
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

8-8-2007

Applying Grid-Partitioning To The Architecture of the Disaster Applying Grid-Partitioning To The Architecture of the Disaster

Response Mitigation (DISarm) System Response Mitigation (DISarm) System

Aline Vogt
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Vogt, Aline, "Applying Grid-Partitioning To The Architecture of the Disaster Response Mitigation (DISarm)
System" (2007). University of New Orleans Theses and Dissertations. 593.
https://scholarworks.uno.edu/td/593

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of New Orleans

https://core.ac.uk/display/216836233?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F593&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/593?utm_source=scholarworks.uno.edu%2Ftd%2F593&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Applying Grid-Partitioning To The
Architecture of the Disaster Response

Mitigation (DISarm) System

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Master of Science
in

The Department of Computer Science

By

Aline Vogt

B.S. University of New Orleans, 2003

August, 2007

ii

Copyright 2007, Aline Sewell Vogt

iii

Acknowledgements

I would like to thank Dr. Shengru Tu, my advisor, for providing me with the guidance needed to
see this research project through to its completion, and for the support and prodding that kept me
working when I would have given up.

I would also like to thank Dr. Mahdi Abdelguerfi and Dr. Vassil Roussev for being a part of my
thesis committee.

iv

Table of Contents

List of Figures ... v
List of Tables ... vi
Abstract ... vii
Chapter 1: Introduction ... 1
Chapter 2: Background ... 5

The Unified Process Methodology ... 5
Model-View-Controller Pattern and Multi-Tier System Perspective ... 6
Grid-Partition Approach ... 8
The J2EE Platform .. 9
The Integrated Development Environment ... 11

Chapter 3: Initial Requirements and Use Cases ... 12
Chapter 4: Initial System Design .. 17

Model Elements .. 17
Implementation ... 20
Design Review .. 23

Chapter 5: Additional System Requirements and Use Cases ... 25
Chapter 6: Impact to Model of Updated and Additional Requirements 27

Use Case: Update Incident Status ... 27
Use Case: Create Contract .. 29
Additional Use Cases .. 32
Review .. 34

Chapter 7: Improved Design ... 37
Updated Model Elements .. 37
Updated Implementation ... 41
Design Review of Updated Model .. 48

Use Case: Update Incident Status ... 48
Use Case: Create Contract .. 49
Additional Use Cases .. 50
Comparison Results .. 50

Chapter 8: Conclusion .. 53
References ... 55
Appendix 1: Use Case Catalog for Initial DISarm System ... 56
Appendix 2: Updated Use Case Catalog ... 62
Appendix 3: Grid Partitions .. 65
Vita .. 70

v

List of Figures

Figure 2-1: MVC [8] ... 7
Figure 2-2: Vertical partitioning [5] ... 8
Figure 2-3: Grid Partitioning .. 9
Figure 2-4: J2EE Server and Containers [4] ... 10
Figure 3-1: Initial Use Case Model ... 16
Figure 4-1: Initial Class Diagram ... 17
Figure 4-2: Update Incident Status Activity Diagram .. 18
Figure 4-3: Create Contract Activity Diagram ... 19
Figure 4-4: Data Model for Initial DISarm System .. 20
Figure 4-5: MVC – J2EE Relationship ... 24
Figure 5-1: Updated Use Case Model ... 26
Figure 6-1: Contract-Facility Tables ... 30
Figure 6-2: Revised Contract-Facility Tables ... 31
Figure 6-3: User Location Table ... 33
Figure 7-1: Updated Class Diagram ... 37
Figure 7-2: Revised Update Incident Status Activity Diagram .. 38
Figure 7-3: Revised Create Contract Activity Diagram ... 39
Figure 7-4: Updated Data Model .. 40
Figure 7-5: Use Case Packages ... 41
Figure 7-6: Contract Partitioning .. 46
Figure 7-7: Location ... 47
Figure 7-8: Report ... 48
Figure A- 1: User .. 65
Figure A- 2: UserReport ... 66
Figure A- 3: Search ... 67
Figure A- 4: Facility.. 67
Figure A- 5: Resource ... 68
Figure A- 6: Incident ... 69

vi

List of Tables

Table 2-1: The multi-tier architecture and the MVC perspective ... 7
Table 3-1: Initial Requirements .. 13
Table 3-2: Actor Catalog .. 15
Table 4-1: JSPs ... 21
Table 4-2: Servlets .. 21
Table 4-3: Session Beans .. 22
Table 4-4: Entity Beans .. 23
Table 5-1: Additional System Requirements .. 25
Table 6-1: Original and Revised Use Cases -- Update Incident Status .. 27
Table 6-2: Original and Revised Use Cases -- Create Contract .. 29
Table 6-3: Additional Use Case Register Location .. 32
Table 6-4: Search for Citizen .. 34
Table 6-5: ResourceServlet Functionality .. 35
Table 7-1: Updated JSPs ... 42
Table 7-2: Updated Servlets .. 43
Table 7-3: Updated Session Beans ... 44
Table 7-4: Updated Entity Beans .. 45
Table 7-5: Affect of Change on Original Model .. 51
Table 7-6: Affect of Change on Revised Model ... 52

vii

Abstract

The need for a robust system architecture to support software development is well known. In

enterprise software development, this must be realized in a multi-tier environment for deployment

to a software framework. Many popular integrated development environment (IDE) tools for

component-based frameworks push multi-tier partitioning by assisting developers with convenient

code generation tools and software deployment tools which package the code. However, if

components are not packaged wisely, modifying and adding components becomes difficult and

expensive. To help manage change, vertical partitioning can be applied to compartmentalize

components according to function and role, resulting in a grid partitioning. This thesis is to

advocate a design methodology that enforces vertical partitioning on top of the horizontal multi-

tier partitioning, and to provide guidelines that document the grid partitioning realization in

enterprise software development processes as applied in the J2EE framework.

System architecture
Software modeling
Enterprise software development
J2EE system design
Grid-partitioning software models

1

Chapter 1:Introduction

The model-view-controller (MVC) pattern is one of the mainstream software design

principles in software design. Applied to the system-level design of Web-based information

systems, the MVC pattern suggests separating the components along a number of divisions in

which the model-layer consists of the databases and the objects in the persistent layer; the view-

layer consists of Web page documents, Web browsers, and Web servers; the controller-layer is

represented by the logic in application servers and the programs (such as servlets and Web

services) that connect the application servers and the Web presentation documents. Modern

software frameworks such as the J2EE server and the .NET framework server realize the MVC

pattern in multiple tiers, and enforce partitioning in their architectures into high-level

components such as Web servers, application servers, databases, and Web clients.

Many popular integrated development environment (IDE) tools for component-based

frameworks such as IBM’s WebSphere and BEA’s WebLogic push multi-tier partitioning further

by assisting developers with convenient code generation tools and software deployment tools

which package the code along the MVC divisions. For example, nearly every enterprise-level

IDE can automatically generate all the required entity beans that relate to the data store, and pack

them into easy-to-deploy components. This great convenience often leads to unexpected

inflexibility. If the entity beans are not wisely packaged according to proper partitions, any

modification of an entity bean would require either regeneration of the entire entity bean

package, or tedious updates to beans and related files, such as deployment descriptors.

Almost every tutorial, textbook and technical article on development of J2EE Web

systems that I have reviewed advocates and teaches the multiple-tier architecture in an overly

simplified manner. Nearly every example in those training documents illustrates a facile

2

partitioning in deployment of the programs. Both the IDE tools and the tutorials encourage their

users to pack the components in each tier into a deployment unit – package. However, I have

realized in my practice that as a system becomes more complex, such a seemingly

straightforward partitioning results in a structure that is inflexible, and does not localize the

impact of software changes, especially the changes triggered when business functions are added.

This thesis is to advocate a design methodology that enforces vertical partitioning on top

of the horizontal multi-tier partitioning. Specifically, my methodology for development uses the

J2EE platform for enterprise software development. By vertical partitioning, I mean that

elements of the system will be compartmentalized according to function and role. The

implementation and deployment views will be partitioned as well. Thus, the servlets, session

beans, enterprise Java beans (EJBs) and the database structure will be compartmentalized

according to their function and role in a vertical partitioning. Using both MVC-guided division

and vertical partitioning will result in a design that forms a grid-like partitioning. Grid

partitioning is not a new idea; Moore and his group at IBM advocated its use and presented an

example of the design outcomes of such practice for a simple web application in [5].

There are many different development processes that have been advocated. However, as

Moore states in [9], “One of the reasons there is such a great variety in software development

processes is the fact that each project is different from every other project.” The reason that I

emphasize this approach in my thesis is that I have found no systematic methodology of

realization of grid partitioning as applied to an enterprise level project in any literature. It has

been largely ignored in classroom software education. The purpose of this thesis is to provide

guidelines that document the grid partitioning realization in enterprise software development

processes.

3

I will illustrate an example system that is adequately complex to justify the needs of the

grid-partitioning approach, and at the same time is small enough to be presented in this thesis.

This is the Disaster Response Mitigation (DISarm) System, a Web-based system that is to gather

information concerning the type and scope of natural and man-made disasters, and the needs of

citizens and governments during and after disasters. These metrics may then be used to gauge

the timeliness, adequacy and effectiveness of governmental response. The first-phase module of

the DISarm system was a subsystem that gathers information concerning the handling of garbage

and debris during and after disasters. Additional modules were to provide decision-making

assistance for use by emergency and disaster response teams, and to allow citizens to register

their locations while they are displaced during a disaster.

Particularly, I have documented the complete development process of the DISarm

system. This is important because tracing the impact to the design due to changes in

requirements provides us with clues as to how to systematically realize the grid-partitioning

approach. The DISarm system had to be powerful enough to capture the complex data needed

for study and analysis of disaster response, but at the same time had to present an interface to the

user that was easy to understand and navigate. J2EE was the choice of platform because this is a

proven robust, scalable and secure technology. However, using J2EE added additional

complexity and design issues to the development of the system. Careful planning and

meticulous design has been necessary. I have documented the lessons learned from the essential

system development process starting from collecting use cases, to use case realization,

component design, implementation supported by code generation, and deployment.

