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ABSTRACT 

 

The possibilities of differentiating linkage positions and anomeric configurations of small 

oligosaccharides by negative ion mode MALDI using anion attachment followed by PSD are 

investigated. By careful initial adjustment of the focusing mirror ratios allowing acquisition of 

the peaks of interest within the same PSD segment, it is possible to obtain highly reproducible 

relative ion abundances. Discrimination of different linkage types is achieved by analysis of 

structurally-informative diagnostic peaks offered by PSD spectra of chloride adducts of 

oligosaccharides, whereas the relative peak intensities of selected diagnostic fragment pairs make 

differentiation of anomeric configuration possible. F- and Ac- cannot form anionic adducts with 

the oligosaccharides in significant yields. However, Br-, I- and NO3
- anionic adducts consistently 

appear in higher abundances relative to [M - H]-, just like Cl-. Mildly acidic saccharides form 

both deprotonated molecules and anionic adducts, making it possible to simultaneously detect 

neutral and acidic oligosaccharides via anion attachment. PSD of [oligosaccharide + Cl]- yields 

structurally-informative fragment ions that retain the charge on the sugar molecule rather than 

solely forming Cl-, whereas PSD of Br-, I- and NO3
- adducts of oligosaccharides yield the 

respective anions as the main product ions without offering structural information concerning the 

sugar. PSD of the chloride adduct of saccharides containing 1-2 linkages also yields chlorine-

containing fragment ions. 

MALDI-TOF-MS and LDI-TOF-MS are shown to be useful for characterization of ultra-

small titania nanoparticles. Peak maxima in MALDI-TOF mass spectra are found to correlate 

with nanoparticle size. The size distributions of TiO2 nanoparticles, obtained from MALDI- and 

LDI-TOF-MS are in good agreement with parallel TEM observations. PSD analysis of inorganic 

 x



nanomaterials is performed and valuable information about the structure of analytes has been 

obtained. 

A group of inorganic nitrate and perchlorate salts of forensic and health interest are 

investigated by LDI- and MALDI-TOF MS. In each case, a series of characteristic cluster ions 

are predominant in the negative-ion mode. The number and identity of metal atoms and anions in 

the recorded cluster ions can be positively identified by their m/z values, distinctive isotopic 

patterns and characteristic PSD fragmentation patterns.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Oligosaccharides, Nanoparticles, Mass Spectrometry, MALDI-TOF, Post-Source Decay 
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INRODUCTION 

 

Almost a century ago, J. J. Thompson won the Nobel Prize for his pioneering research of 

mass spectrometry. The 2002 Nobel Prize for Chemistry was awarded to Koichi Tanaka and 

John Fenn for their development of “soft” ionization methods, i.e., matrix-assisted laser 

desorption/ionization (MALDI)1, 2 and electrospray (ES)3, 4, which allow detection and 

characterization of intact analytes, especially large nonvolatile and thermally-labile molecules. 

Mass spectrometry has become an interdisciplinary research methodology, impacting virtually 

every area of sciences, from physics to chemistry and biology, from materials research to 

environmental study and forensic analysis, from genomics to proteomics and glycomics projects. 

Mass spectrometers are usually categorized by the types of ionization sources and mass 

analyzers employed. Mass spectrometers based on different ionization methods and analyzers 

often provide complementary information. The selection of appropriate ionization methods and 

mass analyzers is essential to a particular project.  

Successful ionization of analytes is crucial for mass spectrometry. Ionizing large 

nonvolatile and thermally-labile molecules has been challenging for years until the successful 

development of matrix-assisted laser desorption/ionization (MALDI)1, 2, 5, 6 and electrospray 

(ES)3, 4. 

