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Abstract 
 

Support Vector Machines (SVMs) are used for a growing number of applications.  A 

fundamental constraint on SVM learning is the management of the training set. This is because 

the order of computations goes as the square of the size of the training set. Typically, training 

sets of 1000 (500 positives and 500 negatives, for example) can be managed on a PC without 

hard-drive thrashing. Training sets of 10,000 however, simply cannot be managed with PC-based 

resources. For this reason most SVM implementations must contend with some kind of chunking 

process to train parts of the data at a time (10 chunks of 1000, for example, to learn the 10,000).  

Sequential and multi-threaded chunking methods provide a way to run the SVM on large datasets 

while retaining accuracy.  The multi-threaded distributed SVM described in this thesis is 

implemented using Java RMI, and has been developed to run on a network of multi-core/multi-

processor computers.   
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Chapter 1. Introduction 

         SVMs are becoming more popular since researchers and engineers find it to be a better, 

more robust replacement for older learning methods such as neural networks.  Another attractive 

aspect of SVMs is that they do not require much manual parameter manipulation which makes 

their use much easier.  Neural networks are a good example of an outdated learning method that 

requires a decent amount of expertise in order to get the training parameters properly set for each 

different dataset.  Many areas of study such as text categorization, face recognition, handwriting 

recognition, pedestrian detection, and DNA hairpin classification are increasingly using SVMs as 

their main classification method.   

The main problem with current day SVMs is that they cannot process large datasets in a 

timely manner.  This problem is compounded further when multiple SVM training rounds are 

needed as with SVM clustering methods being developed by the Winters-Hilt Group (but not 

discussed further here).  Chunking the training set into smaller datasets provides a solution to this 

problem.  Sequential chunking runs the SVM on the first chunk and then sends the support 

feature vectors (SVs) and sometimes some non-SVs to be added into the training data for the 

next chunk.  This continues until all chunks have been run. What is not as commonly discussed 

are multi-threaded chunk processing methods. In part, this may be because of the many subtleties 

that have been encountered in these efforts and this is a major focus of this thesis.  Multi-

threaded chunking breaks the training dataset into smaller chunks to be trained separately.  When 

all chunks have been trained, SVs and sometimes some non-SVs are brought together and re-

chunked.  This occurs until the dataset is small enough to be handled by the basic SVM.  In order 

to take advantage of multi-system networks, a multi-threaded distributed chunking method has 

also been developed to spread the load and significantly decrease training time. 
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During research of this topic, observations have shown that not all support vectors are 

needed in order to define an accurate hyperplane.  To capitalize on this fact, a Support Vector 

Reduction method has been developed to drop the weakest SVs.  This method has not only 

further advanced the stand-alone SVM but has significantly increased the effectiveness of the 

chunking methods. 

A plethora of results have been compiled to support the effectiveness of the discussed 

methods which have been placed throughout the discussion.  The Appendix contains the 

implementation of the SVM methods written in Java. 
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Chapter 2. Support Vector Machines 

2.1 Introduction 

Support Vector Machines [10] (SVMs) are discriminators that use structural risk 

minimization to find a decision hyperplane with a maximum margin between separate groupings 

of feature vectors.  SVMs are often used to classify binary and multi-class datasets.  The 

chunking algorithms discussed below concentrate on binary classification.  The feature vectors 

have been extracted from different blockade level frequencies, the emission probabilities, and 

transition probabilities to arrive at probability vectors usually composed of 150 components [1].  

When SVMs were created in 1995, a quadratic programming algorithm was used [5].  

This was slow and only small datasets could be run with them.  In 1998, Platt created Sequential 

Minimal Optimization (SMO) which is an algorithm that uses minimal sets of Lagrange 

multipliers (here two) to bypass having to use a quadratic algorithm [2].  The SMO SVM iterates 

through the dataset comparing and updating the Lagrange multipliers (alphas) two at a time.  

This simplification into smaller steps provides a significant increase in speed when compared to 

the older quadratic algorithms.  This new approach to SVMs has opened its use to a wide variety 

of applications. 

2.2 Applications of Support Vector Machines 

         Text categorization is used to classify documents into different predefined categories.  

Some examples of documents are news articles, websites, and newsgroup postings.  The feature 

vectors are composed of the word stems of frequently used words within the document.  Word 

stems refer to the core of the word which ignores word additions such as “ing”, “ed”, and plural 

endings.  Also, common grammar words like “the”, “and”, and “is” are not counted as feature 

vectors since they are not much use for distinguishing between document types.  Inverse 
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document frequency (IDF), which is calculated from the frequency that words occur across all 

documents in the training set, is used to scale the feature vectors for better performance.  Since 

feature spaces tend to be relatively large, information gain is often used to rank the feature 

vectors to find the ones with the highest mutual information.  SVMs have replaced methods such 

as Naïve Bayes Classifiers, the Rocchio Algorithm, k-Nearest Neighbors, and Decision Tree 

Classifiers for text categorization [11]. 

         Face recognition can be used to determine if a human face exists in an image.  This is 

useful for human-computer interfaces, surveillance systems, and other automated processes that 

require face detection.  SVMs are excellent for this use since they can find details such as facial 

expressions, mustaches, etc. even in varying light conditions.  Feature vectors are created from 

face/non-face pixels taken over several scales to perform the binary classification.  Preprocessing 

of the image is performed to get rid of data points that can later contribute to noise.  First, the 

image is scanned for pixels that are too close to call between face/non-face statuses.  Next, an 

illumination gradient correction is done to normalize the lighting thus accounting for bright 

lights, glare, and shadows.  Lastly, histogram equalization is done to distinguish between large 

contrasts of brightness.  Once the SVM is trained, it can be used against other images to classify 

the location of faces.  Some of the previous methods of face recognition were done using Neural 

Networks, labeled graphs, and clustering and distribution-based modeling [12]. 

         Handwritten digit recognition is another area of study that benefits from SVMs.  This can 

be used for a variety of applications.  Attributed from the study by LeCun et al. [13], this could 

be used to scan in address information for the U.S. Postal Service.  The training data is generated 

by taking each handwritten digit and putting it into a 20x20 pixel box.  Each pixel contributes to 

a weighted sum that is used to get the output units.  The pixels that are all or majority black are 
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considered part of the written number.  The majority white pixels are the unwritten region of the 

box.  The pixel data make up the polarized feature vectors which are using for training/testing.  

Many other methods have been used to classify this type of data including Neural Networks, 

Nearest Neighbor Classifiers, and variations of the LeNet Classifier [13].   

         SVMs are currently used to classify channel current data produced from nanopore 

detectors.  Strands of DNA hairpins are pulled into the channel via an applied potential.  The 

electrodes send pA electrical currents across the channel and the current fluctuations are 

collected by a live data stream into a computer.  This data is then sent through a Hidden Markov 

Model (HMM) process to remove noise.  The probabilities established by the HMM make up the 

150 component feature vectors.  The polarity comes from the two different molecules that are 

being classified such as 9GC and 9CG.  SVMs are useful for this area of study since the data is 

often difficult to separate by previous methods such as Neural Networks.  Several different 

kernel spaces must be used in training in order to find the best one for the given type of dataset. 

2.3 Derivation of Binary SVM [1] 

Feature vectors are denoted by xik, where index i labels the feature vectors  

(1 ≤ i ≤ M) and index k labels the N feature vector components (1 ≤ i ≤ N).  For the binary SVM, 

labeling of training data is done using label variable yi = ±1 (with sign according to whether the 

training instance was from the positive or negative class).  For hyperplane separability, elements 

of the training set must satisfy the following conditions: wβ xiβ - b ≥ +1 for i such that yi = +1, 

and wβ xiβ - b ≤ -1 for yi = -1, for some values of the coefficients w1,..., wN, and b (using the 

convention of implied sum on repeated Greek indices).  This can be written more concisely as: 

yi(wβ xiβ - b) - 1 ≥ 0.  Data points that satisfy the equality in the above are known as "support 

vectors" (or "active constraints"). 
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Once training is complete, discrimination is based solely on position relative to the 

discriminating hyperplane: wβ xiβ - b = 0.  The boundary hyperplanes on the two classes of data 

are separated by a distance 2/w, known as the "margin," where w2 = wβwβ.  By increasing the 

margin between the separated data as much as possible the optimal separating hyperplane is 

obtained.  In the usual SVM formulation, the goal to maximize w-1 is restated as the goal to 

minimize w2. The Lagrangian variational formulation then selects an optimum defined at a 

saddle point of  

0  b)  ww(
2
ww

 b;(w, ααα γββγγ
ββ −−− = ) yL   

where , ∑=
γ

γαα0 0≥γα   )1( M≤≤ γ  

The saddle point is obtained by minimizing with respect to {w1,...,wN,b} and maximizing with 

respect to {α1, ..., αM}.  If yi(wβ xiβ - b) - 1 ≥ 0, then maximization on αi is achieved for αi = 0. If 

yi(wβ xiβ - b) - 1 = 0, then there is no constraint on αi.  If yi(wβ xiβ - b) - 1 < 0, there is a constraint 

violation, and αi → ∞.  If absolute separability is possible, the last case will eventually be 

eliminated for all αi, otherwise it is natural to limit the size of αi by some constant upper bound, 

i.e., max(αi) = C, for all i.  This is equivalent to another set of inequality constraints with αi ≤ C. 

Introducing sets of Lagrange multipliers, ξγ and µγ(1 ≤ γ ≤ M), to achieve this, the Lagrangian 

becomes: 

γγγγββγγ
ββ ξµξαξαµξα −+++−− = ) CyL 00  ] b)  xw([

2
ww

,, b;(w,   

where ,  and ∑=
γ

γξξ0 ∑=
γ

γαα0 0≥γα  and 0≥ξξ   )1( M≤≤ γ  

At the variational minimum on the {w1,...,wN,b} variables, wβ = αγyγxγβ, and the Lagrangian 
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simplifies to: 

2
xyxy

( 0
γβγγδβδδ αα

αα − = )L   

with C≤≤ γα0  )1( M≤≤ γ and 0=γγα y , 

where only the variations that maximize in terms of the αγ remain (known as the Wolfe 

Transformation). In this form the computational task can be greatly simplified. 

By introducing an expression for the discriminating hyperplane, fi = wβ xiβ - b = αγyγxγβxiβ - b, the 

variational solution for L(α) reduces to the following set of relations (known as the Karush-

Kuhn-Tucker, or KKT, relations):  

     (i)  αi = 0 , yifi ≥ 1 

     (ii) 0 < αi < C , yifi = 1 

     (iii) αi = C , yifi ≤ 1 

When the KKT relations are satisfied for all of the αγ (with αγyγ = 0 maintained) the solution is 

achieved.  The constraint αγyγ = 0 is satisfied for the initial choice of multipliers by setting the α's 

associated with the positive training instances to 1/N(+) and the α's associated with the negatives 

to 1/N(-), where N(+) is the number of positives and N(-) is the number of negatives.  Once the 

Wolfe transformation is performed it is apparent that the training data (support vectors in 

particular, KKT class (ii) above) enter into the Lagrangian solely via the inner product xiβxjβ. 

Likewise, the discriminator fi, and KKT relations, are also dependent on the data solely via the 

xiβxjβ inner product.   