In order to validate the benefits of the grid-partitioning approach, such as flexibility and

extensibility, I have carried out a comparison study. In doing so, the system was designed in two

4

versions. The first version was the design of the first-phase module and used simple tier-by-tier

divisions. Then additional requirements relating to one of the additional modules (contact

information register) and updates to existing requirements were incorporated in the second

version. The effect of the changes was gauged. The second version of the design was carried

out according to the grid-partitioning approach. A comparison between the designs resulting

from the simple tier-by-tier partitioning approach and the grid-partitioning approach illustrated

that the grid-partitioning approach has the capability to minimize the impact caused by

components modification, addition or removal by localizing the effect of changes triggered by

new or updated system requirements.

The remaining parts of this thesis are organized as follows: Chapter 2 sets out the

background of the Unified Process and J2EE. Chapter 3 details the initial system requirements,

the actor catalog, and use cases. Chapter 4 contains the initial design. Chapter 5 sets out

additional requirements for the system. Chapter 6 discusses the impact of the additional

requirements on the original model, and the weaknesses of the original design. Chapter 7

updates the model, applying vertical partitioning and a clear delineation between components.

Finally, Chapter 8 concludes.

5

Chapter 2:Background

The Unified Process Methodology

Software development is traditionally divided into phases: requirements, design,

implementation, testing and release. This study focuses on the requirements and design phases

of software development, since the concentration herein is on system architecture.

Several methodologies were considered for design of the DISarm system. The

traditional waterfall methodology progresses in a linear fashion from requirements gathering to

the final release of the product. This method was not used because the DISarm system will

evolve over time as new requirements are gathered and implemented, and thus an iterative

approach was felt to be more appropriate.

There are a number of iterative approaches that could have been used. From these, the

Unified Process (UP) was chosen because of its clearly defined phases (Inception, Elaboration,

Construction, Transition) and workflow iterations within phases. The five core workflows are:

requirements, analysis, design, implementation, and test [1]. In the requirements workflow, user

requirements are gathered to capture system scope and functionality; in analysis, requirements

are refined and restructured; and in design, the system architecture is created [2]. The model

elements used to build the system architecture of the DISarm system are based on the “4+1”

View espoused by Philippe Kruchten [3]. Four views, the logical view, the physical view, the

process view and the development view, are organized around the fifth view, which is the use

case view [3].

The logical view describes functionality provided to the users. In the DISarm

architecture, this view is realized in a class diagram, as well as the entity-relationship diagram

(ERD). The process view is a variation on the logical view that includes non-functional

6

elements, such as performance and concurrency. The development view describes the system’s

organization, and is depicted in a package diagram. The physical view shows how the software

is deployed onto the hardware. It is represented in a deployment diagram. The fifth view, which

is the use case view, both unifies the other views, and provides a foundation from which the

other views may be developed.

The model diagrams for the DISarm system were produced using the Unified Modeling

Language (UML), which is an Object Management Group (OMG) standard for modeling

software artifacts [6]. There is a great deal of flexibility in how UML is used, and models may

be incomplete, or even inconsistent. Model elements may be hidden in some diagrams and

shown in others, depending on the purpose for which the diagram is constructed. However,

model semantics must be included for the model to have meaning [2].

ModelViewController Pattern and MultiTier System Perspective

The Model-View-Controller Pattern is illustrated in Figure 2-1. The model contains the

data components and business rules, which include accessing data and updating data in the data

store. The view handles the presentation of data to the user, and takes inputs from the user. The

controller acts as an intermediary between the model and view. It processes inputs from the

view and turns them into actions to be performed by the model [8].

7

Figure 2-1: MVC [8]

When applying the MVC pattern to the Web information systems at the system level, the

interactions (“state query”, “change notification”) between the Model and the View are cut off.

Rather, these interactions are allowed between the Model and the Controller. Thus, the widely

accepted multi-tier system architecture is defined as shown in the left-most column in Table 2-1.

The correspondence between the perspectives of the multi-tier architecture and the MVC is listed

in the right-most column of Table 2-1.

Table 2-1: The multi-tier architecture and the MVC perspective

Multi-tier system perspective Example components MVC perspective
Web server: presentation and
Web control

JSP, HTML View
Servlet, Web service Control Application server: business

logic
Session bean
Entity bean Model Database: data layer Database

8

GridPartition Approach

Moore, et al suggests using the divide and conquer approach of partitioning an

application into components for development [5], and state that when this approach is used, there

is a clear division of functionality into vertical partitions.

Figure 2-2: Vertical partitioning [5]

This is a fundamental approach incorporated in UP – which defines a component as a

“physical and replaceable part of a system that conforms to and provides the realization of a set

of interfaces.”

We take this approach a step further to document guidelines that will produce

components that may be split either into vertical partitions or the divisions of MVC, as shown in

Figure 2-3.

9

Figure 2-3: Grid Partitioning

The J2EE Platform

J2EE is a Java platform developed by Sun Microsystems to support the development and

deployment of multitier, Web-based applications. As of the version 1.5 release of J2EE, its

name was changed to Java EE; however, we continue to refer to it as “J2EE” as that is the name

in common use.

In J2EE applications, components are layered by functionality, and can be installed on

different servers according to their purposes. J2EE provides a “component-based approach to

the design, development, assembly and deployment of enterprise applications.” [4] The J2EE

container structure is shown in Figure 2-4.

10

Figure 2-4: J2EE Server and Containers [4]

The client layer can consist of either a thin, browser-based client, or a thick application

client. The web layer contains servlets and JSP pages. The JSPs form the View component of

the MVC pattern. The Controller consists of servlets, which process user requests and handle

system navigation. The Model component of the MVC pattern represents the business logic of

the application and is responsible for maintaining application data. It is implemented using

Enterprise JavaBeans (EJBs). The EJBs can be session beans (stateful or stateless), entity beans,

or message driven beans.

Since J2EE supports distributed transactional applications in a robust and secure

environment, it is a sound choice for implementation of the DISarm system. And although the

use of MVC is natural with J2EE, the separation of application components into vertical

partitions is not. As stated above, our goal is to show how the UP and UML can be used to

support the design and development of J2EE applications that are partitioned in a grid-like

pattern.

11

The Integrated Development Environment

In addition to the fundamental editing capabilities, integrated development environments

offer many services to developers such as debuggers and built-in compilers. When working with

J2EE applications, one of the more useful enhancements provided by some IDEs is automatic

bean generation. One such IDE is the Rational Application Developer (RAD).

RAD can be used to generate the basic code for servlets and EJBs. It provides a

mechanism for a bottom-up generation of the entity beans from tables in the database. The

process constructs the entity bean and the create, get and set methods needed to handle database

transactions, as well as the required interfaces to the entity bean. This can have its pitfalls,

however.

Updates to the database require updates to the corresponding entity beans. If some of the

entity beans have been modified by developers, automatic regeneration will overwrite the

developers’ code. We found through experience that it is easier and more reliable to regenerate

all of the entity beans contained in one package, rather than trying to regenerate only some of the

beans. This is because of the dependencies to the deployment descriptors and other modules that

the IDE will automatically update on bean regeneration. So, if beans are not packaged

efficiently, even a small change to the database can require regeneration of a large number of

entity beans. In order to avoid these problems, careful consideration must be given in the design

phase to how the beans will be packaged and deployed.

12

Chapter 3:Initial Requirements and Use Cases

We begin the development process for the DISarm system with the first step of the UP,

requirements gathering. As stated in the introduction, the DISarm architecture was built in two

iterations. In the first iteration, requirements were gathered and use cases were written for the

first-phase module, the module concerned with gathering information on garbage and debris

collection. The requirements gathering stage for the first-phase module is the subject of this

chapter. Based on use case analysis, design elements of the model were produced following the

MVC pattern, as set out in Chapter 4. Once the initial design was complete, we began the

second iteration by updating requirements and adding new requirements. This is the subject of

Chapter 5. Chapter 6 discusses the effects of the changes on the original design, and

implementation and deployment issues introduced by the use of J2EE as the application

framework. The architectural process is completed in Chapter 7, which shows the model as

revised using the grid-partition methodology.

The first module of DISarm is the module that accumulates data on garbage and debris

handling. Because garbage collection crosses both normal governmental services and disaster

response, it was chosen as the base module of the system.

The above statements set the scope of the initial system, e.g. the customer wants a system

that will provide for the input and storage of data relative to garbage and debris collection.

However, these statements do not define what the system will do and how it will do it. This will

be the focus of our requirements gathering. In order to determine what will be built, the

customer was interviewed and initial requirements were gathered. These requirements are

shown in Table 3-1:

13

Table 3-1: Initial Requirements
Number Requirement Statement
1 The DISarm system shall allow a citizen to create his/her user profile.
2 The DISarm system shall allow citizens to report incident(s) concerning

garbage/debris collection (on their own behalf or on other property).
3 The DISarm system shall allow citizens to enter the severity/urgency of an incident

reported.
4 The DISarm system shall allow citizens to update reports(s) they have made.
5 The DISarm system shall allow citizens to view reports and/or maps showing

incidents reported.
6 The DISarm system shall allow citizens to view report(s) showing information

concerning responses by contractors to incidents.
7 The DISarm system shall allow contractors to review reports.
8 The DISarm system shall allow contractors to enter the status of their responses to

incidents (active/closed).
9 The DISarm system shall allow contractors to view report(s) showing information on

incidents entered and responses to incidents.
10 The DISarm system shall allow contractors to update the status field of utilities and

other facilities.
11 The DISarm system shall allow government officials to verify reports entered by

citizens.
12 The DISarm system shall allow government officials to create incidents.
13 The DISarm system shall allow government officials to associate citizen reports to

incidents.
14 The DISarm system shall allow government officials to enter information concerning

contractor companies, including company location, type of business, company
contact.

15 The DISarm system shall allow government officials to enter information concerning
contractor performance.

16 The DISarm system shall allow government officials to enter information concerning
contracts.

17 The DISarm system shall allow government officials to enter information concerning
facilities.

18 The DISarm system shall allow government officials to enter information concerning
resources available for disaster response (including type of resource, location of
resource, available transport).

