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Abstract

The development of a three dimensional B-Spline based method, which is suitable for the

steady-state potential flow analysis of free surface piercing bodies in hydrodynamics, is pre-

sented.

The method requires the B-Spline or Non Uniform Rational B-Spline (NURBS) repre-

sentation of the body as an input. In order to solve for the unknown potential, the source

surface, both for the body as well as the free surface, is represented by NURBS surfaces.

The method does not require the body surface to be discritized into flat panels. Therefore,

instead of a mere panel approximation, the exact body geometry is utilized for the compu-

tation. The technique does not use a free surface Green’s function, which already satisfies

the linear free surface boundary conditions, but uses a separate source patch for the free

surface. By eliminating the use of a free surface Green’s function, the method can be ex-

tended to considering non-linear free surface conditions, thus providing the possibility for

wave resistance calculations.

The method is first applied to the double body flow problem around a sphere and a

Wigley hull. Some comparisons are made with exact solutions to validate the accuracy of

the method. Results of linear free surface conditions are then presented.

Keywords: potential theory, steady-state flow, B-Spline, NURBS, double body flow, linear

free surface conditions

x



Chapter 1

Introduction

Naval architects have always been interested in analyzing the fluid motion around ships

as they move forward in a steady-state on the calm free water surface, thus generating a

wave field behind them. For a range of computations in marine hydrodynamics, the fluid

flow is considered to be inviscid, incompressible and irrotational. With the condition of

irrotationality in place, the velocity field v in the fluid domain can be described by a potential

function Φ [16].

v = ∇Φ (1.1)

From the conservation of mass and the condition of an incompressible fluid follows the

Laplace equation [16].

∇2Φ = 0 (1.2)

The application of Laplace’s equation in marine hydrodynamics ranges from the most

basic fluid flow past a deeply submerged cylinder to the most complex flow past a ship

excited by waves [16]. Earlier solutions for potential flows in ship hydrodynamics involved

methods that were based on the strip theory [4]. With the assumption that the ship is a

slender body, the analysis was conducted in two dimensions and integrated over the length

of the ship. But as significant progress was made to accurately predict ship motions, three

dimensional methods that eliminated the assumption of slenderness were implemented. In

the last decade, advancements in computer technology have further motivated researchers

to develop many different classes of three-dimensional techniques for improved numerical

analysis of ship motions.

A majority of three dimensional analysis techniques in marine hydrodynamics use the

boundary element method. As the name suggests, the solution to the problem in a domain is
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defined by conditions on its boundaries. These conditions need not be solved on other points

in the domain as they are specific boundary conditions. Hence, it tremendously reduces the

computation domain. For marine hydrodynamics, we are specifically interested in the fluid

properties at the boundaries, such as fluid pressure on the hull and the free surface elevation.

Panel methods are a subgroup of boundary element methods, and a highly utilized method for

problems in hydrodynamics. Like all other boundary element methods, the analysis domain

for panel methods comprises only the boundary surfaces of the problem. The boundary

surfaces are discretized using a grid. The elements of the grid are referred to as “panels”.

1.1 Panel Methods

Panel methods can be formulated in many ways, but the pioneering work of Hess and

Smith [7] was the first truely practical method. More will be discussed in the next sec-

tion. A brief overview of the general formulation for the panel method is provided in this

section. For a more elaborate explanation, the reader is referred to Katz and Plotkin [11],

or any other computational fluid dynamics text book.

Before we go any further, it is important to specify the coordinate system that has been

used for this work. Figure 1.1 represents the coordinate system that is consistent with the

theory, formulation and the results for the current work. The body is located at (0,0,0),

with a forward speed in the positive x-direction. Hence, the onflow fluid velocity U∞ can be

considered to be opposite to the body velocity.

U∞ = (−Ub, 0, 0)T (1.3)

For the free-surface problem, the fluid surface is located at z=0. Symmetry of the body

along the x-axis and the y-axis, wherever applicable, has been exploited.

2



x
y

z

U∞

Figure 1.1: Coordinate system

As mentioned earlier, the Laplace’s equation is extensively used in marine hydrodynamics.

The total potential, Φ, for an irrotational fluid satisfies the Laplace’s equation everywhere

in the fluid domain. The most potent feature of the Laplace’s equation is its linearity, which

allows us to build up the complete solution out of simple elements. Instead of solving for the

velocity field, a vector, we only need to solve for the potential, which is a scalar quantity.

Boundary conditions are specified in order to determine a unique solution for the potential.

As an example, the following boundary conditions have to be satisfied for a deeply submerged

body.

∂Φ

∂n
= 0 on Sb body surface (1.4)

lim
r→∞

∇Φ = U∞ on S∞ far field (1.5)

3



The former condition, known as the rigid body condition, makes sure that there is no

fluid flow through the body surface Sb. And the latter ensures that the effect of the body is

eliminated far away from the body S∞. Hence, far away from the body, the gradient of the

potential would yield a velocity that is equal to the onflow fluid velocity.

As the analysis will only take surfaces into consideration, the aim is that the flow potential

throughout the fluid domain should be expressed in terms of the surface that bounds the

flow field. This is achieved by utilizing Green’s Theorem, which converts the volume integral

for the potential into a surface integral [16].∫∫∫
V

[
φ2∇2φ1 − φ1∇2φ2

]
dV =

∫∫
S

[
φ2

∂φ1

∂n
− φ1

∂φ2

∂n

]
dS (1.6)

φ1 and φ2 are two potentials. We select φ1 = −1
4πr

and φ2 = φ. Both potentials satisfy

the Laplace’s equation. r is the distance between any point p = (x, y, z)T on the surface

and a “source/sink” at the location q = (ξ, η, ζ)T . Therefore,

φ1 =
−1

4πr
=

−1

4π
√

(x− ξ)2 + (y − η)2 + (z − ζ)2
(1.7)

After some mathematical manipulation [11], the total potential Φ(p) at any point p within

the fluid domain can be given by

Φ(p) =

∫∫
Sb

σ

(
− 1

4πr

)
dS −

∫∫
Sb

µ
∂

∂n

(
− 1

4πr

)
dS + φ∞(p) (1.8)

The first integral represents the potential due to a source distribution of strength σ and

the second term is a doublet distribution. The latter is required for lifting surfaces only, and

µ has been set equal to zero in the current work.