In contrast to the extensive fragmentations commonly occurring in LDMS, it was found 

that the addition of matrixes to nonvolatile and thermally-labile samples increased the production 

of intact molecular ions. Developed almost simultaneously by Karas and Hillenkamp, and 

Tanaka in late 1980s1, 2, 5, 6, MALDI revolutionized mass spectrometry since then. Tanaka and 

co-workers1, 2 demonstrated the detection of lysozyme (MW 14,306) and carboxypeptidase-A 
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(m/z 34,529) molecular ions using inorganic matrixes (ultra fine cobalt powder in glycerol) to 

absorb the energy from a N2 laser (λ = 337 nm). At about the same time, Karas and Hillenkamp, 

on the other hand, introduced organic matrixes for the analysis of large biomolecules using a 

Nd:YAG (neodymium-yttrium-garnet) laser (λ = 355 nm or λ = 266 nm)6, 7. Encouraged by the 

observation of [M+H]+ ions of both strongly UV absorbing tryptophan and weakly UV absorbing 

alanine at laser powers well below that required to ionize alanine alone when a mixture of both 

amino acids was analyzed7, use of highly UV absorbing nicotinic acid enabled successful 

detection of intact [M+H]+ ions of bovine albumin (MW 67,000) by time-of-fight mass 

spectrometry (TOF-MS)6. After their milestone work, organic matrices quickly gained popularity 

and were more widely used in MALDI-MS analysis for a variety of large molecules such as 

nucleotides, peptides and proteins, carbohydrates, and synthetic polymers. Although Karas and 

Hillenkamp are generally recognized as the originators of MALDI, Tanaka won the Nobel Prize 

for his role in the development of MALDI. 

In spite of the huge success and wide range applications of MALDI-MS, fundamental 

questions regarding mechanistic aspects have not all been answered8-11. One thing that is 

generally agreed is that matrix and sample preparation play key roles in the process12, 13. A high 

excess of matrix to sample is important, since a major role of the matrix in MALDI is the 

absorption of the UV radiation14 which causes rapid localized heating of the matrix and analyte, 

and leads to rapid evaporation of the mixture into the gas phase. Additionally, the large excess of 

matrix effectively separates analyte molecules from one another spatially, reducing association 

between analyte molecules. The majority of the laser energy is absorbed by the matrix, leaving 

the analyte intact. The matrix also plays an important role in the ionization process although 

details of the ionization process in MALDI are still under debate. A number of mechanisms for 
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MALDI ion formation have been proposed12, 13, 15, and it is generally accepted that the ionization 

process in MALDI is not a single one, but a collection of processes8, 16, 17. The immediate 

consequence is that the choice of matrix is still heavily analyte and sample preparation protocol 

dependent, since there is no universal matrix that works for all MALDI analyses.  

Ion formation can be divided into two main categories, primary ion formation and 

secondary ion formation8. Preformed ions (ions in the condensed phase) and those ions produced 

during the initial desorption event are covered by primary ionization processes while all other 

ions formed after primary ionization processes are covered by secondary ion formation. Primary 

ionization mechanisms generally consider the formation of matrix-derived species, whereas 

secondary mechanisms generally correspond to the formation of analyte ions that are not directly 

generated by primary processes. 

The most commonly observed types of ions in the positive mode MALDI experiments 

are: protonated pseudo-molecular ions, cationized pseudo-molecular ions and radical cations. 

Often singly-charged molecular ions are generated in the MALDI process without extensive 

fragmentation, which greatly facilitates the mass spectrometric molecular weight assignment of 

intact molecules. 

Coulomb energy is considerably reduced by dielectric screening provided by residual 

solvent, matrix, or polar parts of large molecules. Multiphoton ionization mechanisms are also 

responsible for formation of matrix ions18. After laser excitation, a matrix radical cation is 

formed:  

M + n(hv) → M+. + e-

Matrix ions can also be produced during collisions with electronically excited matrix molecules5: 

M* + M → MH+ + (M - H)-
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Since the plume formed during desorption is dense, many molecule-molecule and ion-

molecule collisions occur18-20. The analyte ions can be formed through gas-phase proton transfer 

reaction21. 

MH+ + A → M + AH+

In the early days of mass spectrometry, magnetic fields were used to separate ions 

according to their mass-to-charge ratios until techniques based on time of flight were developed 

in the 1940s22, 23. The pulsed nature of ion generation in MALDI favors coupling with a time-of-

flight mass analyzer24, 25 which is capable of recording complete mass spectra for every laser 

shot. 

