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ABSTRACT

A recently developed approach, in the area of nonlinear oscillations, is used to analyze the single
degree of freedom equation of motion of a floating unit (such as a ship) about a critical axis (such as
roll). This method makes use of a closed form analytic solution, exact upto the first order, and takes
into account the the complete unperturbed (no damping or forcing) dynamics. Using this method
very-large-amplitude nonlinear vessel motion in a random seaway can be analysed with techniques
similar to those used to analyse nonlinear vessel motions in a regular (periodic) or random seaway.
The practical result being that dynamic capsizing studies can be undertaken considering the short-
term irregularity of the design seaway. The capsize risk associated with operation in a given sea
state can be evaluated during the design stage or when an operating area change is being considered.
Moreover, this technique can also be used to guide physical model tests or computer simulation
studies to focus on critical vessel and environmental conditions which may result in dangerously
large motion amplitudes. Extensive comparitive results are included to demonstrate the practical
usefulness of this approach. The results are in the form of solution orbits which lie in the stable or
unstable manifolds and are then projected onto the phase plane. 1

1 keywords: nonlinear ship/platform motions; ship capsize; dynamical perturbation; random beam seas; large
amplitude ship rolling; stable and unstable manifolds.
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1. INTRODUCTION

1.1 Background and Motivation

One of the many challenges facing ship and floating offshore structures design today is the sur-

vivability to not capsize under adverse if not the most extreme weather conditions. The external

forces acting on the hull are to a large extent those from wind, waves and current. The prevailing

tools of the past enabled the naval architect to analyze ship stability based solely on hydrostatics

where the restoring ability of the unit is assessed due to steady wind alone and the motion response

of the unit was investigated considering only linear dynamics (using only the linear damping and

restoring terms in the roll equation of motion) and periodic forcing due to regular waves. When

a floating vessel is subjected to an external forcing such as that due to wave excitation, the vessel

may capsize due to a number of factors depending on the magnitude and direction of the wave

excitation and the unit’s resistance to the given excitation. One of the modes of motion identified

among the statistical survey of capsized units has been the ‘roll’ mode when large waves were seen

to approach the ship from the side (“beam seas”) or at some times along an oblique direction in

some cases for a ‘column stabilized’ unit such as a floating platform.

The only form of appreciable resistance offered by the unit in such modes which are typically

resonant in nature is through the so called reactive ‘damping’ forces which are generally very small

in order of magnitude compared to the other forces like restoring. This results in large amplitude

response of the unit which requires consideration of non-linear statics and to some extent non-

linear dynamics since part of the damping reaction force is due to ‘viscous’ damping, a quantity

not easy to estimate. It has been predicted that vessel capsizing in realistic waves is associated

with large amplitude dynamic phenomena requiring consideration of non-linear and probabilistic

dynamics. Also advances in topics related to large amplitude oscillation and non-linear dynamics

have suggested that the traditional ship stability approach is very limited in predicting a floating
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units ability to resist capsize, especially when the dominant forces are due to waves from random

seas (Falzarano, 1990).

The problem of predicting the roll response of ships and the response about a critical

axis for other floating structures has been a subject of wide interest, concern and challenge in

the last two decades owing to a staggering number of ships, fishing and/or crabbing vessels and

other offshore platforms lost at sea. Although vessel capsizing is now well understood to be a

large amplitude dynamic phenomenon, the ability to accurately assess the conditions under which

the unit is susceptible to be unsafe is challenging and still an on-going research topic especially

when the forcing function is considered to be random or irregular which is the case due to a realistic

seaway. However it is suggestive and insightful to review the studies undertaken by research groups,

scientists and engineers in the recent past who have attempted to understand and relate the ship

rolling as a vibration phenomenon exhibiting non-linear resonance characteristics such as chaos

under certain conditions and eventually leading to loss of dynamic stability and/or capsize.

1.2 Related Studies

The non-linear roll response of ships to irregular random excitation, although without an emphasis

on capsize risk, has been addressed as early as in 1964 by Hasselman, Yamanuchi and others.

Hasselman (1965) considered the complete six degrees of freedom ship motion response and showed

that the non-linear transfer functions are related to the higher order moments of the ship motions

due to a (pseudo) random stationary wave field approximated by a Fourier sum. For the uncoupled

non-linear roll equation of motion excited by a white noise, Yamanouchi (1986) used a perturbation

method using a small parameter measuring the extent of non-linearity in stiffness to estimate the

variance of roll and roll velocity approximate up to the first order. Using a similar technique whereby

expressing the solution to the roll equation as a Volterra series for the same problem, Flower (1975)

observed that the non-linearity had an effect of hardening the roll spectrum obtained from a linear

analysis. Alternatively the technique of equivalent linearization was well explored by Vassilopoulos

(1971) where non-linearity was included in both stiffness (cubic) and damping (square law) and the

results for the variance of roll and roll velocity compared well with the previous (perturbational)

approaches.
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The nonlinear roll response of ships to regular periodic wave excitation was studied by a

number of research groups beginning with Cardo and Francescutto (1982) who observed a variety of

interesting phenomena including ultra-harmonics and sub-harmonics in the steady state solutions.

Capsize criteria based on a certain safety factor was proposed by Virgin (1987) while observing the

chaotic dynamics of the single degree of freedom roll equation of motion with and without a static

bias. Numerical simulation techniques and analytical solutions using a harmonic balance method

were utilized by considering quadratic and cubic nonlinearity to the restoring force in the equation

of motion. Nayfeh et.al (1986) did an independent study of the nonlinear rolling of ships with

and without bias due to regular beam seas. Using the method of multiple scales and comparing

with numerical simulations they showed that the second order perturbation expansion was more

accurate than the first order in predicting the peak roll angle and the start of the period multiplying

bifurcations that lead to chaos.

Thompson (1990, 1997), Soliman et. al. (1990) and more recently Huang (2000, 2003)

generalized the problem of capsize to that of the escape from a potential well through the represen-

tation of bifurcation and integrity maps and studied the erosion of safe basin for both steady state

and transient motions. Roberts (1995) addressed the problem of non-linear ship rolling in random

beam seas by the use of statistical linearization and Fokker-Plank equation techniques to study the

stochastic roll response and demonstrate the existence of bifurcation phenomena leading to chaos.

Highlighting the importance of narrowbanded Gaussian or non-gaussian stochastic excitation of a

short term sea spectra, Francescutto (1993) used Fokker-Planck equation technique to demonstrate

the existence of bifurcation phenomena leading to chaos similar to the corresponding deterministic

counterpart. It is further noted that the possibility of observing bifurcations and other related

phenomena is cancelled if the bandwidth is not narrowbanded without ensuring that they cannot

be realized, which can be critical in the estimation of the probability of vessel capsize.

Roberts (1986, 1998) discussed the problem of ship rolling in random beam seas due to

stationary stochastic excitation where non-linearity in both damping and restoring moment was

adopted. For moderate rolling, statistics of the stochastic roll response is developed using both

equivalent linearization method and Markov process theory. For severe rolling, first passage statis-

tics such as mean time to capsize are computed using the Markov approximation. The theory is

also extended into an assessment of long-term roll statistics.
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One of the methods also employed extensively by research groups and scientists in the

recent past in considering the non-linear behavior of a ship system was by the use of dynamical

systems approach to either a single degree of freedom or coupled ship motion equations through

the use of analytical or numerical solution techniques (Frey & Simiu, Lin & Yim, Falzarano, Jiang

& Hsieh ). Frey and Simiu (1993, 1996) developed a theoretical basis for weak perturbations (both

periodic and quasi periodic forcing) and the effect of noise on second order dynamical systems

whose unperturbed flows have homoclinic or heteroclinic orbits. They justified in applying and

formulating a more generalized Melnikov treatment for stochastic perturbations by conforming the

noise to a harmonic sum with random parameters whose paths are uniformly bounded. The flux

factor for the phase space is derived and shown that the mean distribution of the filtered excitation

determines the average phase space flux. One of the important conclusions drawn for the dynamical

systems considered is that the two classes of excitation namely, stochastic and deterministic, are

equivalent in the promotion of chaos and in reducing the safe basin of the system.

Lin and Yim (1996, 2004) examined the noise induced periodic, chaotic and capsizing re-

sponses of a ships roll motion and the associated extreme value distribution. Using a generalized

Melnikov function as proposed by Frey and Simiu (1993, 1996), an upper bound for possible chaotic

motion is established within the control space of the parameters and it is shown that noise could

lower the threshold for chaotic ship roll motion. The transition between purely periodic, chaotic or

non-chaotic random to purely random responses are investigated by solving the associated Fokker-

Planck equation governing the evolution of the probability density function (PDF) of the roll

motion. It is further shown for the heteroclinic chaotic motions that the probability of extreme

excursions is elevated with increasing noise intensity, which increases the probability of capsize.

Hsieh et.al (1994) and Jiang et.al (1996) investigated the capsize criteria for unbiased and

biased ships respectively due to a pseudo random excitation. Again using the generalized Melnikov

function as developed by Frey and Simiu, the rate of phase space flux due to random excitation

such as due to a realistic sea state is examined and the probability of capsize is predicted. Unlike

the previous studies which used constant values for the linear added mass and damping coefficients,

Jiang et.al (1996, 2000) incorporated the frequency dependence of the linear hydrodynamic force

coefficients due to the presence of free surface. This was done with the help of convolution integral

to capture the radiated wave force effects in the form of an integro-differential equation in the time

4



domain.

Successful use of modern geometric methods in considering the ship dynamical system,

which usually focus on the nature and evolution of global unperturbed solution or orbit trajecto-

ries to small perturbations in forcing and/or damping, and numerical simulations of the exact or

approximate solutions at least due to periodic forcing of the complete system of non-linear equa-

tions of ship/platform motions has, to a greater extent, highlighted the significance of the solution

behavior and its influence on the floating units stability. In the proposed thesis, similar methods

are extended to understand the dynamical stability of such units under realistic/random forcing

function such as those arising due to a design seaway from a short term distribution of wave energy.

Some of the recent and existing methods focus in predicting the safe or non-capsize boundary

of a floating unit by extending the Melnikov approach and studying phase space transport in

a probabilistic sense due to a pseudo random excitation. The Melnikov technique (Melnikov,

1962) is essentially an extension of the modern geometric method in problems associated with

nonlinear oscillations, where the distance between the stable and unstable solutions or orbits lying

on their respective manifolds (a collection or family of such solutions which are invariant in time) is

determined from the known unperturbed solutions. Global bifurcations leading to chaos are then

predicted based on this distance between manifolds becoming zero or positive. Equivalently, from

a physical point of view, the Melnikov function represents the difference in the work done by the

forcing or excitation and the energy exhausted due to the systems damping (Er, G-K et.al, 1999,

2000). The strength or the effectiveness of the standard Melnikov approach lies in not needing to

know the exact or approximate solution under the effect of small forcing and damping yet being

able to predict the onset of capsizing if the system solution is known in its unperturbed state.