Generalization of the SVM formulation to data-dependent inner products other than xiβxjβ 

are possible and are usually formulated in terms of the family of symmetric positive definite 

functions (reproducing kernels) satisfying Mercer's conditions [10]. 
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The SVM discriminators are trained by solving their KKT relations using the SMO 

procedure of [8]. The method described here follows the description of [8] and begins by 

selecting a pair of Lagrange multipliers, {α1,α2}, where at least one of the multipliers has a 

violation of its associated KKT relations.  For simplicity it is assumed in what follows that the 

multipliers selected are those associated with the first and second feature vectors: {x1,x2}. The 

SMO procedure then "freezes" variations in all but the two selected Lagrange multipliers, 

permitting much of the computation to be circumvented by use of analytical reductions: 

2
  

2
)K2KK( ;,( '''''

''222111
12212122

2
211

2
1

213'21
yy Ky

UvyvyyyL βββ
βββ

αα
αααααααααααα −+−−

++
−+ = )≥

with β',γ' ≥ 3, and where Kij ≡ K(xi, xj), and vi ≡ αβ'yβ'Kiβ' with β' ≥ 3. Due to the constraint αβyβ = 

0, we have the relation: α1 + sα2 = -γ, where γ ≡ y1αβ'yβ' with β' ≥ 3 and s ≡ y1y2. Substituting the 

constraint to eliminate references to α1, and performing the variation on α2: ∂L (α2 ; αβ' ≥ 3)/∂α2 = 

(1 - s) + ηα2 + sγ(K11 - K22) + sy1v1 – y2v2, where η ≡ (2K12 - K11 - K22). Since vi can be rewritten 

as vi = wβxiβ - α1y1Ki1 - α2y2Ki2, the variational maximum ∂L (α2 ; αβ' ≥ 3)/∂α2 = 0 leads to the 

following update rule: 

η
αα ββββ ))yx()yx(( 22112

22

−−−
− =

wwyoldnew  

Once α2
new is obtained, the constraint α2

new ≤ C must be re-verified in conjunction with the αβyβ = 

0 constraint.  If the L (α2;αβ' ≥ 3) maximization leads to a α2 new that grows too large, the new α2 

must be "clipped" to the maximum value satisfying the constraints.  For example, if y1 ≠ y2, then 

increases in α2 are matched by increases in α1. So, depending on whether α2 or α1 is nearer its 

maximum of C, we have max (α2) = argmin{α2 + (C - α2) ; α2 + (C - α1)}.  Similar arguments 

provide the following boundary conditions: 

(i) if s = -1, max(α2) = argmin{α2 ; C + α2 - α1}, and min(α2) = argmax{0 ; α2 - α1}, and (ii) if s = 
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+1, max(α2) = argmin{C ; α2 + α1}, and min(α2) = argmax{0 ; α2 + α1 - C}.  

In terms of the new α2
new, clipped, clipped as indicated above if necessary, the new α1 becomes: 

)( ,
2211

clippednewoldoldnew s αααα + =  where s ≡ y1y2 as before.  After the new α1 and α2 values are 

obtained there still remains the task of obtaining the new b value.  If the new α1 is not "clipped" 

then the update must satisfy the non-boundary KKT relation: y1f(x1) = 1, i.e., fnew (x1) - y1 = 0.  

By relating fnew to fold the following update on b is obtained: 

122
,

2211111111 )()())(( KyKyyxfbb oldclippednewoldnewnewnew αααα  −− −−−− =  

If α1 is clipped but α2 is not, the above argument holds for the α2 multiplier and the new b is: 

121
,

1122222222 )()())(( KyKyyxfbb oldclippednewoldnewnewnew αααα  −− −−−− =  

If both α1 and α2 values are clipped then any of the b values between b1
new and b2

new is 

acceptable, and following the SMO convention, the new b is chosen to be: 

2
21
newnew

new bbb +
 =  

         Now that there is a more detailed understanding of the inner workings of the SVM, the 

tuning parameters are discussed in the following section. 

2.4 SMO Parameters 

 The SVM takes a set of parameters that are used to finely tune the classifier for different 

types of datasets and for better performance.  The C parameter is a constant value that serves as 

the upper boundary on the Lagrange multipliers (alphas).  The C value constrains the alpha from 

potentially going to an infinite value.  It trades off a wide margin with a few possible margin 

failures [2]. 

 The tolerance parameter is a margin of error put on the one (right hand side) when 

checking the KKT relations.  For instance, instead of checking only against one, we are checking 
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the range .999 – 1.001 (for tolerance .001).  The choice of tolerance influences the SVM 

convergence. 

 The epsilon parameter is another margin of error used when checking the H and L 

objective functions [2].  These functions are used on the alphas when η is negative which is 

uncommon.  The H and L functions [2] clip the new alpha to keep it within the bounds of 0 and 

C.  The value of η comes from a simple calculation using the values from the kernel matrix: η = 

2K(x1,x2) - K(x2,x2) - K(x1,x1) [1]. 

 The kernel matrix is produced from the specified kernel and the sigma constant 

parameter.  The matrix values are multiplied with the alphas in order to change the mapping of 

the data points for easier classification.  The choice of kernel determines the spatial mapping of 

the data.  Further details on a set of novel kernels are given in the next section. 

2.5 ‘Stabilization’ Kernels 

         The kernel is probably the most important parameter to focus on when tuning the SVM.  

There are a wide variety of kernels to choose from so one must find the best kernel that works 

for the given type of dataset.  The kernel is used to map the feature vectors into a multi-

dimensional space.  The idea is to find the kernel that best maps the feature vectors in a way that 

allows the hyperplane to find the optimal separation, thus the best decision. 

         For DNA hairpin feature vector datasets, our observations have shown the best kernels to 

be the Gaussian, Absdiff, and Sentropic kernels.  The Gaussian and Absdiff kernels are 

regularized distances in the form of an exponential distance measure (d2(x,y)).  The Gaussian 

kernel (d2(x,y) = Σk(xk - yk) 
2) is common since it tends to produce good results when used with a 

wide variety of datasets.  The Absdiff (d2(x,y) = Σk(|xk - yk|)1/2) and Sentropic (D(x,y) = D(x||y) + 

D(y||x)) Kernels [1] tend to work better with more cohesive datasets since they seem to provide a 
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larger kernel space.  The Sentropic kernel is based on a regularized information divergence 

(D(x,y)) instead of a geometric distance.  This can help produce to a more precise hyperplane.  

Out of the three kernels mentioned above, Absdiff and Sentropic produce similar results when 

considering the mean of the Sensitivity (SN) and Specificity (SP), which is used to measure 

accuracy, and the size of the final chunk for the chunking methods.  The choice of kernel makes 

a difference in the size of the chunks, mainly the number of support vectors, which impacts the 

run time of the algorithm.  The accuracy of Absdiff (0.854) and Sentropic (0.855) are nearly 

identical when using multi-threaded chunking (Tables 2.1 and 2.2).  Gaussian is close behind 

with accuracy 0.833 (Table 2.3).  For the sequential chunking method, the same case with 

accuracy applies since Absdiff (0.898) and Sentropic (0.891) produce similar results (Tables 2.4 

and 2.5).  Once again, Gaussian is close behind with accuracy 0.864 (Table 2.6).  In these data 

runs, 30% of the support vector set was passed to the next set of chunks for the multi-threaded 

chunking method and 100% of the support vector set was passed for the sequential chunking 

method.  These chunking parameters were chosen since they produced the best accuracy for the 

given chunking method.  This is analyzed in more depth later in section 4. 

          When focusing on the size of the final chunk, Absdiff (1472) and Sentropic (1481) are 

once again similar for sequential chunking (Tables 2.7 and 2.8).  Gaussian takes the lead with a 

final chunk size of 1264 (Table 2.9).  For the multi-threaded chunking method, Absdiff (791) and 

Sentropic (787) once again fall behind Gaussian (690) for the final chunk size comparisons 

(Tables 2.10, 2.11, and 2.12).  For these data runs, 80% of the support vector set and 60% of the 

polarization set were passed to the next set of chunks for the multi-threaded chunking method 

and 100% of the support vector set and 50% of the polarization set were passed for the sequential 

chunking method.  These chunking parameters were chosen since they produce a similar 
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accuracy when compared to the parameters discussed above (30% for multi-threaded and 100% 

for sequential) while passing a larger amount of feature vectors in order to properly test the 

chunk size performance of each kernel. 

          After testing the three kernels, Absdiff was chosen as the best kernel for the DNA hairpin 

datasets used here since it has high accuracy and also takes the least amount of iterations to 

converge which contributes to it being the fastest for training these datasets.  For multi-threaded 

chunking, the mean of iterations is 16.7 and the elapsed time is 1393.5 milliseconds (Table 2.1).  

For sequential chunking, the mean of iterations is 51.6 and the elapsed time is 10586.1 

milliseconds (Table 2.4).  After considering all of the above results, Absdiff was the chosen 

kernel in all following data runs in sections 3 and 4. 

Table 2.1 
Multi-threaded chunking using different DNA hairpin datasets 
SVM Parameters: Absdiff kernel with sigma=.5, C = 10,  
Epsilon = .001, Tolerance = .001 
Pass 30% of support vectors 
This table shows the different multi-threaded chunking data runs performed on 
assortments of DNA hairpin pairs.  The last line of the table presents the mean of the 
data runs to gauge the accuracy when using the Absdiff kernel. 

 
Distributed Chunked SMO Chunk Size 200 of 800 total feature vectors 

Data Iterations # of SVs SN SP (SN+SP)/2 Elapsed Time (ms)
8GC9AT 8 222 0.97 0.83 0.9 1947 
8GC9CG 8 226 0.91 0.89 0.9 1471 
8GC9GC 65 205 0.93 0.96 0.945 1412 
8GC9TA 28 209 0.84 0.93 0.885 1489 
9AT9CG 8 238 0.77 0.65 0.71 1308 
9AT9GC 10 228 0.74 0.71 0.725 1342 
9AT9TA 10 232 0.9 0.91 0.905 1265 
9CG9GC 8 238 0.66 0.85 0.755 1236 
9CG9TA 10 222 0.92 0.91 0.915 1232 
9GC9TA 12 224 0.92 0.88 0.9 1233 
Mean 16.7 224.4 0.856 0.852 0.854 1393.5
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Table 2.2 
Multi-threaded chunking using different DNA hairpin datasets 
SVM Parameters: Sentropic kernel with sigma=.5, C = 10,  
Epsilon = .001, Tolerance = .001 
Pass 30% of support vectors 
This table shows the different multi-threaded chunking data runs performed on 
assortments of DNA hairpin pairs.  The last line of the table presents the mean of the 
data runs to gauge the accuracy when using the Sentropic kernel. 

 
Distributed Chunked SMO Chunk Size 200 of 800 total feature vectors 

Data Iterations # of SVs SN SP (SN+SP)/2 Elapsed Time (ms)
8GC9AT 14 221 0.97 0.89 0.93 2667 
8GC9CG 30 202 0.91 0.9 0.905 1993 
8GC9GC 27 208 0.91 0.93 0.92 2003 
8GC9TA 38 208 0.95 0.88 0.915 2017 
9AT9CG 8 232 0.79 0.72 0.755 2531 
9AT9GC 21 237 0.71 0.8 0.755 2121 
9AT9TA 8 234 0.85 0.87 0.86 2318 
9CG9GC 9 237 0.74 0.69 0.715 2132 
9CG9TA 8 230 0.84 0.94 0.89 2003 
9GC9TA 10 224 0.94 0.87 0.905 1945 
Mean 17.3 223.3 0.86 0.849 0.855 2173

 
Table 2.3 
Multi-threaded chunking using different DNA hairpin datasets 
SVM Parameters: Gaussian kernel with sigma=.05, C = 10,  
Epsilon = .001, Tolerance = .001 
Pass 30% of support vectors 
This table shows the different multi-threaded chunking data runs performed on 
assortments of DNA hairpin pairs.  The last line of the table presents the mean of the 
data runs to gauge the accuracy when using the Gaussian kernel. 

 
Distributed Chunked SMO Chunk Size 200 of 800 total feature vectors 

Data Iterations # of SVs SN SP (SN+SP)/2 Elapsed Time (ms)
8GC9AT 24 174 0.93 0.83 0.88 2629 
8GC9CG 13 170 0.87 0.85 0.86 1732 
8GC9GC 59 167 0.95 0.76 0.855 1970 
8GC9TA 66 158 0.96 0.8 0.88 1713 
9AT9CG 35 192 0.88 0.72 0.8 1490 
9AT9GC 34 191 0.79 0.81 0.8 1750 
9AT9TA 36 181 0.79 0.87 0.83 1456 
9CG9GC 75 192 0.78 0.63 0.705 1912 
9CG9TA 38 178 0.82 0.89 0.855 1533 
9GC9TA 37 166 0.84 0.89 0.865 1922 
Mean 41.7 176.9 0.861 0.81 0.833 1810.7
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Table 2.4 
Sequential chunking using different DNA hairpin datasets 
SVM Parameters: Absdiff kernel with sigma=.5, C = 10,  
Epsilon = .001, Tolerance = .001 
Pass 100% of support vectors 
This table shows the different sequential chunking data runs performed on assortments of 
DNA hairpin pairs.  The last line of the table presents the mean of the data runs to gauge 
the accuracy when using the Absdiff kernel. 