19 The DISarm system shall allow government officials to view reports on incidents and
responses.

20 The DISarm system shall allow an Emergency Manager to allocate resources to
respond to an incident.

21 The DISarm system shall allow an Emergency Manager to enter and update
information concerning contractors, contracts and contractor facilities.

22 The DISarm system shall allow an Emergency Manager to view all available reports.

It is apparent that the above requirements are not sufficient to allow coding of the

DISarm system to begin. At best, these requirements are incomplete; at worst they may be vague

14

or misleading – and this is only a short list of requirements for a system that initially will be

relatively small. As stated by Jacobson, Booch and Rumbauch in [1], it is “absurd to believe that

the human mind can come up with a consistent and relevant list of requirements in the form ‘The

system shall’” A more intuitive way to capture requirements is through use cases. Use

cases are written from the point of view of the users of the system, and thus facilitate

communication with the customer as to what the system will do. But this is not the only function

use cases serve. They also form a foundation from which the rest of development work can flow

[1].

Discovering the use cases pertinent to a system can be challenging. The best way is to

determine the actors (users) who participate in the system, and then examine how each actor will

use the system [2]. To find the basic use cases for the DISarm system, the requirements listed in

Table 3-1 were reviewed. The following actors were found: Citizens, Contractors, Government

Officials and Emergency Managers. The requirements were then reviewed for information on

how each of these actors will participate in the system. Finally, the use cases were inspected to

find any missing actors and use cases. The only omission made is that an Application Manager

will be needed to create user accounts for privileged users, such as the government officials and

emergency managers. The actors and their roles are summarized in the DISarm actor catalog

shown in Table 3-2:

15

Table 3-2: Actor Catalog
Actor Description

Application
Manager

Human actor responsible for
• creating user accounts for government officials and

emergency managers
Citizen Human actor responsible for

• creating his/her user profile
• making reports(s)
• update his/her own reports
• viewing reports

Contractor Human actor responsible for
• updating incidents (i.e., active/closed)
• updating status field of utilities
• viewing reports

Government
Official

Human actor responsible for
• verifying citizen reports
• creating incidents
• entering contractor information
• entering contract information
• entering facility information
• updating contractor performance information
• entering information on emergency resources
• viewing reports

Emergency
Manager

Human actor who:
• has role of government official
• managing resources
• allocating resources

The requirements were then reviewed to determine how each of the above actors would

participate in the DISarm system. Based on this review, an initial use case model was

developed, as shown in Figure 3-1. The use case model consists of the graphical representations

of the use case, and the textual specifications that form the backplane of the model [1].

16

DISarm

Report Incident

Update Report

View Reports

Citizen

Contractor

Government
Official

Emergency
Manager

Create User Profile

Login

Update Incident
Status

Verify Report
Create Incident

Create Contractor
Company

Create Contract

Evaluate Company

Create Facility

Update Facility
Status

Create Resource

Allocate Resources

Create User Account

DISarm User

System
Administrator

«uses»

Figure 3-1: Initial Use Case Model

The use case specifications for the initial DISarm system are set out in Appendix 1.

Primary actors are the users who initiate a use case; participating actors join in or are the

beneficiary of the actions of a primary actor. The steps set out for each use case are a first-level

break out of how the actors will interact with the DISarm System, and for the most part only

detail the primary flows of the use case.

17

Chapter 4: Initial System Design

Model Elements

Once the initial requirements of a system have been documented in use cases, the use

cases can be studied to gather the information necessary to create analysis and design models.

The goal is to produce “consistent models that are sufficiently complete to allow construction of

a software system.” [2] For the initial iteration of the DISarm design, it was determined that in

addition to the use case model, a class diagram, ERD, and one or two activity diagrams would

form an adequate blueprint for the system.

As stated above, the UP and UML provide a great deal of flexibility as to the level of

detail that must be included in a model. For a class model, the only required element is the name

compartment with the class name [2]. We have chosen to include key attributes and key

operations in addition to the class name. Entity classes may be found by studying use cases, the

information involved, and how the information will be manipulated [1]. This methodology was

used for DISarm and the initial class diagram is shown in Figure 4-1.

Figure 4-1: Initial Class Diagram

18

Most of the workflows of the DISarm system were straightforward and easily understood,

so it was not felt that a large number of activity diagrams were needed to enhance understanding

of the system. The activity diagram for the use cases Update Incident Status and Create Contract

are included, as these use cases will be updated in the modified system described in future

chapters.

Select Active
Incident Report

Enter Notes

Close Incident

[User is Contractor]

[Save notes in progress]

[Finalize incident]

Figure 4-2: Update Incident Status Activity Diagram

As may be seen from Update Incident Status activity diagram in Figure 4-2, this activity

is straightforward and simple – a contractor user is allowed to set the status of an incident to

closed (inactive).

19

Figure 4-3: Create Contract Activity Diagram

The Create Contract activity diagram is somewhat more interesting. It shows that the

activities of Create Contract take place in parallel, which informs the web designer that the web

page for Create Contract should display these options on the same web page, and it also has

branching flows, where Create Contractor Company and Create Facility are optional flows that

execute if the company or facility to be associated to the contract do not exist.

The final diagram of the initial system model is the ERD. This was developed from the

class diagram and use cases to contain the tables and the table attributes that will be required for

persistent data storage. This model is depicted in Figure 4-4.

20

Figure 4-4: Data Model for Initial DISarm System

Implementation

The ERD completed our initial design, and development moved into the implementation

phase. Based on the design, the J2EE components identified as being needed were JSPs,

servlets, session beans and entity beans.

21

The JSPs needed were determined by reviewing the use cases, and are listed in Table 4-1.

Table 4-1: JSPs
JSPs

Login.jsp CreateUserProfile.jsp CreateIncident.jsp
CitizenIncidentReport.jsp UpdateUserProfile.jsp IncidentStatusUpdate.jsp
CitizenReportUpdate.jsp VerifyCitizenReport.jsp CreateContractorCompany.jsp
CreateResource.jsp AllocateResource.jsp CreateUserAccount.jsp
CreateContract.jsp CreateFacility.jsp ViewCitizenReport.jsp
EvaluateCompany.jsp UpdateFacilityStatus.jsp ViewContractors.jsp
ViewIncident.jsp ViewResources.jsp ViewFacilities.jsp
ViewContracts.jsp ViewUserAccounts.jsp

The JSPs were placed in a WebContent folder, to be deployed to the web container of the

J2EE Server.

The servlets process user requests and construct responses, and control navigation

through the application. The servlets for the initial DISarm system, and a brief description of the

user requests handled by the servlets, are shown in Table 4-2. The servlets were packaged in a

JavaResource folder for deployment to the web container of the J2EE Server.

Table 4-2: Servlets
Servlet Function Related JSPs
IncidentServlet Handles requests to make

reports, create incidents, and
updates to incidents and
reports.

CitizenIncidentReport.jsp,
CitizenReportUpdate.jsp,
VerifyCitizenReport.jsp, CreateIncident.jsp,
IncidentStatusUpdate.jsp

UserServlet Handles user accounts Login.jsp, CreateUserProfile.jsp,
UpdateUserProfile.jsp, CreateUserAccount.jsp

ReportServlet Handles all requests to view
reports

ViewIncident.jsp, ViewContracts.jsp,
ViewCitizenReport.jsp, ViewResources.jsp,
ViewUserAccounts.jsp, ViewContractors.jsp,
ViewFacilities.jsp

ResourceServlet Handles requests to create
companies, facilities,
resources, and contracts and
all requests for updates to
resources

CreateContractorCompany.jsp,
CreateResource.jsp, CreateFacility.jsp,
UpdateFacilityStatus.jsp, CreateContract.jsp,
EvaluateCompany.jsp, AllocateResource.jsp

Session beans are needed to hold the methods that implement the business logic of the

system. Stateless session beans do not hold the client’s conversational state. Stateless session

22

beans may be accessed by multiple clients, and thus offer better performance and scalability [4].

The stateless session beans for the DISarm system correspond to the servlets. At least one

stateful session bean is needed to support a client’s transient interaction with the system. In the

DISarm system, this is the SessionManagerBean. Beans are accessed through interfaces. The

home interface defines bean life cycle methods; business methods are defined in either the local

home interface (for local access) or remote interface (for remote access) [7].

The automatic generation capabilities of the IDE were used to create the session beans

and their interfaces; the beans were then modified as necessary to add methods to support the

business logic of the system. The session beans and their interfaces were placed in an

EJBSession package for deployment to the EJB container of the J2EE server. The DISarm

session beans are listed in Table 4-3.

Table 4-3: Session Beans
Bean Local Interfaces Remote Interface
SessionManagerBean SessionManagerHome SessionManager
IncidentManagerBean IncidentManagerLocal,

IncidentMangerLocalHome
N/A

UserManagerBean UserManagerLocal,
UserManagerLocalHome

N/A

ReportManagerBean ReportManagerLocal,
ReportManagerLocalHome

N/A

ResourceManagerBean ResourceManagerLocal,
ReportManagerLocalHome

N/A

Finally, entity beans are needed to handle persistent data. Entity beans may be

instantiated using bean-managed persistence (BMP) or container-managed persistence (CMP).

BMP beans contain code to access the database; in CMP beans this function is handled by the

container [7]. CMP beans were chosen for the DISarm system, and were generated using the

built-in capabilities of the IDE to create CMPs from database tables. The DISarm entity beans

23

and related classes are listed in Table 4-4. They were deployed to the EJB Container of the J2EE

Server.