Numerical techniques when the forcing is periodic have been utilized to predict the safe basin

boundaries once the periodic orbits or the saddle point equilibrium points of the corresponding

Poincaré map are located. Determination of the equilibrium points and the basin boundaries by

this approach without the full knowledge of the stable/unstable manifolds is usually time consuming

and not always straightforward especially when the forcing function is at or above a certain threshold

value.

More recently an approach first investigated for periodic excitation by Vakakis (1993) and

applied extensively to the well known Duffing oscillator problems involving homoclinic connections

5



concentrates on exploring a closed form solution to the stable and unstable manifolds up to the first

order of approximation. The focus of the method utilized in the current work is the application of

the so-called Vakakis approach to floating units (both ship shape and any other floating offshore

platform units) under a realistic/random forcing function. The angles of vanishing stability in

the critical modes of motion (usually the transverse or the roll axis for a ship shape body and

a diagonal axis for a semi-submersible) are closely related to the heteroclinic connections of the

manifolds under non-linear restoring, small damping and forcing respectively. The measure of the

distance between the manifolds can then be computed directly from the known first order solutions.

This is compared with the Melnikov method, which doesn’t require the solution of the perturbed

manifolds, as applied in the previous studies for a similar problem (Hsieh et.al, 1993).

The approximate (Melnikov) distance function between the manifolds is linearly dependent

on the excitation amplitude and in a complicated way on the excitation frequency. For the periodic

case, given an amplitude and excitation frequency, it has been also shown that the distance function

depends on the phase of the excitation relative to the forcing frequency and it has been an exercise

of previous studies to determine at what phase (or at what initial time) does the Melnikov function

attain simple zeroes. The existence of zeroes in the distance function such as that approximated by

the Melnikov function implies that the phase space contains heteroclinic tangles giving rise to global

bifurcation phenomenon often leading to complicated dynamics (Wiggins, 1990). One consequence

of this situation is that the dynamics of the system started near the angle of vanishing stability are

now essentially unpredictable (even under periodic deterministic excitation) resulting in aperiodic

response and at times leading to unexpected capsize (Falzarano, 1990). Another effect of these

zeroes is that the net area of the lobes (phase space flux in and out of an imaginary boundary

called the pseudo-separatrix) as approximated by the Melnikov function which is positive is related

to the amount of phase space transported out of the ‘safe region’.

A major thrust of the current thesis will be to observe how the above findings differ or

are similar under irregular forcing such that due to a pseudo random excitation model which is

realistically based on a ‘long-crested’ (unidirectional) sea developed from a given short-term sea

state description usually characterized by a period and a significant wave height. Part of the

inspiration for the current endeavor stems from other related works such as those by Frey and

Simiu (1993) and Hsieh et. al. (1994) who extended the phase space transport theory developed for
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periodic systems to multi-harmonic excitations. There is also a motivation to apply the perturbed

solutions approach up to the first order (Vakakis, 1993) as it relates to the ship dynamical problem

(with no initial static bias) and to study the extension of this approach under irregular forcing. As

a first exercise the perturbed stable and unstable solutions are computed and then calculated as a

function of the system parameters and the external excitation.

Since much of the focus is on whether or not a given vessel will capsize under a given

excitation level, the relation between the manifold intersections and the phase space transport

dynamics is re-visited for a pseudo random excitation. Specifically the distance function with the

known perturbed solutions is compared with the Melnikov techniques as explained by previous

studies to see if we learn anything more or if we can better approximate the separation distance

between the manifolds. Also while most of the current work herein assumes constant added mass

and damping coefficients in determining the system parameters of the roll equation of motion, an

effort has also been included to incorporate a more accurate modeling with respect to the memory-

dependent hydrodynamics for the linear radiated wave force damping especially since the excitation

is a pseudo random forcing consisting of a large number of input frequencies. This accommodates

the use of frequency dependent coefficients since we know that the added mass and the damping

coefficients are only constant if the forcing is harmonic at a singe frequency and the system is linear.

1.3 Summary of Chapters

The formulation of the thesis is divided into four main chapters. The second chapter details the

mathematical formulation of the ship dynamics problem as it applies to the roll mode in isolation

from other degrees of freedom. The third chapter is devoted to the use of a dynamical systems

approach to obtain certain specific solutions of the highly nonlinear roll equation of motion under

random excitation. The solution procedure as well as the use of the perturbed solutions as it relates

to vessel capsize is explored and compared with some recent studies to understand the nonlinear

and transient nature of the ship/vessel dynamics due to large amplitude random wave excitation.

The fourth chapter applies the methodology developed in previous chapters to obtain results for

some specific vessel types and justifies the significance of the approach developed herein as it relates

to other methodologies and other available simulation based approaches. Based on understanding
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the assumptions and approximations made in applying the current method, a discussion for future

work and improvements in approximation are also suggested in the final chapter five.
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2. FORMULATION OF SHIP ROLL EQUATION OF MOTION

2.1 Reference frames and rigid body motions

It is common in the seakeeping theory to use either an earth fixed (inertial) coordinate system or a

body-fixed system to describe the motion of the fluid or of the floating unit in the fluid. Depending

on the problem to be solved at hand it is customary to choose one system over the other, though it

is always necessary to then relate the two systems using coordinate transformations (either angles

or translations) especially when dealing with finite displacements. A body fixed orthogonal right

hand axis system, with origin at the mid-ship and design waterline, is chosen as shown in Figure

2.1. (u, v, w) is the velocity vector of the translational motions surge, sway and pitch; (p, q, r)

is the angular velocity vector of the rotational motion roll, pitch and yaw. The nonlinear coupled

rigid body equations of motion (obtained from the general theory of rigid body motions or Newtons

Laws) with origin not at the center of gravity are called Eulers equations of motion. These equations

Fig. 2.1: Ship coordinate system

9



are derived or reported in a variety of references (see e.g., Falzarano, 1990), as shown in (2.1)

X = m[u̇+ qw − rv − xG(q2 + r2) + zG(pr + q̇)]

Y = m[v̇ + ru− pw − xG(pq + ṙ) + zG(qr − ṗ)]

Z = m[ẇ + pv − qu+ xG(rp− q̇)− zG(p2 + q2)]

K = I44ṗ− (I55 − I66)qr − I64(ṙ + pq)−mzG(v̇ + ru− pw)

M = I55q̇ − (I66 − I44)rp− I64(r2 − p2) +mzG(u̇+ qw − rv)−mxG(ẇ + pv − qu)

N = I66ṙ − (I44 − I55)pq − I64(ṗ− qr) +mxG(v̇ + ru− pw)

(2.1)

where m is the mass of the ship, I44, I55, I66 and I64 are the moments of inertia.

(X,Y,Z) is the force vector and (K,M,N) is the moment vector which are defined in the

body-fixed coordinate system. The force (and the moment) vector represent the generalized hydro-

dynamic forces (and moments) for the six degrees of freedom expressed in the body fixed system.

The total hydrodynamic force vector is assumed to be broadly a combination of:

a) the wave excitation force comprising of two components namely Froude-Krilov forces

which are due to the incident wave in the assumption that the presence of the hull does not alter

the flow field and diffraction forces which consider the effect of change in the flow field due to the

fluid structure interaction;

b) the radiation forces which appear as a consequence of the change in momentum of the

fluid and the waves generated due to the motion of the hull. These forces are proportional to the

accelerations and velocities of the vessel and hence the radiation forces are separated into the so-

called added-mass forces (forces proportional to accelerations) and potential-damping forces (forces

proportional to velocities);

c) the viscous forces which are nonlinear damping forces that appear due to viscous effects

such as skin friction, flow separation, eddy making etc. These forces depend nonlinearly on the

relative velocities between the hull and the fluid;

d) the hydrostatic forces which are the restoring forces due to gravity and buoyancy that

tend to preserve the equilibrium of the vessel. There could be other external forces due to wind,

current and other effects (such as water on deck, thrusters, mooring etc) that are ignored for the
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current thesis which focuses chiefly on the response of the floating unit due to gravity waves alone.

Similarly there could be external forces due to the constant forward speed of the unit and the waves

which are usually the result of the so-called second order effects and these are again ignored for the

current study herein. This is found acceptable if the forward speed on the unit is generally small.

Except for the viscous forces the rest can be studied within a linear frame-work. In partic-

ular the wave excitation forces and the radiation forces can be obtained by considering the linear

potential theory where a potential function that satisfies the Laplace’s Equation (see equation (2.2)

or e.g., Chakrabarti, (1997)) in the fluid and boundary conditions on the surface of the hull, the

free surface of the water and the sea floor.

∇2Φ = 0 (2.2)

Due to linearity, this potential is separated into radiation potential and wave-excitation poten-

tial. The pressure can be calculated by substituting the potential into the linearized Bernoulli

Equation (2.3).

p

ρ
+
∂Φ
∂t

+ gz = C (2.3)

and the hydrodynamic forces and moments are obtained by integrating the pressure over the wetted

surface Sw of the hull. The radiation components thus for each degree of freedom are given by:

Fri = −ρ
∫∫
Sw

(∂Φr
∂t + gz)(n)ids i = 1, 2, 3 (2.4)

Fri = −ρ
∫∫
Sw

(∂Φr
∂t + gz)(r × n)ids i = 4, 5, 6 (2.5)

Similarly the first order wave excitation forces and moments are obtained as

FWi = −ρ
∫∫
Sw

(∂ΦW
∂t + gz)(n)ids i = 1, 2, 3 (2.6)

FWi = −ρ
∫∫
Sw

(∂ΦW
∂t + gz)(r × n)ids i = 4, 5, 6 (2.7)
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where the wave excitation and force is separated into the incident and the diffracted or

ΦWi = ΦI
Wi + ΦD

Wi and FWi = F IWi + FDWi (2.8)

The hydrostatic restoring forces and moments are proportional to the displacement,

Fhsi = Cijxj

and the only non-zero linear coefficients are

C33 = ρgAWP

C35 = C53 = −ρg
∫∫

AWP

xds

C44 = ρg∇GMT , C55 = ρg∇GML

(2.9)

where AWP is the water-plane area, ∇ is the displaced volume and GMT and GML are the trans-

verse and longitudinal metacentric heights respectively (see e.g. Biran, 2003).

2.2 Linear ship motions in regular waves

The Euler equations in (2.1) are coupled nonlinear equations not readily tractable even with the

most advanced numerical schemes and often amount to exhaustible computer time and space. It also

involves solving the three dimensional hydrodynamic problem of a body floating on the free surface.

