
|σ|q+1 (2.23)

Integrating (2.21) with respect to r from r = 0 to r = 1 gives the following estimate

for ur(1) = −δ

E1(1) ≤ E1(0) (2.24)

Hence,

|δ|p ≤ p

(p− 1)(q + 1)
|σ|q+1 (2.25)

Lemma 2.2.2. Let u(r) satisfy (2.9), u(0) = σ, ur(0) = 0, α, β ≥ 0, 1 < p ≤ 2,

p∗ = p(n+β)
n+α−p , then

1

n+ β
rnE(r, σ) = λ

∫ r

0

sn+β−1 |u|q+1 ds− 1

p∗
rn+α−1 |ur|p−2 uru (2.26)

for r ∈ [0, 1] and λ = 1
q+1
− 1

p∗

Proof :

Consider

(rnE)r = rn−1(rEr + nE)

Where

Er = −(
α

p
+ n− 1)rα−1 |ur|p +

β

q + 1
rβ−1 |u|q+1 (2.27)
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And

rEr = −(
α

p
+ n− 1)rα |ur|p +

β

q + 1
rβ |u|q+1 (2.28)

Hence

rEr + nE = [−(
α

p
+ n− 1) +

n(p− 1)

p
]rα |ur|p +

n+ β

q + 1
rβ |u|q+1 (2.29)

Which simplifies in to

rEr + nE = −(
n+ α− p

p
)rα |ur|p +

n+ β

q + 1
rβ |u|q+1 (2.30)

Then

(rnE)r = −(
n+ α− p

p
)rα+n−1 |ur|p +

n+ β

q + 1
rβ+n−1 |u|q+1 (2.31)

Now consider equation (2.10), upon multiplying by rn−1 we have

(p− 1)rn+α−1 |ur|p−2 urr + (α+ n− 1)rα+n−2 |ur|p−2 ur = −rβ+n−1 |u|q−1 u (2.32)

Note also that

(rn+α−1 |ur|p−2 ur)r = (p−1)rn+α−1 |ur|p−2 urr+(n+α−1)rn+α−2 |ur|p−2 ur (2.33)

Hence equation (2.32) can be written as

(rn+α−1 |ur|p−2 ur)r = −rβ+n−1 |u|q−1 u. (2.34)

And so

(rn+α−1 |ur|p−2 ur)ru = −rβ+n−1 |u|q+1 (2.35)

Next

(rn−1+α |ur|p−2 uru)r = (rα+n−1 |ur|p−2 ur)ru+ (rα+n−1 |ur|p−2 ur)ur (2.36)

And so

(rn−1+α |ur|p−2 uru)r = (rn−1+α |ur|p−2 ur)ru+ rα+n−1 |ur|p (2.37)
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Equations (2.35) and (2.37) together give

(rn−1+α |ur|p−2 uru)r = −rβ+n−1 |u|q+1 + rn+α−1 |ur|p (2.38)

Now

(
1

n+ β
rnE +

1

p∗
rn+α−1 |ur|p−2 uru)r =

1

n+ β
(rnE)r +

1

p∗
(rn−1+α |ur|p−2 uru)r

(2.39)

= 1
n+β

[−n+α−p
p

rn+α−1 |ur|p + n+β
q+1

rn+β−1 |u|q+1]

+
1

p∗
[rn+α−1 |ur|p − rn+β−1 |u|q+1] (2.40)

Collecting like terms we have

( 1
n+β

rnE + 1
p∗
rn+α−1 |ur|p−2 uru)r =

[
1

p∗
− n+ α− p

p(n+ β)
]rn+α−1 |ur|p + [

1

q + 1
− 1

p∗
]rn+β−1 |u|q+1 (2.41)

Since p∗ = p(n+β)
α+n−p then [ 1

p∗
− α+n−p

p(n+β)
] = 0. Hence we have

(
1

n+ β
rnE +

1

p∗
rn−1+α |ur|p−2 uru)r = [

1

q + 1
− 1

p∗
]rn+β−1 |u|q+1 (2.42)

Integrating both sides of equation (2.42) from 0 to r with respect to r gives

1

n+ β
rnE +

1

p∗
rn+α−1 |ur|p−2 uru =

∫ r

0

(
1

q + 1
− 1

p∗
)sn+β−1 |u(s)|q+1 ds (2.43)

rearranging equation (2.43) gives the desired result

1

n+ β
rnE = λ

∫ r

0

sn+β−1 |u(s)|q+1 ds− 1

p∗
rn+α−1 |ur|p−2 uru (2.44)

Where λ = ( 1
q+1
− 1

p∗
) and r ∈ [0, 1].
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Theorem 2.2.1. For α, β ≥ 0, 1 < p ≤ 2, q > 1, u(0) = |σ| <∞, ur(0) = 0,

q+1 ≥ p∗, p∗ = p(n+β)
α+n−p , no radial solutions exist for the generalized Lane-Emden

equation.

Proof

Let r = r0 > 0 denote the value of r at which u(r) has its first zero such that

u(r0) = 0. Substituting this value in (2.44) gives the equation

1

n+ β
rn0E(r0) = (

1

q + 1
− 1

p∗
)

∫ r0

0

rn+β−1 |u(r)|q+1 dr. (2.45)

If q + 1 = p∗, p∗ = p(n+β)
n+α−p , then E(r0) = p−1

p
rα0 |ur(r0)|p + 1

q+1
rβ0 |u(r0)|q+1 = 0

and consequently ur(r0) = 0. Since r0 > 0, then u(r0) = 0 on (r0 − ε, r0 + ε) for

some ε > 0, which violates the assumption on r0 being the first zero of u(r).

If q + 1 > p∗, then E(r0) < 0 for nontrivial solutions, which is a contradiction

since E(r) is positive for all r > 0 and 1 < p ≤ 2, q > 1, α, β ≥ 0. Therefore either

u(r) = 0, which implies that all possible solutions are trivial solutions, or no radial

solutions exist for q + 1 ≥ p∗. This leaves us with the case q + 1 < p∗ to examine

existence of solutions, [33].
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2.2.2 Non-existence of general solutions for q + 1 ≥ p∗

We also establish the nonexistence of more general solutions for q + 1 ≥ p∗ by

applying Pohozaev’s identity to equation (1.1) .

Lemma 2.2.3. For α, β ≥ 0, 1 < p ≤ 2, q > 1, q + 1 ≥ p∗, p∗ = p(n+β)
α+n−p , there

exist no solutions to the generalized Lane-Emden equation over any domain which

is smooth and star-shaped with respect to the origin.

Proof:

Multiplying (1.1) by x · ∇u on both sides of the equation and integrating by

parts gives (appendix A3)

p− 1

p

∫
∂Bn
|x|α |∇u|p x·ndS+

α + n− p
p

∫
Bn
|x|α |∇u|p dx =

∫
Bn

n+ β

q + 1
|x|β |u|q+1 dx

(2.46)

By (2.8)

∫
Bn
|x|α |∇u|p dx =

∫
Bn
|x|β |u|q+1 dx (2.8)

Combining the two identities (2.46) and (2.8), we obtain

p− 1

p

∫
∂Bn
|x|α |∇u|p x·νdS+

n+ α− p
p

∫
Bn
|x|β |u|q+1 dx =

∫
Bn

n+ β

q + 1
|x|β |u|q+1 dx

(2.47)

Hence we have

p− 1

p

∫
∂Bn
|x|α |∇u|p x · νdS = −[

n+ α− p
p

− n+ β

q + 1
]

∫
Bn
|x|β |u|q+1 dx (2.48)

It is clear that for n+β
q+1

= n+α−p
p

, that is for q + 1 = p∗ = p(n+β)
n+α−p , q > 1, 1 < p ≤ 2,

n > 2, α, β ≥ 0, only trivial solutions exist for (1.1).

For (n+α−p
p
− n+β

q+1
) > 0, q > 1, 1 < p ≤ 2, α, β ≥ 0, we have a contradiction since

the right hand side of the equation is positive and so is the left hand side for the
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absolute values. This implies that for n+α−p
p

> n+β
q+1

, that is for q+ 1 > p(n+β)
n+α−p = p∗,

provided that p < n+ α, no nontrivial solutions exist.
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2.3 Existence and nonuniqueness of infinitely

many radially symmetric solutions to the

Generalized Lane-Emden equation

Proving the existence of infinitely many radially symmetric solutions to the bound-

ary value problem

(p− 1)rα |ur|p−2 urr + (α + n− 1)rα−1 |ur|p−2 ur + |r|β |u|q−1 u = 0 , (2.10)

u(1) = ur(0) = 0 (2.49)

is done using the shooting argument which relates (2.10), (2.49) to the initial value

problem (2.10) with initial conditions (2.50),

u(0) = σ, ur(0) = 0 (2.50)

The value of σ is chosen in a manner that the solution to (2.10), (2.50) also satisfies

u(1) = 0. This solution exists for 1 < p ≤ 2, α, β ≥ 0, p < q+ 1 < p∗ and is unique

for r ∈ [0, 1]( see section 2.4). Using the shooting argument we will be able to

show that there exists a sequence {σn}, n = 1, 2, 3, ... of values of σ, each of which

gives rise to a corresponding solution of (2.10), (2.49). Thus the σn parametrize an

infinite sequence of solutions, {un(r)}, n = 1,2,3, ... to the boundary value problem

(2.10), (2.49), with σn = un(0)→∞ as n→∞.

We will also introduce a quantity measure we refer to as

χ(r, σ) = (r2α |ur|2(p−1) + r2βu2)1/2 (2.51)

We will use the property that

χ(r, σ)→∞ as |σ| → ∞ (2.52)

uniformly for r ∈ [0, 1]. It is clear from the definitions of (2.51) and the Energy

function E(r, σ) that χ(r, σ) → ∞ if and only if E(r, σ) → ∞, hence we may
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establish (2.52) by showing

E(r, σ)→∞ as |σ| → ∞ (2.53)

uniformly in r ≥ 0.

Suppose that 0 ≤ ρ ≤ 1 and r = rρ(σ) are such that, for a finite σ, we have

u(rρ(σ)) = ρσ, |u(r)| ≥ |σ| ρ,∀0 ≤ r ≤ rρ(σ) (2.54)

u(r0(σ)) = 0, r1(σ) = 0 (2.55)

Definition 2.3.1:

Let Φp(x) = |x|p−2 x, for x ∈ <, p > 1 and denote its inverse by Φp′(x), where

1
p′

+ 1
p

= 1.

Then we have the following estimate for rρ(σ).

Lemma 2.3.1. Let rρ(σ) be as defined above. Then for some positive constant

C = C(p, n, α, β), rρ(σ) satisfies

|σ|−
1
θ (1− ρ)

p−1
β+p−α ≤ Crρ(σ) ≤ |σ|−

1
θ ρ−

q
p+β−α (1− ρ)

p−1
β+p−α (2.56)

Where θ = β+p−α
q+1−p and C = ( p−1

p+β−α)
p−1

β+p−α ( 1
n+β

)
1

β+p−α .

Proof:

Consider multiplying (2.9) by rn−1 and integrating with respect to r from 0 to

r, we then have

|ur|p−2 ur = − 1

rn+α−1

∫ r

0

sn+β−1 |u(s)|q−1 uds (2.57)

Note that Φp(ur) = |ur|p−2 ur and Φq+1(u) = |u|q−1 u, hence applying Φp′ to both

sides of equation (2.57) gives

ur(r) = Φp′(−
1

rn+α−1

∫ r

0

sn+β−1Φq+1(u(s))ds) (2.58)
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Since

Φp′(−
1

rn+α−1
) =

∣∣∣∣− 1

rn+α−1

∣∣∣∣p′−2

(− 1

rn+α−1
) = −(

1

r
n+α−1
p−1

) (2.59)

Then (2.58) gives

ur(r) = −(
1

r
n+α−1
p−1

)Φp′(

∫ r

0

sn+β−1Φq+1(u(s))ds) (2.60)

Integrating with respect to r both sides of equation (2.60) from 0 to rρ(σ) we have∫ rρ(σ)

0

ur(r)dr = −
∫ rρ(σ)

0

1

r
n+α−1
p−1

Φp′(

∫ r

0

sn+β−1Φq+1(u(s))ds)dr (2.61)

Where ∫ rρ(σ)

0

ur(r)dr = u(rρ(σ))− u(0) = ρσ − σ = −σ(1− ρ) (2.62)

Hence we have

σ(1− ρ) =

∫ rρ(σ)

0

1

r
n+α−1
p−1

Φp′(

∫ r

0

sn+β−1Φq+1(u(s))ds)dr (2.63)

Since |u(r)| ≥ |σ| ρ for all 0 ≤ r ≤ rρ(σ), then |u(0)| ≥ |u(r)| ≥ |u(rρ(σ))| and

therefore |σ| ρ ≤ |u(r)| ≤ |σ| for r ∈ [0, rρ(σ)]. Hence we have

∫ rρ(σ)

0
1

r
n+α−1
p−1

Φp′(
∫ r

0
sn+β−1(|σ| ρ)qds)dr ≤ |σ| (1− ρ)

≤
∫ rρ(σ)

0

1

r
n+α−1
p−1

Φp′(

∫ r

0

sn+β−1(|σ|q)ds)dr (2.64)

Where

Φq+1(|σ| ρ) = |σρ|q−1 |σ| ρ = (|σ| ρ)q, similarly Φq+1(|σ|) = |σ|q.