As the point p on the surface approaches the “sink”, the term 1
r

within the surface integral

approaches infinity. Thus, the source and doublets are also known as singularities.

Applying the body boundary condition to the external flow potential, given by equa-

tion (1.8), yields a Fredholm Integral Equation of the Second Kind [3].

− 1

2
σ(p) +

∫∫
Sb

σ(q)
∂

∂nq

(
− 1

4πr

)
dS(q) = nT

p U∞ (1.9)

For a conventional panel method, the body surface is discretized into n panels. The source

strength distribution over each panel can be constant, linear or of higher order. There are

collocation points on the body surface, usually at the center of each panel, where the body

boundary condition is solved. Hence, equation (1.9) is solved at each collocation point,

4



taking into consideration the effect of the singularity distribution over all the panels. The

effect of the panel on which the collocation point is located is known as the self term.

Equation (1.9) turns into a set of n linear equations with n unknown coefficients σ. If

we assume constant source strength distribution over the panels, we can move σ out of the

surface integral. The unknown coefficients σ are the n unknown source strength values for

the panels on the body.

n∑
i=1

−1

2
σ(p

i
) +

n∑
j=1

σ(q
j
)

∂

∂npi

∫∫
Sj

(
− 1

4πr(p
i
, q)

)
dSj

 =
n∑

i=1

nT
pi
U∞ (1.10)

Once the set of equations are solved to compute the unknown source strength σ, we can

compute the potential φ. Since we do not directly compute the potential, it is also known

as the indirect method. The potential can be obtained by an additional integration of the

source strength over the body surface.

φ(p) =

∫∫
Sb

σ

(
−1

4πr

)
dS (1.11)

Now the flow properties like the velocity field and pressure coefficient can be computed

over the body surface.

Equation (1.9) is the indirect method. Another form of that equation is given by equa-

tion (1.12), known as the direct method. Here the potential is directly computed, and hence,

there is no need for an additional integration.

− 1

2
φ(p) +

∫∫
Sb

φ(p)
∂

∂np

(
− 1

4πr

)
dS(q) =

∫∫
Sb

nT
p U∞

(
− 1

4πr

)
dS(q) (1.12)

1.2 Research Background

An in-depth understanding of the past research work is necessary to appreciate what has

already been achieved in this area, and to better comprehend the current work. Although

invaluable, a comprehensive overview of the past research in this area is beyond the scope

of this document. For those interested, Atkinson [1] offers an elaborate review of panel

methods. This section is only meant to provide the reader with a brief overview of the

development of the panel method since its inception.

The first successful implementation of the panel method to solve potential flow about

5



three dimensional bodies is credited to Hess and Smith [7]. Their work is based on distribut-

ing sources on the body surface, and obtaining the actual values for these sources that would

help satisfy the body boundary condition of zero normal velocity at the surface. As discussed

in the previous section, satisfying the condition results in a Fredholm Integral Equation of

the Second Kind.

For distribution of sources, the body surface is discritized into quadrilateral elements

and each element has a constant source value. The discritization of the surface into flat

elements results in an approximation of the body, and the flow around it. Compared to

more elaborate and computationally expensive techniques, this method provides an efficient

and accurate solution. The method is beneficial for comparative analysis of different body

shapes. Of course, to improve the approximation, the number of elements can be increased.

However, it would result in an increase in the number of sources, and hence, an increase in the

computation time. The strength of the method is its simplicity and ease of implementation.

Propelled by the work of Hess and Smith, panel methods have since evolved. Success

of Hess and Smith’s approach led the world of numerical potential flow analysis into a pe-

riod that saw development of different versions of panel methods. Researchers developed

variations of the method that are catogorized as lower or higher order panel methods. John-

son [10] and Kehr et al. [12] use a linear function to define the source over each panel. The

constant and linear source distribution constitutes the lower order methods. The higher

order methods define the surface geometry and the source distribution with quadratic or

higher order functions [4]. Hess later developed a higher order method that makes use of

curved panels of second degree with linearly varying source density [6]. Hsin et al. presented

a higher order method that uses B-Splines to define the body geometry and the source solu-

tion [8]. For the same computation time, Hsin et al. claim the method to be more accurate

than the lower order methods. Refer to Kouh and Suen for a brief list of lower and higher

order methods [20].

Dawson was the first researcher to bring to light the use of panels on the free surface

for computation of steady-state free surface waves [19]. His work relating to steady-state

potential flow, on or near the free surface, focuses on solving for the source density on the

quadrilateral panels for the body surface as well as the free surface [5]. Panels on the free-

surface increases the computation time tremendously due to the large domain that needs to

be covered on the free-surface. In order to reduce computation for free surface problems,

researchers developed methods that utilize B-Spline approach along with a transient Green

function [4]. Maniar used B-Splines to developed a higher order method and applied it to

the radiation-diffraction problem [15]. The use of a free surface Green’s function restricts

the solution to that for linear free surface conditions only.

6



Marine hydrodynamists are among the very few researchers that have to deal with the

issue of free surface effects, and probably the only ones using potential methods. Solving

the complete non-linear free surface conditions, in the most efficient manner, still remains a

challenge.
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Chapter 2

The Method

As discussed in the previous chapter, many different variations of numerical procedures have

been implemented in order to perform efficient and accurate three dimensional analysis.

The motivation of this work is no different. However, our underlying goal is to conduct the

analysis on the original geometry of the body rather than on its approximation, and also to

be able to compute the flow properties at any arbitrary point on the body surface.

Most computer aided design softwares use a NURBS or B-Spline description to accurately

represent body surfaces. Equation (2.1) describes a general B-spline surface [18] .

S(u, v) =
n∑

i=0

m∑
j=0

PijNip(u)Njq(v) (2.1)

where, Pij are the vertices, and, Nip and Njq are the basis functions. The basis functions are

based on their respective knot vectors in u and v.

This work is based on exploiting the B-Spline description of the body to generate an

offset B-Spline source surface. The source strength over the entire source surface also uses

a B-Spline distribution. The potential due to the source strength over the source surface

satisfies the Laplace’s equation, as required by the potential theory. Forthcoming section

discusses more about the body surface, the source surface and the source strength distri-

bution. And the later sections in this chapter will discuss the formulation of the boundary

conditions for the current work.