While the linear assumption is a limitation since it neglects viscous effects and characteristics of

a real free surface, it has proven to be a tool that yields reasonable predictions for analysis at

preliminary stages. One other advantage is the use of superposition principle which lends itself

to admitting muti-harmonic forcing as is seen in the current thesis later with the consideration of

pseudo random excitation. Thus apart from roll, linearization of the Euler equations provides a

good approximation to the ship motion equations. Following a linearization scheme followed by

Vugts (1970) the nonlinear inertial terms drop out from the Euler equations and the body rotation
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rates and the Euler angle rates become an identity leading to linearized equations of the form:

X = m[u̇+ zGq̇]

Y = m[v̇ + xGṙ − zGṗ]

Z = m[ẇ − xGq̇]

K = I44ṗ− I64ṙ −mzGv̇

M = I55q̇ +m(zGu̇− xGẇ)

N = I66ṙ − I64ṗ+mxGv̇

(2.10)

Also to first order the rotation about a fixed or a moving system become identical. Now considering

the excitation to be due to a single periodic wave with a surface elevation at the origin given by

ζ(t) = ζ̄cos(ωet+ ε) (2.11)

where ζ̄ is the amplitude of the wave and ωe is the frequency of encounter as observed by the ship,

the vector of wave excitation force can be represented as

FWi(t) = FWi0 cos(ωet+ εWi0) i = 1, 2, ...6 (2.12)

Depending on the wave heading angle, χ , the forward speed of the ship, V and the wave frequency,

ω , the encounter frequency as observed in the body fixed system is defined by

ωe = ω − ω2V

g
cos(χ) (2.13)

Radiation forces are proportional to the accelerations and velocities of ship motion. For the con-

sidered sinusoidal motion, the vector of radiation force components can be represented as

Fri = −Aij(ωe)ẍj −Bij(ωe)ẋj i, j = 1, 2, ...6 (2.14)
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Using (2.14), (2.12) and (2.10), the frequency domain representation of the equations of motion

become

[mij +Aij(ωe)]ẍj +Bij(ωe)ẋj + Cijxj = FWi(t) i, j = 1, 2, ...6 (2.15)

where Aij(ωe) is the added mass coefficient matrix, Bij(ωe) is the damping coefficient matrix, and

Cij is the restoring force coefficient matrix. The only external forces are the Froude-Krylov force

and the diffraction force given together by FWi(t) . It has to be noted that equation (2.15) would

only be valid under the special case when the excitation force is single harmonic and only if the

added mass and damping coefficients assume proper values at the excitation frequency, so the

above equations can not really describe the ship motions in realistic seaway. Thus in the frequency

domain representation of the equations of motion as in (2.15) above, the added mass and damping

coefficients become functions of the excitation frequency. A more accurate representation of the

time domain equations have constant added mass and the damping is expressed as a convolution

integral. Furthermore, these equations (2.15) describe motion only in the steady state.

The true linear time domain equations of motion that describe the motion of ships in realistic

seaway are given as follows (see e.g., Cummins, 1962)

[mij +Aij(∞)]ẍj +
∫ t

0
Kij(t− τ) ẋj(τ) dτ + Cijxj = FWi(t) i, j = 1, 2, ...6 (2.16)

where Aij(∞) is the added mass at infinite frequency, Kij(t−τ), in the convolution integral, are the

retardation functions of time which depend on the forward speed and the geometry of the vessel.

They are the impulse response functions of the ship motion velocities and represent the memory

effect of the radiated waves. The relation between Kij(t−τ) and the frequency dependent damping

coefficients Bij(ωe) is given by the following cosine transform (see, e.g., Ogilvie, 1964; Cummins,

1962)

Kij =
2
π

∫ ∞
0

Bij(ωe) cos(ωet) dωe (2.17)
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2.3 Nonlinear large amplitude ship rolling in irregular waves

In order to understand the complicated dynamics observed in most capsizing studies to date it

is essential not to ignore the important nonlinear effects of the ship motion equations. While

this can be quite challenging or almost impossible to include them in the coupled six degrees of

freedom, it is reasonable to isolate roll where the nonlinear viscous effects are most pronounced

and attempt to analyze the dynamics in a more general treatment. This has been the focus of

most nonlinear dynamical capsizing analyses who have used single frequency and single degree of

freedom models (see, e.g., Falzarano 1990, Hsieh et al 1994, Jiang et al 1996), although mode

coupling was considered in some cases (Zhang & Falzarano, 1994). A major part of the current

thesis is to extend the significant work done by these previous groups while applying a new solution

approach from the theory of nonlinear dynamics to the single degree of freedom in roll. Following

(Falzarano, 1990), first order terms proportional to unit body motions are considered separately

from the nonlinear damping and restoring forces. Linear hydrodynamic added mass Aij(ωe)ẍj ,

linear potential damping Bij(ωe)ẋj forces, wave exciting force FWi supplemented by the viscous

roll damping and nonlinear hydrostatics G(ẋ4, x4) are used, where x4 represents the roll motion.

Using these assumptions, the quasi-linear frequency domain equation of ship motion with nonlinear

roll terms are given as follows

[mij +Aij(ωe)]ẍj +Bij(ωe)ẋj + Cijxj +G(ẋ4, x4) = FWi0 cos(ωet+ εWi0) i, j = 1, 2, ...6 (2.18)

For the fore-aft asymmetric ships, the above equation (2.18) implies a decoupling of sway,

roll and yaw from surge, heave and pitch. This decoupling is preserved with the form of nonlinearity

used to supplement the equations. Although sway is strongly coupled to roll, under certain condi-

tions it is sometimes possible, by choosing an appropriate coordinate system (i.e. the roll center),

to approximately decouple sway from roll (see e.g. Falzarano, 1990 or Roberts, 1986). Moreover,

for a typical ship the coupling of yaw to roll and sway is less important than the coupling of sway to

roll. Following Falzarano (1990), making all these assumptions, a frequency domain single degree

of freedom roll equation of motion is obtained,

[I44 +A44(ω)]φ̈+B44(ω)φ̇+B44qφ̇|φ̇|+G(φ) = FW40 cos(ωet+ εW40) (2.19)
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where the encounter frequency is now same as the wave frequency for the roll equation considered

in beam seas or from (2.13), ωe = ω(χ = π
2 ) . In order to evaluate the nonlinear ship roll motion in

the realistic sea way, we can consider the irregular wave excitation to be composed of a large finite

number of periodic components with random relative phase angles, i.e.

FW4(t) =
N∑
i=1

FW40i cos(ωit+ εW40i) (2.20)

giving rise to an approximate representation of the roll equation of motion where constant values

of the added mass and damping coefficients are assumed and are given by

[I44 +A44(ω)]φ̈+B44(ω)φ̇+B44qφ̇|φ̇|+G(φ) = FW4(t) =
N∑
i=1

FW40 cos(ωet+ εW40) (2.21)

Sea spectral models approximating a particular seaway intensity are often defined in terms

of a single or multiple parameters such as significant wave height, peak period, peakedness or shape

parameter etc.(Ochi, 1978). An example of a two parameter wave elevation spectrum in terms of

the significant wave height, HS , and the mean wave frequency, ω̄ called the Bretschneider spectrum

is given below:

S+(ω) = 0.1107 H2
S

ω̄4

ω5
e(−0.4427( ω̄

ω
)4) (2.22)

In order to obtain the roll moment excitation spectra, the sea spectra is multiplied by the square

of the roll moment excitation transfer function or the Response Amplitude Operator (RAO):

S+
R (ω) = S+(ω)|RAO(ω)|2 (2.23)

where the roll transfer function (RAO) in general is obtained from the frequency dependent cou-

pled linear response of the sway force and roll moment respectively or from standard sea-keeping

programs which use the full six degree of freedom (6 DOF) linear equations of motions. They are
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Fig. 2.2: Typical hydrostatic restoring moment characteristic, GZ(φ)

a function of the geometry of the hull, loading condition and the frequency. It must be noted that

the use of linear hydrodynamics in determining the roll excitation transfer function is one of the

modeling limitations of the current method. The resulting roll moment excitation spectrum is then

decomposed into harmonic components with random phase angles as given in equation (2.20) where

FW40i(ωi) =
√

2 S+
R (ωi)∆ω (2.24)

One key feature of the equation(2.21) is the fact that it is not restricted to small motions

as opposed to the linearized Euler equations. The restoring moment can in fact be computed

theoretically from hydrostatics for specific hull forms. Figure 2.2 shows a sketch of a typical

restoring moment characteristic showing the linear and a 5th order curve fit of the actual moment

arm. Thus the linear hydrostatics (equation (2.9)) in roll are now replaced with a polynomial

approximation of the nonlinear roll restoring moment (as a curve fit up to the 9th order) such as

G(φ) = ∆GZ(φ) = ∆(C1 − C3φ
3 + C5φ

5 − C7φ
7 + C9φ

9) (2.25)

which can admit values of roll till the angle of vanishing stability, φV . A characteristic of periodic
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roll motion is that it is a resonant type of motion where large steady state amplitudes can result

if the excitation frequency is close to the roll natural frequency (in cases where the nonlinearities

in the hydrostatics are not pronounced) or close to the so-called throat region of the nonlinear

resonance curve where multiple values in the roll amplitudes are possible (Falzarano, Vishnubhotla

and Juckett, 2005). Also it is generally found that potential damping is very small in roll (Faltinsen,

1990) and corrections for total damping need to be made to account for the viscous effects. In

equation (2.21), the linear potential damping B44(ω)φ̇ is supplemented with a nonlinear viscous

damping term given by B44qφ̇|φ̇|. This additional term includes the skin friction drag and effects

due to flow separation, eddy making etc. Estimation of viscous hydrodynamic reaction force is not

trivial and the current state of the art is to use

• Empirical methods as described in Himeno (1981);

• Experimental methods such as free decay tests of the model extrapolations or prototype

and using energy methods to estimate the viscous damping coefficients (Faltinsen, 1990) or

(Roberts, 1985);

• Theoretical and/or numerical techniques such as the (Reynolds Averaged Navier Stokes

Solver) RANS (Korpus, Falzarano, 1996).

Thus we now have a more or less complete representation of large amplitude roll dynamics

in its most general representation that includes the full nonlinear hydrostatics and the nonlinear

viscous damping effects with the exception of the excitation force which is based on linear hydro-

dynamics. This is the focus of much of the work done in the current thesis and Chapter 3 deals

with the solution methodology of the above equation using a perturbation technique of nonlinear

dynamics, where, damping and forcing (which are usually an order of magnitude smaller in com-

parison to the restoring or the inertial forces in the roll equation), are considered as a perturbation

to the unforced undamped system. However as discussed before a more accurate representation of

the above equation in the time domain would be to use the convolution integral and represent a

nonlinear time domain roll equation of motion as follows

[I44 +A44(∞)]φ̈+
∫ t

0
K(t− τ) φ̇(τ) dτ +B44qφ̇|φ̇|+G(φ) =

N∑
i=1

F4i cos(ωit+ ε4i) (2.26)
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Fig. 2.3: Linear radiation forces, added mass and damping vs freq.