TOF is considered to be the fastest MS analyzer with the theoretically unlimited 

mass/charge range and ion transmission approaching 100% (almost all ions generated in the 

source can reach the detector). These features make it the best choice for the detection of some 

very large singly-charged MALDI ions, which may be challenging for other mass analyzers. 

In MALDI-TOF, the m/z of an ion is determined by measuring the flight time of the ion 

through a field free tube having a fixed length under high vacuum. The ions in the MALDI 

source are accelerated to the same kinetic energy before they enter into the flight tube, thus ions 

with different m/z will have different velocities which are proportional to their (m/z)-1/2. So ions 

with smaller m/z will travel at a higher velocities and reach the detector earlier, and ions with 

larger m/z will move more slowly and reach the detector later. 

However, the ions leaving the MALDI source and entering the TOF analyzer under 

continuous extraction mode do not have exactly the same kinetic energy because of the initial 

kinetic energy distribution. To compensate for the initial kinetic energy difference, a delayed 

pulse26 for acceleration is used to enable the ions to first form in the absence of an electric field, 
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and disperse in the source region since their position in the ion source is correlated with their 

initial velocity. Then after the extraction field is applied, initially slower ions experience more 

from the extraction field and gain slightly higher energy from the accelerating field than initially 

faster ions. The delay time can be fine tuned together with the extraction field so slow and fast 

ions of the same mass reach the detector plane at the same time, thus improving mass resolution. 

This is referred to as “velocity focusing” through delayed extraction. 

Another approach to improve mass resolution in MALDI-TOF MS is to use a 

reflectron27, a device in which ions pass through an ion mirror and their flight direction is 

reversed. For ions of the same m/z, the reflectron allows ions with greater kinetic energies to 

penetrate deeper into the electric field of the ion mirror than ions with smaller kinetic energies. 

The ions that penetrate deeper will take longer to return to the reflectron detector while those 

penetrating lower take a shorter time to fly back. In this case, the ions of the same m/z will arrive 

at the detector at about the same time. Thus the reflectron effectively decreases the spread in the 

ion flight times due to an initial kinetic energy spread. The electrostatic mirror also increases the 

flight path length of the mass spectrometer, thus providing a focusing effect. Therefore, the 

introduction of reflectron greatly improves the mass resolution of the TOF mass spectrometer.  

Although not commonly used for MS/MS experiments due to the limited precursor-ion 

selectivity, post-source decay (PSD)28, 29 can provide valuable structural information for the 

selected precursor ions. At elevated laser intensities, some molecular ions decompose into PSD 

fragment ions in the field-free flight tube of a TOF mass analyzer after they leave the ion source 

(the post-source decay process). The introduction of the reflectron facilitates the analysis of PSD 

of metastable precursor ions and the reflectron acts as an energy analyzer for the product ions. 

When metastable precursor ions decompose in the field-free flight tube, the product ions will 
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maintain the same velocity as the precursor ions, but only portions of the kinetic energies of the 

precursor ions because of the mass loss during fragmentation. One problem frequently 

encountered in PSD studies is that not all product ions can be focused simultaneously onto the 

reflectron detector in a linear reflectron, and only a portion of product ions with a lower energy 

than that of the precursor ion can be recorded in a PSD segment. Fragment ions with even lower 

energy have to be focused by lowering the voltage applied to the mirror sequentially. Afterwards, 

all the PSD segments are stitched together to generate the full PSD mass spectrum. A TOF mass 

spectrometer equipped with non-linear “curved-field”30 reflectron allows the acquisition of the 

full PSD spectrum of a precursor ion all at once without the need to step down the mirror ratios; 

however, sensitivity and mass resolution are sacrificed. 

Sample preparation is critical to a successful MALDI analysis. MALDI involves mixing 

the analyte of interest with a strongly UV-absorbing compound, depositing the mixture onto the 

surface of a sample plate and allowing it to dry before inserting it into the mass spectrometer. 