It is assumed that the reader has basic knowledge of parametric surfaces. Otherwise,

Piegl and Tiller is the most comprehensive source on NURBS [18]. Nowacki, Bloor and

Oleksiewicz is also an excellent source for review [17].

8



2.1 Surfaces and the Source Strength

As discussed in the previous chapter, the total potential Φ, after setting doublet distribution

equal to zero, can be given by

Φ(p) =

∫∫
Sb

σ

(
− 1

4πr

)
dS + φ∞(p) (2.2)

In equation (2.2), the sources have been distributed over the body surface, and hence,

the integration of the first term φ1 is performed over the body surface Sb. In general, the

integration is performed over the surface where the sources have been distributed.

For the evaluation of the integral expression, traditional numerical methods in potential

flow problems face a common difficulty of evaluating the self term. The integral expression

possess singularity of the integral equation kernel at points where the distance r becomes

zero. Physically, it means that the effect of a point on its own self is being calculated. The

presence of such a singularity makes its difficult to numerically evaluate the integral.

To deal with this difficulty of numerical evaluation of the integral expression, a source

surface is generated that does not overlap the body surface. This de-singularization shifts

the source surface away from the collocation points, hence, converting a singular integral

expression into a non-singular expression. The degree of difficulty faced to integrate the

latter expression is assumed to be much less than that for the former.

The source strength distribution over the source surface also utilizes a B-Spline descrip-

tion. Therefore, the body surface, the source surface and the source strength, are all B-Spline

surfaces. In the current work the standard definition of these B-Spline surfaces, also known

as the tensor product surfaces, are given by

Source Strength, σ (u, v) =
Ns∑
i=1

Ms∑
j=1

SijNiks (u) Njls (v) (2.3)

Hull Surface, p (up, vp) =

Np∑
i=1

Mp∑
j=1

P ijNikp (up) Njlp (vp) (2.4)

Source Surface, q (u, v) =

Nq∑
i=1

Mq∑
j=1

Q
ij
Nikq (u) Njlq (v) (2.5)

where, Sij, P ij and Q
ij

denote the vertices of source strength, body surface and source

surface, respectively. N and M, for the summation, are the total number of vertices in the

u and v direction. Nik and Njl represents the basis functions associated with the ith and jth

9



vertex, and are of the order k and l. The second level subscripts of s, p and q, represent the

source strength, body surface and source surface, respectively. Note that the basis functions

for the source surface and the source strength are based on the same knot vectors in u and v.

Conventionally, the first vertex is denoted by the subscript 0, but in the current formulation

the first vertex has been assigned the subscript 1.

It is worth summarizing that the surfaces are represented by vectors, and the source

strength is a scalar quantity. The coordinate system is stationary to the hull, z axis points

vertically upwards, with z=0 at the calm free water surface.

As mentioned previously, there is a source strength distribution over the source surface.

Like any B-Spline surface, this source distribution has its source strength vertices, Sij. These

source strength vertices are scalar quantities and not geometric points. Similar to the manner

in which a B-Spline surface is computed, the source strength σ can be computed anywhere

on the source surface by the source strength vertices, Sij and the source strength basis

functions. As mentioned earlier, the basis functions are based on the same knot vectors for

the source surface as well as the source strength. Hence, allowing the integration of the

source strength over the entire source surface without undergoing a variable transformation

for the integration limits.

Figure 2.1 summarizes the transformation cycle that the source surface has to undergo

in order to compute the source strength distribution. The source surface in the global

coordinate system resembles the hull surface, but does not overlap it. It order to proceed with

the B-Spline computation, the source surface has to be transformed from the global system

of xyz variables to parametric variables (u,v), as shown by figure 2.1(a). Both parametric

variables have a minimum value of 0 and a maximum value of 1. The magnitude of the source

strength over the entire source surface is calculated in the parametric domain, figure 2.1(b).

Finally, the source strength distribution is transformed back from the parametric domain

to the global domain, as shown in figure 2.1(c). Hence, representing the source strength

distribution over the actual source surface in the global xyz system.
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Figure 2.1: Source surface transformation from global to parametric domain. And re-
transformation of the source strength distribution over the source surface from parametric
to global domain.
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Figure 2.2: Body surface and the source surface (offset has been exaggerated)

Back to the offset of the source surface, figure 2.2 provides a better insight on the ar-

rangement of the source surface and the hull surface. The hull surface is a B-spline surface,

and its vertices are denoted by P ij. B-Spline data for the hull surface can be obtained

from any computer aided design software used in naval architecture, e.g. Rhinoceros. Like

the hull surface, the source surface is also a B-Spline surface. However, it is shifted away

from the hull surface by a distance that is dependent on α. The data for the hull surface

is already available, therefore, for representing the source surface it is convenient to use

the same vertices and basis functions. The source surface has been shifted away from the

hull surface, hence, the vertices for the two surfaces are not the same anymore. The source

surface vertices are represented by Q
ij
. The vertices for the source surface are given by

equation (2.6). However, it is important to note that using the factor α to shift the source

surface is a simplified method, and can only be used for simple shapes like a sphere, wigley

hull etc. Since the expression simply contracts the source surface toward the origin, it is

necessary that the coordinate system be centered at the calm water line, z=0. An example

where this might not work as desired is the region of the bulbous bow, where the source

surface when shrunk toward the origin would actually intersect the hull surface. For such

12



cases, the computer aided design software can easily generate an offset surface that can be

used as the source surface.

Q
ij

= αP ij (2.6)

where, both, the body vertices P ij, and the source surface vertices Q
ij

are vectors.

It is important to explicitly state that there are no “panels” in the current work. The

source surface is a B-Spline surface and does not need discretization, as opposed to the

conventional panel methods where the body is discretized into smaller panels and a source

strength is assigned to each panel. Hence, the current work is based on a paneless method.
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2.2 Body Boundary Condition

The hull surface boundary condition requires that there is no normal flow of fluid through

the body surface.