Sometimes equation (2.26) is also referred to as an integro-differential equation due to the presence

of the convolution integral. Note that the added mass is a constant (at infinite frequency) in

the above representation. Using equation (2.17) the impulse response function is obtained as an

inverse Fourier cosine transform of the frequency dependent linear radiation damping. Figure 2.3

and Figure 2.4 show the linear radiation forces (added mass and damping) and the impulse response

function for a traditional naval hull form DDG51.
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Fig. 2.4: Impulse response function, K(t)
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3. APPLICATION OF VAKAKIS METHOD TO SHIP ROLLING

3.1 The problem of unbiased large amplitude rolling of a vessel in beam seas

The focus of this study is highly non-linear rolling motion possibly leading to capsizing. A closed

form analytic solution following the dynamical perturbation method, is utilized to study the large

amplitude roll motion of an unbiased ship at zero speed in beam random seas. In the non-linear

dynamical systems theory, this procedure is an extension of Vakakis’s approach to study the critical

dynamics of the stable and unstable heteroclinic manifolds near the region of the ships angle of

vanishing stability due to an irregular or pseudo random forcing function. Vakakis successfully

applied this approach to explicitly express the stable and unstable homoclinic manifolds of an

undamped periodically excited Duffing oscillator.

Although semi-submersibles generally have critical dynamics about a diagonal axis (Kota,

Falzarano and Vakakis, 1998), in some cases for example the mobile offshore base single base units

(MOB SBUs) due to the relatively large length to beam ratio, roll is still assumed to be critical.

Roll is in general coupled to the other degrees of freedom, however under certain circumstances it

is possible to approximately decouple roll from the other degrees of freedom and to consider it in

isolation. This allows us to focus on the critical roll dynamics. The de-coupling is most valid for

vessels which are approximately fore aft symmetric; this eliminates the yaw coupling. Moreover by

choosing an appropriate roll-center coordinate system, the sway is approximately decoupled from

the roll. For ships, it has been shown in previous studies that even if the yaw and sway coupling are

included the results differ only in a quantitative sense. The yaw and sway act as passive coordinates

and do not qualitatively affect the roll (Zhang and Falzarano, 1994).

The other issue is the modeling of the fluid forces acting on the hull. Generally speaking

the fluid forces are subdivided into excitations and reactions. The wave exciting force is composed

of a part due to incident waves and another due to the diffracted waves, F(t). These are strongly a
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function of the wavelength / frequency. The reactive forces are composed of hydrostatic (restoring)

and hydrodynamic reactions. The hydrostatic forces, ∆GZ(φ), are most strongly non-linear and

are calculated using a hydrostatics computer program. In order that the zeroth order solutions are

expressed in terms of known analytic functions, the restoring moment curve needs to be approxi-

mated by a cubic polynomial. It should be noted here that it is not much more difficult to utilize a

numerically generated zeroth order solution which is based upon an accurate higher order righting

arm curve (Zhang and Falzarano, 1994).

The hydrodynamic part of the reactive force is that due to the so called radiated wave force.

The radiated wave force is subdivided into added moment of inertia, A44(ω)φ̈ and linear radiated

wave damping B44(ω)φ̇. The two moment coefficients are strongly a function of frequency. However,

since the damping is usually small, and for simplicity, constant values at a fixed frequency can be

assumed resulting in a model approximation referred to as the constant coefficient model (CCM).

In the next section, the solution procedure is outlined for the CCM approximation. The results

obtained are then modified to include the frequency dependent added mass and damping under

random forcing that encompasses a whole range of frequencies such as those due to a realistic seaway

and is referred to as the convolution integral model (CIM). Generally, an empirically determined

nonlinear viscous damping term, B44q(ω)φ̇|φ̇|, is included. However such results are only available

for ship hulls. The resulting roll equation of motion using a CCM approximation where the linear

added mass and damping are evaluated at a constant frequency ω is given by:

[I44 +A44(ω)]φ̈+B44(ω)φ̇+B44qφ̇|φ̇|+ ∆GZ(φ) = F (t∗) =
N∑
i=o

F4i cos(ωit∗ + ε4i) (3.1)

where I44 is the roll moment of inertia and ∆ is the weight of the ship and F (t∗) is the forcing due

to the irregular sea obtained from the decomposition of the linear roll exciation spectra as discussed

in the previous chapter. By defining a non-dimensionalized time t defined as shown below, equation

(3.1) can be non-dimensionalized to

ẍ(t) + εδẋ(t) + εδqẋ(t)|ẋ(t)|+ x(t)− kx3(t) = εf(t) (3.2)

where, εδ and εδq are the linear and non-linear damping coefficients respectively and k is the
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strength of the cubic restoring non-linearity. If GZ(φ) = C1φ−C3φ
3 and ωn is the undamped roll

natural frequency then the following non-dimensional terms in the above equation apply :

x = φ, t = t∗ωn, ωn =

√
∆C1

I44 +A44(ω)
, εδ =

B44(ω)
(I44 +A44(ω))ωn

, ˙( ) =
d

dt

εδq =
B44q(ω)

(I44 +A44(ω))
, ẋ = φ̇ ω−1

n , k =
C3

C1
, εγ(t) =

F (t∗)
(I44 +A44(ω))ω2

n

, Ω =
ω

ωn

(3.3)

It is important to note that the damping and the excitation are small (and scaled by a small

quantity ε) and as noted by Falzarano (1990) this formulation allows us to consider the effects of

damping and forcing on large vessel motions since the amplitude of motion is not restricted to be

small. By defining x(t) = u(t) = φ(t) and ẋ(t) = φ̇(t∗)ω−1
n = v(t) , equation (3.2) can be expressed

in the Cauchy (first order) standard form as :

u̇(t) = v(t)

v̇(t) = −u(t) + k u3(t) + ε{−δv(t)− δqv(t)|v(t)|+ γ(t)}
(3.4)

For the unperturbed case, ε = 0, the above equations represent the undamped rolling motion of

an unbiased vessel in calm water. There are three fixed points for the system at (u, v) = (0, 0)

and (±1/k, 0) that represent a (stable) global centre at the origin and two unstable (hyperbolic)

fixed points called saddles at the positive and negative angles of vanishing stability respectively.

The associated phase plane consists of a symmetric pair of heteroclinic orbits connecting the saddle

points given by:

u(t− t0) = ±
√

1
k

tanh(
t− t0√

2
) (3.5)

v(t− t0) = ±
√

1
2k

sech2(
t− t0√

2
) (3.6)

The solutions to the above unperturbed equation with softening spring characteristics exhibit two

greatly different types of motions depending upon the initial conditions with energy levels above
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Fig. 3.1: Separatrix, manifolds for ε = 0

or below the heteroclinic orbits. The curve or the boundary between these two types of motions is

called in the terminology of nonlinear vibrations, the separatrix (also called the basin boundary),

as it literally separates the two qualitatively different motions, see Figure 3.1. For initial conditions

with small energy level (below the energy level along the separatrix) the first type of motion is an

oscillatory motion which is bounded and well-behaved. Whereas initial conditions with energy levels

above the energy level along the separatrix lead to unidirectional rotation which for a conventional

vessel it represents an unbounded motion or capsize. These curves are also called the (upper and

lower) saddle connections or manifolds. The saddles or the manifolds are connected as long as no

damping and forcing are considered in the system. Once damping is added to the system, the saddle

connection breaks into distinct stable (W s) and unstable (W u) manifolds (Figure 3.2). The stable

manifolds are most important because they form the basin boundary between initial conditions

which remain bounded and those that become unbounded. The key feature of this thesis is to be

able to explicitly calculate these manifolds when damping and forcing are added to the system.

The solution methodology is discussed in the following section.
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Fig. 3.2: Extended state space showing manifolds for, ε 6= 0

3.2 Perturbational solution for small Damping, Forcing-Constant Coefficient Model

As already noted in the previous section when ε = 0, equation (3.2) or system (3.4) is Hamiltonian

or integrable and its phase plane contains the stable fixed point (u, v) = p0 = (0, 0) and two unstable

ones, p1,2 = (±1/k, 0). The unperturbed phase plane possesses two heteroclinic orbits which result

from the identification of the stable and unstable manifolds of the unstable fixed points. There are

two basic perturbation results that follow (similar to the planar homoclinic orbits as discussed in

Guckenheimer and Holmes, 1983):

1. For non-zero ε, sufficiently small and for a single periodic forcing, equation (3.2) possesses

two unique hyperbolic periodic orbits,γε(t) = p1,2 + O(ε), of the saddle type which are ε

-close to the unstable fixed points of the unperturbed problem. Correspondingly the Poincaré

map, P t0ε (sampling of the extended state space once per period of the forcing) has unique

hyperbolic saddle points (Guckenheimer and Holmes, 1983).

2. The local stable and unstable manifolds of γε(t) are Cr close (r ≥ 2) to those of the unper-

turbed periodic orbit. Moreover orbits xs,u(t; t0) lying on the stable and unstable manifolds
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(denoted by subscripts s and u respectively) can be uniformly approximated in appropriate

time intervals by series expressions of the form:

xs(t; t0; ε) = x0,s(t− t0) +
∞∑
n=1

εnxns(t; t0) t ≥ t0 (3.7)

xu(t; t0; ε) = x0,u(t− t0) +
∞∑
n=1

εnxnu(t; t0) t ≤ t0 (3.8)

where t0 denotes the initial time.

Substituting the above expressions in equation (3.2) and matching the coefficients of re-

spective powers of ε, the equations governing the approximations of various orders are obtained.

The zeroth order approximations correspond to motions on the heteroclinic orbits of the unforced

autonomous system, and thus are invariant under any arbitrary time translations. By contrast

the higher order approximations xn,s,u(t− t0) are obtained by solving non-autonomous differential

equations, and depend explicitly on the value of the initial time, t0. The zeroth order approximation

is computed, considering the unperturbed, unforced system:

ẍ0,s,u + x0,s,u − k x3
0,s,u = 0⇒ x0,s = x0,u = ± 1√

k
tanh

η√
2

(3.9)

where double dot denotes double differentiation with respect to η, and the notation η = t − t0 is

introduced. Similarly the equation governing the first order is given by

ẍ1,s,u + (1− 3k x2
0,s,u)x1,s,u = γ(η + t0)− δ ẋ0,s,u − δq ẋ0,s,u|ẋ0,s,u| = f̂(η) (3.10)

Equation (3.10) is a linear differential equation with a parameter-dependent coefficient, and

its general solution is obtained by using the method of variation of parameters (Ross, 1984)

x1,s,u(η; t0) =
[
α1,s,u −

∫ η

0
f̂(ξ)x(2)

h1 (ξ) dξ
]
x

(1)
h1 (η)

+
[
β1,s,u −

∫ η

0
f̂(ξ)x(1)

h1 (ξ) dξ
]
x

(2)
h1 (η)

(3.11)

where

x
(1)
h1 (η) =

1√
2k

sech2 η√
2

=
dx0,s,u

dη
(3.12)
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x
(2)
h1 (η) = 21.5kx

(1)
h1 (η)

[1
4

cosh3 η√
2

sinh
η√
2

+
3
16

(sinh
√

2η +
√

2η)
]

(3.13)

are two linearly independent homogeneous solutions, and α1,s,u and β1,s,u are constants evaluated

so that x1,s,u(η; t0) is bounded as η → ±∞. In general for harmonic excitation it is seen that the

first term in expression (3.11) is bounded while the second term is not. In fact the function x(2)
h1 (η)

diverges whereas the definite integral reaches a finite limit as η → ±∞ . Thus for bounded limits

of x1,s,u(η; t0) as η → ±∞, it can be shown that the constants β1,s,u must be assigned the values

β1,s,u = −
∫ ±∞

0 f̂(ξ) x(1)
h1 (ξ) dξ where the (+) and (-) signs on the upper limits of the integral refer

to the subscripts s and u respectively. Thus the analytical solution to the orbits lying on the stable

and unstable manifolds can be approximated up to the first order respectively by

xs(η; t0; ε) = x0,s(η) + ε x1,s(η; t0) +O(ε2) (3.14)

xu(η; t0; ε) = x0,u(η) + ε x1,u(η; t0) +O(ε2) (3.15)

It is finally noted that the constant α1,s,u has an effect of time-shifting the zeroth order approxima-

tion by an amount equal to ε α1,s,u similar to the one predicted for the slowly forced Duffing system

(Vakakis, 1994). Since the outlined perturbation analysis is carried out under the assumption of an

initial time t = t0 (η = 0), the constant α1,s,u in (3.11) must be set equal to zero. The first order

analytical solution to the orbits on the stable and unstable manifolds as derived can be extended to

a pseudo random forcing function (for large N) where the function is expressed as a harmonic sum-

mation of N components with different amplitudes and random phase parameters (Vishnubhotla,

Falzarano and Vakakis, 1998). For each individual component the boundedness of the analytical

solution is assured as long as N is not infinite (Frey and Simiu, 1993, 1996) and hence for the total

final solution to the first order.