Evaluating the inside integrals of equation (2.64) gives

∫ rρ(σ)

0
1

r
n+α−1
p−1

Φp′ [
(|σ|ρ)q

n+β
sn+β|r0]dr ≤ |σ| (1− ρ)

≤
∫ rρ(σ)

0

1

r
n+α−1
p−1

Φp′ [
|σ|q

n+ β
sn+β|r0]dr (2.65)
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Which for n+ β > 0 gives∫ rρ(σ)

0

1

r
n+α−1
p−1

Φp′ [
(|σ| ρ)q

n+ β
rn+β]dr ≤ |σ| (1− ρ) ≤

∫ rρ(σ)

0

1

r
n+α−1
p−1

Φp′ [
|σ|q

n+ β
rn+β]dr

(2.66)

Which in turn simplifies to∫ rρ(σ)

0

1

r
n+α−1
p−1

[
(|σ| ρ)q

n+ β
rn+β]

1
p−1dr ≤ |σ| (1− ρ) ≤

∫ rρ(σ)

0

1

r
n+α−1
p−1

[
|σ|q

n+ β
rn+β]

1
p−1dr

(2.67)

Where

Φp′ [
(|σ| ρ)q

n+ β
rn+β] =

∣∣∣∣(|σ| ρ)q

n+ β
rn+β]

∣∣∣∣ p
p−1
−2

(
(|σ| ρ)q

n+ β
rn+β) = [

(|σ| ρ)q

n+ β
rn+β]

1
p−1 (2.68)

And

Φp′ [
|σ|q

n+ β
rn+β] = [

|σ|q

n+ β
rn+β]

1
p−1 (2.69)

Hence we have

(
(|σ| ρ)q

n+ β
)

1
p−1

∫ rρ(σ)

0

r
(β−α+1)

(p−1) dr ≤ |σ| (1− ρ) ≤ (
|σ|q

n+ β
)

1
p−1

∫ rρ(σ)

0

r
β−α+1
p−1 dr (2.70)

For p > α− β, p > 1, we have

(
p− 1

p+ β − α
)(

(|σ| ρ)q

n+ β
)

1
p−1 (rρ(σ))

(p+β−α)
p−1 ≤ |σ| (1−ρ) ≤ (

p− 1

p+ β − α
)(
|σ|q

n+ β
)

1
p−1 (rρ(σ))

(p+β−α)
p−1

(2.71)

Hence

|σ|−
1
θ (1− ρ)

(p−1)
(β+p−α) ≤ Crρ(σ) ≤ |σ|−

1
θ ρ−

q
(β+p−α) (1− ρ)

(p−1)
(β+p−α) (2.72)

Where C = ( 1
n+β

)
1

p+β−α ( p−1
p+β−α)

p−1
p+β−α and θ = p+β−α

q+1−p .

It is evident now that as σ → ∞, |σ|−1/θ → 0 for θ > 0 or |σ|−1/θ → ∞ for

θ < 0. Hence rρ(σ)→∞ or 0 as |σ| → ∞, for ρ ∈ [0, 1], depending on the sign of

θ. We will prove that the sign plays an important role in the existence of solutions

to the PDE in the phase plane setting in chapter 3. In particular, we prove that
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solutions satisfying the associated boundary condition exist for θ > 0. In section

2.4.2, theorem 2.4.1, we also prove that radial bounded solutions approach the

origin with zero slope for β − α + 1 > 0, which in turn implies that θ = p+β−α
q+1−p is

positive for 1 < p ≤ 2, q > 1, α, β ≥ 0.

Using Lemmas 2.2.2 and 2.3.1 we now prove (2.53)

Corollary 2.3.1. Let u(r) satisfy (2.9), (2.49), (2.50) and α, β ≥ 0, 1 < p ≤ 2,

q + 1 6= p, θ = p+β−α
q+1−p < 0, then

E(r, σ) = p−1
p
rα |ur|p + 1

q+1
rβ |u|q+1 →∞ as |σ| → ∞

uniformly for r ∈ [0, 1]

Proof:

By (2.26), for all r ∈ [0, 1]

(n+ β)λ

∫ r

0

sβ+n−1 |u|q+1 ds =
n+ β

p∗
rn+α−1 |ur|p−2 uru+ rnE(r, σ) (2.73)

Therefore for r ∈ [0, 1] and α ≥ 0 then |rn+α−1| ≤ |rα|, and we have

(n+ β)λ

∫ r

0

sβ+n−1 |u|q+1 ds ≤ n+ β

p∗
rα |ur|p−1 |u|+ E(r, σ) (2.74)

Using the arithmetic-geometric inequality acbd ≤ ca+db, c+d = 1, a, b ≥ 0, taking

a = |ur|p, b = |u|p, c = 1− 1
p
, and d = 1

p
we have,

(n+ β)λ

∫ r

0

sβ+n−1 |u|q+1 ds ≤ n+ β

p∗
rα[

p− 1

p
|ur|p +

1

p
|u|p] + E(r, σ) (2.75)

Multiplying by 1
n+β

and using the arithmetic-geometric inequality again taking

a = |u|q+1, c = p
q+1

,b = 1, d = 1− p
q+1

and for α ≥ β, r ∈ [0, 1] we have

λ

∫ r

0

sβ+n−1 |u|q+1 ds ≤ 1

p∗
[
p− 1

p
rα |ur|p+

1

q + 1
rβ |u|q+1+

1

p
rβ(1− p

q + 1
)]+

1

n+ β
E(r, σ)

(2.76)
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Equation (2.76) implies that for any r ∈ [0, 1] and arbitrary rρ(σ) ≤ r

λ

∫ r

0

sβ+n−1 |u|q+1 ds ≤ [
n+ α

(n+ β)p
]E(r, σ) + C

′
(2.77)

With C
′
= 1

p∗
[1
p
− 1

q+1
]

By (2.54), then for all r ≥ rρ(σ), and n+ β > 0 we have

λ

n+ β
(rρ(σ))n+β(|σ| ρ)q+1 ≤ [

n+ α

(n+ β)p
]E(r, σ) + C ′ (2.78)

Using the inequality (2.56), for all r ≥ rρ(σ)

λ

n+ β
|σ|q+1 |ρ|q+1 (1− ρ)

(β+n)(p−1)
β+p−α (|σ|−

1
θ )β+n ≤ C([

n+ α

(n+ β)p
]E(r, σ) + C

′
) (2.79)

It is clear that for θ < 0, q + 1 > 0, β + n > 0, the energy function of solutions

E(r, σ)→∞ as |σ| → ∞ for any rρ(σ) ≤ r since ρ ∈ [0, 1].

Integrating equation (2.60) on the interval (0,r) leads to defining the mapping

T given by

Tu(r) = σ −
∫ r

0

1

t
n+α−1
p−1

Φp′ (

∫ r

0

sn+β−1Φq+1(u)ds)dt (2.80)

The fixed point u(r, σ) of T is a continuous function of the initial data σ and r

since the conditions 1 < p ≤ 2 < n, β ≥ 0 and p < q + 1 < p∗ guarantee that

the functional Φp′(
∫ r

0
sn+β−1Φq+1(u)ds) is locally lipschitz (section 2.4). This and

equation (2.60) imply that ur(r, σ) is also a continuous function of σ and r.

Let χ = (r2α |ur|2(p−1) + r2βu2)1/2. We define Θ(r, σ) such that

rβu(r, σ) = χcosΘ(r, σ) (2.81)

And

−rα |ur(r, σ)|p−2 ur(r, σ) = χsinΘ(r, σ) (2.82)

Lemma 2.3.2. Θ(r, σ) is a uniformly continuous function of σ for 0 ≤ r ≤ 1.
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Proof:

A natural consequence of the uniform continuity of u(r, σ) and ur(r, σ) on

r ∈ [0, 1].

Lemma 2.3.3. Θ(r, σ) ≥ 0 for all r ∈ [0, 1] and σ > 0

Proof:

Suppose that there exists an r ∈ (0, 1] such that Θ(r, σ) < 0 ( note that Θ(0, σ) =

π
2
). Since u(r, σ) is continuous in r and u(0, σ) = σ > 0 then by (2.57) there

exists ε > 0 such that Θ(r, σ) > 0 for 0 < r ≤ ε. Then for a fixed σ > 0, by

the continuity of Θ(r, σ) and the Mean Value Theorem, there exists r∗ > ε > 0

satisfying Θ(r∗, σ) = 0 and thus some δ > 0 such that

i) in (r∗ − δ, r∗), u(r, σ) > 0 and ur(r, σ) < 0.

ii) in (r∗, r∗ + δ), u(r, σ) > 0 and ur(r, σ) > 0.

iii) u(r∗, σ) > 0, ur(r
∗, σ) = 0

If u(r) > 0 for all r ∈ (0, r∗), then let r̂ = 0. If u(r, σ) ≤ 0 for some r ∈ (0, r∗),

then i) implies that u has a local maximum at some s ∈ (0, r∗), where ur(s, σ) = 0,

and we let r̂ be the largest of possible values of s. Therefore there exists an r̂ in

(0, r∗) such that ur(r̂, σ) = 0 and u(r, σ) > 0 in [r̂, r∗].

Using (2.57) we have

Φp(ur(r
∗, σ)) = − 1

r∗(n+α−1)

∫ r∗

0

sn+β−1Φq+1(u(s))ds (2.83)

= − 1

r∗(n+α−1)

∫ r̂

0

sn+β−1Φq+1(u)ds− 1

r∗(n+α−1)

∫ r∗

r̂

sn+β−1Φq+1(u)ds (2.84)

And so

Φp(ur(r
∗, σ)) =

r̂n+α−1

r∗(n+α−1)
Φp(ur(r̂, σ))− 1

r∗(n+α−1)

∫ r∗

r̂

sn+β−1Φq+1(u)ds (2.85)

Since both ur(r̂, σ) and ur(r
∗, σ) = 0 we have,

0 = − 1

r∗(n+α−1)

∫ r∗

r̂

sn+β−1Φq+1(u)ds (2.86)
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Which implies u(r) = 0. Since u(r) > 0 by assumption on [r̂, r∗], this leads to

Θ(r, σ) ≥ 0 by contradiction.

By differentiating Θ(r, σ) with respect to r and using (2.9) we obtain:

Θr(r, σ) =
(n+ β − 1)rα+β−1 |ur|p−2 uur + r2β |u|q+1 + rα+β |ur|p

χ2
(2.87)

Theorem 2.3.1. Θ(1, σ)→∞ as σ →∞

Proof:

Write [s0, 1] as Um
k=1[rk, rk+1], where m is a positive integer, 0 < s0 < 1, rk < rk+1,

s0 = r1, rm+1 = 1 and the set {rk}mk=1 contains all the zeros of u in [s0, 1]. Since as

a function of r, Θ is continuous in [rk, rk+1] and differentiable in (rk, rk+1).

We have,

Θ(1, σ)−Θ(s0, σ) =
m∑
k=1

(Θ(rk+1, σ)−Θ(rk, σ)) (2.88)

= limδ→0

m∑
k=1

(Θ(rk+1 − δ, σ)−Θ(rk + δ, σ)) (2.89)

= limδ→0

m∑
k=1

∫ rk+1−δ

rk+δ

(n+ β − 1)rα+β−1 |ur|p−2 uur + r2β |u|q+1 + rα+β |ur|p

χ2
dr

(2.90)

=

∫ 1

s0

(n+ β − 1)rα+β−1 |ur|p−2 uur + r2β |u|q+1 + rα+β |ur|p

χ2
dr (2.91)

≥
∫ 1

s0

rα+β |ur|p + r2β |u|q+1 − [n+β−1
2s0

][r2α |ur|2(p−1) + r2βu2]

χ2
dr (2.92)

=

∫ 1

s0

rα+β |ur|p + r2β |u|q+1

χ2
dr − [

n+ β − 1

2
](

1

s0

− 1) (2.93)

which can be rewritten as

Θ(1, σ) +
n+ β − 1

2
(

1

s0

− 1) ≥
∫ 1

s0

rα+β |ur|p + r2β |u|q+1

χ2
dr (2.94)
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The integrand in (2.94) equals

I =
rα+β |ur|p + r2β |u|q+1

r2α |ur|2(p−1) + r2βu2
(2.95)

by definition of χ2.

Since p > 2(p − 1) and |ur(r)| , |u(r)| → ∞ if and only if E(r, σ) → ∞ we

conclude from corollary 2.3.1 and lemma 2.3.2 the integrand above approaches

infinity uniformly on [s0, 1] as σ →∞ for q > 1 and α, β ≥ 0.

Therefore

Θ(1, σ)→∞ as σ →∞. (2.96)

By the continuity of Θ(1, σ) in σ and by (2.96) there exists a sequence of pairs

{σk, k} such that Θ(1, σk) = (2k−1)π
2

as a result we have this theorem.

Remark: Θ(1, σ)→∞ as σ → −∞ can be shown in the same manner.

Theorem 2.3.2. Let α, β ≥ 0, 1 < p ≤ 2, p < q + 1 < p∗ = p(n+β)
α+n−p . Then

(2.9),(2.49) has infinitely many radially symmetric solutions lying in

W 1,p(Bn, |x|α) ∩ Lq+1(Bn, |x|β).
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2.4 Existence of a radial solution to the initial

value problem.

In this section we prove the existence of a fixed point of T (u(r)) of (2.80), for the

initial value problem (2.10), (2.50), and show that this fixed point is continuously

dependent on the initial data uniformly on [0, 1].

Let R > 0, σ be a real number and Bε
R(σ) = {u : u ∈ C[0, ε], ‖u− σ‖∞ ≤ R}

where ε < p+β−α
√

(n+β)(p+β−α)p−1

Rq+1−p
p+β−α
√

1
qp−1 , where for β − α + 1 > 0 we have

ur(0) = 0. It is clear that Bε
R(σ) is a closed subset of C[0, ε]. We show that T

leaves Bε
R(σ) invariant and is a contraction on Bε

R(σ) with respect to the sup-

norm. Suppose that u ∈ Bε
R(σ) then by (2.80)

|Tu(r)− σ| ≤
∣∣∣∣∫ r

0

1

t
n+α−1
p−1

Φp′(

∫ t

0

sn+β−1Φq+1u(s)ds)dt

∣∣∣∣ (2.97)

≤ 1

(n+ β)
1
p−1

(
p− 1

p+ β − α
)r

β+p−α
p−1 (‖u‖∞)

q
p−1 (2.98)

≤ 1

(n+ β)
1
p−1

(
p− 1

p+ β − α
)ε

β+p−α
p−1 R

q
p−1 ≤ R (2.99)

This inequality holds if and only if ε ≤ p+β−α
√

(n+β)(p+β−α)p−1

Rq+1−p
p+β−α
√

1
(p−1)p−1 which

follows since p+β−α
√

1
(p−1)p−1 > p+β−α

√
1

qp−1 and ε < p+β−α
√

(n+β)(p+β−α)p−1

Rq+1−p
p+β−α
√

1
qp−1

therefore T leaves Bε
R(σ) invariant.