∂Φ

∂n
= 0 (2.7)

As discussed in the previous chapter, the total potential, Φ(p), at any point can be given

by

Φ(p) = pT U∞ +

∫∫
Sq

σ

(
−1

4πr
(
p, q
)) dSq = pT U∞ + φ (2.8)

In equation (2.8), φ is also known as the perturbation potential, and it represents the

disturbance of the parallel flow due to the presence of the body. Therefore, the hull surface

boundary condition can be re-arranged as

nT
p ·
∫∫
Sq

σ∇

(
−1

4πr
(
p, q
)) dSq = −nT

p · U∞ (2.9)

where, p 6= q because p ∈ Sb and q ∈ Sq

Re-arranging the left hand side by substituting the B-Spline representation of σ, and

transforming the integration to the parametric domain, we obtain

nT ·
∫∫
Sq

σ∇

(
−1

4πr
(
p, q
)) dSq =

nT ·
∫∫
Sq

[
Ns∑

i = 1

Ms∑
j = 1

Sij ·Niks(u)Njls(v)

]
· ∇

(
−1

4πr
(
p, q
)) ‖q

u
× q

v
‖dudv (2.10)

where, ‖q
u
× q

v
‖ is the Jacobian of the variable transformation (dSq = ‖q

u
× q

v
‖ dudv).
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The gradient of the potential φ, yields the following result

∇

(
−1

4πr
(
p, q
)) =



∂

∂x

(
−1

4πr
(
p, q
))

∂

∂y

(
−1

4πr
(
p, q
))

∂

∂z

(
−1

4πr
(
p, q
))


=

1

4πr3
(
p, q
)
 (px − qx)

(py − qy)

(pz − qz)

 (2.11)

Substituting the gradient of the potential φ from equation (2.11) into (2.10) produces

the following

nT ·
∫∫
Sq

σ∇

(
−1

4πr
(
p, q
)) dSq =

∫∫
Sq

[
Ns∑

i = 1

Ms∑
j = 1

Sij ·Niks(u)Njls(v)

] 1

4πr3
· nT

 px − qx

py − qy

pz − qz


 ‖q

u
× q

v
‖dudv (2.12)

Equation (2.12) is the normal velocity of the source surface at a collocation point p on

the hull surface. It is computed by integrating the sum of the product of all the basis

functions with their respective vertices, over the entire source surface. We know, through

basic calculus, that the integration of a sum of functions over a limit is equivalent to the

sum of the individual functions integrated over the same limit.(∫∫
[f1 + f2 + f3 . . .] dudv =

∫∫
f1dudv +

∫∫
f2dudv +

∫∫
f3dudv . . .

)
We also know that the vertices of a B-Spline surface are not a function of the parameters u

and v. Therefore, the source strength vertices Sij are constants with respect to the integration

variables u and v. Hence, equation (2.12) can re-written as
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nT ·
∫∫
Sq

σ∇

(
−1

4πr
(
p, q
)) dSq =

Ns∑
i = 1

Ms∑
j = 1

Sij

∫∫
Sq

Niks(u)Njls (v) ·

 1

4πr3
· nT

 px − qx

py − qy

pz − qz


 ‖q

u
× q

v
‖dudv (2.13)

We require a set of linear equations to solve for the source strength Sij. We need a set of

Ns×Ms linear equations since that is the total number of unknown source strength vertices.

The total number of basis functions for the source surface is also Ns ×Ms. Note that even

though equation (2.13) has been discretized into Ns ×Ms elements, but it is still exact and

continuous. All the vertices and basis functions together make up the exact source surface.

In order to generate a set of linear equations we need to select collocation points equal to

the number of basis functions for the source surface. Therefore, we must select Ns × Ms

collocation points on the hull surface to satisfy the body boundary condition.

It is important to strategically locate the collocation points on the hull. The source

strength σ on the source surface will be expressed as a B-Spline surface, and would be

dependent on the values of the source strength vertices Sij and its set of basis functions. To

ensure that the scalar source strength can be integrated over the complete source surface, we

had used the same knot vectors for the source surface and the source strength. Therefore,

they both have the same basis functions as well. For a simple body geometry the hull surface

and the source surface have been offset by a distance that is dependent on the value of α.

The source surface can use the same basis functions as the body surface. Therefore, for

simple bodies the body surface, the source surface and the source strength share the same

set of basis functions.

The body boundary condition has to be satisfied everywhere on the body, e.g. at all

the collocation points. The following expression is a set of Ns ×Ms linear equations, with

Ns ×Ms components in each equation, and is solved at the collocation points.

Ns∑
i = 1

Ms∑
j = 1

Sij

∫∫
Sq

Niks(u)Njls (v)

 1

4πr3(p
m

, q)
· nT

m

 pxm − qx

pym − qy

pzm − qz


 ‖q

u
× q

v
‖dudv =

−
(
nT

mU∞
)

(2.14)
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where, m = 1, 2, . . . Ns ×Ms

Equation (2.14) gives us a set of Ns ×Ms linear equations, which needs to be solved in

order to determine the coefficients. The coefficients, Sij, are the source strength vertices.

It is worth mentioning again that the source surface vertices Q
ij
, and the source strength

vertices Sij, are different. The former being a vector and the later a scalar.

In case of a double body flow problem, solving equation (2.14) to determine the source

strength at the control points suffices. We can now compute the total potential Φ since the

source strength is just another NURBS surface, and knowing Sij and the basis functions is

enough to compute the value of the source strength everywhere on the source surface. The

velocity field is obtained by taking the gradient of the total potential Φ.

But, if the body is situated on or near the free surface and the desired results include the

effect of the free surface due to the fluid-body interaction, it is necessary to solve additional

conditions.
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2.3 Free-Surface Conditions

The subject of water waves, when dealt alone, is already considered one of the most complex

physical problems in nature. The presence of a body within the water waves ramifies this

complexity [22]. Any work aimed at solving the non-linear free surface elevation problem

has to be first successfully solved for the linearized free surface conditions. The free surface

boundary conditions, for the problem on our hands, pose a couple of major difficulties.

Firstly, they are non-linear in nature, and secondly, the boundary conditions on the free

surface need to be satisfied on a surface whose location is not known beforehand. The latter

makes the solution to the boundary conditions implicit in nature.

Traditionally, researchers have used the Neumann-Kelvin Linearization for transforming

the non-linear wave elevation problem into a linear problem. The aforesaid assumes the

undisturbed parallel on-flow with no waves as the basic solution to the problem.

