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Abstract 
 
 

A new technique to qualitatively measure distortion in dynamically controlled audio 

systems using non-stationary noise sequences is explored and compared to traditional methods 

based upon stationary test signals.  This technique can easily be adapted to give a qualitative 

measure of distortion as a function of the perceived Sound Pressure Level (SPL).  
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Chapter 1 
Background 

 
The term distortion as applied to an audio signal is a qualitative measure of any perceived 

undesirable signal components as a consequence of the psychoacoustic processing of the human 

ear.  Minimizing distortion is the most serious problem facing the audio engineer in designing 

any high fidelity sound reproduction system.  To quote one of the most famous pioneers in audio 

engineering, “If it measures good and sounds bad, it is bad; if it measures bad and sounds good, 

you have measured the wrong thing, “ Daniel R. von Recklinghausen, Chief Engineer H.H. 

Scott, Inc. as cited on  www.hhscott.com. 

 

The quantitative tools for evaluating the accuracy or fidelity of an audio system have 

remained virtually unchanged since the commercial advent of high-fidelity analog systems in the 

late forties.  At that time systems were very simple in concept and design, and fidelity criteria 

using stationary signals to measure static systems based upon frequency response and total 

harmonic or inter-modulation distortion were more than adequate.  As audio systems became 

more sophisticated, dynamic analog signal processors such as Dolby® noise reduction, limiters, 

and compressors began to appear and be widely used.  These dynamic systems began to stretch 

the limitations of the traditional static distortion measurement techniques.   

 

The advent of digital-based systems added an additional layer of complexity to the audio 

recording chain.  In order to maintain signal fidelity integrity, additional sources of error had to 

be considered and include A/D non-linearity, system clock noise, quantization noise, and anti-

aliasing filter errors.  System parameters can easily be dynamically controlled to achieve specific 

psychoacoustic effects.  Examples of dynamic parameter control include adaptive frequency 
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response contouring and noise management, dynamic compression and/or expansion, spatial 

manipulation and simulation (including introduction of multiple reverberation paths to recreate a 

desired acoustic environment), and editing techniques during the recording process to “enhance” 

an artist’s performance.  As a result of the dynamic nature of the evolving audio technology, a 

more comprehensive measure of audio system fidelity is required. 

 

Adaptive audio processing techniques were first applied to hearing aid devices.  It soon 

became apparent that the traditional static measurement standards were inadequate.  An example 

of an attempt to update a test standard originally written for static systems to address dynamic 

systems can be seen in the evolution of the ANSI standards for hearing aid devices, ANSI S3.22 

[4].  The accepted measurement standard for hearing aid devices was established and presently 

maintained by the American National Standards Institute (ANSI) under the supervision of the 

Food and Drug Administration (FDA), since this is considered a medical device.  When the 

standard is published it is a voluntary procedure until it is adopted by the FDA.  From that point 

in time on, it is included in FDA regulations for testing hearing devices produced by 

manufacturers and to assist hearing dispensing professionals in fitting products to their patients.  

An attempt is made every 5 years to revise the current standard and in reality this process may 

take as long as 10 years.  Because of this unusually long time delay the present standard may 

significantly lag current technology trends in the industry.  This represents a significant problem 

that needs to be addressed.   

 

The following is a brief history of development of the ANSI standards for hearing aids.  

ANSI established the first standards for hearing aid devices in 1976 (ANSI S3.22-1976).  These 
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devices used analog technology exclusively and were tested using stationary sinusoidal signals to 

measure frequency response, and total harmonic distortion.  Subsequent ANSI standards 

published in 1987 (ANSI S3.22-1987), 1996 (ANSI S3.22-1996), and 2003 (ANSI S3.22-2003) 

continue to be based upon analog technology involving stationary sinusoidal signals to measure 

frequency response and total harmonic distortion.  There were minor differences between these 

latter versions based upon attack times of the test signal, how the telecoil sensitivity was 

measured, and how the automatic gain control (AGC) features were set for the test procedure [4].  

However, these minor differences have little significance with regard to the technique described 

in this investigation.  None of these standards addresses analyzing dynamic systems in the 

presence of non-stationary test signals, but will probably be incorporated in later versions of 

ANSI S3.22.   