Typical matrix compounds used in MALDI experiments are 2,5-dihydroxybenzoic acid (DHB), 

3,5-dimethoxy-4-hydroxy-trans-cinnamic acid (sinapic or sinapinic acid), and α-cyano-4-

hydroxy-trans-cinnamic acid (α-CHCA). The “dried droplet”6, 31 method and the “thin film”32, 33 

method are the two most commonly used MALDI sample preparation techniques. Gold coated or 

stainless steel plates are generally used as solid substrates in MALDI sample preparation while 

other types of substrates, such as nylon34, poly-(vinylidine difluoride)35, nitrocellulose36, 37 and 

polyethylene38, were also explored.  

Ionic adducts are noteworthy in MALDI mass spectrometry of the positive-ion mode as 

well as negative-ion mode. Compared to extensive studies on cationic adducts, the formation of 

anionic adducts have not been extensively investigated. The first objective of this work is to 
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develop a novel MALDI linear-field reflectron TOF approach so that selected PSD diagnostic 

fragment ions could be focused within the same acquisition segment where ionization conditions 

are constant and stable relative diagnostic peak intensities could be obtained; the second 

objective is to develop an anionic attachment PSD approach for differentiation of structurally 

similar disaccharides and oligosaccharides, i.e., those that differ only by linkage type and 

anomeric configuration; the third objective is to explore the possibility of using mass 

spectrometric method to characterize synthesized ultra small titanium oxides nanoparticles; 

lastly, the final objective of this study is to characterize inorganic nitrate and perchlorate 

compounds by negative MALDI-TOF MS and PSD. 
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Chapter 1: Differentiation of Both Linkage Position and Anomeric Configuration in 

Underivatized Glucopyranosyl Disaccharides by Anion Attachment with Post-Source 

Decay in MALDI Linear-Field Reflectron TOFMS 

 

1.1 Introduction 

Understanding oligosaccharide expression patterns in cells and correlating 

oligosaccharide structures with their functions necessarily requires structural characterization of 

the relevant carbohydrates1. However, gaining unambiguous information for linkage positions 

and anomeric configurations between monosaccharide units represents a challenging aspect of 

structural elucidation of carbohydrates. 

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-

TOF MS) has become established as a powerful tool to analyze biological molecules such as 

peptides, proteins, nucleotides and lipids, as well as carbohydrates2-4.  After ion extraction, 

metastable decay can take place in the first field-free region of a reflectron TOF mass 

spectrometer, especially at elevated laser intensities. Although not truly tandem MS, this so-

called post-source decay (PSD) can provide valuable information about the structures of gas-

phase ions generated by MALDI5, 6. The fragment ions resulting from this unimolecular decay 

retain only a fraction of the precursor ion’s kinetic energy (proportional to fragment ion masses), 

and the fragment ions continue to travel at the same velocity as the precursor ion (ignoring 

adjustments attributable to the energy of dissociation). Portions of the mass spectrum containing 

fragment ions falling within a specified energy “window” can be focused and detected. Fragment 

ions falling within other (lower) energy “windows” are subsequently detected by stepping down 

the reflectron (ion mirror) voltage to match the respective kinetic energies of the charged 
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fragments in a sequential manner. The full composite PSD spectrum can then be reconstructed 

by assembling or “stitching” together the different PSD segments. 

Normally, it is difficult to compare relative ion abundances in PSD spectra when these 

spectra are acquired in several different “stitched” segments2, because the precursor signal 

intensity may change substantially in successive irradiation events owing especially to 

particularities of the matrix crystal. Yamagaki et al.7-14 circumvented this problem by using a 

MALDI-TOF MS equipped with a curved-field reflectron that allows focused collection of all 

PSD fragment ions in a single spectrum under the same conditions. The curved-field reflectron 

thus eliminates the need to sequentially step the reflectron voltage, and the relative ion 

abundances in PSD spectra were found to be reliably reproducible. This reproducibility implies 

that even though the precursor absolute abundance may vary substantially from shot–to-shot, 

relative PSD fragment ion abundances do not. 

When subjected to PSD fragmentation in the positive ion mode, saccharides are 

frequently cleaved at the glycosyl linkages. It has been found that linkage isomers of saccharides 

are not readily distinguished based upon the PSD spectral patterns because cross-ring cleavage 

ions that are more specific to providing clues concerning linkage position are often rather weak 

in positive mode PSD2, 15, 16. 