Let u, v ∈ Bε
R(σ), then

Tu(r)−Tv(r) =

∫ r

0

1

t
n+α−1
p−1

[Φp′(

∫ t

0

sn+β−1Φq+1(u(s))ds)−Φp′(

∫ t

0

sn+β−1Φq+1(v(s))ds)]dt

(2.100)

And so

|Tu(r)− Tv(r)| ≤
∣∣∣∣∫ r

0

1

t
n+α−1
p−1

(χ[u](t)− χ[v](t))dt

∣∣∣∣ (2.101)

Where χ[u](t) = Φp′(
∫ t

0
sn+β−1Φq+1(u(s))ds) and χ[v](t) similarly.

Let G(λ; t) = χ[λu+ (1− λ)v](t) then χ[u](t)− χ[v](t) = G(1; t)−G(0; t)
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Now

G(λ; t) = Φp′(

∫ t

0

sn+β−1Φq+1(λu(s) + (1− λ)v(s))ds) (2.102)

since d
dz

Φp′(z) = (p′ − 1) |z|p
′−2 and p

′
= p

p−1
then

Gλ(λ; t) = 1
p−1

∣∣∣∫ t0 sn+β−1Φq+1(λu(s) + (1− λ)v(s))ds
∣∣∣ 2−p
p−1

·
∫ t

0

sn+β−1q |λu(s) + (1− λ)v(s)|q−1 (u(s)− v(s))ds (2.103)

By the mean value theorem

χ[u](t)− χ[v](t) = Gλ(λ; t) for some 0 < λ < 1 (2.104)

Therefore by (2.101), (2.103), (2.104) we have

|Tu(r)− Tv(r)| ≤ q
p−1

∫ r
0

1

t
n+α−1
p−1

[
∣∣∣∫ t0 sn+β−1Φq+1(λu+ (1− λ)v)ds

∣∣∣ 2−p
p−1

·
∫ t

0

sn+β−1 |λu(s) + (1− λ)v(s)|q−1 |u(s)− v(s)| ds]dt (2.105)

Therefore

|Tu(r)− Tv(r)| ≤ q

p+ β − α
1

(n+ β)
1
p−1

R
q+1−p
p−1 r

p+β−α
p−1 ‖u− v‖∞ (2.106)

For r ∈ [0, ε] . Hence,

‖Tu(r)− Tv(r)‖∞ ≤ C ‖u− v‖∞ (2.107)

Where C = q
p+β−α

1

(n+β)
1
p−1

R
q+1−p
p−1 ε

p+β−α
p−1 < 1 since ε < p+β−α

√
(n+β)(p+β−α)p−1

Rq+1−p
p+β−α
√

1
qp−1 .

So T is a contraction on Bε
R(σ) and has a unique fixed point in Bε

R(σ). It can

be verified that a fixed point of (2.80) is a solution of (2.9), (2.49). Using the

monotonic property of the energy inequality, E1r(r, α) ≤ 0, in lemma 2.2.1 we

observe that this solution is uniformly bounded on [0, r] for any r and therefore

can be extended to [0, 1].

Suppose that u(r), v(r) satisfy (2.9), then
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u(r)− v(r) =

u(0)−v(0)+

∫ r

0

1

t
n+α−1
p−1

[Φp′(

∫ t

0

sn+β−1Φq+1(u(s))ds)−Φp′(

∫ t

0

sn+β−1Φq+1v(s)ds)]dt

(2.108)

And so

|u(r)− v(r)| ≤ |u(0)− v(0)|+
∫ r

0

1

t
n+α−1
p−1

|χ[u](t)− χ[v](t)| dt (2.109)

Hence

|u(r)− v(r)| ≤ |u(0)− v(0)|+ q
p−1

∫ r
0

1

t
n+α−1
p−1

[
∣∣∣∫ t0 sn+β−1Φq+1(λu(s) + (1− λ)v(s))ds

∣∣∣ 2−p
p−1

·
∫ t

0

sn+β−1 |λu(s) + (1− λ)v(s)|q−1 |u(s)− v(s)| ds]dt (2.110)

Using Lemma 2.2.1, we may bound u(s) and v(s) uniformly on [0, 1] by a constant

C and so by (2.110) we have

|u(r)− v(r)|

≤ |u(0)− v(0)|+ C

∫ r

0

1

t
n+α−1
p−1

[

∣∣∣∣∫ t

0

sn+β−1ds

∣∣∣∣
2−p
p−1

·
∫ t

0

sn+β−1 |u(s)− v(s)| ds]dt

(2.111)

≤ |u(0)− v(0)|+ C

∫ r

0

t−n−
(α−1)−β(p−2)

p−1 [

∫ t

0

sn+β−1 |u(s)− v(s)| ds]dt (2.112)

≤ |u(0)− v(0)|+ C

∫ r

0

t
1+β−α
p−1

∫ t

0

|u(s)− v(s)| dsdt (2.113)

≤ |u(0)− v(0)|+ Cr
p+β−α
p−1

∫ r

0

|u(t)− v(t)| dt (2.114)

Where C is a generic constant. By Gronwall’s inequality and (2.114) we have

|u(r)− v(r)| ≤ C |u(0)− v(0)| (2.115)

for all r ∈ [0, 1].
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2.4.1 Solutions to the Generalized Lane-Emden equation
are bounded

In this section we prove that individual, general and radial, solutions of (1.1) are

bounded below for α, β ≥ 0, 1 < p ≤ 2, p < q + 1 < p∗.

Lemma 2.4.1. General solutions for the Generalized Lane-Emden equation (1.1)

are bounded below by a constant C = C(p, n, α, β) for α, β ≥ 0, 1 < p ≤ 2,

p < q + 1 < p∗.

Proof:

Consider (2.8) ∫
Bn

(|x|α |∇u|p)dx =
∫
Bn

(|x|β |u|q+1)dx (2.8)

When both sides of equation (2.8) are raised to the power 1
q+1

we have

(

∫
Bn

(|x|α |∇u|p)dx)
1
q+1 = ‖u‖Lq+1(Bn,|x|β) (2.116)

The weighted Sobolev inequality ‖u‖Lq+1(Bn,|x|β) ≤ C ‖∇u‖Lp(Bn,|x|α) for p < q+1 <

p∗, p∗ = p(n+β)
n+α−p , α, β ≥ 0, 1 < p ≤ 2 < n, where C is a constant dependent on p, n, α

and β, is in fact the inequality

(

∫
Bn
|x|β |u|q+1 dx) ≤ C(

∫
Bn
|x|α |∇u|p dx)

q+1
p (2.117)

Putting the equations (2.8) and (2.117) together we have,

(

∫
Bn
|x|α |∇u|p dx) ≤ C(

∫
Bn
|x|α |∇u|p dx)

q+1
p (2.118)

Therefore for u not equal to zero

(

∫
Bn
|x|α |∇u|p)dx)1−( q+1

p
) ≤ C. (2.119)

And

(

∫
Bn
|x|β |u|q+1 dx)1−( q+1

p
) ≤ C (2.120)
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The exponent simplifies to −( q+1−p
p

). We observe that for q + 1 > p the exponent

is negative and hence the class of all non trivial solutions are bounded below by a

constant.

We can also prove in a similar manner the same property for radial solutions of

(2.9) for α, β ≥ 0, 1 < p ≤ 2, p < q + 1 < p∗.

Corollary 2.4.1. Radial solutions for the Generalized Lane-Emden equation (2.9)

are bounded below for α, β ≥ 0, 1 < p ≤ 2, p < q+1 < p∗ by a constant C(n, p, α, β).

Proof:

The weighted radial norm is defined as

‖u‖Lq+1(Bn,|x|β) = (

∫ 1

0

rβ+n−1 |u|q+1 dr)
1
q+1 (2.121)

Where u = u(r), and

‖∇u‖Lp(Bn,|x|α) = (

∫ 1

0

rα+n−1 |ur|p dr)
1
p (2.122)

The weighted Sobolev inequality (2.117) in radial form for p < q + 1 < p∗ and C,

a constant dependent on p, n, α and β, is in fact the inequality

(

∫ 1

0

rβ+n−1 |u|q+1 dr)
1
q+1 ≤ C(

∫ 1

0

rα+n−1 |ur|p dr)
1
p (2.123)

Applying the same analysis used for the proof of lemma 2.4.1, we Observe that

the class of all nontrivial radial solutions in Lq+1(Bn, |x|β) is bounded below by a

constant dependent on p, n, α and β.
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2.4.2 Decay estimates for radial solutions

Consider equation (2.9)

(rn+α−1 |ur|p−2 ur)r = −rβ+n−1 |u|q−1 u (2.9)

For simplicity we use the convention |a|γ−1 a = aγ, we then have

(rn+α−1up−1
r )r = −rn+β−1uq (2.124)

Integrating both sides of equation (2.124) from ε to r with respect to r gives

rn+α−1up−1
r (r)− εn+α−1up−1

r (ε) = −
∫ r

ε

tn+β−1uq(t)dt (2.125)

We are interested in bounded radial solutions in C1[0, 1], in particular, bounded

at the origin with ur(0) = 0. Letting limε→0ε
n+α−1up−1

r (ε) = 0 as ε → 0, we then

have

rn+α−1up−1
r (r) = −

∫ r

0

tn+β−1uq(t)dt (2.126)

Adding
∫ r

0
tn+β−1uq(0)dt and applying the absolute value to both sides of equation

(2.126) gives∣∣∣∣rn+α−1up−1
r (r) +

∫ r

0

tn+β−1uq(0)dt

∣∣∣∣ ≤ ∣∣∣∣∫ r

0

tn+β−1(uq(t)− uq(0))dt

∣∣∣∣ (2.127)

Which for n+ β > 0 and near zero gives∣∣∣∣rn+α−1up−1
r (r) +

σq

n+ β
rn+β

∣∣∣∣ ≤ Crn+β (2.128)

Therefore ∣∣∣∣up−1
r (r) +

σq

n+ β
rβ−α+1

∣∣∣∣ ≤ Crβ−α+1 (2.129)

The condition ur(0) = 0 requires up−1
r (r) to decay at least as fast as σq

n+β
rβ−α+1

and β − α + 1 > 0, hence

|ur(r)| ≤ O(r
β−α+1
p−1 ) (2.130)

53



Theorem 2.4.1. For β − α + 1 > 0, 1 < p ≤ 2, q > 1, radial solutions of (2.9)

satisfying the boundary condition in (2.49) approach the origin with zero slope such

that ur(0) = 0.
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2.5 Some properties of radial solutions.

Consider multiplying both sides of equation (2.9) by 1
rβ
ur and integrating from r1

to r2, for 0 ≤ r1 < r2 ≤ 1. We then have,∫ r2

r1

ur
rn+β−1

(rn+α−1 |ur|p−2 ur)rdr = −
∫ r2

r1

|u|q−1 uurdr (2.131)

Integrating by parts on the left hand side of equation (2.131) we have

rα−β |ur(r2)|p−rα−β |ur(r1)|p−
∫ r2
r1
rα−β |ur|p−2 ururrdr+

∫ r2
r1

(n+β−1)rα−β−1 |ur|p dr

= −
∫ u(r2)

u(r1)

|ω|q−1 ωdω (2.132)

Expanding equation (2.9), multiplying by ur
p−1

and r−β−n+1 we have

rα−β |ur|p−2 ururr = −n+ α− 1

p− 1
rα−β−1 |ur|p −

1

p− 1
|u|q−1 uur (2.133)

Substituting (2.133) in (2.132) and collecting like terms we have,

rα−β |ur(r2)|p − rα−β |ur(r1)|p + p(n+β−1)+(α−β)
p−1

∫ r2
r1
rα−β−1 |ur|p dr

= − p

p− 1

∫ u(r2)

u(r1)

|ω|q−1 ωdω (2.134)

Where n− 1 + α
p

+ (p−1)β
p

> 0 for α, β ≥ 0, 1 < p ≤ 2, q > 1. Equation (2.134) can

be rewritten as follows

p−1
p
rα−β[|ur(r2)|p − |ur(r1)|p] + (n+ β − 1 + α−β

p
)
∫ r2
r1
rα−β−1 |ur|p dr

+
1

q + 1
[|u(r2)|q+1 − |u(r1)|q+1] = 0 (2.135)

From (2.135) we obtain the following theorem.

Theorem 2.5.1. Let u(r) be a solution of (2.9), (2.49), suppose that

0 < r1 < r2 ≤ 1.

i) If u(r1) = u(r2) = 0 , then |ur(r1)| ≥ |ur(r2)|.

ii) If ur(r1) = ur(r2) = 0 , then |u(r1)| ≥ |u(r2)|.
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Property ii) leads to the final property,

iii) max0≤r≤1 |u(r)| = |u(0)| = σ.

Hence, the maximum amplitude of solutions occurs at the center of the ball.
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2.5.1 Maximum amplitude of radial solutions

Theorem 2.5.2. Let u(r) be a nontrivial solution of (2.9), (2.49), then

max0≤r≤1 |u(r)| ≥ [(n+ β)(p+β−α
p−1

)p−1]
1

q+1−p .

That is the maximum amplitude of any solution is bounded below uniformly by

[(n+β)(p+β−α
p−1

)p−1]
1

q+1−p . Consequently by property iii), if |u(0)| < [(n+β)(p+β−α
p−1

)p−1]
1

q+1−p

then u(r) can not be a solution of (2.9), (2.49).