 

Distortions generated from digital devices are not well understood and presently there is 

no consensus on a measurement standard.  One research team [15] proposed a more general 

approach of measuring distortion which is not dependent on the internal processing techniques of 

the system under evaluation.  This approach was an attempt to measure distortion produced by 

dynamic systems but requires additional theoretical and empirical development.     
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The proposed distortion error analysis technique described in this study develops a tool 

that models the random non-stationary nature of the actual audio signal and replaces traditional 

distortion and frequency response measurements and can be summarized as follows: 

 

1. A Gaussian white noise sequence is chosen as the input test function with zero mean and 

unity variance.   

2. Since this source is an uncorrelated process, i.e. the autocorrelation function is an 

impulse, it is desirable to provide some degree of correlation between time samples.  This 

is required to allow for processing time delays that may occur in the audio system under 

test.   

3. The coherence spectrum energy function between the input and the output signals of the 

audio system is computed.  In order to minimize the dependency of time delays between 

the input and output signals, and to minimize aliasing errors, it is necessary to introduce 

enough correlation between time samples to allow for the processing delay time of the 

system under test.  A good estimate for the bandwidth of the correlation filter is to set it 

to the bandwidth of the system under test.   

4. The incoherence distortion energy spectrum function is defined as one minus the 

coherence energy spectrum function.   

5. The average incoherence distortion is defined within the input signal passband.   
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Chapter 2 
Introduction 

Modeling of System Non-linearity 

 
Fig: 1 Non-linear System Model 

 
The non-linear system model will be represented in the time domain as an amplitude non-

linearity in the form of a power series as 

( ) ( ) ( ) ( )txatxatxaaty n
n++++= ...2

210                                    (2.1) 
 

Any system frequency dependency will be modeled as a transfer function following this 

amplitude non-linearity block.  The coefficients 0a  through na  are assumed to be time 

independent constants.  

 

The dominant mode of non-linearity is dependent upon the electronic technology 

employed in the audio system under examination.  In audio amplifiers, vacuum tube technology 

will have predominantly even-order power series non-linearities, solid state bi-polar technology 

will have predominantly odd-order non-linearities [2], [7], [12].  If this is a Class “AB” or Class 

“B” power amplifier, this will manifest itself predominantly as cross over distortion [11], [12].  

Solid state uni-polar or FET technology will have even-order non-linearities, predominantly 

second order [11], [12].   
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In recording technology, analog magnetic tape will produce odd-order non-linearities, 

primarily third order [2], [7], [12].  This is a result of magnetic hysteresis in the recording 

medium.  Digital recording introduces non-linearities in the A/D process including quantization 

errors.  These are generally very difficult to characterize or model.  In general, even-order 

harmonic distortion components are usually masked by speech or music since these sources 

inherently generate spectra that are rich in even harmonics.  However, odd harmonic distortion 

components produced by odd-order non-linearities are much more easily detected by the human 

hearing process [2], [7], [12].   
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Introduction 
Theory of Total Harmonic Distortion (THD) Measurements 

 
 

Total Harmonic Distortion measurements date back to the early days of audio system 

analysis in the early 1900’s.  This measurement technique requires that a single deterministic 

stationary fixed amplitude and frequency sinusoid be applied to the system under test.  If the 

system has any non-linearities, then new frequencies, i.e. harmonics, will be generated and will 

appear in the system output signal.  The percent total harmonic distortion for a given test signal 

amplitude and frequency is defined as 

100%
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where iP  is the average power in the thi  harmonic for 2≥i and the average power in the 

fundamental for .1=i  

 

As both the amplitude and frequency of the test signal is varied, the measured %THD 

will vary.  Usually, %THD is plotted as a function of frequency for a given amplitude level.  

Different levels are plotted on the same set of axes to form a family of THD curves.  For most 

audio systems, the %THD will increase with both increasing test signal amplitude and frequency.   