3.3 Distance between the Manifolds and Equivalence to Melnikov Method

Consider an assumed time varying dynamical system of the form (Guckenheimer and Holmes, 1983)

ẋ = f(x) + ε g(x, t) x = q = (u, v) ∈ R2 where f(x) is a known autonomous vector field and

g(x, t) is a time varying perturbation. Since we know the perturbed solutions to the first order we
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use (3.14) and (3.15) to determine the separation of the manifolds as

d(t0) = ε
f(x0(0)) ∧ (q1,u(t0)− q1,s(t0))

|f(x0(0))|
+O(ε2) (3.16)

This concept which was applied to homoclinic duffing oscillator by Vakakis is here utilized to

estimate the separation of the manifolds for the heteroclinic ship/vessel problem. From equations

(3.5) and (3.6) it follows that f(x0(0)) = ( 1√
2k
, 0). Then if we let VM(t0) = f(x0(0)) ∧ (q1,u(t0)−

q1,s(t0)), we get

VM(t0) = f(x0(0)) ∧ (q1,u(t0)− q1,s(t0)) =
1√
2k

(ẋ1,u(t0)− ẋ1,s(t0)) (3.17)

where differentiating (3.11) with respect to time, it can be shown that

ẋ1,s,u(t0) = −
√

2 tanh(0) x1,s,u(t0) + 2−0.5
[
β1,s,u +

∫ η

0
f̂(ξ) x(1)

h1 (ξ) dξ
]
x

(2)
h1 (0) (3.18)

After some manipulation we have

VM(t0) =
∫ ∞
−∞

x
(1)
h1 (ξ) f̂(ξ) dξ ≡

∫ ∞
−∞

f(x0(t)) ∧ g(x0(t), t+ t0) dt (3.19)

It turns out that the left-hand-side of (3.19) is in fact identical to the one obtained using the

Melnikovs method (the right-hand-side) where the zeros of the distance or the Melnikovs function

correspond to transverse heteroclinic intersections of the manifolds as t0 is varied. In the classical

Melnikov method (to calculate the distance between the manifolds) the Melnikov integral is usu-

ally expressed in terms of the unperturbed f(x) and the perturbed terms g(x, t) of the governing

equation evaluated along the unperturbed trajectories, q0(t) ≡ (x0(t), ẋ0(t)). Therefore we never

need to calculate the solutions to the perturbed equations. This results in a formula in terms of

the system parameters and time. Simple zeros as t0 is varied of the Melnikov function correspond

to transverse heteroclinic intersections of the stable and the unstable manifolds. Specifically, from

(3.14) and (3.15), the separation of the manifolds W u and W s can be defined on the section
∑t0 at

the point x0(0) (Guckenheimer and Holmes, 1983) as d(t0) = xuε (t0)−xsε(t0) = ε M(t0)
|f(x0(0))| + O(ε2)

where M(t0) is defined as the Melnikov function and is determined by calculating an improper
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Fig. 3.3: Unstable manifolds inside stable for, VM(t0) < 0

integral over all time (−∞ < t <∞) also refrred to as the Melnikov integral,

M(t0) =
∫ ∞
−∞

f(q0(t)) ∧ g(q0(t), t+ t0) dt (3.20)

which is same as (3.19) (x ≡ q).

The measure of the distance function VM(t0) developed herein or M(t0) (the classical

Melnikov function which will be used from now on for the rest of the Chapter since they both have

been shown to be equivalent) determine the relative orientation of the stable and unstable manifolds

of the saddle points of the angles of vanishing stability. For small or zero forcing these functions

are a negative constant for all time t0. The unstable manifolds in such cases lie within the stable

manifolds and the system is considered stable or safe, see Figure 3.3. Any initial condition starting

within the stable manifolds will remain bounded or come to the upright equilibrium. However if

the forcing is large enough that the Melnikov function is positive for all time the stable manifolds

lie inside the unstable manifolds (upper or lower). Figure 3.4 shows the case when this happens

for the upper manifolds (upper stable inside upper unstable). Figure 3.5 is an example when the

function can be negative when the lower stable manifolds lie within the lower unstable. In either
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Fig. 3.4: Upper stable manifolds inside unstable for, VM(t0) > 0

case this implies all the initial conditions starting near the basin boundary or the separatrix will

lead to capsize. However there can be situations when manifolds cross one another as a function

of time switching relative orientations. This is the situation referred to as chaos (Wiggins, 1990).

The forcing is sufficiently large that the Melnikov function is positive for certain duration of the

excitation and solutions between them will be transported out of the safe region. Chaotic transport

theory shows that the area under the positive part of the Melnikov function is related to the rate at

which solutions, quantified by phase space volumes, escape the safe basin. Although this has been

utilized by Falzarano (1990) for harmonic excitaion and by Hsieh (1994) for random excitation a

review of the results is presented in the next few sections to understand some of the results obtained

using the chaotic transport theory and how they can be related to the likelihood of capsize for a

given vessel under a given wave condition or a seaway.
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Fig. 3.5: Lower stable manifolds inside unstable for, VM(t0) > 0

3.4 Melnikov function for single harmonic excitation

When the excitation is periodic or a harmonic function with a single frequency given by γ(t) =

γ cos(θ + ψ) or γ(t) = γ cos(Ωt+ ψ), equations (3.4) take the form

u̇(t) = v(t)

v̇(t) = −u(t) + k u3(t) + ε{−δ v(t)− δq v(t)|v(t)|+ γ cos(θ + ψ)}

θ̇ = Ω

(3.21)

where ψ is a phase variable in the range [0, 2π]. The Melnikov function which provides a first order

approximation of a measure for the separation of the manifolds for the above problem is given by
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(Falzarano, 1990, Hsieh et. al, 1994)

M(t0, θ0) =
∫ ∞
−∞

v0(t)(−δ v0(t)− δq v0(t) |v0(t)|+ γ cos(Ωt+ Ωt0 + θ0 + ψ)) dt

=
2
k
γ π Ω

cos(Ωt0 + θ0 + ψ)
sinh Ωπ√

2

− 2
√

2
3k

δ − 8
15

δq
k1.5

= M̃(t0, θ0) − M

(3.22)

where M and M̃(t0, θ0) are, respectively, the constant and the oscillatory parts of the Melnikov

function or

M =
2
√

2
3k

δ +
8
15

δq
k1.5

(3.23)

M̃(t0, θ0) =
2
k
γ π Ω

cos(Ωt0 + θ0 + ψ)
sinh Ωπ√

2

(3.24)

Note that the function depends linearly on the amplitude of the excitation function and

in a complicated fashion with the excitation frequency. Also for the unforced (γ = 0) system,

the function is a negative constant, and this implies that hat the unstable manifolds of the saddle

points near the angles of vanishing stability lie inside the stable manifolds. This means that the

vessel with initial conditions located inside the unperturbed system (separatrix) will remain in the

safe region. As the excitation amplitude is increased, the Melnikov function develops an oscillation

about the negative mean value and there exists a certain critical excitation amplitude beyond which

the function has nontangent or transversal zero crossings. This critical amplitude is given by

γcr =
1
πΩ

(
2δ

3
√
k

+
4
√

2 δq
15k

) sinh
πΩ√

2
(3.25)

The existence of these zeroes implies that the phase space contains heteroclinic tangles, a scenario

of global bifurcation resulting in complicated dynamics or chaos (Wiggins, 1990). One consequence

of this situation is that the dynamics of the system started near the angle of vanishing stability

are now essentially unpredictable and unexpected capsize may occur (Falzarano, 1990, 1992). Also

the Melnikov function is now positive for certain phases of excitation and the area of the function

which is positive is related to the phase space that is transported out of the safe region (Wiggins,

1990). The amount of phase space transported out in one period of excitation upto the first order
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is given by

ν = ε

∫ t02

t01

M(t0, θ0) dt0 + Ø(ε2) (3.26)

where (t01, t02) denotes the time interval for which M(t0, θ0) > 0. The average rate of phase space

flux is then given by

Φ = ε
Ω
2π

∫ t02

t01

M(t0, θ0) dt0 + Ø(ε2) (3.27)

3.5 Melnikov function for multi harmonic excitation

The case in which the excitation is multi-harmonic,f(t) can be represented as a summation of

different frequencies and phases. Equation (3.21) will assume the form

u̇(t) = v(t)

v̇(t) = −u(t) + k u3(t) + ε{−δ v(t)− δq v(t)|v(t)|+
N∑
j=1

γj cos(θj + ψj)}

θ̇j = Ωj j = 1, 2, ...N.

(3.28)

Extending the result obtained before for a single frequency, the Melnikov function associated with

the above equation is given by (Wiggins, 1992)

M(t0, θ̄) = M̃(t0, θ̄)−M (3.29)

M̃(t0, θ̄) =
N∑
j=1

2
k
γj π Ωj

cos(Ωjt0 + θ0j + ψj)

sinh Ωjπ√
2

(3.30)

where M̃(t0, θ̄) represents the oscillatory part of the Melnikov function and θj0 = (θ1
0, θ

2
0, ........θ

N
0 ) is

a N-dimensional vector which represents the initial phase. Although in this case the details of the

zero crossings and the phase space flux are more subtle the measure of the average rate of phase

space flux is still obtained by using the generalized version of equation (3.27) and is given by

Φ = lim
T→∞

ε

T

∫ T

−T
M+(ξ) dξ = lim

T→∞

ε

T

∫ T

−T
(M̃(ξ)−M)+ dξ (3.31)

where the integrand represents the positive part of the Melnikov function.
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3.6 Pseudo random or multi harmonic excitation with large N

Here we consider a limit where an input with a very large number of frequencies is used to model

an irregular sea state (as discussed in the previous chapter). An arbitrary specified spectral density

function S+
j (Ω) is approximated by a finite sum of harmonic function (Rice, 1944) where the essen-

tial features of Rices work that a random process can be simulated by a series of cosine functions

with weighted amplitudes, deterministic frequencies and random phase angles is utilized here again.