Proof:

Using the first inequality in (2.56) for rρ(σ) and letting ρ = 0 we have

|σ|−
q+1−p
β+p−α ≤ (

p− 1

p+ β − α
)

p−1
β+p−α (

1

n+ β
)

1
p+β−α r0(σ) (2.136)

Hence,

|σ| ≥ [(
1

r0(σ)
)β+p−α(

p+ β − α
p− 1

)p−1(
1

n+ β
)]

1
q+1−p (2.137)

Recall that u(0) = σ, r0(σ) = 1 if u has no zero in [0, 1], and r0(σ) ≤ 1 in general,

then by property iii) of theorem 2.5.1 and equation (2.137) we have

max0≤r≤1 |u(r)| ≥ [(
p+ β − α
p− 1

)p−1(
1

n+ β
)]

1
q+1−p (2.138)

It is clear that the closer r0(σ) to r = 0 the larger the amplitude of the radial

solution at the origin.
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2.5.2 Existence of a finite number of zeros for a solution

Theorem 2.5.3. Let u(r) be a nontrivial bounded solution of (2.9), (2.49), then u

has only finitely many zeros in [0, 1] and the total number of zeros of u in [0, 1] is

no more than the greatest integer less than or equal to 1 + 1
2
(p−1

p
)
p−1
p (|u(0)|)

q+1−p
p .

Proof:

Suppose that the number of zeros of u in [0, 1] is infinite. Then we can choose

a sequence {rk} of such zeros which converges to some r0 ∈ [0, 1]. Since u ∈

C1[rk, rk+1], by Rolle’s Theorem there exists ηk ∈ (rk, rk+1) satisfying ur(ηk) = 0

and ηk → r0 as k →∞. Therefore u(r0) = ur(r0) = 0 for some r0 ∈ [0, 1], and we

have

u(r) = −
∫ r

r0

Φp′(
1

tn+α−1

∫ t

r0

sn+β−1Φq+1(u(s))ds)dt for r ∈ [0, 1] (2.139)

Let δ > 0. Then by using equation (2.139) we have,

|u(r)| ≤
∣∣∣∣∫ r

r0

Φp′(
1

tn+α−1

∫ t

r0

sn+β−1Φq+1(u(s))ds)dt

∣∣∣∣ (2.140)

≤
∣∣∣∣∫ r

r0

Φp′(
tβ−α+1

n+ β
)dt

∣∣∣∣Supξ∈Bδ(r0) |u(ξ)|
q
p−1 (2.141)

≤ 1

(n+ β)p′−1

∣∣∣∣∫ r

r0

t
β−α+1
p−1 dt

∣∣∣∣Supξ∈Bδ(r0) |u(ξ)|
q
p−1 (2.142)

And therefore

|u(r)| ≤ p− 1

p+ β − α
1

(n+ β)p′−1
δ
p+β−α
p−1 Supξ∈Bδ(r0) |u(ξ)|

q
p−1 (2.143)

For r ∈ Bδ(r0), where Bδ(r0) = (r0 − δ, r0 + δ) ∩ [0, 1] and p
′
= p

p−1
.

Since p
′
> 0 and q > p − 1 using the equation (2.143) and letting δ > 0 be

sufficiently small, then for a non trivial solution where ‖u‖∞,Bδ(r0) →∞ as δ → 0

we have

‖u‖
1− q

p−1

∞,Bδ(r0) ≤
p− 1

p+ β − α
δ
p+β−α
p−1

(n+ β)p′−1
→ 0 as δ → 0 (2.144)
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This contradicts the assumption that u has infinitely many zeros converging to r0.

Therefore u has finitely many zeros in [0,1].

Assume now that r1 < r2 < ....... < rk < rk+1 < ....rm are the zeros of u in [0, 1].

Let ηk ∈ (rk, rk+1) be such that ur(ηk) = 0 and u(ηk) = maxrk≤r≤rk+1
|u(r)|. We

then have,

u(r) = u(ηk)−
∫ r

ηk

Φp′ (
1

tn+α−1

∫ t

ηk

sn+β−1Φq+1(u(s))ds))dt (2.145)

for r > ηk, and therefore

0 = u(ηk)−
∫ rk+1

ηk

Φp′(
1

tn+α−1

∫ t

ηk

sn+β−1Φq+1(u(s))ds))dt (2.146)

Let us assume that u(r) > 0 for r ∈ (rk, rk+1) using equation (2.146) and letting

u(ηk) = Mk

0 ≥Mk −
∫ rk+1

ηk

1

t
n+α−1
p−1

(

∫ t

ηk

sn+β−1(Mk)
qds)

1
p−1dt (2.147)

Therefore ∫ rk+1

ηk

1

t
n+α−1
p−1

(

∫ t

ηk

sn+β−1ds)
1
p−1dt ≥ (Mk)

− q+1−p
p−1 (2.148)

Since s ≤ t ≤ rk+1 and for β > α we have∫ rk+1

ηk

1

t
n+α−1
p−1

(

∫ rk+1

ηk

tn+α−1dt)
1
p−1dt ≥ (Mk)

− q+1−p
p−1 (2.149)

Evaluating (2.149) gives

p− 1

p
(rk+1 − ηk)

p
p−1 ≥ (Mk)

− q+1−p
p−1 (2.150)

This simplifies to

rk+1 − ηk ≥ (
p

p− 1
)
p−1
p (|u(0)|)−

q+1−p
p (2.151)

In a similar manner we can show

ηk − rk ≥ (
p

p− 1
)
p−1
p (|u(0)|)−

q+1−p
p (2.152)
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Adding the equations (2.151) and (2.152) together we have,

rk+1 − rk ≥ 2(
p

p− 1
)
p−1
p (|u(0)|)−

q+1−p
p (2.153)

Hence

1 ≥
m−1∑

1

(rk+1 − rk) ≥ 2(m− 1)(
p

p− 1
)
p−1
p (|u(0)|)−

q+1−p
p (2.154)

From which we obtain

m ≤ 1 +
1

2
(
p− 1

p
)
p−1
p (|u(0)|)

q+1−p
p (2.155)

and the theorem is proved.
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Chapter 3
The Generalized Lane-Emden Equation
and phase plane
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.

3.1 The Generalized Lane-Emden equation as

an autonomous system

The Generalized Lane-Emden equation (1.1) with the associated boundary condi-

tion for radial solutions reduces to the ordinary differential equation (ODE)

(p− 1)rα |ur|p−2 urr + (n+ α− 1)rα−1 |ur|p−2 ur + rβ |u|q−1 u = 0 (2.10)

r = |x|, 0 ≤ r ≤ 1, u = u(r) and u(1) = 0.

This radial version of the equation can be further transformed into an autonomous

system for examination in the phase plane using the following change of variables:

r = e−t, ur = −etut and urr = e2t[utt + ut]. This transformation will remove the

radial variable r and replace it with a variable, t. We then have

(p− 1)e−(α−p)t |ut|p−2 utt − (n+ α− p)e−(α−p)t |ut|p−2 ut + e−βt |u|q−1 u = 0 (3.1)

Multiplying by e(α−p)t and collecting like terms gives

(p− 1) |ut|p−2 utt − (n+ α− p) |ut|p−2 ut + e−(β+p−α)t |u|q−1 u = 0. (3.2)

We now use a second transformation to obtain an autonomous system by intro-

ducing the variables v and vt. Let u = eθtv, then ut = eθt(θv + vt) = eθtw and

utt = eθt(θw + wt), then substituting these values in (3.2) gives

(p−1)
∣∣eθtw∣∣p−2

eθt(wt+θw)−(n+α−p)
∣∣eθtw∣∣p−2

eθtw+e−(β+p−α)t
∣∣eθtv∣∣q−1

eθtv = 0

(3.3)

After simplifying and collecting like terms in (3.3) we have

(p−1)eθ(p−1)t |w|p−2wt+(p−n−α+θ(p−1))eθ(p−1)t |w|p−2w+e(α−p−β+θq)t |v|q−1 v = 0

(3.4)

62



To eliminate the exponential term in (3.4) we set θ(p− 1) = α− β − p+ θq. This

results in θ = β+p−α
q+1−p .

Equation (3.4) can be rearranged as the autonomous system

(p− 1) |w|p−2wt + φ |w|p−2w + |v|q−1 v = 0 (3.5)

vt + θv − w = 0

Where φ = p− n− α + θ(p− 1).

Finally, letting η = |w|p−2w, dη
dt

= (p − 1) |w|p−2wt and w = η |η|
2−p
p−1 sets up a

simpler autonomous system

ηt = −φη − |v|q−1 v = P (η, v) (3.6)

vt = −θv + η |η|
2−p
p−1 = Q(η, v)

Next, we introduce the associated boundary condition to the phase plane. The

Generalized Lane-Emden equation is defined on a unit ball centered at the origin.

In radial coordinates the boundary of this ball is at r = 1 and its center is located

at r = 0. Let us denote the slope of the solution at the boundary by −δ such that

ur(1) = −δ for −δ ∈ (−∞,∞).

The dirichlet boundary condition u|∂Ω = 0 in radial form is u(1) = 0. Using the

change of variables introduced earlier where r = e−t, the boundary r = 1 becomes

t = 0 in the phase plane. When r = 0 the transformation implies that t approaches

infinity. Solutions starting at r = 1 and ending at r = 0 in the radial setting are

equivalent to solutions starting at t = 0 and approaching infinity in the phase

plane. We use the transformations u = eθtv, ur = −etut, and ut = eθt(θv + vt)

to find the initial and final points in the v − vt plane. The approach used in this

chapter is in essence a reverse of the shooting argument used in chapter 2.
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The starting point at t = 0 in the phase plane.

Since u = 0 at t = 0,(r = 1), the transformation u = eθtv gives v(0) = 0.

The transformation ur = −etut for these values of r and t gives ut = δ, since

ur(1) = −δ. Whereas the transformation ut = eθt(θv + vt) results in vt = δ for

t = 0, v = 0 and ut = δ. Hence solutions that satisfy the boundary condition for

the partial differential equation, u(r = 1) = 0, start on the vt axis at t = 0 at some

point (0, δ).

End point in the phase plane as t→∞

To locate the required asymptotic behavior of solutions for the PDE starting at

(0, δ) in the phase plane, we deduce the values of v and vt as t → ∞ using the

transformation u = eθtv. Substituting the values u(r = 0) = σ and t =∞, we find

that v ≈ σe−θt as t→∞. Further, the transformations ur = −etut,ut = eθt(θv+vt)

and the estimate in (2.130) of ur, we have ut ≤ O(r
β−α+p
p−1 ) = eθt(θσe−θt+vt) which

in turn implies that vt ≈ −θσe−θt as t→∞ for β − α + 1 > 0.

Observe that solutions satisfying the dirichlet boundary condition and approach-

ing the origin with a zero slope begin at time zero at the point (0, δ) in the v − vt

plane and approach the origin as t→∞ for θ > 0.
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3.2 Existence of solutions in phase plane

Using the phase plane transformations we show that solutions to the partial differ-

ential equation satisfying the given boundary condition exist for 1 < p < q+1 < p∗

and θ > 0 as is stated in the following lemma.

Lemma 3.2.1. Let u be a solution of the Generalized Lane-Emden equation in

Lq+1(Bn, |x|β), then v and w tend to zero as t→∞ for p < q+1 < p∗, 1 < p ≤ 2,

n+ α > p and θ > 0, where θ = p+β−α
q+1−p and

|v|q+1, |w|p → o(exp[(n+ β)− (p+β−α
q+1−p )(q + 1)]t) as t→∞.

Proof:

Equation (2.18) implies

rn+β−1 |u|q+1 ≈ o(r−1) (3.7)

Therefore

|u|q+1 ≈ o(r−(n+β)) (3.8)

Using the phase plane transformations where u = eθtv and r = e−t we have

|v|q+1 ≈ o(e[(n+β)−θ(q+1)]t) (3.9)

The exponent (n+ β)− θ(q+ 1) in (3.9) must be less than zero to ensure decay of

solutions. Therefore

(
p+ β − α
q + 1− p

)(q + 1) > n+ β (3.10)

and so

(p+ β − α)(q + 1) > (n+ β)(q + 1− p) (3.11)

Hence

(q + 1)[n+ β − p− β + α] < p(n+ β) (3.12)
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Therefore for n+ α > p

q + 1 <
p(n+ β)

n+ α− p
= p∗ (3.13)

Similarly

rn+α−1 |ur|p ≈ o(r−1) (3.14)

this implies that

|ur|p ≈ o(r−(n+α)) (3.15)

Using the transformations r = e−t, ur = −etut we have

∣∣−etut∣∣p ≈ o(e(n+α)t) (3.16)

Therefore

|ut|p ≈ o(e(n+α−p)t) (3.17)

Using the phase plane transformation ut = eθtw gives

|w|p ≈ o(e(n+α−p(θ+1)t) (3.18)

To ensure decay of solutions we set n+ α− p− θp < 0. Therefore

−θp < −(n+ α) + p (3.19)

And so

θ >
n+ α− p

p
(3.20)

Inequality (3.20) for p+ β − α > 0 implies that

q + 1 <
p(n+ β)

n+ α− p
= p∗. (3.21)

The inequality q+ 1 > p was needed to avoid the singularity at the origin and the

inequality (3.20) for p+ β − α > 0 restricts θ to be greater than zero for solutions

to satisfy the boundary condition for 1 < p < q + 1 < p∗.
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3.3 Local analysis of the autonomous system

Consider the case where q > 1, and 1 < p ≤ 2 to avoid the singularity at the origin

of the autonomous system in (3.6). The equilibrium points of the nonlinear system

ηt = −φη − |v|q−1 v = P (η, v)

vt = −θv + η |η|
2−p
p−1 = Q(η, v)

are found by setting the functions P (η, v) and Q(η, v) equal to zero and solving

for η and v. Setting Q(η, v) = 0 gives v = η
θ
|η|

2−p
p−1 . Substituting this value in

P (η, v) = 0 gives,

−φη − η

θ

∣∣∣η
θ

∣∣∣q−1

|η|(
2−p
p−1

)(q−1) |η|
2−p
p−1 = 0 (3.22)

Hence

−φη − |θ|1−q θ−1η |η|
q+1−p
p−1 = 0 (3.23)

Therefore

η[φ+ |θ|1−q θ−1 |η|
q+1−p
p−1 ] = 0 (3.24)

which in turn leads to η = 0 or η = ±(−φθ |θ|q−1)
p−1
q+1−p . When φθ > 0 the only

critical point is (0, 0). For φθ < 0, where q + 1 6= p, there are three finite criti-

cal points. These three points are (η, v) = ((−θφ |θ|q−1)
p−1
q+1−p , 1

θ
(−φθ |θ|q−1)

1
q+1−p ),

(−(−θφ |θ|q−1)
p−1
q+1−p , −1

θ
(−φθ |θ|q−1)

1
q+1−p ) and (0, 0).