Table 4-4: Entity Beans
Entity Bean Interfaces Key class
DM_Facility DM_FacilityLocal,

DM_FacilityLocalHome
DM_FacilityKey

DM_Contract DM_ContractLocal,
DM_ContractLocalHome

DM_ContractKey

DM_Company DM_CompanyLocal,
DM_CompanyLocalHome

DM_CompanyKey

DM_Manage DM_ManageLocal,
DM_ManageLocalHome

DM_ManageKey

DM_Incidence DM_IncidenceLocal,
DM_IncidenceLocalHome

DM_IncidenceKey

DM_UseFacility DM_UseFacilityLocal,
DM_UseFacilityLocalHome

DM_UseFacilityKey

DM_Use DM_UseLocal,
DM_UseLocalHome

DM_UseKey

DM_Resources DM_ResourcesLocal,
DM_ResourcesLocalHome

DM_ResourcesKey

DM_ResourceFood DM_ResourceFoodLocal,
DM_ResourceFoodLocalHome

DM_ResourceFoodKey

DM_Resource_Transport DM_Resource_TransportLocal,
DM_Resource_TransportLocalHome

DM_Resource_TransportKey

DM_Resource_Construct DM_Resource_ Construct Local,
DM_Resource_ Construct LocalHome

DM_Resource_ Construct Key

DM_User DM_UserLocal, DM_UserLocalHome DM_UserKey
DM_Report DM_ReportLocal,

DM_ReportLocalHome
DM_ReportKey

DM_Reported DM_ReportedLocal,
DM_ReportedLocalHome

DM_ReportedKey

Design Review

It is apparent that the DISarm components naturally fall into the MVC pattern when

implemented in the J2EE framework. The relationship of the components of the initial DISarm

model to MVC is shown in Figure 4-5.

24

Figure 4-5: MVC – J2EE Relationship

The complexity of the J2EE implementation is substantiated by the number of classes

required to instantiate the system. In order to make implementation manageable, it is crucial to

take advantage of the automatic generation capabilities of the IDE.

25

Chapter 5: Additional System Requirements and Use Cases

As with most software systems, the needs of the users of the DISarm system will change

over time. Additional system requirements came when the first module was completed. This

formed a good case to experiment with the change impact to the original design.

Table 5-1: Additional System Requirements

Number Requirement Statement
23 The DISarm system shall allow government officials to update the status of an

incident (active/completed), that is, a government official can override a contractor
response.

24 The DISarm system shall allow one contract to cover more than one facility.
25 The DISarm system shall allow citizens to register their current location during an

evacuation (location/contact information/safety status).
26 The DISarm system shall allow citizens to update their location information.
27 The DISarm system shall have the capability to associate information a citizen enters

for current location to the citizen’s home address.
28 The DISarm system shall allow users to view a citizen’s location information by

searching on the citizen’s name/home address.
29 The DISarm system shall allow government officials to enter location information on

behalf of a displaced citizen (location/contact information/safety status).
30 The DISarm system shall allow government officials to update a citizen’s location

information.

The above requirement statements were analyzed to discover actors and use cases. There

were no new actors added to the DISarm system by the additional requirements. However, it

was determined that two use cases would require updating, and in addition several new use cases

were added. The updated use case model is shown in Figure 5-1. Updated use cases are

highlighted in yellow; additional use cases are highlighted in blue. The specifications for the

additional use cases are detailed in Appendix 2.

26

DISarm

Report Incident

Update Report

View Reports

Citizen

Contractor

Government
Official

Emergency
Manager

Create User Profile

Login

Update Incident
Status

Verify Report

Create Incident

Create Contractor
Company

Create Contract

Evaluate Company

Create Facility

Update Facility
Status

Create Resource

Allocate Resources

Create User Account

DISarm User

System
Administrator

«uses»

Register Location

Update Location

Search For Citizen

Enter Citizen
Location

Update Citizen
Location

Updated Use Case

Additional Use
Cases

Figure 5-1: Updated Use Case Model

27

Chapter 6: Impact to Model of Updated and Additional
Requirements

Three types of changes to the DISarm system were triggered by the additional

requirements. The first type of change adds additional functionality within an existing module,

but does not affect the data model. Requirement 23 is such a change. The next type of change

updates existing functionality, but requires a change to underlying data structure to capture

additional data. Finally, Requirements 25 through 30 encompass new system functionality,

which require creation of new user interface components, the implementation of new methods,

and additions to the data structure.

Use Case: Update Incident Status

The change to Requirement 23 adds functionality to allow a government official to

override the status that a contractor has entered for an incident. The use case that traces to

Requirement 23 is Update Incident Status, listed in the use case catalog in No. 8. The original

and updated use cases are listed in Table 6-1, with the updates being highlighted in yellow.

Table 6-1: Original and Revised Use Cases -- Update Incident Status

ID

U
se

 C
as

e
N

am
e

Pr
im

ar
y

A
ct

or

Pa
rti

ci
pa

nt
/

B
en

ef
ic

ia
ry

A

ct
or

s

St
ep

s

8 Update
Incident
Status

Contractor Citizen,
Government

Official,
Emergency

Manager

1. The Contractor selects an active incident report to
review.

2. The DISarm System displays the selected report.
3. The Contractor enters notes about the incident.
4. The Contractor updates the status of the incident to

closed.
5. <<alternative flow to #4>> If the Contractor

chooses to save notes in progress, the status of the
incident remains active.

6. Submit.
7. The DISarm System saves the updated information

in the system.

28

ID

U
se

 C
as

e
N

am
e

Pr
im

ar
y

A
ct

or

Pa
rti

ci
pa

nt
/

B
en

ef
ic

ia
ry

A

ct
or

s

St
ep

s

8r Update
Incident
Status

Contractor,
Government

Official

Citizen,
Government

Official,
Emergency
Manager,
Contractor

1.The Contractor/Government Official selects an
active incident report to review.

2. <<alternative flow to #1>> If the user is a
Government Official, he/she may select a closed
incident.

3. The DISarm System displays the selected report.
4. The Contractor/ Government Official enters notes

about the incident (optional).
5. The Contractor/ Government Official updates the

status of the incident to closed.
6. <<alternative flow to #4>> If the Contractor

Government Official chooses to save notes in
progress, the status of the incident remains active.

7. Submit.
8. If the Actor is the Contractor, the DISarm System

saves the notes as Contractor notes, else the system
saves the notes as Government Official notes.

9. The system saves the status of the incident

The design artifacts were reviewed to determine the effect of the changes to Update

Incident Status. A review of the data model and other use cases showed that the data structure

and methods needed to make this change were already in place in the system. This is because

the use case Create Incident contains the provision that a government official may enter notes, so

the design decision was made to simply append any new notes entered for Update Incident Status

to existing notes (if any) using the data structure and methods already in place. It was possible to

implement this change by updating the page currently in place for the contractor to set the

incident status, namely IncidentStatusUpdate.jsp, and the underlying servlet, ResourceServlet, to

allow a user with the role of government official to make updates. Therefore, the change to

Update Incident Status can be classified as a minor change that has little impact, and it need not

be considered further.

29

Use Case: Create Contract

The next change to the requirements had more effect. Additional Requirement 24 states

that a contract may cover more than one facility. This requirement is covered by the Create

Contract use case listed in the catalog as No. 10. The original and updated use cases are shown

in Table 6-2, again with the differences being highlighted in yellow.

Table 6-2: Original and Revised Use Cases -- Create Contract

ID

U
se

 C
as

e
N

am
e

Pr
im

ar
y

A
ct

or

Pa
rti

ci
pa

nt
/

B
en

ef
ic

ia
ry

A

ct
or

s

St
ep

s

10 Create
Contract

Government
Official

Contractor,
Emergency
Manager

1. The Government Official selects to create a
contract.

2. The Government Official selects the contract type.
3. The Government Official selects the company from

a list of contractor companies in the DISarm
System.

4. The Government Official selects the related facility
from a list of facilities.

5. The Government Official enters a description of the
contract.

6. Submit.
7. The contract information is stored in the system.
8. <<alternative flow to #3>> If the company is not

in the system, the use case Create Contractor
Company is performed and flow of control returns
to step 3.

9. <<alternative flow to #4>> If the facility is not in
the system, the use case Create Facility is
performed and flow of control returns to step 4.

30

ID

U
se

 C
as

e
N

am
e

Pr
im

ar
y

A
ct

or

Pa
rti

ci
pa

nt
/

B
en

ef
ic

ia
ry

A

ct
or

s

St
ep

s

10r Create
Contract

Government
Official

Contractor,
Emergency
Manager

1. The Government Official selects to create a
contract.

2. The Government Official selects the contract type.
3. The Government Official selects the company from

a list of contractor companies in the DISarm
System.

4. The Government Official selects the related
facility/facilities from a list of facilities.

5. The Government Official enters a description of the
contract.

6. Submit.
7. The contract information is stored in the system.
8. <<alternative flow to #3>> If the company is not

in the system, the use case Create Contractor
Company is performed and flow of control returns
to step 3.

9. <<alternative flow to #4>> If a required facility is
not in the system, the use case Create Facility is
performed and flow of control returns to step 4.

The update to this use case forced by new Requirement 24 has more effect that one might

think, because it changes the relationship between a contract and a facility from a one-to-one

relationship to a one-to-many relationship. The original data structure created to hold contract

information is shown in Figure 6-1.

Figure 6-1: Contract-Facility Tables

31

If the data model is not changed, data normalization will be broken, since for every

contract that controls more than one facility, the row in the database for that contract will be

repeated in order to relate each facility to the contract. This will result in the contract type and

description information for the same contract being stored multiple times in the database. This

makes updating the data more difficult, and adds the risk that inconsistent data will be stored for

a contract. To avoid this risk the data model will be updated to add a relationship between

contract and facility, as shown in Figure 6-2.

DM_CONTRACT

ID

CONTRACT_TYPE
DESCRIPTION

FK1 COMPANY_ID

DM_FACILITY

PK ID

NAME
FK1 IMPORTANCE
FK2 STATUS

DATE_START
DATE_DEPLOY
DATE_RETIRE
CITY
STATE
STREET
ZIP

DM_CONTRACT_FACILITY

PK,FK1 FACILITY_ID
PK,FK2 CONTRACT_ID

Figure 6-2: Revised Contract-Facility Tables

The updates to the data model will trigger revisions to the existing entity bean

DM_Contract, its key class, DM_ContractKey, and its interfaces, DM_ContractLocal and

DM_ContractLocalHome. It will also trigger the creation of a new entity bean and its related

classes for DM_ContractFacility. In addition to the revision to the data model and

corresponding entity beans, the web page CreateContract.jsp, the ResourceServlet, the

ResourceManagerBean and SessionManager beans will also require modification. The web page

will be modified to allow the selection of more than one facility, the resource servlet will be

modified to accept a multi-dimensional array instead of a single value, the SessionManager will

be modified to update the arguments passed by it to the ResourceManagerBean, and finally, the

32

ResourceManagerBean will be modified to loop through the facility array to create the

relationship for each facility associated.