Consider a random process with zero mean and one-sided power spectral function S+
j (Ω) with in-

significant magnitude outside the region defined by ΩL ≤ Ωj ≤ ΩU where (ΩL > 0) and (ΩU <∞)

denote the lower and upper bounds of the frequency under consideration. The decomposition is

achieved by truncating the continuous spectrum outside the range [ΩL,ΩU ] and dividing into N

equally spaced frequency segments. The characteristic frequency associated with each individual

frequency segment is defined by Ωj = ΩL + (j − 0.5)∆N for 1 ≤ j ≤ N where ∆N = 1
N (ΩU − ΩL)

represents the width of each frequency segment. The magnitude associated with frequencyΩj is

given by

γj =
√

2Aj =
√

2S+
j (Ωj)∆N (3.32)

where Aj represents the area of the rectangular region formed by S+
j (Ω) and ∆N .

This yields sinusoidal oscillatory functions γj cos(Ωjt + ψj) for j = 1, 2, .N in which ψj

is a random phase angle uniformly distributed in [0, 2π], resulting in a random function which is

mean-ergodic and correlation-ergodic regardless of the number of frequencies (N) (Rice, 1944). As

a consequence, the resultant Melnikov function is also mean-ergodic and correlation-ergodic (Hsieh,

1994). The mean and mean square of M̃(t0, θ̄0) are given by

E[M̃(t0, θ̄0)] = E

[ N∑
j=1

√
2
k

γjΩjπ

sinh(Ωjπ√
2

)
cos(Ωjt0 + θj0 + ψj)

]
= 0 (3.33)

34



σ2
M̃

=
2
k
π2 ×

E

[ N∑
i=1

γi Ωi

sinh(Ωiπ√
2

)
cos(Ωit0 + θi0 + ψi)

]
E

[ N∑
j=1

γj Ωj

sinh(Ωjπ√
2

)
cos(Ωjt0 + θj0 + ψj)

]

=
2
k
π2 E

[ N∑
l=1

γl Ωl

sinh(Ωlπ√
2

)
cos(Ωlt0 + θl0 + ψl))2 + cross terms

]

=
2
k
π2 E

[ N∑
l=1

1
2
( γl Ωl

sinh(Ωlπ√
2

)

)2 (1 + 2 cos(2Ωlt0 + 2θl0 + 2ψl))
]

=
N∑
l=1

2πS+
f (Ωl)(

π

k
)
( Ωk

sinh(Ωlπ√
2

)

)2 ∆N

(3.34)

where the cross terms have zero mean due to the independence of the phase angles ψi and ψj . By

virtue of Central Limit Theorem (Lin, 1967), in the limit N →∞ M̃(t0, θ̄0) is a Gaussian random

variable with zero mean and standard deviation σM̃ and as ∆N → 0

σ2
M̃

=
∫ ∞

0
2πS+

f (Ω)
[π
k

( Ω
sinh Ωπ√

2

)2]
dΩ (3.35)

Note that the expression π
k

(
Ω

sinh Ωπ√
2

)2 is the Fourier transform of the heteroclinic unperturbed so-

lution v0(t) . It must be pointed out however that the above limit N → ∞ is taken only in a

mathematically formal sense (Hsieh, 1994, Frey and Simiu, 1993) as a convenience to approximate

sums of a large number of terms by a relatively simple integral. This is realized to ensure the math-

ematical conditions under which the Melnikov function is originally derived. In fact one cannot

insure that the saddle point, which is the continuation of the angle of vanishing stability, remains

a saddle-type invariant set in the limit N →∞.

The properties of the Menikov function can also be expounded using the standard defini-

tions of auto-correlation function, spectral density function and their relationship via the Wiener-

Khintchine relation. This is useful as shown by Hsieh et.al (1993) if the input excitation f(t) were

to be a continuous random process with zero mean and mean square spectral density Sf (Ω) and

a corresponding one-sided mean square spectral density function S+
f (Ω) = 2Sf (Ω) defined over

Ω > 0. Invoking the definition of the Melnikov function with the assumption that f(t) is now
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random, we have

M(t0) =
∫ ∞
−∞

v0(t)(−δ v0(t)− δq v0(t) |v0(t)|+ f(t+ t0)) dt = M̃(t0)−M (3.36)

where M is given by (3.23) and

M̃(t0) =
∫ ∞
−∞

v0(t) f(t+ t0) dt (3.37)

denotes the oscillatory part of the Melnikov function. Then the mean value of M̃(t0) is

E[M̃(t0)] = E
[ ∫ ∞
−∞

v0(t) f(t+ t0) dt
]

=
∫ ∞
−∞

v0(t) E[f(t+ t0)] dt = 0 (3.38)

since E[f(t)] = 0. Thus the oscillatory part of the Melnikov function is a random process with zero

mean. This implies that M represents the mean value of M(t0). The mean square value of M̃(t0)

is evaluated using the Wiener-Khintchine relation or

RM̃ (τ) = lim
T→∞

1
T

∫ T
2

−T
2

M̃(t)M̃(t+ τ) dτ =
∫ ∞
−∞

SM̃ (Ω)ejΩτ dΩ (3.39)

SM̃ (Ω) = 2πM̃∗(Ω) M̃∗(Ω) =
1

2π

∫ ∞
−∞

RM̃ (τ)e−jΩτ dτ (3.40)

where M̃∗(Ω) is the Fourier transform of M̃(t) given by M̃∗(Ω) = 1
2π

∫∞
−∞ M̃(τ)e−jΩt dt and an

overline is used to denote complex conjugate. From the symmetry properties of R(τ) it follows that

Sg(Ω) = Sg(−Ω). Thus the mean square value of the oscillatory part of the Melnikov function can

now be expressed in terms of its Fourier transform as

E[M̃2(t0)] = lim
T→∞

1
T

∫ T
2

−T
2

M̃2(t0) dt0 = RM̃ (0) =
∫ ∞
−∞

SM̃ (Ω) dΩ =
∫ ∞

0
S+
M̃

(Ω) dΩ (3.41)
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The Fourier transform of M̃(t0) is given by

M̃∗(Ω) =
1

2π

∫ ∞
−∞

( ∫ ∞
−∞

v0(t)f(t+ t0) dt
)
e−jΩt0 dt0

=
1

2π

∫ ∞
−∞

v0(t)
( ∫ ∞
−∞

f(t+ t0)e−jΩt0 dt0
)
dt

=
1

2π

∫ ∞
−∞

v0(t)
( ∫ ∞
−∞

f(ξ)e−jΩξ dt0
)
dt ejΩt

= 2π f∗(Ω) v∗0(Ω)

(3.42)

Now considering the spectral density function of M̃(t0), SM̃ (Ω) and using (3.40) we get

SM̃ (Ω) = 2π M̃∗(Ω) M̃∗(Ω)

= 2π
(
2π v∗0(Ω) f∗(Ω)

) (
2π v∗0(Ω) f∗(Ω)

)
= 2π

(
2π v∗0(Ω)v∗0(Ω)

) (
2π f∗(Ω)f∗(Ω)

)
SM̃ (Ω) = 2π Sv0(Ω) Sf (Ω)

(3.43)

The one-sided spectral density of M̃(t0) is then given by (3.43) which is

S+
M̃

(Ω) = 2 SM̃ (Ω) = 2
(
2π Sv0(Ω) Sf (Ω)

)
= 2π Sv0(Ω)

(
2 Sf (Ω)

)
= 2πSv0(Ω) S+

f (Ω) (3.44)

and is defined over Ω > 0. The mean square value of M̃(t0) is then given by

E[M̃2(t0)] =
∫ ∞
−∞

SM̃ (Ω) dΩ =
∫ ∞

0
S+
M̃

(Ω) dΩ =
∫ ∞

0
2π Sv0(Ω) S+

f (Ω) dΩ (3.45)

3.7 Phase space flux and critical criterion for pseudo random excitation

An expression for the rate of phase space flux as developed by Hsieh (1994) using the Melnikov

function as developed for pseudo random excitation is re-worked here. The result states that upto

the first order the area under the positive part of the Melnikov function represents the area being

transported out of the pseudo-separatrix of the heteroclinic orbit. It is a generalized extension

of the lobe dynamics (Wiggins, 1990) well developed for the periodic excitation and successfully

utilized by previous studies (Falzarano, 1990).

Based on the previous analysis, we now know that the Melnikov function M(t0) is a random
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process with Gaussian distribution. Furthermore the resultant Melnikov function is stationary

and ergodic (Hsieh, 1994). Hence the values of the mean M and the variance σ2
M̃

= E[M̃2(t0)]

completely characterize M(t0). Also we know from statistical theory that if a random process is

stationary and ergodic the temporal average is equal to the ensemble average. It is precisely this

characteristic that makes the rate of phase space flux, which in expressed in terms of the Melnikov

function, amenable for pseudo random excitation. Hence using equation (3.31) we have

Φ = lim
T→∞

ε

2T

∫ T

−T
M+(ξ) dξ = ε E[M+(ξ)] = ε E[M̃(ξ)−M)+] (3.46)

Evaluating the integral further, we get

Φ(σ,M) = ε E[(M̃(ξ)−M)+] = ε

∫ ∞
M

(z −M) p(z) dz

= ε

∫ ∞
M

(z −M)
( 1√

2π σ

)
e(−

z2

2σ2) dz

= ε σ

∫ ∞
M̃
σ

(
z − M̃

σ

) ( 1√
2π

)
e(−

x2

2 ) dx

= ε
(
σ pn(

M

σ
) +M Pn(

M

σ
)−M

)
(3.47)

where p(z) denotes the probability density function of M(t0) , and

pn(z) =
1√
2π

e(−
z2

2 ) dz (3.48)

Pn(z) =
∫ ∞
−∞

pn(ξ) dξ (3.49)

represent, respectively, the probability density and distribution functions of the standard Gaussian

random variable. The simple steps needed to calculate the rate of phase space flux as given by

equation (3.47) can be summarized again as follows (Hsieh, 1994):

• Determine the system parameters (specifically k, ε, δ, δq ) which determine M ;

• Evaluate the Fourier transform of the unperturbed heteroclinic solution v0(t) and from the

one-sided spectral density function S+
f (Ω) that describes any given sea-state, one can evaluate

the mean square value of the random Melnikov function;
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• Finally using equation (3.47) compute the rate of phase space flux using the definitions for

the probability density function of a standard Gaussian random variable;

The focus of attention is then to investigate how the rate of the phase space flux relates to the

onset of capsize. Following Hsieh (1994) the critical wave height at which substantial phase-space

flux begins to occur, suggesting an increased risk of operating the vessel, is given by

H∗s =
√

2π M
2σ1

(3.50)

where σ1 refers to the RMS (root-mean-square) value of M̃(t0) for unit significant wave height (see

Hsieh (1994) for discussion).