To find these three finite critical points observe that when we set Q(v, η) = 0

we obtain v = η
θ
|η|

2−p
p−1 which for θ > 0 implies that v is positive when η is positive

and v is negative when η is negative. Since η± = ±
(
−θφ |θ|q−1) p−1

q+1−p , there exist

three finite critical points for the case φθ < 0: (0, 0) , (v+, η+) and (v−, η−).

Taking η+ gives v+ = η+

θ
|η+|

2−p
p−1
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We therefore have

v+ =
1

θ

(
−θφ |θ|q−1) p−1

q+1−p

∣∣∣∣(−θφ |θ|q−1) p−1
q+1−p

∣∣∣∣ 2−p
p−1

(3.25)

Hence for φθ < 0

v+ =
1

θ

(
−θφ |θ|q−1) 1

q+1−p (3.26)

Similarly, substituting η− = −(−θφ |θ|q−1)
p−1
q+1−p in v− = η−

θ
|η−|

2−p
p−1 gives

v− = −1

θ

(
−θφ |θ|q−1) p−1

q+1−p
∣∣∣−(−θφ |θ|q−1)

p−1
q+1−p

∣∣∣ 2−p
p−1

(3.27)

Therefore for φθ < 0

v− = −1

θ

(
−θφ |θ|q−1) 1

q+1−p (3.28)

So far we only considered the case q > 1, 1 < p ≤ 2 to avoid the singular-

ity at the origin. The autonomous system in (3.6) is singular for p < 1, p > 2,

q < 1, α, β < 0 at the point (η, v) = (0, 0) driving the critical point to infinity

creating what is commonly referred to as ” critical points at infinity ”. In solving

|η|
q+1−p
p−1 = (−φθ |θ|q−1) for η in (3.24) we notice the presence of other singularities.

For example, for q + 1 < p, or p < 1, η evaluated at zero is not defined which

results in mapping η and v to infinity. A similar situation is created when θ = 0

and q < 1 where θ is exactly equal to zero when p = α−β. Another case is obvious

when q + 1 = p in the exponent of (3.24). The case q + 1 = p yielding critical

points at infinity can also be seen when considering the denominator of θ, where

θ = β+p−α
q+1−p approaches infinity when q+ 1 = p which in turn will move φ to infinity

as well, resulting in critical points at infinity. The last case is when θ < 0 or φ < 0

and p < 1 or q + 1 < p.

These singular cases represent case iii), figure 1.2, of the radial setting as un-

bounded solutions near the origin where u(r) and ur(r) approach infinity as r → 0+.
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Next we use the method of linearization and the Hartman-Grobman theorem

to determine the local behavior of trajectories of the autonomous system in (3.6)

around the finite critical points in phase plane. In simple words, the Hartman-

Grobman theorem states that near a hyperbolic equilibrium point x0, the nonlinear

system x′ = f(x) has the same qualitative structure as the linear system x′ = Ax,

where A = Df(x0) represents the Jacobian matrix evaluated at the critical point

x0.

Theorem 3.3.1. : The Hartman-Grobman Theorem.

If Df(x0) has no zero or purely imaginary eigenvalues, then there is a homeo-

morphism h defined on some neighborhood U of x0 in <n locally taking orbits of the

nonlinear flow φt of the nonlinear system, x′ = f(x) , to those of the linear flow

x′ = Ax, where A = Df(x0). The homeomorphism preserves the sense of orbits

and can also be chosen to preserve parametrization by time, [23].

i) The case φθ > 0 .

The Jacobian matrix of the autonomous system in (3.6) is

 −φ −q |v|q−1

1
p−1
|η|

2−p
p−1 −θ



The Jacobian matrix when evaluated at the critical point (0, 0) results in two

eigenvalues. The eigenvalue −φ, with corresponding eigenvector [1 0], and the

eigenvalue −θ, with corresponding eigenvector [0 1]. The local solution is therefore

[η v] = c1[0 1]e−θt + c2[1 0]e−φt (3.29)
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The eigenvalues for the critical point (0, 0) can be positive or negative influencing

the behavior of trajectories about (0, 0) depending on the signs of θ and φ, which

in turn depends on the parameters p, q, n , β and α. Recall that for the nonlinear

autonomous system to be nonsingular we restricted q+1 to be greater than p, and

for solutions to satisfy the boundary condition we observed that θ > 0. θ = p+β−α
q+1−p

is positive when p > α− β.

The sign of φ = p − n − α + θ(p − 1) is positive when θ > n+α−p
p−1

. Since θ > 0,

then φ > 0 when q + 1 < p(β+n−1)+(α−β)
n+α−p = p̂. On the other hand, φ is negative

when q + 1 > p(β+n−1)+(α−β)
n+α−p = p̂.

When φθ > 0, θ > 0, φ > 0, the eigenvalues are both negative and the critical

point (0, 0) is a sink and therefore asymptotically stable. For 1 < p ≤ 2, α+n > p,

we have θ(p − 1) < θ and φ = θ(p − 1) − (α + n − p) < θ which in turn implies

that −φ > −θ. Therefore e−φt[1 0] is the strong attractor.

Solutions to the partial differential equation satisfying the asymptotic condition,

eθtw → 0 as t → ∞, eventually lie along the weak attractor e−θt[0 1] as can be

seen from the following calculation.

eθtw = eθt |η|
2−p
p−1 η = eθt

∣∣c1(0)e−θt
∣∣ 2−p
p−1 (c1(0)e−θt) = 0. (3.30)

Along the strong attractor e−φt[1 0] we have

eθtw = eθt |η|
2−p
p−1 η = eθt

∣∣c2e
−φt∣∣ 2−p

p−1 (c2e
−φt) = ce(θ− 1

p−1
φ)t (3.31)

Since φ
p−1

< θ, solutions satisfying the asymptotic condition do not lie along the

strong attractor.
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ii) The case φθ < 0

For a closer look and deeper analysis of the behavior of solutions in the phase

plane we transform the system further in to one dependent on the variables v and

vt.

Consider the first equation of the autonomous system in (3.5), substituting the

value (vt + θv) for w, (θvt + vtt) for wt, γ for vt and collecting like terms, we have

(p− 1) |γ + θv|p−2 γt + [φ+ θ(p− 1)] |γ + θv|p−2 γ + [φθ |γ + θv|p−2 + |v|q−1]v = 0

(3.32)

vt = γ

as the corresponding autonomous system dependent on v and vt. This system can

be arranged as follows

γt = −(
φ

p− 1
+ θ)γ − φθ

p− 1
v − |v|

q−1 v

p− 1
|γ + θv|2−p = P (γ, v) (3.33)

vt = γ = Q(γ, v)

Setting both equations of the system in (3.33) equal to zero, we find the finite

critical points to be the point (0, 0) for the case φθ > 0 and (±(−φθ |θ|p−2)
1

q+1−p , 0),

(0, 0) for the case φθ < 0.

We obtain these critical points by setting Q(γ, v) = 0 and substituting γ = 0 in

P (γ, v) of the system (3.33)

0 = − [φθ + |θ|2−p |v|q+1−p]v

p− 1
(3.34)

Hence v = 0 or |v|q+1−p = −θφ |θ|p−2. Observe that θ must not equal zero to avoid

a singularity of the system for 1 < p ≤ 2.

Next we linearize about the three finite critical points to understand local be-

havior of trajectories there.
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The Jacobian matrix for the system in (3.33) is:

 ∂P
∂γ

∂P
∂v

1 0


Where

∂P
∂γ

= [ −φ
p−1
− θ]− 2−p

p−1
v(γ + θv) |v|q−1 |γ + θv|−p

And

∂P
∂v

= − φθ
p−1
− 2−p

p−1
θv(γ + θv) |v|q−1 |γ + θv|−p − q

p−1
|γ + θv|2−p |v|q−1.

When the Jacobian matrix is evaluated at (0, 0) the matrix gives

 − φ
p−1
− θ − φθ

p−1

1 0



(see appendix A4).

Setting the determinant of the matrix (A − λI) equal to zero, we solve for the

eigenvalues

λ1,2 =
−( φ

p−1
+ θ)±

√
( φ
p−1

+ θ)2 − 4φθ
p−1

2
(3.35)

which simplifies to

λ1,2 =
−( φ

p−1
+ θ)± ( φ

p−1
− θ)

2
(3.36)

Equation (3.36) results in two eigenvalues, λ1 = − φ
p−1

and λ2 = −θ. The corre-

sponding eigenvectors are found by solving the system [A − λI]X = 0 where the

matrix (A− λI) is  − φ
p−1
− θ − λ − φθ

p−1

1 0− λ


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The eigenvalue λ1 = − φ
p−1

has the corresponding eigenvector [ φ
p−1

− 1] and the

eigenvalue λ2 = −θ has the corresponding eigenvector [θ − 1]. The local solution

is therefore written as

[vt v] = c1[
φ

p− 1
− 1]e−

φ
p−1

t + c2[θ − 1]e−θt (3.37)

The vector [ φ
p−1

− 1]e−
φ
p−1

t is the strong attractor in the case of φθ > 0 since

φ
p−1

= θ − n+α−p
p−1

which for n + α > p, 1 < p ≤ 2 is in fact smaller than θ hence

− φ
p−1

> −θ.

For θ > 0,φ < 0 and φθ < 0 the origin is a saddle where solutions satisfying the

asymptotic condition, eθtw → 0, approach zero along the weak attractor. Other

trajectories leave the origin along the local flow component [ φ
p−1

− 1]e−
φ
p−1

t as

can be seen from the following calculations.

Along the local flow component [ φ
p−1

− 1]e
−φ
p−1

t:

eθtw = eθt(vt + θv) = eθt[−c1θe
− φ
p−1

t + c1
φ

p− 1
e−

φ
p−1

t] = c1e
(θ− φ

p−1
)t[−θ +

φ

p− 1
]

(3.38)

It is clear that the exponent (θ − φ
p−1

) is positive for φ < 0 and the constant

[−θ + φ
p−1

] does not equal to zero.

Along the weak attractor [θ − 1]e−θt:

eθtw = eθt(vt + θv) = eθt[c2θe
−θt − c2θe

−θt] = c2e
(θ−θ)t[θ − θ] (3.39)

Now consider the critical point ((−φθ |θ|p−2)
1

q+1−p , 0). Linearization about this

point yields the following matrix:
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 −(φ+ θ) q+1−p
p−1

θφ

1 0



The above matrix is obtained by substituting the critical point ((−φθ |θ|p−2)
1

q+1−p , 0)

in the Jacobian matrix of the autonomous system (3.33), where

∂P

∂γ
= −(

φ

p− 1
+ θ)− (

2− p
p− 1

)θ |θ|−1 |φ| (3.40)

For φ < 0 and θ > 0 we have

∂P

∂γ
=
−φ
p− 1

− θ +
2− p
p− 1

φ = −(φ+ θ) (3.41)

And,

∂P

∂v
=
−φθ
p− 1

+
q + 2− p
p− 1

θ2−p |θ|p−2 θφ (3.42)

Which simplifies to

∂P

∂v
=
q + 1− p
p− 1

θφ (3.43)

The eigenvalues for the Jacobian matrix linearized about the point ((−φθ |θ|p−2)
1

q+1−p , 0)

are obtained by setting the determinant of the matrix (A− λI) = 0.

λ1,2 =
−(φ+ θ)±

√
(φ+ θ)2 − 4(− q+1−p

p−1
θφ)

2
(3.44)

For 1 < p ≤ 2, q + 1 > p, φ < 0 and θ > 0, the term (− q+1−p
p−1

)φθ in (3.44) is

positive. The value under the square root is negative creating complex eigenvalues.

When |φ| > |θ| the term −(φ + θ) is positive creating an unstable spiral point

with trajectories spiraling out of the critical point. For |φ| < |θ| the term −(φ+ θ)

is negative creating an unstable spiral point with trajectories spiraling in to the

critical point.
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The same results apply to the critical point (−(−φθ |θ|p−2)
1

q+1−p , 0) since the

absolute value eliminates the negative sign in the v coordinate of the point resulting

in similar results.
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3.4 Critical exponent analysis

In the previous section, we obtained from linearization about the finite critical

points of the autonomous system (3.33) two different cases, the case φθ > 0 and

the case φθ < 0. In each case the behavior of trajectories about the finite critical

points is determined by the sign of φ and the value of φ relative to the value of

θ. In this section we prove that such behavior of trajectories is influenced by two

critical exponents dependent on the parameters p, q, β, α and n. These two critical

exponents are what we referred to as p∗ and p̂ in the weighted Sobolev embedding

theorem and weighted trace embedding conjuncture respectively in section 2.1.