 

In a strict sense, %THD is not a valid measurement tool when multiple sinusoids of 

different amplitude and frequency are applied as the input test signal.  For this situation, not only 

are harmonics of the input sinusoids generated, but also all sums and differences of all 

combinations of fundamental and harmonic frequencies are possible.  Thus, harmonic distortion 
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is not the only distortion component present in the output signal.  A more appropriate description 

of distortion for this type of test signal would be to describe it as total distortion, which would be 

a combination of total harmonic and intermodulation distortion.   

 

There are numerous problems associated with total harmonic distortion measurements: 

1. THD measurements are based upon a single frequency steady-state deterministic test 

signal, i.e. a sinusoid.  Actual speech or music is much more complex, representing many 

simultaneous sinsusoids, with amplitudes, frequencies, and phase components that are 

random in nature.   

2. THD measurements are suitable only for static systems.  Systems with dynamically 

changing frequency, phase, and amplitude parameters would not be accurately measured.  

3. THD measurements generate an extremely inaccurate characterization of system non-

linearity as the test frequency approaches the upper octave limit in a band limited system.  

In this region, all the higher harmonics are filtered by the system bandwidth limit and 

give a false, i.e. low, measure of THD.  As a general guide line, the bandwidth of the 

system under test must be ten times greater than the test frequency for the THD 

measurement.  Thus THD measurements near the upper bandwidth limit of the system 

under test become highly inaccurate.   

4. It will be shown that as the complexity of the system non-linearity increases, it is possible 

that the THD measurement will decrease.  By referring to Appendix A, it can be seen that 

even order non-linearities do not contribute a fundamental frequency component.  

However, odd order non-linearities do contribute to the fundamental frequency 

component.  Thus if the non-linearity is rich in odd order terms, the fundamental 
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component will be larger than for any odd order.  The result is that the denominator in the 

THD measure is growing faster than the numerator and the resultant THD measure 

reduces.   

5. Since THD measurements are based on a sinusoid, the inherent limiting accuracy of any 

measurements is dependent on the spectral purity of the test sinusoid.  Thus, the test 

sinusoidal oscillation must itself have a THD at least 1/10 that of the audio system that is 

under examination.   

 

From a measurement standpoint, THD is relatively easy to obtain.  The instrumentation 

required to measure THD is comparatively simple compared to other measures of distortion, and 

involves placing a notch filter tuned to the test frequency fundamental, allowing all harmonics to 

pass through and be applied to a power measurement circuit.  The ratio of this harmonic power to 

the total power is the total harmonic distortion measurement.     

 

Appendix A shows theoretical calculations for Total Harmonic Distortion for both single 

and dual sinusoidal input signals for first through fifth order system non-linearities. 
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Introduction 
Theory of Incoherence Distortion Measurements 

 
 

Incoherence distortion is a measure of the degree of dissimilarity in frequency, phase, and 

amplitude linearity between input and output signals in the system under test.  This test can be 

performed for either a deterministic signal, such as a sinusoid, or a nondeterministic signal, such 

as the output of a stationary random process.  Signals of the latter class allow for statistical 

measurement of dynamic systems, i.e. systems with bandwidths that are time varying with input 

signal dynamics, as well as traditional spectrum performance measurements.   

 

The coherence power spectral density is defined as ( ),fXYη   

( ) ( )
( ) ( ) ( ) ( )fj

XY
YX

XY
XY

XYef
fSfS

fSf φηη ==  

where ( )fXYφ  is the phase of the coherence.  The incoherence distortion power spectral 

density is defined as ( ),fXYγ  where 

( ) ( ) ( )
( ) ( )[ ] 1110

2
22 ≤−=−=≤

fSfS
fS

ff
YX

XY
XYXY ηγ                            (2.3) 

 
where ( )fS XY  is the cross power spectral density between the system input, ( ),tx  and the system 

output, ( ).ty   ( )fS X  is the power spectral density of the system input signal and ( )fSY  is the 

power spectral density of the system output signal.   

 

The phase of ( ) ( ),, ff XYXY φη  is a measure of the phase coherence or linearity of the 

system under test.   
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The average incoherence distortion over a band limit is defined as 

 

( )∫ ≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=≤
H

L

f

f
XY

LH
XY dff

ff
110 2γγ                                    (2.4) 

 
where Lf  is the lower frequency limit and Hf  is the upper frequency limit of the audio system 

under examination, and can be written as a percent.  