Negative ion MALDI-TOF MS analysis of neutral oligosaccharides has been recently 

gaining popularity ever since Nonami et al.17-19 introduced a series of β-carboline compounds, 

e.g., harmane, norharmane and harmine, which can be used as efficient matrixes. Anion 

attachment represents a promising alternative to deprotonation as a means to charge neutral 

saccharides in negative-ion MALDI MS. Wong et al.20 were able to charge neutral saccharides 

via bisulfate anion attachment using harmane as the MALDI matrix (gave strongest signal and 
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cleanest spectrum) along with other more conventional matrixes. Bisulfate adducts, [M + HSO4]- 

along with  [M + HSO4 - H2O]- were observed, but only [M + HSO4 - H2O]- gave structural 

information upon collision induced dissociation (CID). Cai et al.21 found that chloride anions 

formed stable anionic adducts with neutral oligosaccharides using harmine as the matrix in 

MALDI-TOF MS and NH4Cl as the chloride ion source. It was shown that direct decompositions 

of these chloride adducts produced abundant oligosaccharide fragments that offered a wealth of 

structural information21. 

MALDI-PSD fragmentation in the negative-ion mode has emerged as a means to study 

oligosaccharides, and it has shown some success for differentiation of linkage positions as well 

as anomeric configurations in oligosaccharides21-27. PSD of anionic adducts of oligosaccharides 

has also been performed21, 25-27. Cai et al.21 observed cross-ring cleavage ions in negative 

MALDI-PSD of [turanose + Cl]-. Yamagaki et al.25 also observed extensive cross-ring cleavage 

ions produced by PSD of oligosaccharide chloride adducts employing a curved-field reflectron in 

negative ion MALDI-PSD, and the relative abundance difference of the [M - C2H4O2 - H2O - 

HCl]- ions and the  [M - C4H8O4 - HCl]- ions could be used to differentiate between the α- and β-

configuration in the 1-4 glycosyl linkages. But they found it difficult to distinguish between the 

α- and β-configuration in the 1-6 glycosyl linkages, and differentiation between the α- and β-

configuration in 1-3 linkages was not discussed. 

Even without a curved-field reflectron mass spectrometer that allows acquisition of an 

entire PSD spectrum for each laser shot, we sought to maximize the potential of our MALDI 

linear-field reflectron TOF mass spectrometer by employing a novel approach. By manually 

adjusting the mirror ratios so that selected fragment ions of interest could be focused, offering 

relatively narrow peaks that appear within the same acquisition segment where ionization 
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conditions (including laser intensity) would be constant, it is possible to obtain stable relative 

peak intensities to allow comparison of structurally similar disaccharides. Here we demonstrate 

that by comparing specific relative ion abundances of PSD peaks which we have deemed to be 

diagnostic, the anomeric configurations of disaccharides can be differentiated. Three pairs of 

glucopyranosyl-glucose disaccharides were examined: gentiobiose (Glcβ1-6Glc) and isomaltose 

(Glcα1-6Glc), cellobiose (Glcβ1-4Glc) and maltose (Glcα1-4Glc), and laminaribiose (Glcβ1-

3Glc) and nigerose (Glcα1-3Glc). These three groups of stereoisomeric pairs differ from one 

another only in the linkage position between the glucose rings. Within each pair, the only 

structural difference is the anomeric configuration at the glycosidic bond. 

 

1.2 Experimental 

Negative MALDI-TOF (Voyager Elite, Applied Biosystems, Framingham, MA) PSD 

experiments were performed using harmine as the matrix. 