Lemma 3.4.1. For p < q + 1 < p̂, p̂ = p(β+n−1)+(α−β)
n+α−p , 1 < p ≤ 2, φθ > 0,

0 < φ < θ, the origin is a sink of the autonomous system (3.6). Solutions satisfying

the asymptotic condition, eθtw → 0, approach the origin along the weak attractor

as t→∞.

Proof:

Local linearization about the origin for this case indicated the presence of a sink

at the origin with all trajectories approaching (0, 0) as t → ∞. In particular we

found that solutions to the partial differential equation satisfying the asymptotic

condition, eθtw → 0, approach the origin along the weak attractor [θ − 1]e−θt.

Since φ = p − n − α + θ(p − 1) > 0 then θ = β+p−α
q+1−p > n+α−p

p−1
which for

(β + p− α) > 0, (θ > 0), implies that q + 1 < p̂, where p̂ = p(β+n−1)+(α−β)
n+α−p .

So far we considered two cases for the values of φ and θ, namely |φ| > |θ| and

|φ| < |θ|. For these two cases, linearization indicated the presence of spiral points

at (±(−φθ |θ|p−2)
1

q+1−p , 0) and a saddle at the origin. We now consider the case

when φ = −θ.
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Lemma 3.4.2. The autonomous system in the phase plane (3.33) corresponding to

the Generalized Lane-Emden equation (1.1) for q+ 1 = p∗, p∗ = p(β+n)
α+n−p , 1 < p ≤ 2,

q > 1, φθ < 0, φ = −θ has three finite critical points, a saddle origin and centers

at (±(−φθ |θ|p−2)
1

q+1−p , 0).

Proof:

When φ = −θ, q + 1 = p∗, where p∗ = p(β+n)
α+n−p . This case marks the appearance

of the critical exponent p∗.

Substituting φ = −θ in (3.37) gives

[vt v] = c1[
−θ
p− 1

− 1]e
θ
p−1

t + c2[−θ 1]e−θt (3.45)

Which indicates the presence of a saddle about (0, 0).

Now consider the point ((−φθ |θ|p−2)
1

q+1−p , 0), the eigenvalues for the Jacobian

matrix evaluated at this point are

λ1,2 =
−(φ+ θ)±

√
(φ+ θ)2 − 4(−( q+1−p

p−1
)φθ)

2
(3.46)

When φ = −θ is substituted in (3.46) we have

λ1,2 =
±
√
−4( q+1−p

p−1
)θ2

2
(3.47)

It is clear that the term under the square root is negative for q + 1 > p and

1 < p ≤ 2. Hence the point ((−φθ |θ|p−2)
1

q+1−p , 0) has complex eigenvalues with

zero real parts. This implies the presence of a center about this critical point. The

same applies to the critical point (−(−φθ |θ|p−2)
1

q+1−p , 0).

Next we show that the critical exponent, p∗ = p(β+n)
α+n−p , marks the end of the be-

havior of trajectories creating a saddle about (0, 0) and other trajectories spiraling

in to the critical points (±(−φθ |θ|p−2)
1

q+1−p , 0) and marks the start of a new phase
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where orbits are created about the critical points (±(−φθ |θ|p−2)
1

q+1−p , 0). The crit-

ical exponent p∗ also marks the end of a phase where trajectories create centers

about the critical points (±(−φθ |θ|p−2)
1

q+1−p , 0) and sets the start of another phase

where other trajectories spiral out of the these two critical points. We refer to the

case where φ = −θ as the bifurcation case, such that φ+ θ is the bifurcation term.

A change in the bifurcation value changes the qualitative behavior of trajectories

in the phase plane as stated in lemmas 3.4.3 and 3.4.4 for φ > −θ and φ < −θ

respectively.

Lemma 3.4.3. The autonomous system (3.33) corresponding to the Generalized

Lane-Emden equation has three finite critical points, (0, 0) a saddle and (±(−φθ |θ|p−2)
1

q+1−p , 0)

spirals with trajectories spiraling in to the critical points, for p̂ < q + 1 < p∗,

1 < p ≤ 2, φθ < 0, θ > 0, φ < 0, and φ > −θ.

Proof:

Linearization about the finite critical points in this case indicated the presence

of a saddle about the origin and spirals with trajectories spiraling in to the critical

points (±(−φθ |θ|p−2)
1

q+1−p , 0). When φ < 0 and θ > 0, the inequality q + 1 > p̂

holds, where p̂ = p(β+n−1)+(α−β)
n+α−p .

For φ > −θ, φ < 0, θ > 0, we obtain the inequality θ = β+p−α
q+1−p > n+α−p

p
. This

implies that q + 1 < p∗, where p∗ = p(n+β)
α+n−p .

Lemma 3.4.4. The critical points (±(−φθ |θ|p−2)
1

q+1−p , 0) are spirals, with trajec-

tories spiraling out, of the autonomous system (3.33) corresponding to the Gener-

alized Lane-Emden equation (1.1) for q + 1 > p∗, 1 < p ≤ 2, φθ < 0, φ < 0, θ > 0,

and φ < −θ.
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Proof:

For φθ < 0, φ < 0, θ > 0, φ < −θ, linearization pointed to a saddle about the

origin and spirals at the critical points (±(−φθ |θ|p−2)
1

q+1−p , 0) with trajectories

spiraling out.

When φ < 0, q + 1 > p̂, p̂ = p(β+n−1)+(α−β)
n+α−p . On the other hand φ < −θ implies

that θ = β+p−α
q+1−p <

n+α−p
p

and since θ > 0 it is then clear that q + 1 > p∗, where

p∗ = p(β+n)
α+n−p .
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3.5 Global phase plane analysis of solutions

In order to understand the behavior of trajectories in the phase plane one needs

to understand the local behavior and the global picture. A method that helps

sketch this picture is the index of an equilibrium point that provides information

on the nature and complexity of the equilibrium point especially in the nonlinear

cases, [23]. The index of a critical point is defined as k = 1
2π

∫
C
d
{
arctan

(
dy
dx

)}
=

1
2π

∫
C
d
{
arctan

(
g(x,y)
f(x,y)

)}
= 1

2π

∫
C
fdg−gdf
f2+g2 , Where C is a circle enclosing the critical

point of the autonomous system

y′ = f(x, y) x′ = g(x, y).

Index theory and Bendixon’s criteria can help in understanding the global picture

by indicating the possibility of the existence of a limit cycle. Follows are the index

theory and Bendixon’s criteria

Theorem 3.5.1. Index theory.

i) The index of a sink, a source or a center is +1.

ii) The index of a hyperbolic saddle point is -1.

iii) The index of a closed orbit is +1.

iv) The index of a closed curve containing any fixed points is 0.

v) The index of a closed curve is equal to the sum of the indices of the fixed

points within it, [23].

Theorem 3.5.2. Bendixon’s criteria.

Let f ∈ C1(E), where E is a simply connected region in <2. If the divergence of

the vector field f, ∇ · f , is not identically zero and does not change sign in E, then

the autonomous system x′ = f(x) has no closed orbit lying entirely in E, [34].
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Orbits created in the phase plane are unique and not intersecting except possibly

at t = ±∞. For our Generalized Lane-Emden equation this is true for q+1 > p, 1 <

p ≤ 2, α, β ≥ 0. This fact will be useful in sketching the local phase portraits and

attempting to locate periodic orbits or limit cycles.

In this section we consider the global behavior of trajectories for the different

cases mentioned in section 3.4 and sketch global trajectories for each case. We will

also specify the only two cases for which solutions to our PDE, that satisfy the

associated asymptotic condition, exist and sketch the solutions in the phase plane

for each of these two cases.
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Case 1) p < q + 1 < p̂ ( φθ > 0, 0 < φ < θ) .

There are no critical points at infinity in this case and (0, 0) is the only finite

critical point. Solutions satisfying the PDE and its associated asymptotic condition,

eθtw → 0, approach the origin along the weak attractor [−θ 1]e−θt as t → ∞.

For a solution in the radial setting starting at r = 1 satisfying ur(1) = −δ, −δ ∈

(−∞,∞), to reach r = 0 with ur(0) = 0, it will begin at the point (0, δ) in the

phase plane and end at the origin in the phase plane along the weak attractor

[−θ 1]e−θt as t approaches infinity. As it travels in the radial setting it intersects

the r axis a number of times creating a number of zeros all of which translate to

intersections in the phase plane with the η (or correspondingly vt) axis, see Figure

3.1. Hence, a single Orbit is created in the phase plane that corresponds to the

infinite number of solutions in the radial setting. Each radial solution starts at a

different −δ value corresponding to the different slopes at r = 1 that the infinite

radial solutions may exhibit, see Figure 3.2.

There are no limit cycles in the phase plane for this case as can be shown using

Bendixon’s criterion

∂P

∂η
+
∂Q

∂v
= −(φ+ θ) (3.48)

For θφ > 0, θ > 0, φ > 0, 0 < φ < θ the term −(φ+ θ) is negative, see Figure 3.3.

Case 2) p̂ < q + 1 < p∗ (φθ < 0, φ < 0, φ > −θ )

There are no critical points at infinity in this case as well. It remains to check if

there are any limit cycles in the phase plane. Using the index theory, (0, 0) is a sad-

dle with index = −1 and the other two finite critical points (±(−φθ |θ|p−2)
1

q+1−p , 0)

are spirals with an index of +1 each. The sum of these index values is +1 which

implies the possibility of the existence of a limit cycle surrounding all three finite
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critical points. Using Bendixon’s criterion we have

∂P

∂η
+
∂Q

∂v
= −(φ+ θ) (3.49)

For θφ < 0, θ > 0, φ < 0, φ > −θ the term −(φ+ θ) is negative.

Since there are no critical points at infinity, no limit cycles in the phase plane

and trajectories are unique and not intersecting, we connect the orbits in the phase

plane and complete the global picture. Trajectories leaving (0, 0) along the local

flow component [ φ
p−1

− 1]e−
φ
p−1

t will be connected with trajectories spiraling in to

the other two finite critical points, (±(−φθ |θ|p−2)
1

q+1−p , 0). Solutions to our PDE

are solutions that start at (0, δ) and approach (0, 0) along the weak attractor as

t→∞. Trajectories spiraling in to the other two critical points do not satisfy the

PDE and its associated asymptotic condition, see Figure 3.4.

Case 3) q + 1 = p∗ (φθ < 0, φ = −θ )

Local analysis about the finite critical points in this case indicated that (0, 0) is a

saddle with index of −1 and the other two critical points, (±(−φθ |θ|p−2)
1

q+1−p , 0),

are centers with an index of +1 each. Hence a closed curve containing all three

points will have an index of +1, representing the sum of the indices of the three

finite critical points within it.

Using Bendixon’s criterion we find that

∂P

∂η
+
∂Q

∂v
= −(φ+ θ) = 0 (3.50)

For φ = −θ.

Using the fact that trajectories are not intersecting, we connect the trajectories

starting at (0, δ) and approaching the origin along the weak attractor with tra-

jectories leaving the origin along the local flow component. This situation creates
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closed orbits in the phase plane circulating around the centers created about the

critical points (±(−φθ |θ|p−2)
1

q+1−p , 0). There are no solutions to the PDE satisfying

the associated asymptotic condition in this case, see Figure 3.5.

Case 4) q + 1 > p∗ (φθ < 0, φ < 0, φ < −θ)

Using index theory, (0, 0) is a saddle with index −1 and the other two critical

points (±(−φθ |θ|p−2)
1

q+1−p , 0) are spirals with an index of +1 each, the sum of

these index values is +1 which implies the possibility of the existence of a limit

cycle surrounding all three points. Using Bendixon’s criterion we have

∂P

∂η
+
∂Q

∂η
= −(φ+ θ) (3.51)

For φθ < 0, φ < 0, φ < −θ the term −(φ + θ) is positive. We connect trajectories

spiraling out of the two critical points (±(−φθ |θ|p−2)
1

q+1−p , 0) with trajectories

entering the origin along the weak attractor. Trajectories leaving the origin along

the local flow component will circulate about the orbits spiraling out of the spiral

points and leave to infinity. Solutions to our PDE are trajectories that start at

(0, δ) and approach (0, 0) as t → ∞ along the weak attractor, hence there are

no solutions to the PDE satisfying the associated asymptotic condition. This is

consistent with the results obtained earlier using Pohozaev’s identity in chapter 2;

solutions to the Generalized Lane-Emden equation (1.1) satisfying the associated

boundary condition do not exist for q + 1 ≥ p∗, see Figure 3.6.
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Figure 3.5 The case q+1 = p.,
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Figure 3.6 The case q + 1 > p*.
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Chapter 4
Particular Cases of the Generalized
Lane–Emden Equation
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4.1 The Lane-Emden equation as a special case

of the Generalized Lane-Emden equation

Literature has covered the Lane-Emden equation extensively

∆u+ |u|q−1 u = 0 x ∈ Ω (4.1)

u|∂Ω = 0, q > 1, n > 2

Where Ω is the unit ball in n dimensions. The Lane-Emden equation in radial form

is

1

rn−1
(rn−1ur)r + |u|q−1 u = 0 (4.2)

u = u(r), u(1) = 0, 0 < r < 1.

Letting r = e−t, ur = −etut, urr = e2t(utt + ut) and introducing the phase plane

transformations u = eθtv, ut = eθtw = eθt(vt + θv), utt = eθt(θw + wt), we obtain

the autonomous system

wt + φw + |v|q−1 v = 0 (4.3)

vt + θv − w = 0

Where θ = 2
q−1

and φ = 2−n+θ. For q > 1, θ is positive. Substituting w = (vt+θv)

in (4.3) and letting vt = γ results in an equivalent autonomous system dependent

on the variables v and vt

γt + (φ+ θ)γ + [φθ + |v|q−1]v = 0 (4.4)

vt = γ

When θφ > 0 the origin is the only critical point of (4.4). When φθ < 0, there

exists three finite critical points, (±(−φθ)
1
q−1 , 0) and (0, 0).