Additional Use Cases

 Our third type of change is driven by additional requirements for the system. Additional

Requirements 25 through 30, set out in Table 5-1, list the requirements for the location module

of the DISarm system, and the new use cases corresponding to these requirements are detailed in

Appendix 2 under numbers 17-21. The primary functionality added is set out in use case No. 17,

Register Location, shown in Table 6-3 for the reader’s convenience.

Table 6-3: Additional Use Case Register Location

ID

U
se

 C
as

e
N

am
e

Pr
im

ar
y

A
ct

or

Pa
rti

ci
pa

nt
/

B
en

ef
ic

ia
ry

A

ct
or

s

St
ep

s

17 Register
Location

Citizen DISarm
Users

1. The citizen selects to Register Location.
2. The citizen enters information on current

location: address, email, phone number.
3. The citizen enters notes on health/safety status.
4. Submit.
5. The DISarm system saves the citizen’s current

location information and associates it to this
user.

The business rule inferred from Step 2 of the use case is that each citizen may register

only one current location. Step 5 states that the information will be associated to the user, but it

does not state how. Because of the one to one relationship between a user and current location,

there is a choice of design for data storage: the current location can be saved as an attribute of

the user; or, an additional data structure can be added to store the user’s current location.

Because the latter design offers more flexibility, i.e. it allows current location to be treated as a

separate component, it was the design chosen. The new data structure is shown in Figure 6-3.

33

Note that there are two relationships between DM_USER and DM_USER_LOCATION. This is

because the DM_USER_ID is the primary key of DM_USER_LOCATION, which creates the

association of user to location, and secondly because the user id of the individual entering the

information is stored to allow traceability to the government official who might enter this

information on behalf of a citizen.

Figure 6-3: User Location Table

A new entity bean will be generated for DM_USER_LOCATION. A new JSP will be

required, RegisterLocation.jsp, and based on our choice to maintain location as a separate

module, a new servlet, UserLocationServlet, and a new session bean, UserLocationManagerBean, will

be added.

The second interesting use case added is No. 19, Search For Citizen, which is shown in Table 6-4.

This functionality will not touch the underlying data structure except to retrieve information, and thus no

updates to the data model are necessary. It is treated as a separate component, however. This is because

it is anticipated that other types of searches will be added in the future, and Search For Citizen will be a

generic search that can be the foundation for other implementation. The additional classes needed for this

component are: SearchForCitizen.jsp, SearchServlet, and SearchManagerBean.

34

Table 6-4: Search for Citizen
ID

U
se

 C
as

e
N

am
e

Pr
im

ar
y

A
ct

or

Pa
rti

ci
pa

nt
/

B
en

ef
ic

ia
ry

A

ct
or

s

St
ep

s

19 Search for
Citizen

DISarm
Users

 1. The user selects to search for citizen.
2. The user enters search parameters (name, and/or

home address).
3. Submit.
4. The DISarm system displays the location

information associated to this citizen.
5. <<alternative flow to #4>> If no location

information is associated to the citizen, the
system displays the citizen’s home address with
a message that no updated information is
available.

Review

From the preceding discussion, it can be seen that how much rework is needed when new

requirements are discovered or existing requirements are updated is driven by the strength of the

system design.

What should have been a relatively small change to the Create Contract use case required

the regeneration of all of the entity beans, since we were using the automatic generation feature

of our IDE to generate the beans and packed all the entity beans into one package. It could be

argued that the better alternative would be to individually update the affected entity bean,

generate a new bean for the new table, and thus avoid this issue. However, as stated in Chapter

2, we found it easier and more time efficient to allow the IDE to handle the chore of updating

deployment descriptors and other references, rather than our updating the entity beans and then

having to debug any problems that might ensue.

35

Although the remaining modifications triggered by the update to Create Contract do not

seem to have a significant impact, the design review which was conducted to determine how to

implement this change raised several issues.

One issue is how the functionality of the system was apportioned among the servlets and

session beans. As stated above, the modifications to Create Contract touched the

ResourceServlet and the ResourceManagerBean. But in modifying these classes to update

contract functionality, we had the risk of inadvertently modifying unrelated code, since the code

relating to resources and facilities was also included in this module. This uncovers a design flaw

– our original choice to have only four servlets and their corresponding session beans results in

classes that are too large and not cohesive. The original design of the ResourceServlet is

reiterated in Table 6-5.

Table 6-5: ResourceServlet Functionality
Servlet Function Related JSPs
ResourceServlet Handles requests to create

companies, facilities,
resources, and contracts and
all requests for updates to
resources

CreateContractorCompany.jsp,
CreateResource.jsp, CreateFacility.jsp,
UpdateFacilityStatus.jsp, CreateContract.jsp,
EvaluateCompany.jsp, AllocateResource.jsp

At the time the original system was designed, it seemed appropriate to bundle all the

functionality relating to companies, facilities, resources, and contracts together, since companies

have contracts, companies use resources, and contracts control facilities. The better choice is to

separate these components, since a change to a contract should not affect a resource or how a

resource is allocated.

Another issue is that our original design does not readily permit multiple developers to

work on the project concurrently. If, for example, an additional requirement had been included

that necessitated an update to resources, the modification to the contracts piece and the

36

modification to the resource piece could not have been made concurrently, since the functionality

is contained in the same component. Again, the better design is to separate these components, so

that one developer may update the contract piece while the other updates resources, without

having to worry about integrating updated code into the same component.

The new use cases for registering a location do not raise any additional issues. The

lessons learned from a review of the create contract implementation guided us to the decision that

location should be a separate component. To accomplish this goal, we will apply vertical

partitioning.

The conclusion is that despite the partitioning of DISarm into the divisions of model,

view, and controller, our initial design failed. Because of our reliance on the IDE to perform

some of the tedious tasks of bean generation and deployment descriptor management, we fell into

the trap of inadequately partitioning the system elements, and our design was not truly

component based. It is apparent to us applying vertical partitioning to the MVC design becomes

critical to control change. We set out the improvement of the model in Chapter 7.

37

Chapter 7: Improved Design

Updated Model Elements

As per the discussions in Chapter 6, we have concluded that our original design was

flawed and inadequate. In this chapter, we update the design artifacts that were produced and

documented in Chapter 5, using the process that will produce the grid pattern architecture. The

first design artifact to be updated is the class diagram, shown in Figure 7-1.

+createProfile()
+createUserAccount()

-firstname
-lastname
-username
-password
-street
-city
-state
-zip
-phone
-email
-type

User

+create()
+evaluate()
+setContract()
+manageIncident()

-name
-street
-city
-state
-zip
-business
-contact

Company

+makeReport()
+validateReport()

-street
-city
-state
-zip
-date
-type
-description
-verified
-isactive

Report +createFacility()
+updateStatus()

-name
-importance
-status
-street
-city
-state
-zip

Facility

+createIncident()
+updateStatus()

-name
-date
-notes
-severity
-status

Incident

+createContract()

-company
-facility

Contract

+createResource()
+allocateResource()

-name
-location
-type
-ownerCompany

Resource

1
0..*

1 1 1 0..*

1

0..*
1

0..*

0..*1

1

0..*

* *

+createLocation()
+updateLocation()

-street
-city
-state
-zip
-email
-phone
-notes

Location

11

New

Figure 7-1: Updated Class Diagram

The class diagram now reflects the one to many relationship between a contract and a

facility, and contains the new class needed to enable a user to register his or her location if forced

to evacuate during a disaster. An argument could be made that since the relationship between

user and location is a one to one relationship, the secondary location could be maintained as an

attribute of a user. The design decision was to create the location as a separate class, as this

38

allows the location and the functionality required to instantiate it to be treated as a separate

component.

The revised activity diagram for Update Incident Status is shown in Figure 7-2. The

change needed to implementation can easily be seen in this diagram – we must provide

functionality that allows a government official to reopen an inactive (closed) incident.

Figure 7-2: Revised Update Incident Status Activity Diagram

The next diagram, Figure 7-3, is the updated Create Contract Activity Diagram. The

update to this diagram adds a flow of control that allows the user to continue to select or create

facilities until the needed facilities have been chosen. The impact of this change will be

discussed in the section on Design Review below.

39

Figure 7-3: Revised Create Contract Activity Diagram

The last of our design artifacts updated from those created for the first iteration is the data

model, shown in Figure 7-4. A new table for user location was added to store the relationship

table between contract and facility. The contract table was also updated, to remove the previous

primary key of company id and facility id, and to give it a primary key id instead. The company

id became a foreign key relationship.