 
Sequential Chunked SMO Chunk Size 200 of 800 total feature vectors 

Data Iterations # of SVs SN SP (SN+SP)/2 Elapsed Time (ms)
8GC9AT 100 554 0.96 0.95 0.955 12610 
8GC9CG 114 557 0.92 0.92 0.92 16901 
8GC9GC 58 524 0.94 0.97 0.955 8914 
8GC9TA 68 542 0.97 0.95 0.96 10000 
9AT9CG 37 727 0.83 0.8 0.815 10936 
9AT9GC 23 727 0.83 0.83 0.83 9757 
9AT9TA 9 661 0.93 0.93 0.93 7563 
9CG9GC 15 751 0.78 0.77 0.775 9218 
9CG9TA 41 597 0.92 0.89 0.905 10267 
9GC9TA 51 567 0.95 0.92 0.935 9695 
Mean 51.6 620.7 0.903 0.893 0.898 10586.1

 
Table 2.5 
Sequential chunking using different DNA hairpin datasets 
SVM Parameters: Sentropic kernel with sigma=.5, C = 10,  
Epsilon = .001, Tolerance = .001 
Pass 100% of support vectors 
This table shows the different sequential chunking data runs performed on assortments 
of DNA hairpin pairs.  The last line of the table presents the mean of the data runs to 
gauge the accuracy when using the Sentropic kernel. 

 
Sequential Chunked SMO Chunk Size 200 of 800 total feature vectors 

Data Iterations # of SVs SN SP (SN+SP)/2 Elapsed Time (ms)
8GC9AT 52 570 0.96 0.95 0.955 14479 
8GC9CG 78 545 0.93 0.93 0.93 16844 
8GC9GC 22 525 0.92 0.95 0.935 10065 
8GC9TA 130 550 0.97 0.95 0.96 18304 
9AT9CG 32 722 0.83 0.82 0.825 15273 
9AT9GC 44 734 0.81 0.82 0.815 15452 
9AT9TA 39 693 0.9 0.9 0.9 14419 
9CG9GC 33 747 0.75 0.79 0.77 14855 
9CG9TA 73 616 0.89 0.91 0.9 16978 
9GC9TA 54 597 0.91 0.93 0.92 14159 
Mean 55.7 629.9 0.89 0.895 0.891 15082.8
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Table 2.6 
Sequential chunking using different DNA hairpin datasets 
SVM Parameters: Gaussian kernel with sigma=.05, C = 10,  
Epsilon = .001, Tolerance = .001 
Pass 100% of support vectors 
This table shows the different sequential chunking data runs performed on assortments 
of DNA hairpin pairs.  The last line of the table presents the mean of the data runs to 
gauge the accuracy when using the Gaussian kernel. 

 
Sequential Chunked SMO Chunk Size 200 of 800 total feature vectors 

Data Iterations # of SVs SN SP (SN+SP)/2 Elapsed Time (ms)
8GC9AT 97 434 0.93 0.88 0.905 14978 
8GC9CG 83 395 0.88 0.85 0.865 15653 
8GC9GC 134 396 0.94 0.88 0.91 17783 
8GC9TA 114 396 0.96 0.82 0.89 15988 
9AT9CG 62 503 0.79 0.82 0.805 20789 
9AT9GC 89 488 0.81 0.85 0.83 20833 
9AT9TA 111 477 0.91 0.89 0.9 18057 
9CG9GC 60 523 0.91 0.54 0.725 20233 
9CG9TA 78 436 0.88 0.9 0.89 17910 
9GC9TA 89 409 0.9 0.94 0.92 12422 
Mean 91.7 445.7 0.891 0.84 0.864 17464.6

 
Table 2.7 
Dataset = 9GC9CG_9AT9TA (1600 feature vectors) 
SVM Parameters: Absdiff kernel with sigma=.5, C = 10,  
Epsilon = .001, Tolerance = .001 
Pass 100% of support vectors and 50% of polarization set 
Final Chunk Performance: {SN, SP} = {.87, .84} 
This table shows the sequential chunking method focusing on the chunk sizes during the 
data run.  The Absdiff kernel chunk performance is represented here.  The breakdown of 
each feature vector set is displayed to show how the percentage parameters are used to 
pass portions of each set to the next chunk. 

 
 Chunk 1 Chunk 2 Chunk 3 Chunk 4

Total Chunk Size 400 787 1143 1472 
Support Vectors 373 700 1002 1320 
Polarization Set 27 86 140 152 
Penalty Set 0 0 0 0 
Violator Set 0 1 1 0 
          
Support Vectors Passed 373 700 1002   
Polarization Set Passed 14 43 70   
Total Passed Set 387 743 1072   
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Table 2.8 
Dataset = 9GC9CG_9AT9TA (1600 feature vectors) 
SVM Parameters: Sentropic kernel with sigma=.5, C = 10,  
Epsilon = .001, Tolerance = .001 
Pass 100% of support vectors and 50% of polarization set 
Final Chunk Performance: {SN, SP} = {.875, .82} 
This table shows the sequential chunking method focusing on the chunk sizes during the 
data run.  The Sentropic kernel chunk performance is represented here.  The breakdown 
of each feature vector set is displayed to show how the percentage parameters are used 
to pass portions of each set to the next chunk. 

 
 Chunk 1 Chunk 2 Chunk 3 Chunk 4

Total Chunk Size 400 792 1150 1481 
Support Vectors 383 707 1011 1320 
Polarization Set 17 85 139 160 
Penalty Set 0 0 0 0 
Violator Set 0 0 0 1 
          
Support Vectors Passed 383 707 1011   
Polarization Set Passed 9 43 70   
Total Passed Set 392 750 1081   

 
Table 2.9 
Dataset = 9GC9CG_9AT9TA (1600 feature vectors) 
SVM Parameters: Gaussian kernel with sigma=.05, C = 10,  
Epsilon = .001, Tolerance = .001 
Pass 100% of support vectors and 50% of polarization set 
Final Chunk Performance: {SN, SP} = {.715, .85} 
This table shows the sequential chunking method focusing on the chunk sizes during the 
data run.  The Gaussian kernel chunk performance is represented here.  The breakdown 
of each feature vector set is displayed to show how the percentage parameters are used 
to pass portions of each set to the next chunk. 

 
 Chunk 1 Chunk 2 Chunk 3 Chunk 4

Total Chunk Size 400 754 1036 1264 
Support Vectors 309 521 697 881 
Polarization Set 90 229 334 372 
Penalty Set 1 4 4 11 
Violator Set 0 0 1 0 
          
Support Vectors Passed 309 521 697   
Polarization Set Passed 45 115 167   
Total Passed Set 354 636 864   
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Table 2.10 
Dataset = 9GC9CG_9AT9TA (1600 feature vectors) 
SVM Parameters: Absdiff kernel with sigma=.5, C = 10,  
Epsilon = .001, Tolerance = .001 
Pass 80% of support vectors and 60% of polarization set 
Final Chunk Performance: {SN, SP} = {.855, .795} 
This table shows the multi-threaded chunking method focusing on the chunk sizes during 
the data run.  The Absdiff kernel chunk performance is represented here.  The breakdown 
of each feature vector set is displayed to show how the percentage parameters are used to 
pass portions of each set to the next set of chunks. 

 
 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Total Chunk Size 400 400 400 400 423 423 425 504 504 791 
Support Vectors 373 377 378 388 402 402 403 466 460 699 
Polarization Set 27 23 22 12 21 21 22 38 43 92 
Penalty Set 0 0 0 0 0 0 0 0 0 0 
Violator Set 0 0 0 0 0 0 0 0 1 0 
                      
Support Vectors Passed 1218 - - - 968 - - 742 - - 
Polarization Set Passed 53 - - - 40 - - 49 - - 
Total Passed Set 1271 - - - 1008 - - 791 - - 

 
Table 2.11 
Dataset = 9GC9CG_9AT9TA (1600 feature vectors) 
SVM Parameters: Sentropic kernel with sigma=.5, C = 10,  
Epsilon = .001, Tolerance = .001 
Pass 80% of support vectors and 60% of polarization set 
Final Chunk Performance: {SN, SP} = {.845, .755} 
This table shows the multi-threaded chunking method focusing on the chunk sizes during 
the data run.  The Sentropic kernel chunk performance is represented here.  The 
breakdown of each feature vector set is displayed to show how the percentage parameters 
are used to pass portions of each set to the next set of chunks. 

 
 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Total Chunk Size 400 400 400 400 423 423 425 503 504 787 
Support Vectors 383 380 383 379 409 396 442 465 446 666 
Polarization Set 17 17 17 21 21 14 27 38 56 121 
Penalty Set 0 0 0 0 0 0 0 0 0 0 
Violator Set 0 1 0 0 0 0 1 0 2 0 
                      
Support Vectors Passed 1224 - - - 966 - - 730 - - 
Polarization Set Passed 47 - - - 41 - - 57 - - 
Total Passed Set 1271 - - - 1007 - - 787 - - 
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Table 2.12 
Dataset = 9GC9CG_9AT9TA (1600 feature vectors) 
SVM Parameters: Gaussian kernel with sigma=.05, C = 10,  
Epsilon = .001, Tolerance = .001 
Pass 80% of support vectors and 60% of polarization set 
Final Chunk Performance: {SN, SP} = {.85, .83} 
This table shows the multi-threaded chunking method focusing on the chunk sizes 
during the data run.  The Gaussian kernel chunk performance is represented here.  The 
breakdown of each feature vector set is displayed to show how the percentage 
parameters are used to pass portions of each set to the next set of chunks. 

 
 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Total Chunk Size 400 400 400 400 401 401 403 458 458 690 
Support Vectors 291 309 316 305 318 320 313 341 354 495 
Polarization Set 108 90 83 93 83 81 88 116 103 194 
Penalty Set 1 1 1 0 0 0 2 1 0 1 
Violator Set 0 0 0 2 0 0 0 0 1 0 
                      
Support Vectors Passed 980 - - - 764 - - 558 - - 
Polarization Set Passed 225 - - - 152 - - 132 - - 
Total Passed Set 1205 - - - 913 - - 690 - - 
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Chapter 3. Support Vector Reduction 

3.1 Methods 

Support Vector Reduction (SVR) is a process that is run right after the SVM learning step 

is complete.  Instead of going on to testing data against the training results to get accuracy, we 

further reduce the support vector set.  One way to do this is to coerce some alphas to zero which 

means they would now fall into the polarization set and further away from the hyperplane.  

Converting the smaller alphas to zeros makes the most sense since a larger alpha indicates that 

the data point is stronger towards its grouping (polarized sign).  This is done using a user-defined 

alpha cut off value.  All alpha values that are under the cut off are pushed to zero.  It is not 

entirely trivial since certain mathematical constraints must be met.  The constraint that must be 

met for this method is the linear equality constraint [2]: 

0
1

=∑
=

N

i
iiy α  

Therefore, the alpha values not meeting the cutoff cannot just be forced to zero unless the 

value is retained somewhere else in the set.  This is done by first sorting the alpha values of the 

support vectors.  Then for each alpha that does not meet the cut off value, the small left over 

value is added to the largest alpha of the same polarity.  Since the list is sorted it can loop 

through and evenly distribute the left over values through the larger alphas starting with the 

largest.  The reduction process can cut the support vector count down without significantly 

affecting the accuracy.  Other observations have shown that the easier the dataset to classify, the 

larger the reduction. 
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3.2 SVR Results 

Figure 3.1 shows the results of the SVR method on the non-chunking SMO SVM.  For 

this dataset, 0.19 seems like the best cut off value to use for future data runs since it retains the 

accuracy while reducing the support vectors.  As shown in Figure 3.1, the total run time 

decreases as support vectors are reduced.  This is due to a decrease in testing time since there are 

not as many support vectors to test against.  For the 9GC9CG_9AT9TA dataset, 140 support 

vectors (10.5% of total) were dropped without affecting the accuracy. 