 

The incoherence distortion power spectrum shows the spectral distribution or density of 

the distortion components introduced by the system under examination, and clearly shows the 

frequency region in the system bandwidth where there is least distortion.  The incoherence 

distortion measurement is sensitive to not only non-linearities introduced by the system under 

test but also frequency and phase response deviations.  Thus a single measurement parameter can 

replace numerous previously accepted performance measurement parameters.   

 

The signal-to-distortion ratio as a function of frequency is defined as, 

( ) ( ) ( )
( )

dB
f

f
fD

S
XY

XY

dB 2

2

10

1
log10

η

η−
=                                         (2.5) 
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Chapter 3 
THD Measurement Program 

Description of THD Analysis Program as Implemented in MATLAB® 
 
 

An m-file function in MATLAB® is a program routine that accepts input arguments and 

returns output arguments.  Once the m-file function is invoked by typing the name of the file at 

the MATLAB® command prompt, the program routine is loaded into memory.  The first task of 

the program, “compthdpercent21”, is to ask the user several questions concerning the system to 

be tested and the input signals applied to the system under test.  First, the program asks for the 

initial value of the number of sample points (NPTS) by setting z. 

zNPTS 2=                                                             (3.1) 
 

NPTS might be changed later on by the program in order to select an optimal frequency 

resolution.  This is accomplished by ensuring that the program has at least 200 frequency 

samples between DC and the lowest sinusoidal input frequency.  The upper limit of NPTS is set 

by the resources of the computer system.  Second, the program asks for the sampling frequency 

(Hz), Fs.  Third the program asks the user for the number of sinusoidal vectors.  The program 

internally establishes the minimum and maximum boundaries for the frequency of the sinusoidal 

vectors to be entered next.  Fourth, the program asks for the frequency and peak amplitude for 

each sinusoidal vector within the minimum and maximum bounds established by the program.  

From the lowest frequency entered the program internally calculates the lower and upper bounds 

of NPTS and makes a determination if NPTS needs to be adjusted from the initial value entered.  

If the program readjusts NPTS, as described previously, then the new NPTS value will be stored 

and displayed on the screen.  Fifth, the program asks for the coefficients of the polynomial 

representation of the non-linearity from DC to fifth order.  From this information, the program 
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creates an array or matrix of the sinusoidal vectors and sums these to form a composite 1-D input 

signal if it doesn’t already exist.   

 
The program computes the power spectral density (PSD) of the input signal by taking the 

Discrete Fourier Transform on the composite 1-D input signal and dividing by NPTS.  The 

absolute value is taken of the result and then raised to the second power.  A sample result for a 

single fundamental frequency at 700 Hz is plotted in MATLAB® and titled “Input Power 

Spectral Density vs. Frequency,” shown in figure 2.   

 

 

 

Fig. 2 Input Power Spectral Density vs. Frequency for 700 Hz Sinusoid 

 

 

The program scans for a frequency with maximum amplitude in the input PSD.  This is 

done by finding the MATLAB® index equivalent frequency corresponding to the maximum 
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amplitude and storing this value.  Then this maximum amplitude is zeroed out so that the 

program can scan for the next largest amplitude and corresponding MATLAB® index equivalent 

frequency.  This process continues until the program reaches the total number of applied input 

sinusoidal vectors.  The fundamental frequencies are identified, stored, and displayed in Hz.   

 

The program contains an adaptive process to compute the mean and variance on a 

shrinking window across the input frequency spectrum to establish the input noise floor.  The 

mechanics of the adaptive process breaks up the approach two different ways.  First, if there is a 

single fundamental frequency component present in the input PSD, the program breaks up the 

input PSD into two windows, shown in figure 3.  Window 1 is a symmetrically shrinking 

window from 1 to the ffundamental + 1 MATLAB® index equivalent frequency.  Window 2 is an 

asymmetrical shrinking window moving from the ffundamental + 1 to (NPTS/2) + 1 MATLAB® 

index equivalent frequency.  As windows 1 and 2 are shrinking, the program computes and 

stores the mean and variance every time the window shrinks in a matrix for further processing.  