40

DM_RESOURCE_FOOD

EXPIRE_DATE
FK1 RESOURCE_ID

DM_RESOURCE_TRANSPORT

TRANSPORT_TYPE
MODEL

FK1 RESOURCE_ID

DM_COMPANY

PK ID

NAME
STREET
CITY
STATE
ZIP
BUSINESS
NSA

FK1 CONTACT_ID
RATING
RATING_NOTES

DM_RESOURCES

PK ID

NAME
FK1 OWNER_COMPANY

LOCATION
TYPE

DM_MANAGE

FK1 COMPANY_ID
FK2 INCIDENCE_ID

DATE_FROM
DATE_TO

DM_REPORT

PK ID

STREET
CITY
STATE
ZIP
RPT_DATE
TRASH_SEVERE
APPLIANCE_SEVERE
TREE_SEVERE
DESCRIPTION
ACTIVE
ISVERIFIED
VERIFY_NOTES

DM_USE

FK2 COMPANY_ID
FK1 RESOURCE_ID
FK3 INCIDENCE_ID

USE_DATE

DM_CONTRACT

ID

CONTRACT_TYPE
DESCRIPTION

FK1 COMPANY_ID

DM_FACILITY

PK ID

NAME
FK1 IMPORTANCE
FK2 STATUS

DATE_START
DATE_DEPLOY
DATE_RETIRE
CITY
STATE
STREET
ZIP

DM_USER

PK ID

FIRSTNAME
LASTNAME
USERNAME
PASSWORD
STREET
CITY
STATE
ZIP
EMAIL
PHONE
TYPE

DM_REPORTED

FK2 USER_ID
FK1 REPORT_ID

DM_RESOURCE_CONSTRUCT

UNIT
MODEL

FK1 RESOURCE_ID

DM_USE_FACILITY

FK1 FACILITY_ID
FK2 INCIDENCE_ID

DM_INCIDENCE

PK ID

NAME
FK1 SEVERE
FK2 STATUS

DATE_HAPPEN
CONTRACTOR_NOTES
GOV_OFFICIAL_NOTES

FK3 DM_REPORT

DM_CONTRACT_FACILITY

PK,FK1 FACILITY_ID
PK,FK2 CONTRACT_ID

DM_USER_LOCATION

PK,FK1 USER_ID

STREET
CITY
STATE
ZIP
EMAIL
PHONE

FK2 ENTEREDBY
ENTERED_DATE
NOTES

New

Updated

Figure 7-4: Updated Data Model

In addition to updating the existing design artifacts from iteration one, we had one more

design chore. This was to review the use cases and group them into coherent packages. This

use-case grouping formed the basis from which we created our grid partitions for

implementation. The use case packages are show in Figure 7-5.

41

Contract

Create Contract Create Contractor
Company

Evaluate Company

Incident

Create Incident

Update Incident
Status

Facility

Create Facility

Update Facility
Status

Resource

Allocate ResourcesCreate Resource

User

Create User Account

Create User Profile

Login

Search

Search For Citizen

Location

Enter Citizen
Location

Register Location

Update Citizen
Location

Update Location

UserReport

Verify Report

Update ReportReport Incident

Report

View Reports

Figure 7-5: Use Case Packages

Updated Implementation

In the first iteration, the data model completed the design effort and implementation

began when the JSPs, servlets, session beans, and entity beans needed to create the system were

identified. Because the initial design was found to be inadequate, an additional design artifact

was added to partition the use cases into packages. Once the updates to the JSPs, servlets and

42

beans are identified, we will create diagrams to show our partitioning scheme, which in our case

will be a set of detailed package diagrams showing implementation classes.

There are five new JSPs identified for the updated system. They are added in Table 7-1,

and highlighted in light blue.

Table 7-1: Updated JSPs
JSPs

Login.jsp CreateUserProfile.jsp CreateIncident.jsp
CitizenIncidentReport.jsp UpdateUserProfile.jsp IncidentStatusUpdate.jsp
CitizenReportUpdate.jsp VerifyCitizenReport.jsp CreateContractorCompany.jsp
CreateResource.jsp AllocateResource.jsp CreateUserAccount.jsp
CreateContract.jsp CreateFacility.jsp ViewCitizenReport.jsp
EvaluateCompany.jsp UpdateFacilityStatus.jsp ViewContractors.jsp
ViewIncident.jsp ViewResources.jsp ViewFacilities.jsp
ViewContracts.jsp ViewUserAccounts.jsp
RegisterLocation.jsp UpdateLocation.jsp SearchForCitizen.jsp
AdminEnterLocation.jsp AdminUpdateLocation.jsp

In order to make the system more component-based, some functionality was moved to

new servlets, namely, the UserReportServlet, ContractorServlet and FacilityServlet. Since these

servlets would have been created in the original model if it had been properly partitioned, they

are not highlighted in Table 7-2. After partitioning was applied, the servlets that must be

updated due to changes in the use cases are the IncidentServlet and the ContractorServlet. In

addition, two new servlets were needed to accommodate the additional functionality added by

the updated use cases. These are the UserLocationServlet and the SearchServlet. The names of

the new servlets are highlighted in light blue in Table 7-2; the updated servlets are highlighted in

yellow.

43

Table 7-2: Updated Servlets
Servlet Function Related JSPs
UserServlet Handles user accounts Login.jsp CreateUserProfile.jsp,

UpdateUserProfile.jsp,
CreateUserAccount.jsp

UserLocationServlet Handles requests to register
displaced citizens’ locations,
and updates to locations

RegisterLocation.jsp,
UpdateLocation.jsp,
AdminEnterLocation.jsp,
AdminUpdateLocation.jsp

SearchServlet Handles requests to search for
citizen locations. (Will handle
other types of searches in
future.)

SearchForCitizen.jsp

UserReportServlet Handles citizen requests to
make reports and updates to
citizen reports.

CitizenIncidentReport.jsp,
CitizenReportUpdate.jsp,
VerifyCitizenReport.jsp

IncidentServlet Handles requests to create
incidents, and updates to
incidents.

CreateIncident.jsp,
IncidentStatusUpdate.jsp

ResourceServlet Handles requests to create and
allocate resources

CreateResource.jsp,
AllocateResource.jsp

ContractorServlet Handles all requests related to
contractors and contracts

CreateContractorCompany.jsp,
CreateContract.jsp,
EvaluateCompany.jsp

FacilityServlet Handles all requests related to
facilities

CreateFacility.jsp,
UpdateFacilityStatus.jsp

ReportServlet Handles all requests to view
reports

ViewIncident.jsp, ViewContracts.jsp,
ViewCitizenReport.jsp,
ViewResources.jsp,
ViewUserAccounts.jsp,
ViewContractors.jsp, ViewFacilities.jsp

The next artifact updated was the list of session beans needed. These were handled in a

manner similar to the servlets – first the existing servlets were partitioned; then the servlets that

would need updating were determined; finally, new servlets needed for functionality added by

additional use cases were identified. These are shown in Table 7-3. New beans are highlighted

in light blue; updated beans in yellow.

44

Table 7-3: Updated Session Beans
Bean Local Interfaces Remote Interface
SessionManagerBean SessionManagerHome SessionManager
UserManagerBean UserManagerLocal,

UserManagerLocalHome

UserLocationManagerBean UserLocationManagerLocal,
UserLocationManagerLocalHome

SearchManagerBean SearchManagerLocal,
SearchManagerLocalHome

UserReportManagerBean UserReportManagerLocal,
UserReportManagerLocalHome

IncidentManagerBean IncidentManagerLocal,
IncidentMangerLocalHome

ResourceManagerBean ResourceManagerLocal,
ReportManagerLocalHome

ContractorManagerBean ContractorManagerLocal,
ContractorManagerLocalHome

FacilityManagerBean FacilityManagerLocal,
FacilityManagerLocalHome

ReportManagerBean ReportManagerLocal,
ReportManagerLocalHome

Finally, the list of entity beans, shown in Table 7-4, was updated to include the new

entity beans. The same highlighting scheme was followed: new entity beans are highlighted in

light blue; updated in yellow.

45

Table 7-4: Updated Entity Beans
Entity Bean Interfaces Key class
DM_Facility DM_FacilityLocal,

DM_FacilityLocalHome
DM_FacilityKey

DM_Contract DM_ContractLocal,
DM_ContractLocalHome

DM_ContractKey

DM_Contract_Facility DM_Contract_FacilityLocal,
DM_Contract_FacilityLocalHome

DM_Contract_Facility_Key

DM_Company DM_CompanyLocal,
DM_CompanyLocalHome

DM_CompanyKey

DM_Manage DM_ManageLocal,
DM_ManageLocalHome

DM_ManageKey

DM_Incidence DM_IncidenceLocal,
DM_IncidenceLocalHome

DM_IncidenceKey

DM_UseFacility DM_UseFacilityLocal,
DM_UseFacilityLocalHome

DM_UseFacilityKey

DM_Use DM_UseLocal,
DM_UseLocalHome

DM_UseKey

DM_Resources DM_ResourcesLocal,
DM_ResourcesLocalHome

DM_ResourcesKey

DM_ResourceFood DM_ResourceFoodLocal,
DM_ResourceFoodLocalHome

DM_ResourceFoodKey

DM_Resource_Transport DM_Resource_TransportLocal,
DM_Resource_TransportLocalHome

DM_Resource_TransportKey

DM_Resource_Construct DM_Resource_ Construct Local,
DM_Resource_ Construct LocalHome

DM_Resource_ Construct Key

DM_User DM_UserLocal, DM_UserLocalHome DM_UserKey
DM_Report DM_ReportLocal,

DM_ReportLocalHome
DM_ReportKey

DM_Reported DM_ReportedLocal,
DM_ReportedLocalHome

DM_ReportedKey

DM_User_Location DM_User_LocationLocal,
DM_User_LocationLocalHome

DM_User_LocationKey

This completes the updates to the artifacts generated in iteration one. We are now ready

to partition JSPs, servlets, session beans and entity beans according to our grid plan. The

resulting artifact will be a set of package diagrams for each layer of the MVC architecture.

Rather than using a standard UML package diagram, we have chosen to list the contents of each

package in a table format, as this structure is easier to review and understand. This contract

packages are shown in Figure 7-3, the location packages are shown in Figure 7-4, and the report

packages are shown in Figure 7-5. The remaining packages are listed in Appendix 3.

46

Figure 7-6: Contract Partitioning

The above grouping of the contract packages illustrates how few objects will be touched

by the revisions stemming from the updated requirements.

47

Figure 7-7: Location

The figure showing the location package grid is included here to illustrate benefits of our

plan. Since the entity beans to be generated relate to a new table in the data model, and since we

have grouped these into their own package, no changes will be needed to existing beans. We can

therefore use the capabilities of our IDE to handle the tedious chore of generating these beans.

Furthermore, we can readily parcel out development tasks based on these partitions.

48

Figure 7-8: Report

There are no entity bean components shown in the Report diagram. This is because the

only functionality of the report package is to retrieve and display data. Thus, it can be seen that

in addition to the other benefits of grid partitioning, it forms an intuitive visual reference to

system functionality.

Design Review of Updated Model

We now consider the effect the updates and additional use cases would have had if the

original model had been grid-partitioned.

Use Case: Update Incident Status

The updates to this use case triggered only minimal changes in implementation.