φ(0) = −Ubx (2.15)

ζ(0) = 0 (2.16)

where, φ(0) and ζ(0) are the zero order wave potential and wave elevation, respectively.

Linearity of the Laplace’s equation allows the superimposition of two or more simple

solutions to form a new solution for potential flows. Equations (2.17) and (2.18) express the

exact solution for the velocity potential Φ and the wave elevation ζ as a sum of functions with

rapidly decreasing values [3]. To linearize, we truncate the sum after the first order terms.

The second and higher order terms are ignored, and it is assumed that their contributions are

negligible. This linearization is practical for free surface flows as long as the wave steepness

is not too large.

Φ = φ(0) + εφ(1) + ε2φ(2) + . . . (2.17)

ζ = ζ(0) + εζ(1) + ε2ζ(2) + . . . (2.18)

We require two conditions to successfully compute the unknown free surface potential, at

an unknown free surface elevation. These two are the dynamic and the kinematic boundary

conditions [16]. The former uses the Bernoulli’s equation ensuring that the pressure at the

free surface is equal to the atmospheric pressure at all times. The latter condition imposes a

restriction on the movement of the water particles, allowing them to only move tangentially

to the free surface. The water particle velocity normal to the free surface is zero.
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The following are the two conditions that the velocity potential Φ must satisfy at the free

surface [5].

Dynamic,
1

2

[
Φ2

x + Φ2
y + Φ2

z − U2
∞
]
+ gz = 0 on z = ζ (2.19)

Kinematic, −ζxΦx − ζyΦy + Φz = 0 on z = ζ (2.20)

Utilizing the Neumann-Kelvin Linearization from equations (2.15) and (2.16), the two

boundary conditions can be linearized and expressed as

Linear Dynamic, −Ubφ
(1)
x + gζ(1) = 0 on z = 0 (2.21)

Linear Kinematic, ζ(1)
x Ub + φ(1)

z = 0 on z = 0 (2.22)

Equations (2.22) and (2.21) can be further combined. Take the x-derivative of the

dynamic boundary condition and re-arrange the terms.

ζ(1)
x =

Ub

g
φ(1)

xx (2.23)

Substituting equation (2.23) into equation (2.22), yields the following Combined Linear

Free-surface Boundary Condition [19] [5] [2]. This needs to be solved at the zero order wave

elevation, z=0.

U2
b φ(1)

xx + gφ(1)
z = 0 (2.24)

Now that we have the Combined Linear Free-surface Boundary Condition, we need to

formulate the set of linear equations that need to be solved at the collocation points on the

free surface. It must be explicitly mentioned that, just like the hull surface, a separate source

surface is generated for the free surface. The free surface and its source surface are both

B-Spline surfaces. The free surface source surface is shifted upwards, in order to eliminate

the singularity.

As metioned earlier, the zero order potential φ(0) is the undisturbed parallel fluid onflow.

The first order potential φ(1) represents the disturbance caused by the body and is given by

φ(1) = φ (2.25)
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The first and the second order x-derivates of the first order potential yields the following

φ(1)
x = φx (2.26)

φ(1)
xx = φxx (2.27)

φ(1)
z = φz (2.28)

Hence, by substituting the definition of perturbation potential φ in equations (2.27)

and (2.28), and combining them with equation (2.24), the Combined Linear Free-surface

Boundary Condition can be written as

U2
b

∫∫
SF +Sb

σ(q)
∂2

∂x2

(
−1

4πr

)
dSq + g

∫∫
SF +Sb

σ(q)
∂

∂z

(
−1

4πr

)
dSq = 0 (2.29)

From equation (2.11), we can deduce

∂

∂x2

(
−1

4πr

)
=

1

4π

(
−3(px − qx)

2

r5
+

1

r3

)
(2.30)

∂

∂z

(
−1

4πr

)
=

1

4π

(pz − qz)

r3
(2.31)

Replacing the second x-derivative and the z-derivative of φ in equation (2.29), substituting

the description of source strength σ, and transferring it into the parametric domain, we get

U2
b

∫∫
SF +Sb

Ns+NF∑
i=1

Ms+MF∑
j=1

SijNiks(u)Njls(v)
1

4π

(
−3(px − qx)

2

r5
+

1

r3

)
‖qu × qv‖dudv

+ g

∫∫
SF +Sb

Ns+NF∑
i=1

Ms+MF∑
j=1

SijNiks(u)Njls(v)
1

4π

(pz − qz)

r3
‖qu × qv‖dudv = 0 (2.32)

where, NF ×MF is the total number of vertices for the free surface.

Just like the body boundary condition, we can interchange the integration and summation

signs. The source strength vertices Sij are not a function of u and v, and are treated as

constants. The expression now becomes
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Ns+NF∑
i=1

Ms+MF∑
j=1

Sij

(
U2

b

∫∫
SF +Sb

Niks(u)Njls(v)
1

4π

(
−3(px − qx)

2

r5
+

1

r3

)
‖qu × qv‖dudv

+ g

∫∫
SF +Sb

Niks(u)Njls(v)
1

4π

(pz − qz)

r3
‖qu × qv‖dudv

)
= 0

(2.33)

Similar to the body boundary condition, the Combined Linear Free-surface Boundary

Condition has to be satisfied everywhere on the free-surface, e.g. at all the NF MF collocation

points on the free-surface.

Ns+NF∑
i=1

Ms+MF∑
j=1

Sij

(
U2

b

∫∫
SF +Sb

Niks(u)Njls(v)
1

4π

(
−3(pxm − qx)

2

r5(p
m

, q)
+

1

r3(p
m

, q)

)
‖qu × qv‖dudv

+ g

∫∫
SF +Sb

Niks(u)Njls(v)
1

4π

(pzm − qz)

r3(p
m

, q)
‖qu × qv‖dudv

)
= 0

(2.34)

where, m = NsMs + 1, NsMs + 2, . . . NsMs + NF MF

Note that m = 1 to NsMs refers to body surface collocation points, hence, m = NsMs +1

to NsMs + NF MF are free-surface collocation points. It should also be evident that for each

collocation point, whether its on the body surface or the free-surface, the effect of all the

sources has to be considered. In equation (2.34) the effect of NsMs body source strength

basis functions, and NF MF free-surface source strength basis functions has been included.