The program computes the derivative of the variance and then the magnitude of the derivative of 

the variance for windows 1 and 2.  The program finds the maximum value for the magnitude of 

the derivative of the variance for windows 1 and 2.  Then the program finds the MATLAB® 

index equivalent frequency that is less than or equal to 1% of the maximum value for the 

magnitude of the derivative of the variance for windows 1 and 2.   This is the threshold 

MATLAB® index equivalent frequency which is used to look up and store the mean value 

associated at this threshold MATLAB® index equivalent frequency.  The maximum mean value 

between windows 1 and 2 is then used to set the input noise floor. 
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Fig. 3 Dynamic Windows for Single Fundamental Frequency 

 

 
If there are n number fundamental frequency components present in the input PSD, the 

program breaks up the input PSD into n + 1 number of windows.  There exists n number of 

symmetrically shrinking windows and one asymmetrical shrinking window.  Figure 4 illustrates 

a case where there are three fundamental frequency components in the input PSD.  Therefore, 

there will be a total of four windows.  Window 1 is a symmetrically shrinking window from 1 to 

the ffundamental 1 +1 MATLAB® index equivalent frequency.  Window 2 is a symmetrically 

shrinking window from the ffundamental 1 +1 to the ffundamental 2 +1 MATLAB® index equivalent 

frequency.  Window 3 is a symmetrically shrinking window from ffundamental 2 +1 to the  

ffundamental 3 +1 MATLAB® index equivalent frequency.  Window 4 is an asymmetrical shrinking 

window moving from the ffundamental 3 to (NPTS/2) + 1 MATLAB® index equivalent frequency.  

As all the windows are shrinking, the program computes and stores the mean and variance every 
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time the windows shrink in a matrix for further processing.  The program computes the 

derivative of the variance and then the magnitude of the derivative of the variance for all the 

windows.  The program finds the maximum value for the magnitude of the derivative of the 

variance for all the windows.  The program then finds the MATLAB® index equivalent 

frequency that is less than or equal to 1% of the maximum value for the magnitude of the 

derivative of the variance for all the windows.  This is the threshold MATLAB® index equivalent 

frequency which is used to look up and store the mean value associated at this threshold 

MATLAB® index equivalent frequency.  The maximum mean value between all the windows is 

then used to set the input noise floor.   

 

 
Fig. 4 Dynamic Windows for Multiple Fundamental Frequencies 

 

 
The program then generates and plots the system non-linear model transfer function.  

First and third order amplitude transfer functions are shown in Fig. 5 and Fig. 6. 



 17 

 
Fig. 5 Linear System Gain 

 
 
 

 

 
Fig. 6 Third Order Non-linear System Gain 
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The program also generates and plots the output PSD vs. frequency for a first and third 

order non-linearity, shown in Fig. 7 and Fig. 8.    

 

 
Fig. 7 Output Power Spectral Density For Linear System 

 
 
 
 

 
Fig. 8 Output Power Spectral Density For Third Order Non-linear System 
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The program sets the input noise floor equal to the output noise floor and begins to find 

frequencies whose amplitude are greater than the output noise floor.  Some frequency 

components will form a distribution while others will be a single impulse.  The program will 

reduce a spectral distribution to an impulse centered at the centroid of the distribution.  It does 

this by looking for spectral distributions right next to each other and forming a group around that 

cluster ignoring DC.  Each cluster becomes a new row in a matrix allowing the program to count 

the number of frequency components and to reduce spectral distributions to an impulse centered 

at the centroid of the distribution.  While the amplitudes are summed to form a composite value, 

the spectral distributions are reduced by equation C6 of Appendix C.  The normalized output 

frequencies are then displayed on the screen by the program.  Once the output frequencies are 

known the program then creates a matrix of all possible combinations by dividing the normalized 

output frequencies by the fundamental frequencies in the input PSD.  The program then 

compares the results in this matrix to known harmonics from the second to the tenth and also 

compares the result to the input fundamental frequency or frequencies.  If two or more input 

frequencies are multiples of each other, their corresponding harmonics can not be mapped and 

the program ends.  The program would have to be restarted and new frequencies selected to 

continue. As long as the selected input frequencies are not multiples of each other, the program 

then begins to compute the harmonic power by summing all of the powers in each harmonic.  