Therefore, there are no anticipated differences in effect between the two models.

49

Use Case: Create Contract

As stated in Chapter 6, revisions to this use case triggered updates to the data model, and

corresponding revisions to the existing entity bean DM_Contract, its key class,

DM_ContractKey, and its interfaces, DM_ContractLocal and DM_ContractLocalHome, as well

as the new entity bean and its related classes for DM_ContractFacility. In addition, the web

page CreateContract.jsp, the ResourceServlet, the ResourceManagerBean and SessionManager

beans will be modified as set out above.

Under the partitioning scheme set out in this chapter, the effects of regeneration of the

DM_Contract bean and adding the new bean would be localized to the one package, rather than

affecting all fourteen of the original entity beans. This has major time-saving benefits. If the

entity beans have not been modified from the generated code, the package can simply be dropped

and the beans regenerated, allowing the IDE to handle all of the issues relating to updating

references and deployment descriptors. On the other hand, if one or more of the beans have been

modified, making automatic regeneration a less attractive choice, there are still benefits to be

realized. There will be less code to review when updates are made, and changes will be isolated

from the rest of the code, making debugging easier in the event errors are made.

The remaining changes caused by this update will likewise be easier to manage. Since

the contract component now has its own manager and servlet, the benefits of less code to review,

change being isolated, and easier debugging apply here as well as to the entity beans.

The final benefit to be realized by partitioning into components is a significant one, and

that is that implementation can be logically and conveniently apportioned among developers.

Since the components are relatively independent of each other, one developer can make all the

necessary modifications to the contract package, and then integrate the changed classes into the

50

baseline system. Or, one developer can be assigned all of the modifications to entity beans,

while others are assigning other portions of the development. This makes version control and

software maintenance a much more manageable task.

Additional Use Cases

The additional use cases entirely relate to new functionality. The design decision to

incorporate this new functionality as a separate component using grid-partitioning makes change

management reasonable, and development easier. Most of the benefits are similar to those

realized in for the Create Contract use case. Similar benefits are that development of the new

component can take place in isolation from the remainder of the system; development

responsibilities can be apportioned to multiple developers, for instance by assigning one

developer the web interface and servlet, and another session bean and entity beans, and

debugging code will be easier since problems will be isolated within the module. Additional

benefits are that a new package of entity beans will be generated; no existing beans will be

touched, and integration of the component will be a matter of importing the code and updating

navigation.

Comparison Results

The final step in the design review is to measure the differences between the two

modeling methods. In order to do this, it was necessary to determine the number of classes that

comprised the original model, and the categories to which each was assigned. There were 23

JSPs, 4 servlets, 5 session beans, and 14 entity beans1.

1 For convenience, only the entity beans are counted, and not the corresponding interfaces and key classes.

51

The impact of the changes on the original design was then considered and the original

classes affected by the updates were counted. The percentage of original classes updated and/or

regenerated was computed. Finally, the new classes that were needed to implement the

additional requirements were counted. The results are shown in Table 7-5.

Table 7-5: Affect of Change on Original Model
Implementation

category
Number of
classes in
category

Number of
classes
affected by
updates

Percent
affected by
updates

New classes
added for
additional
requirements

JSPs 23 2 8% 5
Servlets 4 2 50% 2
Session Beans 5 3 60% 2
Entity Beans 14 14 100% 2

It is easy to see that the original design was flawed. 100% of the entity beans were

regenerated in order to update one existing bean and add one new bean. In addition, 60% of the

session beans and 50% of the servlets were affected because too much functionality was grouped

together into one class.

The revised model was then reviewed to see if the results would be improved. The

counts are shown in Table 7-6. The additional servlets (the UserReportServlet,

ContractorServlet, and FacilityServlet) and session beans (the UserReportManagerBean,

ContractorManagerBean, and FacilityManagerBean) created in the second iteration to properly

partition the original model are counted in the “Number of classes in category” in Table 7-6,

since these classes were not added as a result of updates to user requirements and use cases.

Rather, these classes were added to correct design defects in the original model, and thus should

be included in the base count when measuring the impact of change to the model.

52

Table 7-6: Affect of Change on Revised Model
Implementation

category
Number of
classes in
category

Number of
classes
affected by
updates

Percent
affected by
updates

New classes
added for
additional
requirements

JSPs 23 2 8% 5
Servlets 7 2 28% 2
Session Beans 8 3 37% 2
Entity Beans 14 3 21% 2

In comparing the two sets of figures, we see that the new classes added for additional

requirements did not change. This is to be expected since we treated the user location as a

separate component in both models. When we look at the percentage of classes affected by

updates, however, it is a different case. The number of servlets affected was reduced to 28%

from 50%; the session beans to 37% from 60%, and only 21% of the entity beans were affected,

rather than 100%. Based on these reductions, the benefits of grid-partitioning are obvious.

53

Chapter 8: Conclusion

This thesis has addressed the system architecture for enterprise level applications from

two methodologies. In order to do so, we created a system architecture for the DISarm system,

first using the horizontal multi-tier partitioning afforded by MVC. We then applied a process to

impose vertical partitioning on top of our horizontal partitioning in order to achieve a grid

partitioning of the system.

We found that we followed certain steps in order to achieve the improved model, which

we set out herein as our guidelines. Enforcement of the grid partitioning should be a concern

starting from Step 9. Facilitating the traceability of between the elements in different models is a

key to accomplishing Steps 10 and 11. Therefore, the efforts to establish the model diagrams

and documents that help trace the correspondence, such as tables or spreadsheets, are critical in

supporting grid-partitioning.

1. Gather user requirements
2. Analyze requirements
3. Create a use case model and specifications for the use cases based on the

requirements
4. Add any additional requirements found during this process to the use case model
5. Analyze the use cases
6. Create a class diagram based on the use cases and user requirements
7. Create activity diagrams, or other diagrams, for any interesting or complicated use

cases.
8. Create a data model
9. Group the use cases in logical packages according to functionality
10. Identify implementation classes needed for JSPs, servlets, session beans and entity

beans
11. Package the implementation classes in accordance with the use case packaging

54

When the design process was completed for the second iteration of the DISarm

architecture, we compared the two models and found that significant benefits were realized when

we used the grid partitioning approach:

• Increased ability to use the underlying tools afforded by the IDE, such as automatic
bean generation

• Ability to apportion tasks among developers in a logical manner
• Less time spent debugging
• Improved change control management

For these reasons, we concluded that following the grid partitioning approach to be a

sound practice, and critical to control change.

55

References

[1] Ivar Jacobson, Grady Booch, Jim Rumbaugh The Unified Software Development Process, ;
1st edition, Addison-Wesley Professional, February 4, 1999.

[2] Arlow, Jim and Neustadt, Ila, UML 2 and the Unified Process, 2nd edition, Pearson
Education, Inc., 2005.

[3] Kruchten, Philippe, “The 4+1 View of Architecture”, IEEE Software, 12(6) Nov. 1995.
[4] Bodoff, Stephanie, et al, The J2EE Tutorial, Second Edition, Sun Microsystems, 2004.
[5] Moore, Bill, et al, WebSphere Application Server – Express V6 Developers Guide and

Development Examples, ibm.com/redbooks, October 2005.
[6] http://www.uml.org
[7]Anderson, Gail and Anderson, Paul, Enterprise JavaBeans Component Architecture, Prentice

Hall, 2002.
[8] http://java.sun.com/blueprints/patterns/MVC-detailed.html
[9]Moore, Bill, et al, WebSphere Application Server-Express: A Development Example for New

Developers, ibm.com/redbooks, November 2003.

56

Appendix 1: Use Case Catalog for Initial DISarm System

ID

U
se

 C
as

e
N

am
e

Pr
im

ar
y

A
ct

or

Pa
rti

ci
pa

nt
/

B
en

ef
ic

ia
ry

A

ct
or

s

St
ep

s

1 Login2 DISarm
users

DISarm
System

1. Login to DISarm using:
a. New account
b. Existing account

2 Report
Incident

Citizen Contractor,
Government
Official

1. The citizen selects Report Incident.
2. The citizen enters the address of incident.
3. The citizen selects the type of incident (trash,

appliance, tree, garbage).
4. The citizen enters the severity of the incident.
5. The citizen enters a description.
6. Submit.
7. The DISarm system saves the incident report,

sets the report to active, sets the report date to
the current date, and associates the citizen to the
report.

3 Update
Report

Citizen Contractor,
Government
Official

1. The citizen selects Update Report.
2. The citizen selects the address of the incident

report to be updated.
3. The DISarm System validates the citizen as the

user who created the incident report.
4. The System displays the report for editing.
5. <<alternative flow to #4>> If the incident report

is closed, the report is shown in a non-editable
format.

6. The citizen updates editable fields in the report
(active/closed, description, severity).

7. Submit.
8. The System stores the updated report.

2 All use cases, with the exception of View Reports, have as a precondition Login to the DISarm system.

57

ID

U
se

 C
as

e
N

am
e

Pr
im

ar
y

A
ct

or

Pa
rti

ci
pa

nt
/

B
en

ef
ic

ia
ry

A

ct
or

s

St
ep

s

4 Create User
Profile

Citizen DISarm
System

1. The user selects to create a user profile.
2. The System prompts for user information:

firstname, lastname, username, password,
address, email (optional), phone number
(optional).

3. Submit.
4. The DISarm System validates the username is

unique, sets the user type to “Citizen”, and
saves the user’s information in the system.

5. <<alternative flow to #4>> If the username is not
unique, the System prompts for a unique
username and flow of control returns to step 2.

5 View
Reports

DISarm
users

 1. The DISarm user selects to View Reports.
2. The Disarm System displays available reports.
3. The user selects a report to view.
4. The System displays the report.

6 Verify
Report

Government
Official

Citizen,
Contractor

1. The Government Official selects an incident
report to review.

2. The DISarm System displays the selected report.
3. The Government Official sets the incident to

“Verified” or “False Report”.
4. The Government Official enters notes (optional).
5. Submit.
6. The DISarm system saves the updated

information in the system.
7. <<alternative flow to #5>> if the incident is set

to “False” the DISarm system sets the incident
to closed and saves the updated information in
the system.