Therefore, the total basis functions to be considered are Ns + NF in the u direction and

Ms + MF in the v direction. At this point it is necessary to explicitly state that while

considering the presence of free-surface, the system of equations for the body boundary

condition has additional terms. These are due to the basis functions from the free-surface

source strength. The expression to be solved for the body boundary condition in the presence

of a free-surface is written as
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Ns+NF∑
i = 1

Ms+MF∑
j = 1

Sij

∫∫
Sq

Niks(us)Njls (vs)

 1

4πr3(p
m

, q)
· nT

m

 pxm − qx

pym − qy

pzm − qz


 ‖q

u
× q

v
‖dudv

= −
(
nT

mU∞
)

(2.35)

where, m = 1, 2, . . . Ns ×Ms

Equations (2.34) and (2.35) form a system of linear equations with NsMs+NF MF terms.

Solving this system of linear equations will help us compute the source strength Sij for all

the source strength vertices for the body source strength, as well as on the free-surface source

strength.

Once the values for the source strength vertices are known, the first order wave potential

φ(1) can be computed. And then, the Linear Dynamic boundary condition, equation (2.21),

can be used to compute the first order wave elevation ζ(1)

ζ(1) =
Ub

g
φ(1)

x (2.36)

In contrast to conventional panel methods, exact value for φ
(1)
x can be derived for equa-

tion (2.36). Conventional panel methods depend on numerical differentiation for computing

φx.
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2.4 Wave-making

It is of utmost importance that the waves which are generated as a result of the presence

of the body at the free surface, must travel in the correct direction and be only present

behind the body. The free surface problem on hand does not possess a unique solution [5].

In nature, waves only exist downstream of the body. However, if for some reason these waves

are also generated upstream, they will satisfy the free surface conditions just as well as the

downstream waves. There is no single correct solution to this problem, instead, it is in our

hands to extract the correct solution from the many available solutions.

The correct application of the free surface conditions does not essentially ensure that the

waves are only generated downstream [5]. In order to achieve the desirable solution, the set

up of the problem has to be precise. In the past, researchers have used various techniques to

ensure that the waves are only present downstream. It was suggested to force the first and

second x-derivative of the pertubation potential φ to zero [2]. In a very well known research

survey, Yeung mentioned the application of “asymptotic conditions”, where the pertubation

potential upstream and downstream has been described differently [22].

One of the more common method is the collocation point shift technique. For con-

ventional panel methods the desired wave system is achieved by shifting the free surface

collocation points upstream. The degree of shift can vary anywhere between 25% and 100%

of the panel length [3]. Since the collocation points are the center of the panels that comprise

the free surface, this essentially results in an upstream shift of the free surface domain. As a

result, waves are only generated downstream of the body. The current work uses a variation

of the collocation point shift method.

In the present work, the source surface for the free surface is not made up of panels [5]

or point sources [9], but is a B-Spline surface. Being a B-Spline surface, the source surface is

exact and continuous. The collocation points are selected points on the free surface domain

where the free surface boundary conditions are satisfied. It is important to understand at

this point that even though the number of source strength vertices are equal to the number

of collocation points, the relationship between their respective positions is not the same as

in a conventional panel method. In a conventional method, originally the sources are right

above the collocation points, and later, they are shifted upstream. But, in the present work,

the collocation points lie within the boundaries of the source surface in the xy plane. And

even though we are just solving for the source strength values at the source strength vertices

Sij, the effect of the complete free surface source surface is taken into account. Therefore, a

simple shift of all the collocation points would yield nothing worthwhile.

Instead of shifting the collocation points forward, the free surface source surface was
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Figure 2.3: Free-surface source surface set-up

shifted downstream. The free surface source surface is an exact replication of the free surface,

but, is situated slightly above the free surface in order to eliminate the singularity. The

collocation points on free surface are within the boundaries of the free surface, ensuring that

none lie exactly on the edge of the free surface. The source surface can only be shifted by

shifting its vertices. The aft end of the source surface and the free surface originally lie on

the same x-coordinate, and will remain like that even after the shift. Hence, the aft most

vertices for both the surfaces are in line. Now each successive vertex on the source surface

is moved aft by a distance that grows linearly as we move forward, until the forward most

source surface vertex has been shifted aft by the maximum distance. Figure 2.3 clearly

demostrates this linear aftward shift of the source surface. The important part is that the

forward most vertex that undergoes the maximum aft shift has to be shifted enough to lie

behind the forward most collocation point of the free surface. This set-up results in the

desired wave-system downstream of the body.
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Chapter 3

The Quasi-Singular Integral

The boundary element method in the current work is quasi-singular due to the presence

of an inverse distance potential kernel. Potential flow problems may possess integrand of

O(1/r3) for computing the surface integrals. For performing such numerical computations, it

is imperative to depend upon numerical quadrature schemes [21]. As the distance r tends to

zero, the kernel undergoes drastic changes in the function value. If the effect of the distance

potential kernel is strong in the integrand, a large number of points are required to capture

the true behavior of the function in the neighborhood of the singularity. Even then, standard

integration methods generate large errors [13].

The integration method used is undisputably the backbone of any numerical procedure

that deals with boundary element techniques. The efficiency and accuracy of the integration

would make or break the overall performance of any such numerical procedure. One of

the most effective methods that has been proposed to deal with a near singular boundary

integral equation is element sub-division, followed by variable transformation [21] [14]. The

coordinate transformation of an element generates a Jacobian that cancels out the singularity.

Simply sub-dividing the element would pay-off, but intelligent concentration of points around

the region of the weak singularity would avoid the reduction in the maximum degree of the

allowable integrand [21]. Hence, a quadratic or cubic transformation is considered far more

superior than a simple linear transformation. In order to truely appreciate the effectiveness

of subdivision and transformation, it is worth discussing the problem first.

This section deals with the function values in the parametric domain, and therefore, it

is necessary to look at the transformation of the body from the coordinate system defined

in figure 1.1 to the parametric domain. Figures 3.1 and 3.2 show the transformation of a

sphere and a Wigley hull into the parametric domain. The bottom end of the quarter of a

sphere can be described by any value on the u coordinate, as long as the v coordinate is 0.