Each individual harmonic power can be found by squaring the consolidated amplitude for each 

harmonic.  The fundamental power is calculated by summing the squares of each fundamental’s 

amplitude.  The total power is found by summing the fundamental power and the harmonic 

power.  As shown in equation 2.2, the % Total Harmonic Distortion is found by taking the square 
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root of the harmonic power divided by the total power and taking that result and multiplying by 

100.  The harmonic power, fundamental power, total power, and % Total Harmonic Distortion 

are all displayed on the screen.   
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THD Measurement Program 
Results of Test Signals and System Non-linearity 

 
 

Experimental Conditions:
waveshape = sinusoid, amplitude = 1, frequency = 700 Hz, sample frequency = 10 kHz, NPTS = 8192
(Refer to Equation 2.1)

Coefficients of nonlinearity % Total Harmonic
a0 a1 a2 a3 a4 a5 Distortion
0 1 0 0 0 0 0.00
0 0 1 0 0 0 100.00
0 0 0 1 0 0 31.52
0 0 0 0 1 0 100.00
0 0 0 0 0 1 45.34

0 1 1 0 0 0 44.77
0 1 1 1 0 0 30.43
0 1 1 1 0 1 30.30
0 1 1 1 1 0 51.05
0 1 1 1 1 1 43.78
0 1 1 0 1 0 71.03
0 1 1 0 0 1 34.27
0 1 1 0 1 1 54.55

0 1 0 1 1 1 30.67
0 1 0 0 0 1 19.17
0 1 0 0 1 1 34.92
0 1 0 1 1 0 31.10
0 1 0 1 0 1 23.14
0 1 0 1 0 0 14.08

0 0 1 1 1 1 64.37
0 0 1 0 0 1 68.86
0 0 1 0 1 0 100.00
0 0 1 1 0 0 59.79
0 0 1 1 0 1 48.14
0 0 1 1 1 0 81.11
0 0 1 0 1 1 86.12

0 0 0 1 1 1 48.63
0 0 0 1 0 1 38.01
0 0 0 1 1 0 60.71

0 0 0 0 1 1 69.63  
 

Table 1: Tabulated % THD Measurements for All Combinations of First thru Fifth Order Non-linearities 
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Chapter 4 
Incoherence Measurement Program 

Description of Incoherence Program as Implemented in Simulink® 

 
Fig. 9 Incoherence Distortion Measurement Model 

 
The Simulink® model for the incoherence measurement technique is shown in Figure 9.    

The signal source is a Gaussian white noise sequence of zero mean and unity variance.  This 

output is applied to the input of a low pass filter.  The function of this filter is to correlate the 

output sequence of the Gaussian noise source and to minimize aliasing errors.  Figure 10 displays 

the autocorrelation function of the random sequence at the output of the correlation filter.  The 

output of the low pass filter is applied to the input of the model representing the system under 

evaluation.  This input signal is also applied to one input of the coherence power spectrum 

estimation block, and to the input of a block representing the non-linear model for the system 
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under test.  The output of the non-linear model is applied to the input of a filter model 

representing the frequency and phase response model for the system under test.  Figure 11 shows 

the frequency and phase response of this filter.  The output of this block is applied to the other 

input of the coherence power spectrum estimation block.  The output of the coherence block is 

then subtracted from one to form the incoherence distortion power spectrum.  Figure 12 shows 

the incoherence distortion power spectral density for a linear system with a 100 Hz Bandpass 

filter.  Figures 13 through 16 show the incoherence distortion power spectral density for second 

through fifth order non-linearities respectively with a 100 Hz Bandpass filter.   
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Incoherence Measurement Program 
Results of Test Signals and System Non-linearity 

 
 
 

 
Fig. 10 Autocorrelation of Signal at Output of Correlation Filter 

 
 
 
 
 
 

 
Fig. 11 System Bandpass Filter Model 
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Fig. 12 Incoherence Distortion Power Spectral Density  

for a Linear System with a 100 Hz Bandpass Filter 
 
 
 
 
 
 
 
 

 
 