Data runs using sequential (Figure 3.3) and multi-threaded (Figure 3.2) chunking 

methods with SVR show similar results.  The chunking results tend to be a bit choppier since the 

SVM algorithm makes some approximations thus the hyperplane will not be exactly the same for 

every data run and this behavior is amplified in the chunking methods.  Nonetheless, the trend 

lines show that using the SVR method definitely cuts down on support vectors and decreases 

testing time.  For sequential chunking (Figure 3.3), an alpha cut-off value of 0.25 caused 87 

support vectors (7.2%) to be dropped without affecting accuracy.  For multi-threaded chunking 

(Figure 3.2), an alpha cut-off value of 0.22 dropped 26 support vectors (6.2%) while retaining 

accuracy. 
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Figure 3.1 
SMO (non-chunking) Support Vector Reduction 
Dataset: 9GC9CG_9AT9TA (1600 feature vectors) 
SVM Parameters: Absdiff kernel with sigma=.5, C = 10,  
Epsilon = .001, Tolerance = .001 
This graph shows the rate of support vectors reduced as the alpha cutoff value is 
increased.  The alpha cutoff value 0.19 is chosen as the best since it is the last value 
before accuracy begins to degrade.  This chosen value reduces 140 support vectors. 
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Figure 3.2  
Multi-threaded Chunking Support Vector Reduction 
Dataset: 9GC9CG_9AT9TA (1600 feature vectors), Starting chunk size=400  
SVM Parameters: Absdiff kernel with sigma=.5, C = 10,  
Epsilon = .001, Tolerance = .001 
Passing 30% of Support Vectors 
This graph shows the rate of support vectors reduced as the alpha cutoff value is 
increased.  The alpha cutoff value 0.22 is chosen as the best since it is the last value 
before accuracy begins to degrade.  This chosen value reduces 26 support vectors. 
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Figure 3.3  
Sequential Chunking Support Vector Reduction 
Dataset: 9GC9CG_9AT9TA (1600 feature vectors), Starting chunk size=400  
SVM Parameters: Absdiff kernel with sigma=.5, C = 10,  
Epsilon = .001, Tolerance = .001 
Passing 100% of Support Vectors 
This graph shows the rate of support vectors reduced as the alpha cutoff value is 
increased.  The alpha cutoff value 0.25 is chosen as the best since it is the last value 
before accuracy begins to degrade.  This chosen value reduces 87 support vectors. 

 

Sequential Chunking Support Vector Reduction

0

20

40

60

80

100

120

140

160

180

0

0.
04

0.
08

0.
12

0.
16 0.
2

0.
24

0.
28

0.
32

0.
36 0.
4

0.
44

0.
48

Alpha Cutoff Value

Su
pp

or
t V

ec
to

rs
 R

ed
uc

ed

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SVs Reduced
(SN + SP) / 2

 
 
 

 23



Chapter 4. SVM Chunking  

SVM chunking provides an alternative method to running a typical SVM (SMO) on a 

dataset by instead breaking up the training data and running the SVM on smaller chunks of data.  

In the chunking process, feature vectors associated with strong data points are retained from 

chunk to chunk, while weak data points are discarded.  Chunking becomes a necessity when 

classifying large datasets.  In this context, a large dataset refers to one that has over 5,000 

features vectors where each vector has 150 components.  Since the order of computations 

increases by the square of the size of the training set, most PCs would not have enough memory 

to support a kernel matrix of 10,000 or more training instances. 

         Initially, the training data is shuffled then broken into chunks.  The number and size of the 

chunks depends on the size of the dataset to be trained.  In the Java implementation of this 

algorithm, the user specifies the size of each chunk and the chunks are broken up accordingly.  If 

the chunks don't divide evenly, which is the case most of the time, the few remaining feature 

vectors are added to the last chunk.   When training on the chunk is complete, the resulting 

trained feature vectors each fit into a separate set.  If the SVM classifies well, the largest set 

consists of the support feature vectors.  The KKT violators make up another set.  KKT violators 

refer to feature vectors that violate one of the KKT relations.  The violator set is usually zero at 

the end of the training process, unless some minimal number of violators is allowed upon 

learning completion.  The polarization set consists of the feature vectors that have been classified 

as a positive or negative one.  These are feature vectors that pass the KKT relations and have an 

alpha coefficient equal to zero.  The penalty set consists of the feature vectors which pass the 

KKT relations and have alpha coefficients equal to C (the max value).  These sets give the user a 

choice of which kind of feature vectors they want to pass to the next chunk(s).  To keep the SVM 
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converging to a better solution, on the next chunk run, several support feature vectors and 

sometimes some of the polarization set are passed to the next chunk(s).  The percentages of each 

feature vector set depend on which kernel is used and the dataset. 

         There are different methods of extracting the feature vectors from the different sets.  The 

specified percentages of feature vectors are pseudo-randomly chosen from each of the sets 

except for one.  The support feature vectors extraction method differs since it extracts the feature 

vectors that have the best scores.  Each score represents the distance of the feature vector from 

the hyperplane.  It makes sense to choose feature vectors whose scores are closer to the 

hyperplane in order to pass a tighter hyperplane on to the next chunk(s).  Passing a more precise 

hyperplane should speed up the next SVM run. 

4.1 Previous SVM chunking methods 

         Zanghirati and Zanni [6] developed the variable projection method (VPM) for training 

SVMs in parallel.  This method is based off of Joachim's SVM light decomposition techniques 

[7] which delve further into the inner workings of the SMO algorithm [2].  First, the feature 

vector indices are divided into two categories, the free and fixed sets based upon their alphas 

(Langrange Multipliers).  The free set represents the KKT violators which need to be further 

optimized while the fixed set is the alphas that already fulfill the KKT equations.  An alpha 

variable from each set is used to solve each quadratic sub problem in order to optimize the free 

set alphas until convergence.  Though this sounds similar to Platt's SMO [2], Joachim performs 

some additional tricks to cut down on the number of iterations needed to converge [7].  VPM 

provides a parallel solution to computing the kernel matrix which is the most memory intensive 

part of the SVM.  The kernel calculations are spread among several processing elements and the 

rows of the matrix are spread and usually duplicated across the memory of those processing 
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elements.  Since the rows are duplicated, they must be synchronized after each local 

computation.  VPM is implemented using standard C and MPI communication routines.  

         Hans Peter Graf et al. [9] developed the Cascade SVM to parallelize SVMs.  This method 

begins by breaking the large dataset into chunks.  The SVM is run on each separate chunk in the 

first layer.  When the SVMs have all converged, new chunks are created from the resulting 

support vectors from the pairs of first layer chunks which make up the second layer of chunks.  

This occurs until a final chunk is reached.  The final set of support vectors is then fed back into 

each first layer chunk.  If further optimization is possible and needed, the entire process is rerun 

until the global optimum is met.  If the global optimum is not needed due to decent initial 

training results, the process can be halted after one run of the network of chunks.  Allowing the 

Cascading SVM to continue running will eventually produce the global optimum.  This method 

seems intuitive but after testing, we have found that passing 100% of support vectors down to the 

next set of chunks without also passing some non support vectors or using the SVR method does 

not work properly with the DNA hairpin data used here.  The data run never finishes, in fact, 

since it cannot further reduce the support vectors to converge to the final chunk.  This weakness 

of the method, not apparent at first sight or mentioned in [9], may be understood if the SVs from 

different chunks are sufficiently different and training on SVs from individual chunks are 

themselves separated at the chunk groups (Illustration 4.1).   
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         As shown in the illustration, the actual margins for each chunk (between the two green 

lines) are not recognized since another significant margin exists.  The SVM continually works on 

trying to fit the hyperplane between the intercalating chunk margin (between the red dashed 

lines) and never finishes running. 

Illustration 4.1 
100% SV Passing for multi-threaded chunking without SVR 

 

+ + + + + + + 

- - - - - - 

+ 

- - 

 
         The chunking methods presented here have some similarities to the Cascade SVM.  As 

discussed above, the large dataset is broken into smaller chunks and the SVM is run on each 

separate chunk.  Instead of bringing the results of paired chunks together, all chunk results are 

brought together and re-chunked as occurred in the first layer.  This process occurs until the final 
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chunk is calculated which gives the trained result.  Since SVM parameters vary for different 

datasets, the user has the option to tune the percentage of support vectors and non support 

vectors to pass to the next set of chunks.  Additionally, passed support vectors are chosen wisely 

to produce a tighter hyperplane to better distinguish the polarization sets.  Another aspect not 

covered in the Cascade method is the SVR method.  This method runs as part of the core SVM 

learning task on each chunk.  It uses a user-defined alpha cutoff value for further tuning and can 

significantly reduce the number of support vectors passed to the next set of chunks.  These 

additional steps reduce the size of the chunks thus making the algorithm run faster without loss 

of accuracy.  Details of these steps are discussed in more depth in chapter 3.  

4.2 Sequential Chunking (Linear Topology) 

         Sequential chunking is one form of chunking which is not multi-threaded.  This method 

runs the SVM on the first chunk, and then sends the support feature vectors (SVs) and sometimes 

non-SVs to be added onto the training data for the next chunk.  This continues until the final 

chunk has been run.  When using sequential chunking, feature vector passing can be difficult 

since passing too many features on to the next chunk can result in large datasets in the later 

chunks in the process.  Support feature vectors are the most valuable to pass to the next chunk 

since they define the hyperplane. 

4.3 Sequential Chunking Results 

For the DNA hairpin datasets used here, results have shown that the ideal chunking 

parameter for sequential chunking is 100% of the support vector set.  This produced the best 

accuracy (0.855) within stable conditions (Figure 4.1).  Illustration 4.2 displays a sample run and 

the size of each chunk as the algorithm progresses through the chunks.  Table 2.7 shows the 

feature vector set composition of each chunk corresponding to the data run for Illustration 4.2. 
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Illustration 4.2 Linear Topology Chunk Progression 
 

 

 
 

Training Training Training Final 
 Chunk 1  Chunk 2  Chunk 3  Chunk 

    
400 features 787 features 1472 features 1143 features 

 
Figure 4.1 
Dataset = 9GC9CG_9AT9TA (1600 feature vectors) 
SVM Parameters: Absdiff kernel with sigma=.5, C = 10, Epsilon = .001, Tolerance = .001 
This shows the trend for sequential chunking when using different support vector and 
polarization set percentage parameters.  Every variation of multiples of ten up to 100 was used 
for each of the two sets.  For example, when the SV % parameter was 10, the polarization set % 
parameter would vary from 0 to 100 in multiples of ten.  For most of the data run, especially the 
more stable part at 100 % SVs, the variation of the polarization set did not seem to have much 
effect on the outcome.   
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4.4 Multi-threaded Chunking (Binary Tree Topology) 

        The multi-threaded chunking method simultaneously runs the chunks using multiple 

threads.  Once all of the threaded chunks are finished training, the chunk results are collected 

into an array.  The same user defined percentages of feature vector sets are used here except this 

time those percentages of feature vectors are extracted from each chunk.  All of the chosen 

feature vectors to be passed are stored together then re-chunked if the current data set is large 

enough to be chunked again.  Re-chunking occurs when the data set is greater than or equal to 

twice the specified chunk size.  If this is not the case, the final chunk is run alone to get the final 

result.  The main use of the multi-threaded chunking method is with a single computer with 

multiple processors/cores. 

         Observations have shown that sending 100% of the support vectors to the next chunk 

generally causes the chunking to run continuously without ever ending with a result.  At least, on 

these challenging datasets, this is an expected behavior since passing all support vector data to 

the next chunk level would just be re-chunking the same support vectors that were already done 

the first time.  Some data must be dropped to converge to the final chunk whether it is through 

the chunking parameters or the SVR method.  Dropping too much data can affect the final 

accuracy while retaining too much data increases training time.  Therefore the chunking 

percentage parameters must be properly tuned in order to get the best results for each dataset. 
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4.5 Multi-threaded Chunking Results 

          The best accuracy result (0.83) within stable conditions for multi-threaded chunking were 

obtained using 30% of the support vectors set as shown in Figure 4.3.  Illustration 4.3 displays a 

sample multi-threaded chunking run and the size of each chunk as the algorithm progresses 

through the sets of chunks. 