3.8 Problem Formulation for Convolution Integral Model

The coefficients in the previous sections, A44(ω) and B44(ω), are frequency dependent because of

the presence of free surface. If the excitation is single harmonic, then the coefficients take on the

value of the excitation frequency. For the pseudo random excitation considered in the current

work, the coefficients previously were taken at the characteristic wave frequency ω̄ or ωz of the

input wave spectrum spectrum S+
ζ (ω) leading to the formulation of the roll equation (3.1) called

the constant coefficient model (CCM). This has been shown to be a reasonable approximation for a

narrow-banded excitation (Holappa and Falzarano, 1999). For excitations with wide band spectra

roll natural frequency, ωn may be better.

However if the forcing is not single harmonic, the frequency dependence of the coefficients

(Ogilvie, 1964) must be accounted for in the time domain roll equation of motion. This leads to a

more accurate representation of the roll equation given by:

[I44+A44(∞)]φ̈+
∫ t

0
K(t−τ) φ̇(τ) dτ+B44qφ̇|φ̇|+∆GZ(φ) = F (t∗) =

N∑
i=o

F4i cos(ωit∗+ε4i) (3.51)

The instantaneous hydrodynamic moment due to φ(t) is the hydrostatic roll restoring given by

∆GZ(φ) = ∆(C1φ− C3φ
3) for a cubic approximation of the hydrostatic moment curve. Although

a cubic approximation is used here for simplicity it must be noted that the method developed in

the current work can handle any form of angle dependent hydrostatic moment and is valid for large

39



angles of roll. The hydrodynamic reaction moments due to φ̇(t) and φ̈(t) are the linear radiation

moment forces. A44(∞) is the added mass coefficient evaluated at infinite frequency and in fact

is a constant that depends only the ship geometry. [I44 + A44(∞)]φ̈ represents the total linear

hydrodynamic roll moment reaction due to the instantaneous φ̈(t).

K(t) represents the hydrodynamic roll moment due to a unit impulse roll velocity where

the response lasts longer than the duration of the impulse (Cummins, 1962). The integral of

K(t − τ) φ̇(τ) represents the cumulative sum of the responses due to a history of roll velocity

impulses, each response calculated with an appropriate time lag from the instant of the impulse.

Denoting this formulation as the convolution integral model, CIM (due to the convolution integral

in the differential roll euqtion of motion) we note that unlike the hydrodynamic reaction moments

that change instantaneously with φ(t) and φ̈(t) the influence from φ̇(t) is cumulative and will be

present for sometime before it dies out. The relation between K(t) and the frequency dependent

linear coefficients, B44(ω) and the evaluation of K(t) from a regular ship motion analysis was

discussed in Chapter 2. The quadratic damping coefiicient B44q(ω) is found by model tests and is

assumed to be a constant in the current work.

We can also re-write equation (3.51) by expanding the limits of integration in the convolution

integral to (−∞,∞) since it is understood that φ̇(t) = 0, t < 0 andK(t) = 0, t < 0 from the principle

of causality. And since
∫∞
−∞K(t− τ) φ̇(τ) dτ ≡

∫∞
−∞K(τ) φ̇(t− τ) dτ we have

[I44+A44(∞)]φ̈+
∫ ∞
−∞

K(τ) φ̇(t−τ) dτ+B44qφ̇|φ̇|+∆(C1φ−C3φ
3) =

N∑
i=o

F4i cos(ωit∗+ε4i) (3.52)

Non-dimensionalizing equation (3.52) as we did for the CCM we have

ẍ(t) + ε

∫ ∞
−∞

κ(t) ẋ(t− τ) dτ + εδqẋ(t)|ẋ(t)|+ x(t)− kx3(t) = εf(t) (3.53)

x = φ, t = t∗ωn, ωn =

√
∆C1

I44 +A44(∞)
, εκ(t) =

K(t)
I44 +A44(∞)

εδq =
B44q(ω)

I44 +A44(∞)
, k =

C3

C1
, εγ(t) =

F (t∗)
(I44 +A44(∞))ω2

n

, Ω =
ω

ωn

(3.54)
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Similar to the CCM solution approach, the zeroth order solutions for CIM, in the application

of the dynamical perturbation method, are still given by equations (3.5) and (3.6) respectively.

However the right hand side of the first-order equation (3.10) must be re-addressed and is not as

straight forward as before.

f̂(η) = γ(
√

2η + t0)− δ
∫ ∞
−∞

κ(τ) ẋ0,s,udτ − δq ẋ0,s,u|ẋ0,s,u|

f̂(η) = γ(
√

2η + t0)− δ
∫ ∞
−∞

κ(τ) v0(η − τ)dτ − δq v0(η)|v0(η)|
(3.55)

As can be seen that the function f̂ is modified from equation (3.10) due to the presence of the

convolution of κ(t) and v0(t). This is determined numerically by a combination of fast Fourier

transform and an inverse fast Fourier transform technique. After this the solution methodology of

the perturbed manifolds is similar to the procedure followed for the CCM formulation discussed

previously.

The Melnikov function for the CIM formulation is also not as straight forward since the

integral term in the perturbation does not depend simply on the instantaneous values of the system

states and time, but on the history of the roll velocity. Jiang (1996) used a standard approach that

approximates the memory effects by the output of a finite-dimensional linear dynamical system to

modify the Melnikov theory. The outcome of the results show that one can procedurally treat the

integral perturbation term in the usual manner that has been developed for perturbations of planar

systems (Jiang, 1996). Melnikov function in this case is given by

M(t0) =
∫ ∞
−∞

v0(t)(−
∫ ∞
−∞

κ(τ) v0(t− τ) dτ − δq v0(t) |v0(t)|+ f(t+ t0)) dt = M̃(t0)−M (3.56)

where the oscillatory part M̃(t0) is given as before by equation (3.37) and the constant part is

modified as

M =
∫ ∞
−∞

v0(t)
( ∫ ∞
−∞

κ(τ) v0(t− τ) dτ
)
dt +

8
15

δq
k1.5

(3.57)

Evaluation of the modified constant part of the Melnikov function is handled similar to the per-

turbed solution approach by using the fast Fourier and inverse fast Fourier transforms respectively.
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4. RESULTS AND OBSERVATIONS

4.1 Comparison with Numerical Integration, periodic forcing

The dynamical perturbation solution approach for calculating the stable and the unstable mani-

folds is compared with the solutions obtained from numerical nonlinear differential equation solver

program (Parker & Chua, 1989). A twice capsized small fishing boat called Patti -B is used for the

comparison of results. Excitation resulting from a periodic forcing from a wave amplitude of 0.75

m (or 5 ft wave height) at 0.7 rad/s is chosen. A cubic fit for the nonlinear restoring moment is

utilized while matching the units roll angle of vanishing stability, φv at 0.5647 rad. Table 4.1 below

gives the details of the vessel particulars.

Any projected phase plane in 2-D of the stable and the unstable solution orbits lying in a

three dimensional space at integer multiples of forcing period is referred to as a Poincaré map and

is schematically shown in Figure 3.2 of Chapter 3. A family of such orbits make up the respective

stable and unstable manifolds. Figure 4.1 however shows a two dimensional projection of the stable

and unstable manifolds from the perturbation solution approach. Alternatively Figure 4.2 shows

the Poincaré map (which is essentially a stroboscopic sampling) of the manifolds at one period of

the forcing function or at 8.97 s respectively. Also seen in both the figures are the periodic solution

orbits whose fixed points given by (φy, 0) (0.5634 rad., 0) and (-φy, 0) (-0.5660 rad., 0) respectively

which lie close to the corresponding angles of vanishing stability, (±φv, 0) = (0.5647 rad., 0). Figure

4.3 shows the comparison between the analytical (perturbation solution) and numerical approaches

for the upper stable and the lower unstable manifolds of Patti -B.

The results compare (see Figure 4.3) quite well at least in the intervals of time when

the perturbation method is applicable i.e for t > t0 for the stable manifolds and t < t0 for the

unstable manifolds respectively for the current example). Another interesting observation from the

perturbation (analytical) results is the diverging behavior of the unstable manifolds as opposed to
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Tab. 4.1: Parameters for fishing boat Patti -B

Fig. 4.1: Patti -B stable (solid) and unstable (dotted) manifolds - perturbation
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Fig. 4.2: Patti -B stable (solid) and unstable (dotted) manifolds - numerical

Fig. 4.3: Comparison of upper stable and lower unstable manifolds (perturbation vs. numerical)
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Tab. 4.2: Parameters for the traditional naval hull DDG-51

those from the numerical method where they lie (and expectedly so) within the boundary of the

stable manifold. This behavior is also explained based on the intervals of validity of the perturbation

method and this is one of the limitations of using the analytic solution beyond their domains of

definition. However it must be pointed out that in the domain of interest the solutions match

closely (numerical versus the perturbation (analytical) solution).

4.2 Comparison of current method to (classical) Melnikov approach (periodic forcing)

While the previous example was for a small fishing vessel with moderate forcing, we now consider

a traditional navy hull form forced under a more severe condition where critical roll dynamics

leading to capsize could occur. The roll natural period of these hull forms are in the range of 9 to

15 seconds which is also where most of the seaway intensity for wave forcing is generally distributed

making the stability of these units very sensitive to dynamic effects. Table 4.2 gives the details of

the vessel particulars where a cubic curve fit is again used to approximate the nonlinear restoring

moment and the roll angles of vanishing stability at φv = 1.451 rad. Periodic excitation from a

wave amplitude of 5.7 ft (or 11.4 ft wave height) at 0.9 rad/s is chosen.

The hydrodynamic wave force and the linear radiation forces (added mass and potential
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Fig. 4.4: Typical free decay test record

Fig. 4.5: Analysis of the free decay test
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Fig. 4.6: DDG51 Poincaré map, 11.4 ft wave and low damping-numerical

damping) at the forcing frequency have been taken from a linear ship motions analyses performed on

the same unit. The quadratic damping coefficient is estimated from sallying experiments performed

on a scaled model and observing the roll decay tests in the University of New Orleans (UNO) Tow

Tank facility (see Figure 4.4 and Figure 4.5). It was found that by adjusting the orientation of the

rudder angle in the model, two generic cases for the damping resulted viz. a higher estimate when

the rudders were zero degrees astern and a lower estimate when the rudders were aligned ninety

degrees astern. The results are shown for the low damping case which illustrates the importance

of damping as manifold intersections were already observed in the Poincaré maps (see Figure 4.6)

when analyzed numerically for the system parameters shown in Table 4.2.