For the wigley hull, the four corners have specific values in the u,v domain.
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Figure 3.1: Transformation of a quarter of a sphere into the parametric domain.
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Figure 3.2: Transformation of a half Wigley hull into the parametric domain.
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3.1 The Integrand

Figures 3.3, 3.4 and 3.5 represent the three velocity components of an original un-transformed

source surface basis function. These components are for a source surface basis function of a

sphere, which is subjected to a double body flow. These quasi-singular velocity components

are the result of the effect of the source surface basis function under consideration, at a

particular collocation point that lies within the same parametric limits as the source surface

basis function. It is evident that even though most of the basis function is flat, in the vicinity

of the collocation point it exhibits a drastic change in magnitude, over a small distance in

the u and v directions.
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Figure 3.3: Original X component of the integral for double body flow around a sphere.
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Figure 3.4: Original Y component of the integral for double body flow around a sphere.
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Figure 3.5: Original Z component of the integral for double body flow around a sphere.
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An attempt to integrate the velocity components with a standard gaussian quadrature

scheme is futile. Even though the singularity is nonexistent due to the shifting of the source

surface, the drastic change in the values within a small distance on the parametric space

makes integration a daunting task. Each source surface basis function would require a few

hundred gaussian points before the results are considered accurate enough to be utilized in

further numerical computations. Like all panel methods, we need to generate a square matrix.

This would require the integration of a total of N×N source surface basis functions. Accurate

integration of all these basis functions without compromising the overall computation time

of the scheme is an unsurmountable task.

At first, dividing the surface into smaller sections seems to be a logical solution. Hence,

separately integrating the almost flat region, and the region with quasi singular behavior.

The former would require as few as 3×3 gaussian points. But since the velocity components

are a function of the distance from the collocation point and the normal derivative of the

potential, it is not a trivial task to accurately extract the region of singularity. Even if

successfully separated, integrating this section would still be computationally expensive.

In fact, the integration effort was noted to be almost the same as that required by the

original undivided surface. Therefore, a more general technique is implemented that can be

effectively executed for all cases. Though the solution still relies on surface sub-division, it

is of a different kind.
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3.2 Division and Transformation

The source surface is fundamentally a square in the parametric space. It is only in the global

space that it attains the shape of the body. As the velocity components are a function of the

distance between the source surface basis function and the collocation point, and the normal

of the body surface at the collocation point, the quasi singular behavior is largely focused

at the location of the collocation point. The square source surface is split into triangles

based on the location of the peak of the velocity components [21] [14]. In Figure 3.6, the

collocation point is assumed to be located at ε, hence, the source surface is divided into

four triangular sub-elements. The apex of all the triangles is the location of the singularity.

This basically subdivides the singular behavior of the source surface into smaller sections,

therefore, making it less cumbersome to integrate. At this stage a common practice is to

use a cylindrical coordinate system and integrate over these triangles [21]. Although less

famous, an alternative to this is to re-transform these triangular sections back into squares.

The transformation Jacobian thus employed helps in smoothing out the singularity that had

existed in the triangles [14]. Instead of being linear, this transformation is quadratic. Hence,

it helps to intelligently place the gaussian points, putting more points in the area where the

original peak had existed.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

V

U

η

ξε

∆(1)

∆(2)

∆(3)

∆(4)

Figure 3.6: Element sub-division to eliminate the singularity [21].
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Figure 3.7 shows the division of the Y component of velocity that was originally presented

in Figure 3.4. Now the velocity effect on the source surface will be integrated in four separate

parts. All the velocity components on all the source surfaces are split into triangles. The

four traingles, thus obtained by division, are transformed back into a square.

Figure 3.8 is the transformation Jacobian for ∆(1). The Jacobian has really small values

close to u=0. This is the region that lies near the apex of the triangle. The small value of

the Jacobian helps in reducing the high function value, and smoothes the resulting surface in

the square domain. The following expression is used to transform from the η and ξ domain

to the u amd v domain. It is cubic in η, and linear in ξ.

u =
(
(u1 − up)η

3 + up

)
(1− ξ) +

(
(u2 − up)η

3 + up

)
ξ (3.1)

v =
(
(v1 − vp)η

3 + vp

)
(1− ξ) +

(
(v2 − vp)η

3 + vp

)
ξ (3.2)

where, up, vp is the apex of the triangle. u1, v1 and u2, v2 are the coordinates of the other

two corners. η and ξ represent the new domain after transformation.
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Figure 3.7: Surface sub-division of Y velocity component of a source surface for double body
flow of a sphere.
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Figure 3.8: Transformation Jacobian for ∆(1)
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3.3 Effect of Division and Transformation

The Jacobian for each of the triangular section has the same smoothing effect. These newly

obtained surfaces in the square domain can easily be integrated by using standard gaussian

integration methods. And unlike previously, the divided and transformed components require

much fewer guassian points. The figures on the following pages present the original Y

components of all the triangular sections that were obtained after dividing the surface from

figure 3.4, along with the surfaces that were obtained after performing the transformation.

It is evident from the figures that there has been a tremendous improvement in the

irregularity of the surfaces that need to be integrated. We notice that after transformation,

∆(3) still exhibits the effect of the peak. It is worth pointing out that even though the peak

has not been completely smoothed in ∆(3), the extent and the amplitude of the function

value in the transformed surface has a great deal of improvement over the original ∆(3).
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Figure 3.9: Original Y velocity component for ∆(1)
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Figure 3.10: Transformed Y velocity component for ∆(1)
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Figure 3.11: Original Y velocity component for ∆(2)
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Figure 3.12: Transformed Y velocity component for ∆(2)
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Figure 3.13: Original Y velocity component for ∆(3)
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Figure 3.14: Transformed Y velocity component for ∆(3)
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Figure 3.15: Original Y velocity component for ∆(4)
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Figure 3.16: Transformed Y velocity component for ∆(4)
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Chapter 4

Results

The development of any numerical scheme in Naval Architecture, which is meant to solve

the free surface flow problem, starts with the successful implementation of the same for the

double body flow condition. Once accurate results are obtained for the double body flow

case, the researcher is assured of the correctness of the basic formulation of the scheme. The

same approach was used in the present work.

After the basic mathematical formulation was complete, the first milestone was achieved

by solving the double body flow problem. A sphere and a Wigley hull were used to compare

the results of the aforesaid case, with analytical and published data. Next, the task of

implementation of the scheme to obtain the wave elevation in the presence of free-surface

was undertaken.