Illustration 4.3 Binary Tree Topology Chunk Progression 
The numbers in each chunk represent the number of feature vectors (fv). 
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Figure 4.2 
Dataset = 9GC9CG_9AT9TA (1600 feature vectors) 
SVM Parameters: Absdiff kernel with sigma=.5, C = 10, Epsilon = .001, Tolerance = .001 
This shows the trend for multi-threaded chunking when using different support vector and 
polarization set percentage parameters.  Every variation of multiples of ten up to 100 was used 
for each of the two sets.  For example, when the SV % parameter was 10, the polarization set % 
parameter would vary from 0 to 100 in multiples of ten.  For most of the data run, especially the 
more stable part at 30 % SVs, the variation of the polarization set did not have much effect on 
the outcome.   
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4.6 Multi-threaded Distributed Chunking 

         Multi-threaded distributed chunking is a multi-server/multi-CPU (core) approach to the 

previous multi-threaded chunking method.  Java RMI is used to handle the remote calls between 

the client and servers.  The client program runs multi-threaded remote calls to a user specified set 

of servers (round robin).  Each server and the client machine have an SVM Server listening. 
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When the client program runs, a chunk is passed to each available processor/core in the network 

until all or as many as possible are training simultaneously.  As the chunks finish, the results are 

passed back to the client.  Each “chunk level” may take multiple batches depending on the chunk 

size and amount of processors/cores available.  The final chunk is largest so the client program 

should be processed on the machine with the most computing power.  This not only speeds up 

the final chunk but allowing larger chunks should produce better final results.  The main benefit 

of this method is a significant decrease in run time for large datasets.  As shown below in Table 

4.1, multi-threaded distributed chunking performs well when it comes to run time.  Network 

overhead causes it to be slightly slower than the non-remote multi-threaded chunking method.  

With extremely large datasets (i.e. 60,000 feature vectors), the Remote method would be faster. 

Table 4.1 
Dataset = 9GC9CG_9AT9TA (1600 feature vectors) 
SVM Parameters: Absdiff kernel with sigma=.5, C = 10, Epsilon = .001, Tolerance = .001 
For chunking methods: Pass 90% of support vectors,  
Starting chunk size = 400, maxChunks = 2 
For SV Reduction methods: Alpha cut off value = .15 
This table shows the overall performance of the different SVM methods.  The distributed 
chunking had three identical networked machines (see Appendix for details). 
 

SVM Method Sensitivity Specificity (SN + SP) / 2
Total 
Time 
(ms)

SMO (non-chunked) 0.87 0.84 0.86 47708
Sequential Chunking 0.84 0.86 0.85 27515
Multi-threaded Chunking 0.88 0.78 0.83 7855
SMO (non-chunked) with SV 
Reduction 0.91 0.81 0.86 43662
Sequential Chunking with SV 
Reduction 0.90 0.82 0.86 18479
Multi-threaded Chunking with SV 
Reduction 0.85 0.83 0.84 5232
Multi-threaded Distributed Chunking 
with SV Reduction 0.85 0.83 0.84 5973
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Chapter 5. Conclusion 

Support Vector Machines are extremely useful for classifying data and therefore 

dominating over other methods in a variety of fields and applications.  Since the main weakness 

of SVMs is the long training time when running large datasets, it is only natural that one would 

develop multi-threaded distributed methods especially since many typical computers today have 

multiple cores/processors, each with a continuously growing capacity for RAM. 

An overall comparison of the SVM methods explained here can be found in Table 4.1 

(above).  Sequential chunking has the benefit of holding onto accuracy when compared to 

running the straight SVM (SMO) but the run times can be higher since the method does not run 

in parallel.  Though this performance hit is significantly countered when using the SVR method.  

Another benefit of sequential chunking is that it helps cut down on high memory usage for the 

kernel matrix build which can make the difference since the straight SVM may bog down from 

hard drive thrashing if the machine does not have enough memory.  The only negative aspect is 

that chunk size can still eventually grow too much for extremely large datasets so the chunking 

percentage parameters must be adjusted accordingly. 

Multi-threaded chunking has a significant run time performance increase which is further 

improved when employing the SVR method.  The multi-threaded aspect allows training of 

extremely large datasets which may not be possible using sequential chunking.  Additionally, 

using the multi-threaded distributed method allows users to add several more machines to make 

the algorithm train even faster.  This aspect makes the size of the dataset no longer a concern for 

SVM training, which opens up the practical use of SVM methods to more applications than 

originally envisaged (e.g. SVM-based clustering). 
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Appendix 
 
Note 1:  All data sets used in this paper were recorded in the Winters-Hilt Children’s Hospital 

laboratory using a nanophore detector.  This raw data was then fed through a Hidden Markov 

Model which produced the feature vectors. 

Note 2:  All data runs (except for Table 4.1) were done on a (PC) machine with Debian Linux 

containing dual AMD Athlon MP 2400 (2 ghz.) processors with 2 gigabytes of RAM. 

Note 3:  The Table 4.1 data runs were done using three Sun machines with Ubuntu Linux each 

containing a quad processor, dual core AMD Opteron 280 (1 ghz.) processor with 8 gigabytes of 

RAM. 

A.1 Java code implementation of sequential chunking method 
 

SequentialChunksSVM.java 
package edu.uno.cs.bioinformatics.svm.chunking; 
 
import cern.colt.list.IntArrayList; 
import edu.uno.cs.bioinformatics.data.ModelParameters; 
import edu.uno.cs.bioinformatics.data.TrainingData; 
import edu.uno.cs.bioinformatics.svm.SVMModel; 
/** 
 * The SequentialChunkTrial breaks up the training data and runs the SVM on 
the chunks. 
 * The chunks are trained in sequence in order to pass support features to 
the next chunk. 
 */ 
public class SequentialChunksSVM extends AbstractChunksSVM { 
   
  static final long serialVersionUID = 25123L; 
   
  private ChunkParameters chunkPar; 
  private TrainingData trainingData; 
  private ModelParameters param; 
  private SVMModel model; 
  private ChunkResult chunkRes; 
  private SVMchunkLearner svmEngine; 
  private SVMchunkLearner newEngine; 
     
    /** 
     * The feature vector indices that are  
     */ 
  private IntArrayList penaltySet = new IntArrayList(); 
     
    /** 
     * The feature vector indices that are  
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     */ 
  private IntArrayList polarizationSet = new IntArrayList(); 
     
    /** 
     * The feature vector indices that are KKT violators.  
     */ 
  private IntArrayList kktViolators = new IntArrayList(); 
   
  /** 
   * The support feature vector indices.  
   */ 
  private IntArrayList svList = new IntArrayList(); 
   
  /** 
   * Save the first chunk to use for testing in order to verify the integrity 
of the chunking process. 
   */ 
  protected TrainingData firstChunk; 
   
  /**  
   * Constructs a new sequential chunk trial with the given SVMLearner, 
TrainingData, and Parameters. 
   * @param maxSize    the maximum size of each chunk 
   * @param trainingData  the feature vectors and labels to train on 
   * @param param      the user defined parameters object 
   */ 
  public SequentialChunksSVM(SVMchunkLearner svmEngine, ChunkParameters 
chunkPar, TrainingData trainingData, ModelParameters param) { 
    this.svmEngine = svmEngine; 
    this.chunkPar = chunkPar; 
    this.trainingData = trainingData; 
    this.param = param; 
  } 
   
  /** 
   * Default Constructor 
   */ 
  public SequentialChunksSVM() {} 
   
  /** 
   * The runSeqChunkedSVM method runs the SVM chunks sequentially. 
   * @return  the results model 
   */ 
  public SVMModel runSeqChunkedSVM() { 
     
    int featsCount = trainingData.getLabels().size(); 
    int chunkCount = (int)Math.ceil((featsCount*1.)/(chunkPar.chunkSize*1.)); 
    TrainingData[] data = makeDataChunks(chunkCount); 
    this.firstChunk = data[0]; 
    String resCapture = "Chunk Number\tChunk Size"; 
    int chunkTally = 0; 
     
    //traverse through the chunks 
    for (int i=0; i<chunkCount; i++) { 
       
      // create fresh engine since svmEngine will retain its previous  

// information (svlist, etc.) 
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      this.newEngine = svmEngine.like(); 
      chunkTally++; 
        System.out.println("Chunk: " + chunkTally + "\t\tChunkSize=" +  

data[i].getLabels().size()); 
        resCapture += "\n" + chunkTally + "\t" + data[i].getLabels().size(); 
       
      // run the SVM 
      this.chunkRes = newEngine.learnSVM(data[i], param); 
      this.polarizationSet = chunkRes.getPolarizationSet(); 
      this.penaltySet = chunkRes.getPenaltySet(); 
      this.kktViolators = chunkRes.getkktViolators(); 
      this.svList = chunkRes.getSvList(); 
      this.model = chunkRes.getModel(); 
 
      if(i < chunkCount-1) { 
        /* 
         * Pass some features on to the next chunk. 
         * Create temp array to store training features: 
         */ 
        TrainingData tempData[] = new TrainingData[7]; 
         
        // Load the entire next chunk 
        tempData[0] = data[i+1]; 
 
        /* 
         * Use the chunk parameters to set how many of each feature type will  

   * be passed on to the next chunk 
         */ 
        if(penaltySet.size() > 0 && chunkPar.penaltySet > 0) { 
          int[] indices = extractRandFeatures(penaltySet,  

chunkPar.penaltySet); 
          tempData[3] = new  

TrainingData(data[i].getFeats().viewSelection(indices, null),  
data[i].getLabels().viewSelection(indices)); 

        } 
        if(polarizationSet.size() > 0 && chunkPar.polarizationSet > 0) { 
          int[] indices = extractRandFeatures(polarizationSet,  

chunkPar.polarizationSet); 
          tempData[4] = new  

TrainingData(data[i].getFeats().viewSelection(indices, null),  
data[i].getLabels().viewSelection(indices)); 

        } 
        if(svList.size() > 0 && chunkPar.suppVectorCount > 0) { 
          int[] indices = extractBestScoredFeatures(svList.size(),  

chunkPar.suppVectorCount, chunkRes.getScores()); 
          tempData[5] = new  

TrainingData(data[i].getFeats().viewSelection(indices, null), 
data[i].getLabels().viewSelection(indices)); 

        } 
        if(kktViolators.size() > 0 && chunkPar.kktViolators > 0) { 
          int[] indices = extractRandFeatures(kktViolators,  

chunkPar.kktViolators); 
          tempData[6] = new  

TrainingData(data[i].getFeats().viewSelection(indices, null),  
data[i].getLabels().viewSelection(indices)); 

        } 
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        System.out.println("\nPassing features to next chunk -->  -->  -->"); 
        System.out.print("  penaltySet: "+(int)Math.ceil(penaltySet.size() *  

(chunkPar.penaltySet/100.0))); 
        System.out.print("  polarizationSet:  

"+(int)Math.ceil(polarizationSet.size() *  
(chunkPar.polarizationSet/100.0))); 

        System.out.print("  kktViolators: " +  
(int)Math.ceil(kktViolators.size() *  
(chunkPar.kktViolators/100.0))); 

        System.out.print("  Support Vectors: "+(int)Math.ceil(svList.size() *  
(chunkPar.suppVectorCount/100.0))); 

         
        int total = (int)Math.ceil(penaltySet.size() *  

(chunkPar.penaltySet/100.0)) +  
(int)Math.ceil(polarizationSet.size() *  
(chunkPar.polarizationSet/100.0)) + 
(int)Math.ceil(kktViolators.size() * 
(chunkPar.kktViolators/100.0)) + (int)Math.ceil(svList.size() * 
(chunkPar.suppVectorCount/100.0)); 

        System.out.print("  Total passed: " + total); 
        System.out.println("\n-->  -->  -->  -->  -->  -->\n"); 
         
        // join the data into a single training set to pass on 
        TrainingData nextTrainData = TrainingData.joinTrainingData(tempData); 
        data[i+1] = nextTrainData; 
      } 
    } 
    System.out.println("\n@@@@@@@ Specified Chunk Parameters (Percentages):\n   

Penalty Set: " + chunkPar.penaltySet +  
      "   Polarization Set: " + chunkPar.polarizationSet); 
    System.out.println("  KKT Violators: " + chunkPar.kktViolators + "    