 
Fig. 13 Incoherence Distortion Power Spectral Density for a  

Second Order Non-linear System with a 100 Hz Bandpass Filter 
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Fig. 14 Incoherence Distortion Power Spectral Density for a 

Third Order Non-linear System with a 100 Hz Bandpass Filter 
 
 
 
 
 
 
 
 
 
 

 
Fig. 15 Incoherence Distortion Power Spectral Density for a 

Fourth Order Non-linear System with a 100 Hz Bandpass Filter 
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Fig. 16 Incoherence Distortion Power Spectral Density for a 

Fifth Order Non-linear System with a 100 Hz Bandpass Filter 
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Experimental Conditions:
waveshape = Gaussian Random Source, mean = 0, variance = 1, Fs = 10000 Hz,
samples/frame = 16384

(Refer to Equation 2.1)

Coefficients of nonlinearity % Average Incoherence Distortion
a0 a1 a2 a3 a4 a5 within test signal pass band
0 1 0 0 0 0 0.4613
0 0 1 0 0 0 72.72
0 0 0 1 0 0 29.26
0 0 0 0 1 0 71.23
0 0 0 0 0 1 50.07

0 1 1 0 0 0 23.69
0 1 1 1 0 0 19.40
0 1 1 1 0 1 21.42
0 1 1 1 1 0 32.15
0 1 1 1 1 1 35.10
0 1 1 0 1 0 48.98
0 1 1 0 0 1 28.94
0 1 1 0 1 1 39.70

0 1 0 1 1 1 24.19
0 1 0 0 0 1 18.78
0 1 0 0 1 1 28.17
0 1 0 1 1 0 20.41
0 1 0 1 0 1 21.86
0 1 0 1 0 0 5.71

0 0 1 1 1 1 59.36
0 0 1 0 0 1 51.17
0 0 1 0 1 0 74.13
0 0 1 1 0 0 62.69
0 0 1 1 0 1 51.06
0 0 1 1 1 0 68.30
0 0 1 0 1 1 66.30

0 0 0 1 1 1 51.21
0 0 0 1 0 1 37.22
0 0 0 1 1 0 51.54

0 0 0 0 1 1 57.23  
 

Table 2: Tabulated % Incoherence Distortion for All Combinations of First thru Fifth Order Non-linearities 
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Chapter 5 
Discussion of Results and Conclusions 

 
 

I. Total Harmonic Distortion 

Table 1 shows the results of an analysis of the total harmonic distortion for the non-linear 

system described in Equation 2.1.  All relevant combinations of the coefficients were examined, 

assuming values of either zero or one, in order to better see the interaction of powers of x  in 

Equation 2.1 on system non-linearitites.  This table verifies the calculated results of Appendix A.  

As noted earlier, as various order non-linearities are added together, the % THD measurement 

may actually drop.  The theoretical values matched the actual calculated values within expected 

computational errors.   

  

II. Incoherence 

Table 2 which tabulates the results of % incoherence distortion within the passband of the 

test signal shows that for single order non-linearities the even order non-linearities produce much 

higher distortion than odd-order non-linearitities.  This is to be expected since even-order non-

linearities are producing only positive polarity signals.  This results in extreme damage to the 

original signal.  Odd-order non-linearities produce significantly less distortion than even-order 

non-linearities but the distortion monotonically increases with increasing odd-order. 

 

The incoherence measure is much more sensitive to any type of amplitude, phase, or 

frequency non-linearity than traditional % THD measurements.  This makes it a very effective 

tool for characterizing audio system fidelity and replacing traditional measures of frequency and 

phase response and THD and IM measurements with a single measurement tool.   
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Chapter 6 
Areas for Future Investigation 

 
 

I. Multichannel Systems 

 
Fig. 17 Multi-channel Non-linear System Model 

 
Figure 17 shows the block diagram for a multi-channel audio system model.  The 

dimension of the input signal ( )tx  is m , while that of the output signal ( )ty  is n   In other 

words, there are m  input signal channels and n  output signal channels.   