An essential and interesting aspect and also noted by previous studies (Falzarano, 1990,

Falzarano & Vishnubhotla, 2000, Hsieh et.al, 1994) is that for a given wave amplitude, under

periodic forcing, the qualitative structure of the manifolds changes (when they begin to intersect)

for a particular initial phase of the forcing function (or t0, see Chapter 3) given specifically by the

zeroes of the Melnikov function. Analogously this is also depicted by observing a similar change

in the two dimensional (2 D) phase projection of the manifolds, as t0 is slowly varied, just prior to

and after a possible manifold intersection.
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Fig. 4.7: DDG51 perturbation manifold solutions for t0 = 0.40

If the unstable manifold remains inside the stable manifold then the situation is still bounded

and considered safe i.e initial conditions inside the safe basin will remain stable. However if the

stable manifold is inside the unstable manifold then any solution starting around the basin boundary

will lead to an unstable situation and may result in capsize. This is illustrated in Figures 4.7

and Figure 4.8 where for t0 = 0.40 the upper unstable manifold remains inside the upper stable

while for t0 = 0.35 the opposite happens. Hence the manifolds ought to intersect at some value

0.35 < t0 < 0.40 by continuity (Vakakis, 1993, Rand, 1994). A similar situation is repeated for the

lower manifolds in the range 1.60 < t0 < 1.65 and is shown in Figure 4.9 and Figure 4.10.

In fact a straight forward calculation (see Chapter 3) using the perturbation solutions

suggests that the exact values, when the upper (stable and unstable) and lower (stable and unstable)

solutions begin to intersect, are given by t01 = 0.37 and t02 = 1.625 respectively. This is also

verifiable by when the Melnikov function attains simple zeroes for the following two scenarios for

the intersection of upper and the lower manifold solutions respectively:

M(t01) =
2
k
γ π Ω

cos(Ωt01)
sinh Ωπ√

2

− 2
√

2
3k

δ − 8
15

δq
k1.5

= 0 (4.1)
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Fig. 4.8: DDG51 perturbation manifold solutions for t0 = 0.35

Fig. 4.9: DDG51 perturbation manifold solutions for t0 = 1.60
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Fig. 4.10: DDG51 perturbation manifold solutions for t0 = 1.65

M(t02) = −2
k
γ π Ω

cos(Ωt02)
sinh Ωπ√

2

− 2
√

2
3k

δ − 8
15

δq
k1.5

= 0 (4.2)

4.3 T-AGOS safe basin using perturbation solution (pseudo random forcing)

The analytical solution approach utilized herein to track the critical stable manifolds (or the capsize

boundaries) of a floating unit has been applied to an extensive array of vessels ranging in size from

a small crab vessel such as the Patti -B (∼ 50 ft in length) to a Mobile Offshore Base (MOB) unit (∼

1000 ft). Results for these vessels which have also included a tanker based FPSO and an Offshore

Supply Vessel (OSV), (the T-AGOS ) can be found in Vishnubhotla et.al. (2000, 2004).

The current section presents (Figures 4.14 through 4.20) some of the recent results obtained

for an OSV (the T-AGOS ) showing the projected phase plane (PPP) of the stable manifolds or

the safe basin for (the unstable manifolds were found to be within the stable manifolds and are not

shown in the phase plane projections)

• Two different sea states - Sea State 3 (Wind Speed = UW = 9fts−1) and Sea State 7 (Wind

Speed = UW = 32.8fts−1);

• Varying levels of damping (with and without bilge keels (B-K) as well as using B44q(ω) = 0
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Tab. 4.3: Parameters for the offshore supply vessel T-AGOS

(no viscous damping) in some cases.

Finally a typical three dimensional extended phase space plots depicting the lower stable and upper

unstable manifold orbits are also shown for the two sea states.

4.4 Manifold solutions of DDG51 for CCM and CIM approximations

As a comparison to the periodic results reported earlier for the traditional naval hull destroyer,

DDG51, results for the low damping case as previously explained are presented here. The forcing

function is computed as a Fourier decomposition of a 2 parameter (significant wave height and

frequency) Bretschneider sea spectrum given by the description in equation (2.22) of Chapter 2.

The roll moment transfer function for this vessel as obtained by running a linear ship motions

computer program (Beck & Troesch, 1989) is shown in Figure 4.22 while the stable and unstable

manifold solutions for sea states 2 and 5 are shown in Figure 4.23 and Figure 4.24 respectively.

The solutions obtained using the convolution integral to capture the memory dependent

hydrodynamics is referred to as the CIM, while the one using constant coefficients is denoted as

CCM. A comparison of the stable manifolds due to the two methods is shown in Figure 4.25 for
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Fig. 4.11: T-AGOS typical roll moment excitation time history

Fig. 4.12: T-AGOS roll moment spectra for Sea State 3
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Fig. 4.13: T-AGOS roll moment spectra for Sea State 7

Fig. 4.14: T-AGOS safe basin, Sea State 3, w/o B-K, B44q = 0
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Fig. 4.15: T-AGOS safe basin, Sea State 7, w/o B-K, B44q = 0

Fig. 4.16: T-AGOS safe basin, Sea State 3, w/o B-K, B44q 6= 0
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Fig. 4.17: T-AGOS safe basin, Sea State 7, w/o B-K, B44q 6= 0

Fig. 4.18: T-AGOS safe basin, Sea State 3, w/i B-K, B44q 6= 0
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Fig. 4.19: T-AGOS safe basin, Sea State 7, w/i B-K, B44q 6= 0

Fig. 4.20: Extended phase space showing upper unstable and lower stable solutions, Sea State 3, w/o B-K
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Fig. 4.21: Extended phase space showing upper unstable and lower stable solutions, Sea State 7, w/o B-K

Fig. 4.22: DDG51 roll moment transfer function (RAO)
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Fig. 4.23: DDG51 Projected Phase Plane for Sea State 2, [Hs, Tp] = [2.9 ft, 7.5s]

Fig. 4.24: DDG51 Projected Phase Plane for Sea State 5, [Hs, Tp] = [10.7 ft, 9.7s]
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Fig. 4.25: Comparison of Stable manifold solutions for Sea State 2 CCM (dotted) and CIM (solid)

a Sea State 2 seaway intensity. Similar to the results shown earlier for periodic forcing, the stable

and the unstable manifold solutions of the saddle points at the angles of vanishing stability can be

calculated for different initial phase values of t0. For a sufficiently small forcing case (Sea State

2) where the unstable manifolds lie well within the stable manifolds, Figure 4.26 and Figure 4.27

show the stable and unstable manifolds respectively for a case of five initial phases.
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Fig. 4.26: Stable manifolds for 5 initial phases t0 = 0.7025, 2.396, 4.1456, 0.6085 and 5.541

Fig. 4.27: Unstable manifolds for 5 initial phases t0 = 0.7025, 2.396, 4.1456, 0.6085 and 5.541
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5. CONCLUSIONS AND FUTURE WORK

5.1 A practical technique to analyze the problem of ship capsize

Using global perturbation or geometric method, an analysis tool from the theory of dynamical

systems coupled with a mathematical solution procedure for ordinary differential equations, a tech-

nique to analyze the global behavior of ship rolling in a realistic seaway is considered. Semi-analytic

expressions for certain specific solutions called the invariant manifolds accurate up to the first order

are calculated and their usefulness discussed under a random forcing excitation due to a given sea-

way intensity. The approach utilized herein can accommodate the exact nonlinear roll hydrostatics

away from the zero roll angle as well as the nonlinear viscous roll damping. While closed form

analytic solutions have been determined for a cubic approximation to the hydrostatic restoring

moment curve, the solution methodology is applicable to arbitrary higher order approximations to

the restoring curve.

While the technique is applied to cases with no static bias (upright equilibrium at zero roll

angle) it can be extended to cases with static bias (upright equilibrium at a nonzero roll angle). Two

models called the constant coefficient and the convolution integral have been developed to study

the nature of the solutions without and with the impulse response functions, that are used to assess

the effect of the memory dependent hydrodynamics. It has been seen that the effect of the amount

of damping dramatically affects the results. Hence an accurate estimate of the linear and nonlinear

damping is crucial in studying the nature of the solutions. For weakly under damped systems, as

the forcing increases, the nature of the stable and unstable manifold solutions qualitatively changes

with different initial time phases and the difference is more pronounced when the forcing reaches

a critical value and a critical time phase. In this respect the methodology presented herein is

equivalent to the Melnikov approach used by other research groups.
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5.2 An alternative to Melnikov technique in ship system dynamical studies

It has been observed by several research groups that the critical large amplitude in roll motion as

experienced by a ship due to a combination of a sufficiently large wave excitation in the presence

of small or very small damping is closely related to the behavior of the invariant manifold solutions

of the saddle points at the angles of vanishing stability. Furthermore the measure of the distance

function between the manifolds called the Melnikov function and the measure of its positive part has

been correlated to the likelihood of an initial condition escaping from the safe region. Initial work

on the Melnikov theory for single degree of freedom roll equation of motion has been considered

in detail for harmonic excitation (Falzarano, 1990, 1992). Frey and Simiu (1993) were the first to

develop a generalized Melnikov treatment to stochastic excitation due to random noise on second

order dynamical systems. Two other independent groups, Lin & Yim, (1995) and Hsieh et.al (1994)

applied the generalized Melnikov function using slightly different formulations to study the chaotic

roll response and the capsize criteria for ships due to random excitation.

While many previous studies have analyzed the nonlinear dynamical systems without ex-

plicitly determining the perturbed solutions, the approach suggested herein calculates explicitly the

semi-analytic solution up to the first order. The nature of how the manifold solutions evolve for a

given forcing and damping can be clearly illustrated and understood with the solutions developed

herein. It was however observed that up to the first order the separation of the manifolds do not

explicitly depend on the perturbed solutions. In fact the distance function computed using the

solutions from the method developed herein turned out to be identical to the distance function as

determined from the Melnikov function and hence this method can be can be used as an alternative

in lieu of a Melnikov approach.

5.3 An aid to numerical simulations and methods

One of the advantages of knowing these solutions analytically in case of periodic forcing is the

straightforward estimation of the saddle-type periodic orbits or fixed points which by virtue of

being unstable are very difficult to estimate numerically or analytically. An approximate knowledge

of the manifold solutions apriori can be a useful criteria for a good initial guess for any numerical

program or simulation method that attempts to locate the unstable saddle type orbits.
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5.4 An intermediate step to higher order approximations

The known first order and the zeroth order solutions determined herein can be useful quantities

in future studies that focus on higher order approximations to the manifold solutions or to the

distance function between the manifolds. A key feature of the Melnikov technique to date has been

to estimate the measure of the distance function to the first order by just knowing the zeroth order

solutions to the manifold. However if one needs to calculate the distance measure and the nature

of its evolution with forcing and damping with greater accuracy, the current practice of using the

Melnikov technique accurate up to the first order may not be sufficient. For Melnikov function

accurate up to the second order of approximation, both the zeroth and the first order solutions as

outlined in the solution procedure herein would prove useful.
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