Support Vectors: " + chunkPar.suppVectorCount); 
    System.out.print("   Chunk Size: " + chunkPar.chunkSize); 
    System.out.println("\n\n" + resCapture);     
     
    this.svmEngine = newEngine; 
    return model; 
  } 
 
  /** 
   * The makeDataChunks method breaks the data into chunks using a shuffled 
set of indices making the order pseudo-random. 
   * @param chunkCount   the amount of chunks needed 
   * @return  an array of TrainingData objects 
   */ 
  private TrainingData[] makeDataChunks(int chunkCount){ 
     
    int featsCount = trainingData.getLabels().size(); 
     
    // Create a collection to shuffle and load it with indices 
    IntArrayList mixedIdcs = new IntArrayList(featsCount); 
    for (int i=0; i<featsCount; i++) { 
      mixedIdcs.add(i); 
    } 
    mixedIdcs.shuffle();     
     
    /* 
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     * Divide into chunks using the shuffled index list. 
     */ 
    int chunkSize = (int)Math.floor(featsCount/chunkCount); 
    int sizeRemainder = featsCount%chunkSize; 
    int chunksInd [][] = new int[chunkCount][]; 
    int k = 0; 
    for (int i=0 ; i<chunkCount ; i++) { 
      int size = (i != chunkCount-1) ? chunkSize : (chunkSize+sizeRemainder); 
      chunksInd[i] = new int[size]; 
       
      for (int j=0 ; j<size ; j++) { 
        chunksInd[i][j] = mixedIdcs.get(k); 
        k++; 
      } 
    } 
     
    /* 
     * build array of trainingData objects 
     */ 
    TrainingData data[] = new TrainingData[chunkCount]; 
    for (int i=0 ; i<chunkCount ; i++) { 
      data[i] = new TrainingData( 
          trainingData.getFeats().viewSelection(chunksInd[i], null).copy(), 
          trainingData.getLabels().viewSelection(chunksInd[i]).copy()); 
    } 
     
    return data; 
  } 
   
  /** 
   * @return  the user defined parameters 
   */ 
  public ModelParameters getParam() { 
    return param; 
  } 
 
  /** 
   * @param param    the parameters object to set 
   */ 
  public void setParam(ModelParameters param) { 
    this.param = param; 
  } 
 
  /** 
   * @return  the training data 
   */ 
  public TrainingData getTrainingData() { 
    return trainingData; 
  } 
 
  /** 
   * @param trainingData  the training data to set 
   */ 
  public void setTrainingData(TrainingData trainingData) { 
    this.trainingData = trainingData; 
  } 
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  public ChunkParameters getChunkPar() { 
    return chunkPar; 
  } 
 
  public void setChunkPar(ChunkParameters chunkPar) { 
    this.chunkPar = chunkPar; 
  } 
 
  public TrainingData getFirstChunk() { 
    return firstChunk; 
  } 
 
  public void setFirstChunk(TrainingData firstChunk) { 
    this.firstChunk = firstChunk; 
  } 
 
  public SVMchunkLearner getSvmEngine() { 
    return svmEngine; 
  } 
} 

 
A.2 Java code implementation of multi-threaded chunking method 
 

DistributedChunksSVM.java 
package edu.uno.cs.bioinformatics.svm.chunking; 
 
import java.util.concurrent.BrokenBarrierException; 
import java.util.concurrent.CyclicBarrier; 
 
import cern.colt.list.IntArrayList; 
import edu.uno.cs.bioinformatics.data.ModelParameters; 
import edu.uno.cs.bioinformatics.data.TrainingData; 
import edu.uno.cs.bioinformatics.svm.SVMModel; 
import edu.uno.cs.bioinformatics.svm.chunking.SVMchunkLearner; 
 
public class DistributedChunksSVM extends AbstractChunksSVM { 
 
  private ChunkParameters chunkPar; 
  private TrainingData trainingData; 
  private ModelParameters param; 
  private SVMModel model; 
  private ChunkResult chunkRes; 
  private SVMchunkLearner svmEngine; 
     
    /** 
     * The feature vector indices that are non-violators where alpha = C 
     */ 
  private IntArrayList penaltySet = new IntArrayList(); 
     
    /** 
     * The feature vector indices that are non-violators where alpha = 0 
     */ 
  private IntArrayList polarizationSet = new IntArrayList(); 
     
    /** 
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     * The feature vector indices that are KKT violators.  
     */ 
  private IntArrayList kktViolators = new IntArrayList(); 
   
  /** 
   * The support feature vector indices.  
   */ 
  private IntArrayList svList = new IntArrayList(); 
 
  /** 
   * Constructs a new distributed chunk trial with the given SVMLearner,  
   * TrainingData, and Parameters. 
   * @param svmEngine the SVM learner to use 
   * @param chunkPar  the user defined chunking parameters 
   * @param trainingData  the features vector and labels to train on 
   * @param param      the user defined SVM parameters 
   */ 
  public DistributedChunksSVM(SVMchunkLearner svmEngine, ChunkParameters  

chunkPar, TrainingData trainingData, ModelParameters param) { 
    this.svmEngine = svmEngine; 
    this.chunkPar = chunkPar; 
    this.trainingData = trainingData; 
    this.param = param; 
  } 
   
  /** 
   * Default Constructor 
   */ 
  public DistributedChunksSVM() {} 
   
  /** 
   * The runDistributedChunkedSVM method distributes and runs the SVM chunks  
   * using multi-threading. 
   * @return  the results model 
   */ 
  public SVMModel runDistributedChunkedSVM() { 
 
    int featsCount = trainingData.getLabels().size(); 
    int chunkCount =  

(int)Math.ceil((featsCount*1.)/(chunkPar.getChunkSize()*1.)); 
    int maxChunks = chunkPar.getMaxChunks(); 
    int chunkLevel = 0; 
    int chunkTally = 0; 
    TrainingData nextDataSet = trainingData; 
    String resCapture = "Chunk Level\tChunk Number\tChunk Size"; 
     
    while (chunkCount > 1) { 
       
      TrainingData[] data = makeDataChunks(chunkCount, nextDataSet); 
      // re-initialize a smaller trial occurs 
      maxChunks = chunkPar.getMaxChunks(); 
      int cnt = 0; 
       
      System.out.println("\n~~~~~~Chunk Level: " + chunkLevel); 
      chunkLevel++; 
      /* 
       * tempData is used to store the different categories of feature  
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 * vectors to create the next set of chunks. 
       * Create temp array to store training features 
       */ 
      TrainingData tempData[] = new TrainingData[6 * chunkCount]; 
      int j = 0; 
      int c = 0; 
 
      // traverse through groupings of chunks at a time to prevent memory  

// overflow 
      while (chunkCount > cnt) { 
         
        SVMchunkLearnerThread[] svms = new SVMchunkLearnerThread[maxChunks]; 
        /* 
         * This next part calls the SVM threads and gets back the chunk  

   * results 
         */       
        System.out.println("\nRunning the SVM Threads on Remote Servers...);  
 
        if ((chunkCount-cnt) < maxChunks) { 
          maxChunks = chunkCount-cnt; 
        } 
         
        CyclicBarrier barrier = new CyclicBarrier(maxChunks+1, new  

BarrierAction()); 
           
        for (int i=0; i<maxChunks; i++) { 
          //run a thread 
          try { 
            svms[i] = new SVMchunkLearnerThread(svmEngine.like(),  

data[c],(ModelParameters)param.clone(), barrier); 
          } 
          catch (NullPointerException e) { 
            e.printStackTrace(); 
          } 
          catch (CloneNotSupportedException e) { 
            e.printStackTrace(); 
          } 
          new Thread(svms[i]).start(); 
             
          // increment current chunk count 
          cnt++; 
             
          // increment running tally of total chunks 
          chunkTally++; 
          System.out.println("Chunk: " + chunkTally + "\t\tChunkSize=" +  

data[c].getLabels().size()); 
          resCapture += "\n" + chunkLevel + "\t" + chunkTally + "\t" +  

data[c].getLabels().size(); 
          c++; 
        } 
       
        //wait for all of the threads to come back 
        try { 
          barrier.await(); 
        } 
        catch (BrokenBarrierException e) { 
          e.printStackTrace(); 
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        } 
        catch (InterruptedException e) { 
          e.printStackTrace(); 
        } 
         
        System.out.println("\nReceived the chunk results from threads!"); 
 
        //traverse through the chunks 
        for (int i=0, e=cnt-maxChunks; i < maxChunks; i++,e++) { 
          this.chunkRes = svms[i].getChunk(); 
          this.polarizationSet = chunkRes.getPolarizationSet(); 
          this.penaltySet = chunkRes.getPenaltySet(); 
          this.kktViolators = chunkRes.getkktViolators(); 
          this.svList = chunkRes.getSvList(); 
          this.model = chunkRes.getModel(); 
     
          /* 
           * Use the chunk parameters to set how many of each feature type  

     * will be passed on to the next chunk 
           */ 
          if(polarizationSet.size() > 0 && chunkPar.polarizationSet > 0) { 
            int[] indices = extractRandFeatures(polarizationSet,  

chunkPar.polarizationSet); 
            tempData[j] = new  

TrainingData(data[e].getFeats().viewSelection(indices,  
null), data[e].getLabels().viewSelection(indices)); 

            j++; 
          } 
          if(penaltySet.size() > 0 && chunkPar.penaltySet > 0) { 
            int[] indices = extractRandFeatures(penaltySet,  

chunkPar.penaltySet); 
            tempData[j] = new  

TrainingData(data[e].getFeats().viewSelection(indices,  
null), data[e].getLabels().viewSelection(indices)); 

            j++; 
          } 
          if(kktViolators.size() > 0 && chunkPar.kktViolators > 0) { 
            int[] indices = extractRandFeatures(kktViolators,  

chunkPar.kktViolators); 
            tempData[j] = new  

TrainingData(data[e].getFeats().viewSelection(indices,  
null), data[e].getLabels().viewSelection(indices)); 

            j++; 
          } 
          if(svList.size() > 0 && chunkPar.suppVectorCount > 0) { 
            int[] indices = extractBestScoredFeatures(svList.size(),  

chunkPar.suppVectorCount, chunkRes.getScores().copy()); 
            tempData[j] = new  

TrainingData(data[e].getFeats().viewSelection(indices,  
null), data[e].getLabels().viewSelection(indices)); 

            j++; 
          } 
        } 
      } //end of while loop that traverse groupings of chunks 
       
      System.out.println("\nPassing features to make next set of chunks (or  

the final chunk) -->  -->  -->"); 
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      System.out.print("  penaltySet: " + (chunkCount *  
(int)Math.ceil(penaltySet.size() * (chunkPar.penaltySet/100.0)))); 

      System.out.print("  polarizationSet: " + (chunkCount *  
(int)Math.ceil(polarizationSet.size() *  
(chunkPar.polarizationSet/100.0)))); 

      System.out.print("  kktViolators: " + (chunkCount *  
(int)Math.ceil(kktViolators.size() *  
(chunkPar.kktViolators/100.0)))); 

      System.out.print("  Support Vectors: " + (chunkCount *  
(int)Math.ceil(svList.size() *  
(chunkPar.suppVectorCount/100.0)))); 

       
      int total = chunkCount * ((int)Math.ceil(penaltySet.size() *  

(chunkPar.penaltySet/100.0))  
            + (int)Math.ceil(polarizationSet.size() *  

(chunkPar.polarizationSet/100.0)) 
            + (int)Math.ceil(kktViolators.size() *  

(chunkPar.kktViolators/100.0)) 
            + (int)Math.ceil(svList.size() *  

(chunkPar.suppVectorCount/100.0))); 
      System.out.print("  Total passed: " + total); 
      System.out.println("\n-->  -->  -->  -->  -->  -->\n"); 
       
      // join the data into a single training set to pass on 
      nextDataSet = TrainingData.joinTrainingData(tempData); 
       
      // reset the chunkCount variable according to the chunkSize 
      chunkCount =  

(int)Math.floor((nextDataSet.getLabels().size()*1.)/ 
(chunkPar.getChunkSize()*1.)); 

       
      if (chunkCount <= 1) { 
        // run the final chunk 
        System.out.println("\nRunning the final chunk..."); 
        System.out.println("Final Chunk Size:" +  

nextDataSet.getLabels().size()); 
        chunkLevel++; 
        chunkTally++; 
        resCapture += "\n" + chunkLevel + "\t" + chunkTally + "\t" +  

nextDataSet.getLabels().size(); 
         
        this.chunkRes = svmEngine.learnSVM(nextDataSet, param); 
        this.model = chunkRes.getModel(); 
      } 
    } 
     