 

Distortion modeling of multi-band systems could be represented as 
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Where the major diagonal components of the partitioned matrix represent the incoherence 

distortion power spectrum for each primary channel and the off diagonal components represent 

the interchannel cross coupling (i.e. interchannel cross talk or channel separation) incoherence 
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distortion power spectrum.  The off diagonal components are a measure of the interchannel cross 

coupling distortion.   

 

This represents an area of intense activity involving multichannel surround formats.  This 

technique represents a very effective tool to model the interchannel performance of a 

multichannel system and collect system performance data very rapidly.  This procedure could be 

performed periodically as part of a system maintenance schedule for proof of performance.   

 

II. Frequency Weighting 

The incoherence distortion measure could be enhanced by adding frequency contouring 

to the incoherence distortion power spectral density to allow for the dynamically changing 

frequency response of the human ear as a function of SPL.  In effect, the Fletcher-Munsen curves 

could be used to continuously shape the incoherence distortion power spectrum as a function of 

SPL.  This would give a more accurate measure of perceived distortion.   

 

III. Dynamically Changing Input Signal Amplitudes 

Further work needs to be performed in the application of a Gaussian white noise 

sequence with a slowly ramped variance.  This would allow measurement of system performance 

parameters over a contour of input signal power levels rather than at fixed input power levels.   

 

IV. Phase Incoherence Distortion 

Much more work is required to explore the benefits of measuring the phase angle 

spectrum of the incoherence distortion function and relating it to system non-linearities.   
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Appendix A 
Theoretical Calculation of Percent Total Harmonic Distortion (%THD) 

 
 

Percent total harmonic distortion is defined as,  
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where iP  is the average power in the thi  harmonic for 2≥i and the average power in the 

fundamental for .1=i  

 

Note: The average power associated with the DC component, (i.e. i = 0, P0), will be ignored 

since this does not contribute to any audible information.   

 

I.  Initially, a single sinusoidal frequency excitation will be assumed, 

where 

Ax sin=                                                                 (A2) 

 

For a 1st Order Linear System 

 

Axy sin==                                                             (A3) 

 

since no harmonic power is present, 
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For a 2nd Order Non-linear System 

 

( )AAxy 2cos1
2
1sin 22 −===  

A2cos
2
1

2
1
−=                                                          (A5) 

 

thus, from Eq. A1 and Eq. A5 
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For a 3rd Order Non-linear System 
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thus, from Eq. A1 and Eq. A7 
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For a 4th Order Non-linear System 
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8
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thus, from Eq. A1 and Eq. A9 
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For a 5th Order Non-linear System 
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thus, from Eq. A1 and Eq. A11 
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II. As a second case, two sinusoidal frequency excitations will be assumed, 
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For a 1st Order Linear System 
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For a 2nd Order Non-linear System 
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Thus from Eq. A1 and Eq. A16, 
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For a 3rd Order Non-linear System 
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Where the first term in Eq. A8 is  
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Where the fourth term in Eq. A18 is 
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Where the second term in Eq. A18 is 
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Where, the third term in Eq. A18 is 
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Thus by combining Eq. A19 thru Eq. A22 from Eq. A18 
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Thus from Eq. A1 and Eq. A23, 
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For a 4th Order Non-linear System (with 2 sinusoids) 
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Appendix B 
Frequency Normalization 

 
 

Let ( ) tftx 11 2sin π=                                                                                                                      (B1) 

 

If ( )tx1  is sampled at a rate, ,T such that 

sf
T 1
=                                                                 (B2) 

where sf  is the sampling rate, then the resulting sample ( )tx becomes, 

 

( ) nTfnTx 12sin π=  
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f
f

s

Δ

≡= 12sin π                                                (B3) 

where the normalized frequency  

     
s

n f
ff 1= ,  or 

( ) nfnx nπ2=                                                                    (B4) 
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Appendix C 
Derivation of Spectral Centroid 

 
 

Reducing a spectral distribution to an impulse centered at the centroid of the distribution 
 

Fig. 18 Centroid of Power Spectral Density 
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Where HedcbaLCENTROID AAAAAAAA ...++++++=                                                             (C3) 

 

The spectral centroid may be defined as, 
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Solving Eq. C3 for CENTROIDf , 
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Appendix D 
THD Program MATLAB Code 
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