The following lemma establishes the existence of phase plane solutions of the

Lane-Emden equation for 2 < q + 1 < p∗ = 2n
n−2

and q > 1.
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Lemma 4.1.1. Let u be a solution of the Lane-Emden equation in L2, then v and

w tend to zero as t→∞ for 2 < q + 1 < p∗ = 2n
n−2

and q > 1, where

|v|q+1 , |w|2 → o(en−( 2
q−1

)(q+1)) as t→∞.

The Jacobian matrix for the autonomous system in (4.4) is

 −(φ+ θ) −φθ − q |v|q−1

1 0


When evaluating the Jacobian matrix at the origin we obtain the eigenvalue

λ1 = −θ, with corresponding eigenvector [θ − 1], and the eigenvalue λ1 = −φ,

with corresponding eigenvector [φ − 1]. It is clear that for θφ > 0 the origin is a

sink whereas for φθ < 0 the origin is a saddle point.

Evaluating the Jacobian matrix at the point ((−φθ)
1
q−1 , 0) results in the complex

eigenvalues

λ1,2 =
−(φ+ θ)±

√
(φ+ θ)2 − 4(−(q − 1)φθ)

2
. (4.5)

For |φ| < |θ|, the critical points are spirals with trajectories spiraling in and for

|φ| > |θ| trajectories spiral out of the critical points. Similar results are obtained

for the point (−(−φθ)
1
q−1 , 0).

The following four lemmas summarize the results obtained in phase plane for the

existence of solutions of the Lane-Emden equation while relating their existence to

two critical exponents also obtained in phase plane, p̂ = 2(n−1)
n−2

and p∗ = 2n
n−2

.

Lemma 4.1.2. Solutions to the Lane-Emden equation (4.1), satisfying the asso-

ciated boundary condition, in the phase plane approach (0, 0) as t→∞ along the

weak attractor for 2 < q + 1 < p̂, p̂ = 2(n−1)
n−2

, φθ > 0, φ > 0, φ < θ, n > 2.

Lemma 4.1.3. The autonomous system corresponding to the Lane-Emden equa-

tion does not have solutions in phase plane satisfying the associated boundary con-
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dition for q + 1 = p∗, p∗ = 2n
n−2

, q > 1, φθ < 0, φ = −θ. The autonomous system

has a saddle origin and centers at (±(−φθ)
1
q−1 , 0) for q + 1 = p∗.

Lemma 4.1.4. The autonomous system in the phase plane corresponding to the

Lane-Emden equation for p̂ < q + 1 < p∗, where p∗ = 2n
n−2

and p̂ = 2(n−1)
n−2

,

q > 1, φθ < 0, θ > 0, φ < 0, φ > −θ, has a saddle origin and spiral points

at (±(φθ)1/q−1, 0) with trajectories spiraling in. Solutions satisfying the associated

boundary condition start at (0, δ) and approach the origin along the weak attractor

as t→∞.

Lemma 4.1.5. The autonomous system in the phase plane corresponding to the

Lane-Emden equation (4.1) has a saddle origin and spirals at (±(φθ)1/q−1, 0) where

trajectories spiral out of the critical points for q + 1 > p∗, p∗ = 2n
n−2

, q > 1,

φθ < 0, θ > 0, φ < 0, φ < −θ. Solutions satisfying the associated boundary condi-

tion of the Lane-Emden equation (4.1) do not exist for q + 1 > p∗.

We conclude the discussion of the Lane-Emden equation by pointing to the fact

that the number of critical points change from one point in the case φθ > 0 to three

critical points for φθ < 0, φ < 0. This change is associated with the appearance of

the sub-critical exponent p̂ = 2(n−1)
n−2

. Interestingly, a corresponding change takes

place at a related value in the weighted case, p̂ = p(β+n−1)+α−β
n+α−p . At this point we are

not clear on whether this represents a general critical value for the trace embedding

in the weighted case, but due to this strong connection with the Lane-Emden case

we hypthosize that it may be related to a weighted trace embedding.
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4.2 Applications to the Generalized

Lane-Emden equation

In this section we consider two applications of the Generalized Lane-Emden equa-

tion from two different fields of study, Astronomy and Engineering.

The first application is given by the equation

∆u+ |x|β |u|q−1 u = 0 (4.6)

u|∂Ω = 0, q > 1, β > 0

The second application is given by the equation

−∇ · (|x|−ap |∇u|p−2∇u) = |x|−(a+1)p+c |u|q−1 u (4.7)

u|∂Ω = 0, q > 1, 1 < p ≤ 2, a < −1, c > 0

Where Ω is the unit ball in <n.

4.2.1 The first application and phase plane

The radial form of (4.6) is given by

urr +
n− 1

r
ur + rβ |u|q−1 u = 0 (4.8)

Using the the phase plane transformations we obtain the autonomous system

wt + φw + |v|q−1 v = 0 (4.9)

vt + θv − w = 0

Where θ = 2+β
q−1

and φ = (2− n+ θ). The system (4.9) can be further transformed

in to an autonomous system dependent on v and vt as follows

γt + (φ+ θ)γ + (φθ + |v|q−1)v = 0 (4.10)
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vt = γ

For φθ > 0, the origin is the only finite critical point of (4.10), and for φθ < 0

there exists three finite critical points, (0, 0) and (±(−φθ)
1
q−1 , 0).

Existence of phase plane solutions to (4.6) for 2 < q + 1 < p∗ = 2(n+β)
n−2

, β > 0

and θ > 0 is stated in the following lemma.

Lemma 4.2.1. Let u be a solution of the partial differential equation (4.6) in L2,

then v and w tend to zero as t→∞ for 2 < q+ 1 < p∗ = 2(n+β)
n−2

, β > 0 and θ > 0,

where

|v|q+1 , |w|2 → o(e[n+β− 2+β
q−1

(q+1)]t) as t→∞

The Jacobian matrix of the autonomous system (4.10) is −(φ+ θ) −φθ − q |v|q−1

1 0


Linearization about the point (0, 0) gives the eigenvalues λ1 = −θ and λ2 = −φ

with the corresponding eigenvectors [θ − 1] and [φ − 1] respectively.

For φ, θ > 0, the origin is a stable sink. Solutions to the PDE satisfying the as-

sociated asymptotic condition, eθtw → 0, approach (0, 0) along the weak attractor

e−θt[θ − 1] as t → ∞. When φθ < 0, (φ < 0), the origin is an unstable saddle

with trajectories approaching the origin along the weak attractor.

Linearization about the critical point ((−φθ)
1
q−1 , 0) gives complex eigenvalues

λ1,2 =
−(φ+ θ)±

√
(φ+ θ)2 − 4(−φθ(q − 1))

2
(4.11)

When |φ| < |θ| the critical points are spirals with trajectories spiraling in and for

|φ| > |θ| trajectories spiral out. For φ = −θ the critical points (±(−φθ)
1
q−1 , 0) are

centers.
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Phase plane results for the existence of solutions of (4.6) and the role of the

phase plane critical exponents, p̂ = 2(n−1)+β
n−2

and p∗ = 2(β+n)
n−2

, are summarized in

the following lemmas.

Lemma 4.2.2. Solutions to the PDE in (4.6) satisfy the associated boundary con-

dition for 2 < q + 1 < p̂, p̂ = 2(n−1)+β
n−2

, β > 0, φθ > 0, and φ > 0.

Lemma 4.2.3. Solutions to the PDE in (4.6) satisfy the associated boundary con-

dition for p̂ < q + 1 < p∗, p∗ = 2(β+n)
n−2

, β > 0, φθ < 0, φ < 0, and φ > −θ.

Lemma 4.2.4. The autonomous system in the phase plane corresponding to the

partial differential equation (4.6) has no solutions satisfying the associated asymp-

totic condition, eθtw → 0, for β > 0, φθ < 0, φ < 0, φ < −θ, q+1 > p∗, p∗ = 2(n+β)
n−2

.

Lemma 4.2.5. The autonomous system in the phase plane corresponding to the

partial differential equation (4.6) has no solutions satisfying the associated asymp-

totic condition, eθtw → 0, for β > 0, φθ < 0, φ < 0, φ = −θ, q+1 = p∗, p∗ = 2(n+β)
n−2

.
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4.2.2 The second application and phase plane

The partial differential equation in (4.7) is not singular for q > 1, 1 < p ≤ 2, a < −1

and c > 0. The radial form of (4.7) is

(p−1)r−ap+n−1 |ur|p−2 urr+(−ap+n−1)r−ap+n−2 |ur|p−2 ur+r
−(a+1)p+c+n−1 |u|q−1 u = 0

(4.12)

The corresponding autonomous system is therefore

(p− 1) |w|p−2wt + φ |w|p−2w + |v|q−1 v = 0 (4.13)

vt + θv − w = 0

Where θ = c
q+1−p and φ = (a+ 1)p− n+ θ(p− 1).

Substituting (θv+ vt) for w and γ for vt in (4.13) we obtain a simpler equivalent

autonomous system dependent on v and vt as follows

(p− 1) |γ + θv|p−2 γt + [φ+ θ(p− 1)] |γ + θv|p−2 γ + [φθ |γ + θv|p−2 + |v|q−1]v = 0

(4.14)

vt = γ

Observe that the autonomous system in (4.14) is the same autonomous system

of the Generalized Lane-Emden equation. For φθ > 0, the origin is a sink with

solutions approaching the origin along the weak attractor. When φθ < 0, the

origin is an unstable saddle with trajectories approaching along the weak attractor

and (±(−φθ |θ|p−2)
1

q+1−p , 0) are spirals with trajectories spiraling in for φ > −θ and

spiraling out for φ < −θ. When φ = −θ, the critical points (±(−φθ |θ|p−2)
1

q+1−p , 0)

are centers.
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Lemma 4.2.6. Let u be a solution of the partial differential equation (4.7) in Lp−ap,

then v and w tend to zero as t→∞ for p < q+1 < p∗, p∗ = p(−(a+1)p+c+n)
n−(a+1)p

, 1 < p ≤ 2,

a < −1, θ > 0, where

|v|q+1 , |w|p → o(e[n−(a+1)p+c− c
q+1−p (q+1)]t) as t→∞

We summarize the phase plane results for the existence and non-existence of

solutions for (4.7) in relation to the two critical exponents, p̂ = p(−(a+1)p+c+n)−c
n−(a+1)p

and p∗ = p(−(a+1)p+c+n)
n−(a+1)p

, in the following lemmas.

Lemma 4.2.7. Solutions to the partial differential equation in (4.7) satisfy the

associated boundary condition for p < q+1 < p̂, p̂ = p(−(a+1)p+c+n)−c
n−(a+1)p

, 1 < p ≤ 2,

a < −1, c > 0, φθ > 0, φ > 0, φ < θ.

Lemma 4.2.8. Solutions to the partial differential equation in (4.7) satisfy the

associated boundary condition for p̂ < q + 1 < p∗, p∗ = p(−(a+1)p+c+n)
n−(a+1)p

, 1 < p ≤ 2,

a < −1, c > 0, φθ < 0, φ < 0, φ > −θ.

Lemma 4.2.9. The autonomous system (4.14) corresponding to the partial differ-

ential equation (4.7) has no solutions satisfying the associated asymptotic condi-

tion, eθtw → 0, for q+1 > p∗, p∗ = p(−(a+1)p+c+n)
n−(a+1)p

, 1 < p ≤ 2, a < −1, c > 0, φθ < 0,

φ < 0, φ < −θ.

Lemma 4.2.10. The autonomous system (4.14) corresponding to the partial dif-

ferential equation (4.7) has no solutions satisfying the associated asymptotic con-

dition, eθtw → 0, for q + 1 = p∗, p∗ = p(−(a+1)p+c+n)
n−(a+1)p

, 1 < p ≤ 2, a < −1, c > 0,

φθ < 0, φ < 0, φ = −θ.
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Appendix A1

Weighted Sobolev Compact Embedding Theorem(Caffarelli-Kohn-Nirenberg)

Let Ω ⊆ <n, be an open bounded domain with C1 boundary and 0 ∈ Ω,

1 < p < n , −∞ < −α
p
< n−p

p
,1 ≤ q < np

n−p , −β < (1− α
p
)q+n(1−q

p
), p < q+1 ≤ p∗,

p∗ = p(n−bq)
−ap+n−p . Then ‖u‖Lq+1

(Bn,|x|β)

≤ C ‖∇u‖Lp
(Bn,|x|α)

and the embedding

W 1,p
(Bn,|x|α) ↪→ Lq+1

(Bn,|x|β)
is continuous . If the upper bound for q + 1 is strict then

the embedding is compact, [42].

Proof:

First we prove that for Ω ⊆ <n, an open bounded domain with C1 boundary

and 0 ∈ Ω, 1 < p < n , −∞ < −α
p
< n−p

p
, the embedding W 1,p

(Bn,|x|α) ↪→ Lq
(Bn,|x|β)

is

compact if 1 ≤ q < np
n−p , −β < (1− α

p
)q+n(1−q

p
). The continuity of the embedding

is a direct consequence of the Caffarelli-Kohn-Nirenberg inequality which states

that for 1 < p < n and for all u ∈ C∞0 (<n) , there is a constant Ca,b > 0 such that

(
∫
<n |x|

−bq |u|q dx)p/q ≤ Ca,b
∫
<n |x|

−ap |Du|p dx

where −∞ < a < n−p
p

, a ≤ b ≤ a+ 1, q = p∗ = np
n−dp , d = 1 + a− b.

Where for our problem we take a = −α
q

and b = −β
q
.

To prove the compactness, let {um} be abounded sequence in W 1,p
α for any

ρ > 0 with Bρ(0) ⊂ Ω is a ball centered at the origin with radius ρ there holds

{um} ⊂ W 1,p/Bρ(0). Then the classical Rellich-Kondrachov compactness theorem

guarantees the existence of a convergent subsequence of {um} in Lq(Ω,Bρ(0)). By

taking a diagonal sequence, we can assume without loss of generality that {um}

converges in Lq(Ω,Bρ(0)) for any ρ > 0.