    System.out.println("\n@@@@@@@ Specified Chunk Parameters:\n  Penalty Set:  

" + chunkPar.penaltySet + "   Polarization Set: " + 
chunkPar.polarizationSet); 

    System.out.println("   KKT Violators: " + chunkPar.kktViolators + "    
Support Vectors: " + chunkPar.suppVectorCount); 

    System.out.println("  Chunk Size: " + chunkPar.chunkSize + "\n"); 
    System.out.println(resCapture); 
     
    return model; 
  } 
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  /** 
   * The makeDataChunks method breaks the data into chunks using a shuffled  
   * set of indices making the order pseudo-random. 
   * @param chunkCount   the amount of chunks needed 
   * @return  an array of TrainingData objects 
   */ 
  private TrainingData[] makeDataChunks(int chunkCount,  

TrainingData trnData){ 
     
    int featsCount = trnData.getLabels().size(); 
     
    // Create a collection to shuffle and load it with indices 
    IntArrayList mixedIdcs = new IntArrayList(featsCount); 
    for (int i=0; i<featsCount; i++) { 
      mixedIdcs.add(i); 
    } 
    mixedIdcs.shuffle(); 
     
    /* 
     * Divide into chunks using the shuffled index list. 
     */ 
    int chunkSize = (int)Math.floor(featsCount/chunkCount); 
    int sizeRemainder = featsCount%chunkSize; 
    int chunksInd [][] = new int[chunkCount][]; 
    int k = 0; 
    for (int i=0 ; i<chunkCount ; i++) { 
      int size = (i != chunkCount-1) ? chunkSize : (chunkSize+sizeRemainder); 
      chunksInd[i] = new int[size]; 
       
      for (int j=0 ; j<size ; j++) { 
        chunksInd[i][j] = mixedIdcs.get(k); 
        k++; 
      } 
    } 
     
    /* 
     * build array of trainingData objects 
     */ 
    TrainingData data[] = new TrainingData[chunkCount]; 
    for (int i=0 ; i<chunkCount ; i++) { 
      data[i] = new TrainingData( 
          trnData.getFeats().viewSelection(chunksInd[i], null).copy(), 
          trnData.getLabels().viewSelection(chunksInd[i]).copy()); 
    } 
     
    return data; 
  } 
   
  /** 
   * @return  the user defined parameters 
   */ 
  public ModelParameters getParam() { 
    return param; 
  } 
 
  /** 
   * @param param    the parameters object to set 
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   */ 
  public void setParam(ModelParameters param) { 
    this.param = param; 
  } 
 
  /** 
   * @return  the training data 
   */ 
  public TrainingData getTrainingData() { 
    return trainingData; 
  } 
 
  /** 
   * @param trainingData  the training data to set 
   */ 
  public void setTrainingData(TrainingData trainingData) { 
    this.trainingData = trainingData; 
  } 
 
  public ChunkParameters getChunkPar() { 
    return chunkPar; 
  } 
 
  public void setChunkPar(ChunkParameters chunkPar) { 
    this.chunkPar = chunkPar; 
  } 
   
  /** The action that would coordinate each Worker thread's results. */ 
    private static class BarrierAction implements Runnable { 
        public void run() { 
        } 
    } 
} 
 
A.3 Java code implementation of multi-threaded distributed chunking method 
 

RemoteSVMchunksLearnerThread.java 
package edu.uno.cs.bioinformatics.rmisvm.chunking; 
 
import java.rmi.RMISecurityManager; 
import java.util.concurrent.BrokenBarrierException; 
import java.util.concurrent.CyclicBarrier; 
import java.rmi.Naming; 
import edu.uno.cs.bioinformatics.data.TrainingData; 
import edu.uno.cs.bioinformatics.data.ModelParameters; 
import edu.uno.cs.bioinformatics.svm.chunking.ChunkResult; 
import edu.uno.cs.bioinformatics.svm.chunking.SVMchunkLearner; 
 
public class RemoteSVMchunkLearnerThread implements Runnable { 
 
  private TrainingData trainSet; 
  private ModelParameters parms; 
  private ChunkResult chunk; 
  private SVMchunkLearner learner; 
  private String server; 
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  private final CyclicBarrier barrier; 
   
  // Constructor 
  public RemoteSVMchunkLearnerThread(String server, SVMchunkLearner learner,  

TrainingData trainSet, ModelParameters parms, CyclicBarrier barrier) { 
     
    this.learner = learner; 
    this.trainSet = trainSet; 
    this.parms = parms; 
    this.barrier = barrier; 
    this.server = server; 
  } 
   
  public void run() { 
    if (System.getSecurityManager() == null) { 
            System.setSecurityManager(new RMISecurityManager()); 
    } 
    try { 
      RemoteSVMchunkLearner rmi = (RemoteSVMchunkLearner)  

Naming.lookup(server); 
      chunk = rmi.runSVM(learner, trainSet, parms); 
 
      try { 
        barrier.await(); 
      }  
      catch (InterruptedException ex) { 
        System.err.println("InterruptedException in  

RemoteSVMchunkLearnerThread!"); 
      } 
      catch (BrokenBarrierException ex) { 
        System.err.println("BrokenBarrierException in  

RemoteSVMchunkLearnerThread!"); 
      } 
    }  
    catch (Exception e) { 
      System.err.println("RemoteSVMchunkLearnerThread exception: " +  
    e.getMessage()); 
        e.printStackTrace(); 
    } 
  } 
     
  public ChunkResult getChunk() { 
    return chunk; 
  } 
} 
 

RemoteSVMchunksLearnerImpl.java 
package edu.uno.cs.bioinformatics.rmisvm.chunking; 
 
import java.rmi.server.UnicastRemoteObject; 
import java.rmi.RemoteException; 
import java.rmi.RMISecurityManager; 
import java.rmi.registry.*; 
import edu.uno.cs.bioinformatics.data.ModelParameters; 
import edu.uno.cs.bioinformatics.data.TrainingData; 
import edu.uno.cs.bioinformatics.svm.chunking.ChunkResult; 

 48



import edu.uno.cs.bioinformatics.svm.chunking.SVMchunkLearner; 
 
public class RemoteSVMchunkLearnerImpl extends UnicastRemoteObject implements  

RemoteSVMchunkLearner { 
   
  static final long serialVersionUID = 235L; 
   
  public RemoteSVMchunkLearnerImpl() throws RemoteException { 
    super(); 
  } 
 
  public ChunkResult runSVM(SVMchunkLearner svmEngine, TrainingData  

featsTrain, ModelParameters parms) { 
     
    System.out.println("Training......(may take a long time)"); 
    ChunkResult chunk = svmEngine.learnSVM(featsTrain, parms); 
     
    return chunk; 
  } 
 
  public static void main(String[] args) { 
     
    if (System.getSecurityManager() == null) { 
      System.setSecurityManager(new RMISecurityManager()); 
    } 
    try { 
      RemoteSVMchunkLearner engine = new RemoteSVMchunkLearnerImpl();       
      Registry registry = LocateRegistry.getRegistry(); 
             
      // this is the HTTP way with local registry (new registry per server) 
      registry.rebind("RemoteSVMchunkLearner", engine);                    
      System.out.println("Remote SVMchunkLearner ready!"); 
   
    }  
    catch (Exception e) { 
      System.err.println("RemoteSVMchunkLearner exception: "); 
        e.printStackTrace(); 
    } 
  } 
} 
 
A.4 Java code implementation of SMO SVM (non-chunked) 
Note: The following code was developed with Sam Merat and others from the Winters-Hilt 
group. 

SMOLearner.java 
package edu.uno.cs.bioinformatics.svm; 
 
import java.util.Random; 
import cern.colt.list.IntArrayList; 
import cern.colt.matrix.DoubleMatrix1D; 
import cern.colt.matrix.DoubleMatrix2D; 
import cern.colt.matrix.impl.DenseDoubleMatrix1D; 
import edu.uno.cs.bioinformatics.data.TrainingData; 
import edu.uno.cs.bioinformatics.svm.SMOParameters; 
import edu.uno.cs.bioinformatics.data.ModelParameters; 
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import edu.uno.cs.bioinformatics.svm.SVMModel; 
 
/** 
 *  
 * @author Ken Armond and Sam Merat 
 * 
 */ 
 
/** 
 * The SMOLearner class contains the implementation of the Platt SVM. 
 */ 
public class SMOLearner implements SVMLearner 
{ 
  static final long serialVersionUID = 23L; 
 
  /** 
   * The model which will be loaded with the final results after training.  
   */ 
  private SVMModel model; 
   
  /** 
   * The kernel matrix 
   */ 
  private DoubleMatrix2D kernelMat; 
   
  /** 
   * The feature vectors and labels for training. 
   */ 
  private TrainingData trainingData; 
   
  /** 
   * The seed for the pseudo-random number generator. 
   */ 
  private long seed; 
   
  /** 
   * The error cache matrix 
   */ 
  private DoubleMatrix1D errorCache; 
   
  /** 
   * The Langrangian multiplier storage matrix 
   */ 
  private DoubleMatrix1D alphas; 
   
  /** 
   * The user defined parameters from the properties file 
   */ 
  private SMOParameters param; 
   
  /** 
   * The threshold value (also known as the B value) 
   */ 
  private double threshold; 
 
  private int iter; 
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  private SVReductionForceZero postProcedure; 
 
  /** 
   * Default constructor 
   */ 
  public SMOLearner() { 
    this.postProcedure = new SVReductionForceZero(); 
  } 
 
  private synchronized double outputNonlinear(int i) { 
     
    double alphaJ = 0.0; 
      double sum = 0.0; 
      DoubleMatrix1D labels = trainingData.getLabels(); 
       
      for (int j=0; j < alphas.size(); j++) { 
          if ((alphaJ = alphas.get(j)) > 0.0) 
            sum += alphaJ * labels.get(j) * kernelMat.get(i, j); 
      } 
      return sum - threshold; 
  } 
   
  private int examineExample(int i2) 
  { 
    double r2 = 0.0; 
    double E2 = 0.0; 
    double alpha_2 = alphas.get(i2); 
    double y2 = trainingData.getLabels().get(i2); 
     
    double cVal = param.getCVal(); 
    double tolerance = param.getTolerance(); 
    int featsCount = trainingData.getFeats().rows(); 
     
    Random rand = new Random(seed); 
  
    if (alpha_2 > 0 && alpha_2 < cVal) 
      E2 = errorCache.get(i2); 
    else 
      E2 = outputNonlinear(i2) - y2; 
     
    r2 = E2 * y2; 
     
    /* 
     * if alpha2 violates the KKT condition within a tolerance 
     * then look for an alpha1 and optimize both alphas (take_step(i1,i2)) 
     */  
    if ((r2 < -tolerance && alpha_2 < cVal)  
       || (r2 > tolerance && alpha_2 > 0)) 
    { 
      { 
        /* 
         * Once a alpha2 is chosen, SMO chooses alpha1 to maximize 
         * the size of the step taken during joint optimization 
         * (take_step(i1,i2)) 
         */ 
         int i1 = -1; 
         double tmax = 0; 
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         for (int k = 0; k < featsCount; k++) 
         { 
             double alpha_k = alphas.get(k); 
   
             if (0 < alpha_k && alpha_k < cVal) 
             { 
                 double temp; 
                 double E1 = errorCache.get(k); 
 
                /* 
                 *SMO approximates the step size by absolute value of (E1-E2) 
                 */ 
                 temp = Math.abs(E1 - E2); 
                 if (temp > tmax) { 
                     tmax = temp; 
                     i1 = k; 
                 } 
             } 
         } 
         if (i1 > -1 ) { 
             if (takeStep(i1, i2) == 1) 
               return 1; 
         } 
      } 
               