This chapter summarizes the results for a sphere and a Wigley hull for both, double body

and free-surface, conditions. Post processing of the results was done in Gnuplot (version4.0

- 2004) and Mayavi2.
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4.1 Double Body Flow Problem

For a double body flow problem, the body is reflected about the free-surface, hence, supress-

ing any waves that might be generated as a result of the fluid flow. The collocation points

are only located on the body, where the body boundary condition needs to be satisfied. How-

ever, while satisfying the condition, the effect of another mirror image of the body, about

the free-surface, is take into consideration.

4.1.1 Double Body Flow for a Sphere

The NURBS description of a quarter of a sphere is used to compute results for double body

flow around a sphere. The symmetry of the body about the xz and xy planes allows us to

reflect the quarter sphere about the two planes and generate a complete sphere.

The source distribution over the body, by itself, is not of much pratical use, but it will

be beneficial to discuss all the different aspects of the results. Figure 4.1 is the source

distribution over a quarter of a sphere for Fn=0.23. As mentioned in an earlier chapter, in

the parametric domain, any point on the u coordinate, as long as the v = 0, is the same

point on the sphere. As expected, the source value is same throughout u, for v=0. The

net source value over the sphere is zero, hence, satisfying the total source requirement for a

closed body. Also, the leading half of the quarter of a sphere has positive value, source, and

the trailing half has negative value, sink.
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Figure 4.1: Source distribution for a quarter of a sphere with double body flow (α = 0.9).
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Figure 4.2: Cp for a sphere with double body flow (α = 0.9).
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Figure 4.3: Velocity field on a sphere with double body flow (α = 0.9).
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Figure 4.4: Normal velocity on a sphere with double body flow (α = 0.9).

Figures 4.2 4.3 and 4.4 show the pressure distribution, velocity field and the normal

velocity, respectively, for a sphere. The results agree with the analytical results for a sphere.

Within the numerical precision, the normal velocity on the body surface is considered to be

almost zero. Hence, satisfying the bounday boundary condition.

As the value for α is reduced, the source surface is moved away from the body surface.

As the source surface moves away from the body surface the quasi-singular behaviour of the

integral reduces. With the reducing α we don’t see any change in the results. Figure 4.5

shows that there is no error in the pressure coefficient values as the source surface is moved

away from the body surface. This is true for a sphere since its a simple shape, and all the

points on the sphere surface is equidistant from the center. For a more complex geometry of

the body we will have to maintain a high value of α to achieve accurate results.
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4.1.2 Double Body Flow for a Wigley Hull

The following are the results for a Wigley hull for a double body flow problem. Figures 4.6, 4.8

and 4.10 are the coefficient of pressure distribution over a Wigley hull that has been gener-

ated using 3×3, 4×3 and 4×4 surface vertices, respectively. We see an improvement in the

values for the coefficient of pressure as the number of vertices is increased. Figures 4.7, 4.9

and 4.11 represent the velocity field over the Wigley hull. We can also see a change in the

velocity field as the total number of vertices for the Wigley hull is increased. Remember, an

increase in the number of surface vertices results in an increase in the number of collocation

points too.

Figures 4.12 provides a better picture of the improving flow properties as we increase the

number of surface vertices. The figure represents the pressure coefficient along the length of

the Wigley hull at z = -1. We can see that the values converge as we increase the number

of vertices.

Figure 4.13 shows the effect of changing the value of α. In the last section, the results

did not change as we changed α for a sphere with double body flow. We had mentioned that

this was due to the simple shape of a sphere. However, a Wigley is not a simple body like

the sphere and is sensitive to the value of α. As we reduce the value of α, the change in

pressure coefficient values at z=-1 for a 3×3 vertices Wigley hull is evident from figure 4.13.
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Figure 4.6: Cp for a Wigley hull with double body flow (3× 3 vertices).
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Figure 4.7: Velocity field on a Wigley hull with double body flow (3× 3 vertices).
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Figure 4.8: Cp for a Wigley hull with double body flow (4× 3 vertices).
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Figure 4.9: Velocity field on a Wigley hull with double body flow (4× 3 vertices).
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Figure 4.10: Cp for a Wigley hull with double body flow (4× 4 vertices).
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Figure 4.11: Velocity field on a Wigley hull with double body flow (4× 4 vertices).
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4.2 Linearized Free-Surface Problem

The results for the free surface problem are being refined. Preliminary result for a sphere is

included in the following section.

4.2.1 Linearized Free-Surface For a Sphere

Figure 4.14 is the free surface elevation for a sphere.
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Figure 4.14: Free surface elevation for a sphere
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Chapter 5

Conclusion and Future work

A novel method for potential flow analysis of bodies in the presence of free water surface is

presented. The method uses a B-Spline source for the body surface, as well as the free water

surface. The advantage of the high degree of continuity of the B-Spline functions allow the

source surfaces to be exact, instead of being panels or points. The technique successfully

solves double body flow and linear free surface condition problems. The use of a separate and

single B-Spline source for the free water surface, instead of a free surface Green’s function,

allows extendibility of the method to solving non linear free surface conditions as well.

The obvious advantages include the availability of the exact derivatives of the basis

functions for the B-Spline surface, hence, eliminating the need for numerical schemes to

differentiate. And, a much smaller system matrix than the constant panel method. Once

the values of the source strength vertices have been computed, the method allows complete

flexibility of computing the fluid properties at any arbitrary point on the body surface or

the free surface. In comparison, the constant panel method restricts the computation to the

collocation points. The B-Spline for the surfaces can be of any order, hence, the solution

can possess any order. Due to lack of actual panels, utilization of the method for external

wave forcing problems will mitigate, or might even fully eliminate, the irregular frequency

problem.

The results that have been presented in this work agree with the analytical and bench-

mark results. The current work provides another approach to solving the steady-state ship

wave-resistance problem in marine hydrodynamics. For solving the wave resistance problem

it is necessary to satisfy the non-linear free surface conditions. And the success in solving

the linear free surface conditions has paved way to proceed with an attempt to solve the

non-linear free surface conditions in the near future. The solution to the non-linear free

surface conditions would hence allow successful computation of wave resistance for existing

and new ship hull designs.
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