On the other hand, for any 1 ≤ q < np
n−p there exists a, b ∈ (a, a + 1] such that

q < p∗ = np
n−p , d = 1+a−b ∈ [0, 1). From the Caffarelli-Kohn-Nirenberg inequality
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above, {um} is also bounded in Lt
(Ω,|x|−bt). By the holder inequality, for any δ > 0,

there holds∫
|x|<δ |x|

β |um − uj|q dx ≤ (|x|(β+qb)t/t−q dx)1−(q/t)

. ≤ (
∫

Ω
|x|−bq |um − uj|q dx)q/t

. ≤ C(
∫ δ

0
r
n−1−(−β−bq)t

t−q dr

. = Cδ
n−1+(β+bq)t

t−q

Where C > 0 is a constant independent of m. Since −β < (1 + a)q + n(1−q
p

),

there holds n+(β+bt)t
t−q > 0. Therefore, for any given ε > 0, we fix δ > 0 such that∫

|x|<δ |x|
β |um − uj|q dx ≤ ε/2, ∀m, j ∈ N

Then we choose s ∈ N such that∫
Ω\Bδ(0)

|x|β |um − uj|q dx ≤ C−β
∫

Ω\Bδ(0)
|um − uj|q dx ≤ ε/2, ∀m, j ∈ N

Where C−β = δβ if −β ≥ 0 and C−β = (diamΩ)β if β > 0. Thus∫
Ω
|x|β |um − uj|q dx ≤ ε, ∀m, j ∈ N .

That is {um} is a Cauchy sequence in Lt
(Ω,|x|−bt), [42].
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Appendix A2:

The weighted Sobolev space W 1,p
(Ω,w) is a Banach space.

Proof:

1- We first prove that W 1,p
(Ω,w) is a norm. Recall that the norm of a function

u ∈ W 1,p
(Ω,w) is defined as

‖u‖W 1,p
(Ω,w)

= (
∑
|α|≤1

∫
Ω
w |Dαu|p dx)1/p for 1 ≤ p <∞.

Which in expanded form is written as

‖u‖W 1,p(Ω,w) = (
∫

Ω
w |u|p dx+

∫
Ω
w |Du|p dx)1/p for 1 ≤ p <∞.

Therefore

a) ‖λu‖W 1,p(Ω,w) = (‖λu‖pLp(Ω,w) + ‖λDu‖pLp(Ω,w))
1/p

= (
∫

Ω
w |λu|p dx+

∫
Ω
w |λDu|p dx)1/p

= (|λ|p
∫

Ω
w |u|p dx+ |λ|p

∫
Ω
w |Du|p dx)1/p

= |λ| (
∫

Ω
|u|pwdx+

∫
Ω
|Du|pwdx)1/p

Hence

‖λu‖W 1,p
(Ω,w)

= |λ| ‖u‖W 1,p
(Ω,w)

, for 1 ≤ p <∞.

b) ‖u‖W 1,p
(Ω,w)

= 0 if and only if u = 0 is an obvious result.

c) Assume u, v ∈ W 1,p
(Ω,w). Then for 1 ≤ p <∞, Minkowski’s inequality implies

‖u+ v‖W 1,p
(Ω,w)

= (
∑
|α|≤1 ‖Dαu+Dαv‖p

Lp
(Ω,w)

)1/p

≤ (
∑
|α|≤1 ‖Dαu‖p

Lp
(Ω,w)

+ ‖Dαv‖p
Lp

(Ω,w)
)1/p

≤ (
∑
|α|≤1 ‖Dαu‖p

Lp
(Ω,w)

)1/p + (
∑
|α|≤1 ‖Dαv‖p

Lp
(Ω,w)

)1/p

Which in turn implies that

‖u+ v‖W 1,p
(Ω,w)
≤ ‖u‖W 1,p

(Ω,w)
+ ‖v‖W 1,p

(Ω,w)
.

2- It remains to show that W 1,p
(Ω,w) is complete. Assume that {um}∞m=1 is a cauchy

sequence in W 1,p
(Ω,w). Then for each |α| ≤ 1, {Dαum}∞m=1 is a cauchy sequence

in Lp(Ω,w) since Lp(Ω,w) is complete there exists functions uα ∈ Lp(Ω,w) such that
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Dαum → uα ∈ Lp(Ω,w) where |α| ≤ 1. In particular um → u(0,0,....,0) =: u ∈ Lp(Ω,w).

We now claim that u ∈ W 1,p
(Ω,w), D

αu = uα. To verify, fix φ ∈ C∞c (Ω) then∫
Ω
uDαφdx = limm→∞

∫
Ω
umD

αφdx

= limm→∞(−1)|α|
∫

Ω
Dαumφdx

= (−1)|α|
∫

Ω
uαφdx

Since Dαum → Dαu in Lp(Ω,w) for all |α| ≤ 1, we see that um → u ∈ W 1,p
(Ω,w) as

required.
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Appendix A3

Consider the equation, [43].

∇ · (|x|α |∇u|p−2∇u) = − |x|β |u|q−1 u

On the domain Ωδ = Ω\ {x ∈ <n : |x| ≤ δ}.

Multiply by x · ∇u and integrate both sides of the equation we have∫
Ωδ
∇ · (|x|α |∇u|p−2∇u)(x · ∇u)dx = −

∫
Ωδ
|x|β |u|q−1 u(x · ∇u)dx (A.1)

Integrating by parts the left hand side gives the result

LHS =
∫
∂Ωδ
|x|α |∇u|p−2 (∇u · ν)(x · ∇u)dS −

∫
Ωδ
|x|α |∇u|p−2∇u · ∇(x · ∇u)dx

(A.2)

Where ν is a unit outer normal vector. Consider part I of (A.2)∫
∂Ωδ
|x|α |∇u|p−2 (∇u · ν)(x · ∇u)dS =∫

∂Ωδ
|x|α |∇u|p (x · ν)dS +

∫
|x|=δ δ

α |∇u|p−2 (∇u · ν)(x · ∇u)dS

Part II of (A.2) is simplified as follows∫
Ωδ
|x|α |∇u|p−2∇u · ∇(x · ∇u)dx

=
∫

Ωδ
|x|α |∇u|p−2 (|∇u|2 + (x · ∇) |∇u|2)dx

=
∫

Ωδ
|x|α |∇u|p dx+

∫
Ωδ
|x|α (x · ∇)1

p
|∇u|p dx

=
∫

Ωδ
|x|α |∇u|p dx+

∫
∂Ωδ
|x|α (x · ν)1

p
|∇u|p dS − (α + n)

∫
Ωδ
|x|α 1

p
|∇u|p dx

= (1− α+n
p

)
∫

Ωδ
|x|α |∇u|p dx+ 1

p

∫
∂Ωδ
|x|α (x · ν) |∇u|p dS

Then the LHS = I - II gives

(1− 1
p
)
∫
∂Ωδ
|x|α |∇u|p (x · ν)dS +

∫
|x|=δ δ

α |∇u|p−2 (∇u · ν)(x · ∇u)dS

−1
p

∫
|x|=δ δ

α(x · ν) |∇u|p dS − (1− α+n
p

)
∫

Ωδ
|x|α |∇u|p dx (A.3)

Now consider the right hand side of (A.1)

R.H.S = −
∫

Ωδ
|x|β |u|q−1 u(x · ∇u)dx

= −
∫

Ωδ
|x|β (x · ∇) |u|

q+1

q+1
dx

= −
∫
∂Ωδ
|x|β (x · ν) |u|

q+1

q+1
dS +

∫
Ωδ
∇ · (|x|β x) |u|

q+1

q+1
dx
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= −
∫
∂Ωδ
|x|β (x · ν) |u|

q+1

q+1
dS + (n + β)

∫
Ωδ
|x|β |u|

q+1

q+1
dx −

∫
|x|=δ δ

β(x · ν) |u|
q+1

q+1
dS

(A.4)

On |x| = δ, x = −δν, then x · ν = −δ and therefore δα(x · ν) = −δα+1 and

δβ(x · ν) = −δβ+1, hence equations (A.1), (A.3) and (A.4) give

(1−1
p
)
∫
∂Ωδ
|x|α |∇u|p (x·ν)dS+

∫
|x|=δ δ

α |∇u|p−2 (∇u·ν)(x·∇u)dS+1
p

∫
|x|=δ δ

α+1 |∇u|p dS−

(1− α+n
p

)
∫

Ωδ
|x|α |∇u|p dx = − 1

q+1

∫
∂Ωδ
|x|β (x·ν) |u|q+1 dS+ n+β

q+1

∫
Ωδ
|x|β |u|q+1 dx

+ 1
q+1

∫
|x|=δ δ

β+1 |u|q+1 dS (A.5)

Next we need to get rid of the boundary integrals along |x| = δ in (A.5). In fact

let u be a solution of (1.1), from Caffarelli-Kohn-Nirenberg inequality

(
∫
<n |x|

−bq |u|q dx)
p
q ≤ Ca,b

∫
<n |x|

−ap |Du|p dx

and the compact embedding theorem, we know that∫
Ω
|x|α |∇u|p dx and

∫
Ω
|x|β |u|q+1 dx

are finite, therefore by the mean value theorem there exists a sequence {δm},

δm → 0 such that integrals∫
|x|=δ |x|

α |∇u|p (x · ν)dS and
∫
|x|=δ |x|

β |u|q+1 (x · ν)dS

go to zero as m→∞.

Letting m→∞ in (A.5) we obtain

p−1
p

∫
∂Ω
|x|α |∇u|p (x · v)dS + n+α−p

p

∫
Ω
|x|α |∇u|p dx =

n+β
q+1

∫
Ω
|x|β |u|q+1 dx.
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Appendix A4

The Jacobian of (3.33) evaluated at zero results in the matrix on page 52; a

proof using decay rates for the term
2−p
p−1

v|v|q−1(γ+θv)

|γ+θv|p

Using the phase plane transformations w = e−θtut where w = γ + θv we have

2− p
p− 1

v |v|q−1 (γ + θv) = C1e
[−θ(q+1)−1]t (4.1)

And

|γ + θv|p = C2e
−(θ+1)pt (4.2)

Hence
2−p
p−1

v |v|q−1 (γ + θv)

|γ + θv|p
= Ce[−θ(q+1−p)+(p−1)]t (4.3)

The exponent Since [−θ(q + 1 − p) + (p − 1)] simplifies to −(β − α + 1), where

θ = p+β−α
q+1−p . Hence the exponent is negative and the term approaches zero as t

approaches infinity for θ > 0 and β − α + 1 > 0.
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Appendix A5: A Three Dimensional Example with Variable Polytropic Equa-

tion of State.

The equations of motion describing a gaseous star are the equations of continuity,

Euler’s equation and Poisson’s equation. For n = 3 we have

∂ρ

∂t
+∇ · (ρv) = 0 (4.4)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P −∇Φ (4.5)

∆Φ = 4πGρ (4.6)

The condition of hydrostatic equilibrium for a spherically symmetric distribution

of matter therefore becomes

1

ρ

dP

dr
= −dΦ

dr
(4.7)

1

r2

d

dr
(r2dΦ

dr
) = 4πGρ (4.8)

Where polytropic stars are characterized by an equation of state relating pressure

with density,

P = Kργ, γ ≥ 1 (4.9)

To allow spatial variation in K, set

K = krδ, k > 0, δ ∈ (−∞,∞) (4.10)

in equation (9), giving

k

r2

d

dr
(
r2

ρ

d

dr
(rδργ)) + 4πGρ = 0 (4.11)

For γ 6= 1, Let ρ = v
1

γ−1 and set 4πG
k

= 1 to give

1

r2

d

dr
(
r2

v
1

γ−1

d

dr
(rδv

γ
γ−1 )) + v

1
γ−1 = 0 (4.12)

1

r2

d

dr
(r2+ δ

γ (δr
δ(γ−1)
γ
−1v +

γ

γ − 1
r
δ(γ−1)
γ

dv

dr
)) + v

1
γ−1 = 0 (4.13)
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1

r2

d

dr
(r2+ δ

γ
d

dr
(r

δ(γ−1)
γ v)) +

γ − 1

γ
v

1
γ−1 = 0 (4.14)

Set u = r
δ(γ−1)
γ v, then

1

r2

d

dr
(r2 · (r

δ
γ u)) +

γ − 1

γ
v
−δ
γ u

1
γ−1 = 0 (4.15)

Such that α = δ
γ
, p = 2, β = − δ

γ
, q = 1

γ−1
.
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List of Symbols

Rn = n-dimensional real space.

Bn = a ball of n dimension.

∇ = gradient.

∇· = divergence.

ν = unit vector.

Ω = domain.

∂Ω = boundary of a domain.

C∞ = The set of functions such that u : Ω→ R is infinitely differentiable.

Given a mutiindex α, then Dαu(x) = ∂|α|u(x)

∂x
α1
1 ....∂xαnn

. If k is a nonnegative integer,

then Dku(x) = {Dαu(x) : |α| = k} is the set of all partial derivative of order k.

Special cases:

k = 2, then D2u =


∂2u
∂x2

1
.... ∂2u

∂x1∂xn

.... .... ....

∂2u
∂xn∂x1

.... ∂2u
∂x2
n


k = 1, then Du = (ux1 , ....., uxn) is a gradient vector of u.

Definitions:

Newtonian fluid: A fluid with a linear relationship between shear stress and

deformation ( rate of change in velocity). Viscosity for a Newtonian fluid is a

constant.

Non- Newtonian fluid: Is a fluid in which the relationship between shear stress

and deformation is not linear. The viscosity of a Non- Newtonian fluid is a function

of some mechanical variable like shear stress or time.
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Pseudoplastics: Fluids that show a variable change in velocity with changing

shear stress: their velocity decreases as the shear stress changes.

Dilatant: ( also termed shear thickening) is a fluid in which viscosity increases

with the rate of shear.
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