      /* 
       * At this point no positive progress was made (last paragraph 
       * in Platt's paper section 2.4). 
       * first check the non bound alphas from a random place  
       */ 
      { 
        int k = 0; 
         int i1 = -1; 
         int k0 = Math.abs(rand.nextInt() * featsCount); 
             
         for (k = k0; k < featsCount + k0; k++)  
         { 
             i1 = k % featsCount; 
             double alpha_k = alphas.get(i1); 
             if (0 < alpha_k && alpha_k < cVal) 
             { 
                 if (takeStep(i1, i2) == 1) 
                     return 1; 
             } 
         } 
      } 
           
      /* 
       * if still no progress then iterate through all feature vectors 
       * starting from a random place  
       */ 
      { 
        int k = 0, i1=-1; 
        int k0 = Math.abs(rand.nextInt() * featsCount); 
             
        for (k = k0; k < featsCount + k0; k++) 
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        { 
            i1 = k % featsCount; 
            if (takeStep(i1, i2) == 1) 
                return 1; 
        } 
      } 
    } 
   
    return 0; 
  } 
   
  /** 
   * The takeStep method takes two feature vectors and recalculates the  
   * Lagrangian multipliers (alphas) associated with them. 
   * It also updates the error cache array and threshold.  
   *  
   * @param i1     first feature vector index. 
   * @param i2     second feature vector index. 
   * @return int     returns 1 if the alphas get updated successfully. 
   */ 
   
  public int takeStep(int i1, int i2)  
  { 
    double cVal = param.getCVal(); 
    double epsilon = param.getEpsilon(); 
    int featsCount = trainingData.getFeats().rows(); 
       
    double alpha_old_1, alpha_old_2;  // old_values of alpha_1, alpha_2 
    double alpha_new_1, alpha_new_2;    // new values of alpha_1, alpha_2 
    double y1, y2, s, E1, E2, L, H, k11, k22, k12, eta, Lobj, Hobj; 
     
    if (i1 == i2) { 
      return 0; 
    } 
     
    alpha_old_1 = alphas.get(i1); 
    y1 = trainingData.getLabels().get(i1); 
     
    if (alpha_old_1 > 0 && alpha_old_1 < cVal) 
      E1 = errorCache.get(i1); 
    else 
      E1 = outputNonlinear(i1) - y1; 
 
    alpha_old_2 = alphas.get(i2); 
    y2 = trainingData.getLabels().get(i2); 
     
    if (alpha_old_2 > 0 && alpha_old_2 < cVal) 
      E2 = errorCache.get(i2); 
    else  
      E2 = outputNonlinear(i2) - y2; 
     
    s = y1 * y2; 
     
    if (y1 == y2)  
    { 
      double gamma = alpha_old_1 + alpha_old_2; 
      if (gamma > cVal)  
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      { 
        L = gamma-cVal; 
        H = cVal; 
      } 
      else  
      { 
        L = 0; 
        H = gamma; 
      } 
    } 
    else  
    { 
      double gamma = alpha_old_2 - alpha_old_1; 
      if (gamma > 0)  
      { 
        L = gamma; 
        H = cVal; 
      } 
      else  
      { 
        L = 0; 
        H = cVal + gamma; 
      } 
    } 
     
    if (L == H) { 
      return 0; 
    } 
     
    k11 = kernelMat.get(i1, i1); 
    k12 = kernelMat.get(i1, i2); 
    k22 = kernelMat.get(i2, i2); 
    eta = k11 + k22 - 2*k12; 
     
    if (eta > 0)  
    { 
      alpha_new_2 = alpha_old_2 + y2 * (E1 - E2) / eta; 
      if (alpha_new_2 < L) 
        alpha_new_2 = L; 
      else if (alpha_new_2 > H) 
        alpha_new_2 = H; 
    } 
    else  
    { 
      double f1 = y1 * (E1 + threshold) - alpha_old_1 * k11 - s * alpha_old_2  
                  * k12; 
      double f2 = y2 * (E2 + threshold) - alpha_old_2 * k22 - s * alpha_old_1  
                  * k12; 
      double l1 = alpha_old_1 + s * (alpha_old_2-L); 
      double h1 = alpha_old_1 + s * (alpha_old_2-H); 
         
      Lobj = l1*f1 + L*f2 + 1/2 * ( (l1*l1)*k11 + (L*L)*k22 + 2*s*L*l1*k12 ); 
      Hobj = h1*f1 + H*f2 + 1/2 * ( (h1*h1)*k11 + (H*H)*k22 + 2*s*H*h1*k12 ); 
       
      if (Lobj < Hobj-epsilon) 
        alpha_new_2 = L; 
      else if (Lobj > Hobj+epsilon) 
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        alpha_new_2 = H; 
      else 
        alpha_new_2 = alpha_old_2; 
    } 
     
    if (Math.abs(alpha_new_2 - alpha_old_2) < epsilon * (alpha_new_2 +  
        alpha_old_2 + epsilon) ) { 
      return 0; 
    } 
     
    alpha_new_1 = alpha_old_1 + s * (alpha_old_2 - alpha_new_2); 
     
    if (alpha_new_1 < 0)  
    { 
      alpha_new_2 += s * alpha_new_1; 
      alpha_new_1 = 0; 
    } 
    else if (alpha_new_1 > cVal)  
    { 
      double t = alpha_new_1 - cVal; 
      alpha_new_2 += s * t; 
      alpha_new_1 = cVal; 
    } 
     
    /* updating the threshold */ 
    double b1, b2, bnew, delta_b; 
    b1 = threshold + E1 + y1 * (alpha_new_1 - alpha_old_1) * k11 + y2 *  
         (alpha_new_2 - alpha_old_2) * k12; 
    b2 = threshold + E2 + y1 * (alpha_new_1 - alpha_old_1) * k12 + y2 *  
         (alpha_new_2 - alpha_old_2) * k22;         
 
    if (alpha_new_1 > 0 && alpha_new_1 < cVal)  
      bnew = b1; 
    else if (alpha_new_2 > 0 && alpha_new_2 < cVal) 
      bnew = b2;   
    else 
      bnew = (b1 + b2) / 2; 
    
    delta_b = bnew - threshold; 
    threshold = bnew; 
     
    /*  
     * updating the error cache 
     */ 
    double t1 = y1 * (alpha_new_1-alpha_old_1); 
    double t2 = y2 * (alpha_new_2-alpha_old_2); 
     
    for (int i = 0; i < featsCount; i++) 
    { 
      double alpha_i = alphas.get(i); 
         
      if (0 < alpha_i && alpha_i < cVal)  
      { 
        double k1i = kernelMat.get(i1, i); 
        double k2i = kernelMat.get(i2, i);; 
        double error_old_i = errorCache.get(i); 
        double error_new_i = error_old_i + t1*k1i + t2*k2i - delta_b; 
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        errorCache.set(i, error_new_i); 
      } 
    } 
    errorCache.set(i1, 0.0); 
    errorCache.set(i2, 0.0); 
     
    /*  
     * updating the alphas  
     */ 
    alphas.set(i1, alpha_new_1); 
    alphas.set(i2, alpha_new_2); 
     
    return 1; 
  } 
   
  /** 
   *The learnSVM method runs the SVM and returns a model of the trained data. 
   *The support vectors are collected into a matrix and saved to the model. 
   *The Bound KKT violators, Unbound KKT violators, and the threshold are  
   *also saved to the model. 
   *@param data     the feature vectors to be trained. 
   *@param mparam     the user defined parameters set in the properties file. 
   *@return model    the results of the SVM training (Support Vectors, KKT  
   *Violators, etc.)  
   */ 
  public SVMModel learnSVM(TrainingData data, ModelParameters mparam)  
    throws IllegalArgumentException { 
     
    /* 
     * Checking the validity of the data and param 
     */ 
    if (data == null || mparam == null || !(mparam instanceof SMOParameters)) 
      throw new IllegalArgumentException("The training data or the parameters  
                                          are undefined."); 
    else if (mparam.getKernelf().getKernelMat() == null) 
      mparam.getKernelf().buildDenseKernelMatrix(data.getFeats()); 
    { 
      this.param = (SMOParameters) mparam; 
      this.trainingData = data; 
      this.kernelMat = param.getKernelf().getKernelMat(); 
      this.seed = param.getSeed(); 
    } 
     
    /*  
     * The number of features to be used for training  
     */ 
    int featsCount = data.getFeats().rows(); 
     
    /* 
     * initialize temporary alphas and errorCache vectors 
     */ 
    this.errorCache = new DenseDoubleMatrix1D(featsCount); 
    this.alphas = new DenseDoubleMatrix1D(featsCount); 
     
    /* 
     * Various local vars 
     */ 
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    double cVal = param.getCVal(); 
    int maxIter = param.getMaxIter(); 
    /* 
     * The SMO outer loop 
     */ 
    int numChanged   = 0; 
      int examineAll   = 1; 
 
      iter = 0; 
 
      while ((numChanged > 0 || examineAll == 1) &&  
          iter < ((maxIter == 0)?iter+1:maxIter))  
      { 
        iter++; 
        numChanged = 0; 
        if (examineAll == 1)  
        { 
          for (int i = 0 ; i < featsCount; i++)  
          { 
            numChanged += examineExample(i); 
          } 
        } 
        else 
        { 
          for (int i = 0 ; i < featsCount; i++) 
          { 
            double alpha = alphas.getQuick(i); 
            if (alpha != cVal || alpha != 0.0)  
            { 
              numChanged += examineExample(i); 
            } 
          } 
        } 
         
        if  (examineAll == 1)  
          examineAll = 0; 
        else if (numChanged == 0) 
          examineAll = 1; 
      } 
       
      // perform alpha cutoff rule to force small alphas to zero 
      postProcedure.execute(this, data); 
       
      System.out.print("SMO DONE"); 
       
      /* 
       * make the model object 
       */ 
      { 
        model = new SVMModel(param); 
        model.setIter(iter); 
        model.setThreshold(threshold); 
         
        /* 
         * allocate the Support Vectors and Polarization Vectors 
         */ 
        IntArrayList nonZeroAlphaIndList = new  

 57



                     IntArrayList((int)featsCount/2); 
        IntArrayList polarizationIndList = new  
                     IntArrayList((int)featsCount/2); 
        int upto = 0; 
        for (int i = 0; i < featsCount; i++) 
        { 
          double alpha = alphas.get(i); 
          if (alpha != 0.0 && alpha != cVal) 
            nonZeroAlphaIndList.add(i); 
           
          // count the vectors in the polarization set 
          if (alpha == 0) { 
            polarizationIndList.add(i); 
          } 
          ++upto; 
        } 
         
        nonZeroAlphaIndList.trimToSize(); 
        model.setSuppFeats(data.getFeats(). 
              viewSelection(nonZeroAlphaIndList.elements(),null).copy()); 
         
        /* 
         * allocate the alpha corresponding to support vectors 
         */ 
        DoubleMatrix1D tmpSvAlphas =  
        trainingData.getLabels().like(nonZeroAlphaIndList.size()); 
        for (int i=0 ; i<nonZeroAlphaIndList.size() ; i++)  
        { 
          tmpSvAlphas.setQuick(i,  
          alphas.get(nonZeroAlphaIndList.getQuick(i))); 
        } 
        model.setSvAlphas(tmpSvAlphas); 
         
        System.out.println(" ; #SV = "+tmpSvAlphas.size() + " ; b =  
        "+model.getThreshold()+ " ;  Iterations:" + iter); 
        /* 
         * allocate original labels 
         */ 
        model.setSvLabels(trainingData.getLabels(). 
              viewSelection(nonZeroAlphaIndList.elements()).copy()); 
        model.setSvIndices(nonZeroAlphaIndList); 
        model.setPolarizationIndices(polarizationIndList); 
      } 
       
    return model; 
  } 
   
  /** 
   * The like() method returns a new copy of a SVMLearner object. 
   */ 
  public SVMLearner like() { 
    return new SMOLearner(); 
  } 
   
  public DoubleMatrix1D getAlphas() { 
    return alphas; 
  } 
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  public SMOParameters getParam() { 
    return param; 
  } 
 
  public SVReductionForceZero getPostProcedure() { 
    return postProcedure; 
  } 
 
  public void setPostProcedure(SVReductionForceZero postProcedure) { 
    this.postProcedure = postProcedure; 
  } 
} 
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