58

ID

U
se

 C
as

e
N

am
e

Pr
im

ar
y

A
ct

or

Pa
rti

ci
pa

nt
/

B
en

ef
ic

ia
ry

A

ct
or

s

St
ep

s

7 Create
Incident

Government
Official

Citizen,
Contractor,
Emergency
Manager

1. The Government Official selects Create Incident.
2. The Government Official enters information on

the incident: name, date of occurrence, notes.
3. The Government Official selects the severity of

the incidence.
4. The Government Official selects the status of the

incidence.
5. The Government Official selects the managing

company from a list of contractor companies in
the system.

6. Submit.
7. The DISarm system verifies that the name of the

incident is unique, stores the incident in the
System and associates the managing company
to the incident.

8. <<alternative flow to #5>> If the company is
not in the system, the use case Create
Contractor Company is performed and flow of
control returns to step 5.

8 Update
Incident
Status

Contractor Citizen,
Government
Official,
Emergency
Manager

1. The Contractor selects an active incident report
to review.

2. The DISarm System displays the selected report.
3. The Contractor enters notes about the incident.
4. The Contractor updates the status of the incident

to closed.
5. <<alternative flow to #4>> If the Contractor

chooses to save notes in progress, the status of
the incident remains active.

6. Submit.
7. The DISarm System saves the updated

information in the system.

59

ID

U
se

 C
as

e
N

am
e

Pr
im

ar
y

A
ct

or

Pa
rti

ci
pa

nt
/

B
en

ef
ic

ia
ry

A

ct
or

s

St
ep

s

9 Create
Contractor
Company

Government
Official

Contractor,
Emergency
Manager

1. The Government Official selects to create a
contractor company.

2. The System prompts for company information:
name, address and type of business.

3. The Government Official selects the company
contact from a list of Contractor users in the
DISarm system.

4. Submit.
5. The DISarm System validates the company name

is unique, associates the contact to the company,
and saves the company information in the
system.

6. <<alternative flow to #3>> If the company
contact is not in the DISarm System, the System
allows the Government Official to create a user
account for the contact and flow of control
returns to step 3.

7. <<alternative flow to #5>> If the company name
is not unique, the DISarm system prompts the
Government Official for a unique company
name and flow of control returns to step 5.

10 Create
Contract

Government
Official

Contractor,
Emergency
Manager

1. The Government Official selects to create a
contract.

2. The Government Official selects the contract
type.

3. The Government Official selects the company
from a list of contractor companies in the
DISarm System.

4. The Government Official selects the related
facility from a list of facilities.

5. The Government Official enters a description of
the contract.

6. Submit.
7. The contract information is stored in the system.
8. <<alternative flow to #3>> If the company is

not in the system, the use case Create Contractor
Company is performed and flow of control
returns to step 3.

9. <<alternative flow to #4>> If the facility is not in
the system, the use case Create Facility is
performed and flow of control returns to step 4.

60

ID

U
se

 C
as

e
N

am
e

Pr
im

ar
y

A
ct

or

Pa
rti

ci
pa

nt
/

B
en

ef
ic

ia
ry

A

ct
or

s

St
ep

s

11 Evaluate
Company

Government
Official

Contractor,
Emergency
Manager

1. The Government Official selects Evaluate
Company.

2. The Government Official selects a rating for the
company.

3. The Government Official enters notes.
4. Submit.
5. The rating information is updated in the system.

12 Create
Facility

Government
Official

Contractor,
Emergency
Manager

1. The Government Official selects to create a
facility.

2. The DISarm System prompts for facility
information: name, importance, status, start
date, deploy date, address of facility.

3. Submit.
4. The DISarm System stores the facility

information in the system.
13 Update

Facility
Status

Contractor Government
Official
Emergency
Manager

1. The Contractor selects to Update Facility Status.
2. The DISarm System displays a list of facilities

under the contractor’s control.
3. The contractor chooses a facility to update.
4. The contractor sets the facility status.
5. The contractor enters the deploy or retire date

(optional).
6. Submit.
7. The DISarm System stores the updated

information.
14 Create

Resource
Government
Official

Contractor,
Emergency
Manager

1. The Government Official selects to create a
resource.

2. The Government Official selects the type of
resource (transport, food, construct).

3. The Government Official enters the name and
location of the resource.

4. The Government Official selects the owner
company from a list of companies in the DISarm
System.

5. Submit.
6. The DISarm System creates the resource in the

system.
7. <<alternative flow to #4>> If the owner

company is not in the DISarm System, the use
case Create Contractor Company is performed
and flow of control returns to step 4.

61

ID

U
se

 C
as

e
N

am
e

Pr
im

ar
y

A
ct

or

Pa
rti

ci
pa

nt
/

B
en

ef
ic

ia
ry

A

ct
or

s

St
ep

s

15 Allocate
Resources

Emergency
Manager

Citizen,
Contractor,
Government
Official

1. The Emergency Manager selects to Allocate
Resources.

2. The Emergency Manager selects an incidence to
which resources will be allocated from a list of
active incidents in the DISarm System.

3. The Emergency Manager selects resources to
allocate to the incident from a list of resources in
the DISarm System.

4. The Emergency Manager selects facilities to
allocate to the incidence.

5. Submit.
6. The System associates the selected resources and

facilities to the incidence.
16 Create User

Account
Application
Manager

Government
Official,
Emergency
Manager

1. The Application Manager selects to create a user
account.

2. The System prompts for type of user account:
Government Official or Emergency Manager.

3. The System prompts for user information:
firstname, lastname, username, password,
address, email (optional), and phone number
(optional).

4. Submit.
5. The DISarm System validates the username is

unique, sets the user type to the account type
selected, and saves the user’s information in the
system.

6. <<alternative flow to #5>> If the username is not
unique, the System prompts for a unique
username and flow of control returns to step 3.

62

Appendix 2: Updated Use Case Catalog

ID

U
se

 C
as

e
N

am
e

Pr
im

ar
y

A
ct

or

Pa
rti

ci
pa

nt
/

B
en

ef
ic

ia
ry

A

ct
or

s

St
ep

s

8r Update
Incident
Status3

Contractor,
Government
Official

Citizen,
Government
Official,
Emergency
Manager,
Contractor

1. The Contractor/Government Official selects an
active incident report to review.

2. <<alternative flow to #1>> If the user is a
Government Official, he/she may select a closed
incident.

3. The DISarm System displays the selected report.
4. The Contractor/ Government Official enters

notes about the incident (optional).
5. The Contractor/ Government Official updates the

status of the incident to closed.
6. <<alternative flow to #4>> If the Contractor

Government Official chooses to save notes in
progress, the status of the incident remains
active.

7. Submit.
8. If the Actor is the Contractor, the DISarm

System saves the notes as Contractor notes, else
the system saves the notes as Government
Official notes.

9. The system saves the status of the incident.

3 This use case is updated to add the Government Official as a primary actor.

63

ID

U
se

 C
as

e
N

am
e

Pr
im

ar
y

A
ct

or

Pa
rti

ci
pa

nt
/

B
en

ef
ic

ia
ry

A

ct
or

s

St
ep

s

10r Create
Contract

Government
Official

Contractor,
Emergency
Manager

1. The Government Official selects to create a
contract.

2. The Government Official selects the contract
type.

3. The Government Official selects the company
from a list of contractor companies in the
DISarm System.

4. The Government Official selects the related
facility/facilities from a list of facilities.

5. The Government Official enters a description of
the contract.

6. Submit.
7. The contract information is stored in the system.
8. <<alternative flow to #3>> If the company is

not in the system, the use case Create Contractor
Company is performed and flow of control
returns to step 3.

9. <<alternative flow to #4>> If a required facility
is not in the system, the use case Create Facility
is performed and flow of control returns to step
4.

17 Register
Location

Citizen DISarm
Users

6. The citizen selects to Register Location.
7. The citizen enters information on current

location: address, email, phone number.
8. The citizen enters notes on health/safety status.
9. Submit.
10. The DISarm system saves the citizen’s current

location information and associates it to this
user.

18 Update
Location

Citizen DISarm
Users

1. The citizen selects to Update Location.
2. The citizen updates address, email, phone

number, notes.
3. Submit.
4. The DISarm system saves the updated

information in the system.

64

ID

U
se

 C
as

e
N

am
e

Pr
im

ar
y

A
ct

or

Pa
rti

ci
pa

nt
/

B
en

ef
ic

ia
ry

A

ct
or

s

St
ep

s

19 Search for
Citizen

DISarm
Users

 6. The user selects to search for citizen.
7. The user enters search parameters (name, and/or

home address).
8. Submit.
9. The DISarm system displays the location

information associated to this citizen.
10. <<alternative flow to #4>> If no location

information is associated to the citizen, the
system displays the citizen’s home address with
a message that no updated information is
available.

20 Enter Citizen
Location

Government
Official

DISarm
Users

1. The Government Official selects Enter Citizen
Location.

2. The Government Official selects the home
address of the citizen for whom the information
will be entered.

3. The Government Official enters information on
citizen’s current location: address, email, phone
number.

4. The Government Official enters notes on the
citizen’s health/safety status.

5. Submit.
6. The DISarm system saves the information in the

system and stores the user id of the government
official as the user entering the information.

21 Update
Citizen
Location

Government
Official

DISarm
Users

1. The Government Official selects to Update
Citizen Location.

2. The Government Official selects the home
address of the citizen for whom the information
will be updated.

3. The Government Official updates the citizen’s
information.

4. The DISarm saves the updated information and
stores the user id of the government official as
the user entering the information.

65

Appendix 3: Grid Partitions

Figure A- 1: User

66

Figure A- 2: UserReport

67

Figure A- 3: Search

Figure A- 4: Facility

68

Figure A- 5: Resource

69

Figure A- 6: Incident

70

Vita

Aline Sewell Vogt was born in Bay St. Louis, Mississippi and received her B.S. from the

University of New Orleans in December of 2003.

	Applying Grid-Partitioning To The Architecture of the Disaster Response Mitigation (DISarm) System
	Recommended Citation

	Microsoft Word - Vogt_2007_07_26.doc