 

1.3 Results and Discussions 

PSD of chloride adducts [disaccharide + Cl]- at m/z 377 (and 379) produces the product 

ions shown in Figures 1.1-1.3. Deprotonated molecules, i.e., [disaccharide - H]- at m/z 341 were 

consistently observed in all PSD studies of [disaccharide + Cl]-, although the intensity varied 

substantially. Owing to the complete absence of chloride-containing product ions, it appears that 

upon PSD, [disaccharide + Cl]- precursors initially lose HCl, leaving [disaccharide - H]- that 

undergo subsequent consecutive decompositions which is consistent with our previous CID 

studies of electrospray (ES) generated chloride adducts of oligosaccharides28. Also, the peak at 

m/z 179, corresponding to the loss of a glucose unit, is observed for all disaccharides, which
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Figure 1.1. Negative ion PSD of chloride adducts of cellobiose (Glcβ1-4Glc) (top) and maltose 
(Glcα1-4Glc) (bottom). 
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Figure 1.2. Negative ion PSD of chloride adduct of gentiobiose (Glcβ1-6Glc) (top) and 
isomaltose (Glcα1-6Glc) (bottom). 
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Figure 1.3. Negative ion PSD of chloride adducts of laminaribiose (Glcβ1-3Glc) (top) and 
nigerose (Glcα1-3Glc) (bottom). 
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shows great similarity to the decomposition pattern reported in a LSIMS study29 and a FAB-

MS/MS study30, but differs somewhat from a previous FAB-MS/MS study31. 

Certain fragment ions observed in PSD spectra are found to be diagnostic indicators of 

the glycosidic linkage positions between adjacent monosaccharide units. It appears that negative 

ion PSD fragmentation patterns are mainly determined by the linkage positions between the 

monosaccharide rings, with only subtle differences in relative peak intensities occurring for 

different anomeric configurations. The appearance of product ions at m/z 161, 179, 263 and 281 

with the absence of m/z 251 appears to be characteristic of the 1-4 linked disaccharides (Figure 

1.1); observation of product ions at m/z 179, 221, 251, and 281 with the absence of m/z 263 

appears to be characteristic of the 1-6 linked disaccharides (Figure 1.2); while observation of 

glycosidic bond cleavages yielding m/z 161 or 179, as well as the weak cross-ring cleavage peak 

at m/z 221, appears to be characteristic of the 1-3 linked disaccharides (Figure 1.3).  

The negative ion PSD mass spectra of the 1-6 linked isomers (Figure 1.2) show strong 

peaks at m/z 179 while m/z 161 is barely detectable, which is quite different from that of 1-4 

(Figure 1.1) and 1-3 (Figure 1.3) linked disaccharides where m/z 161 peaks appear in higher 

abundances than those of m/z 179. This distinction appears to be a potential indicator to 

distinguish the 1-6 linkage from the 1-4 and 1-3 linkages29 along with other diagnostic peaks 

(Figures 1.1-1.3). 

In our study, a clear-cut differentiation between the α- (maltose) and β-configuration 

(cellobiose) in 1-4 linked glucopyranosyl disaccharides can be made by simply checking whether 

the relative abundance ratio of m/z 263:281 is larger than unity (β isomer) or smaller than unity 

(α isomer) (Figures 1.1 and 1.4). Moreover, the 1-6 linked anomers which were not previously 

distinguished by MALDI-PSD-MS25, can also be readily differentiated by examining whether the 
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Figure 1.4. Relative peak intensities of diagnostic fragments of 1-4 (top), 1-6 (middle) and 1-3 
(bottom) linked disaccharides. Each pair was acquired in the same MALDI-PSD segment in 
eight replicate runs. 
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relative abundance ratio of m/z 251:281 is larger than unity (β isomer) or smaller than unity (α 

isomer) to unambiguously differentiate between the α- (isomaltose) and β-configuration 

(gentiobiose) (Figures 1.2 and 1.4). On the other hand, for the 1-3 glycosyl linkages, the relative 

abundances of m/z 161:179 is consistently lower for the α isomer (nigerose) than for the β 

isomer (laminaribiose) (Figures 1.3 and 1.4). The fact that the m/z 161:179 ratio is larger than 

unity for both 1,3-linked anomers, combined with the fact that both products ions are formed as a 

result of glycosidic bond cleavages rather than more specific cross-ring fragmentations renders 

this last differentiation less obvious than the previous two anomeric pairs. Nevertheless, the 

relative abundances of these diagnostic peaks are still sufficiently different to permit distinction 

between the α- and β-configurations in the 1-3 linked disaccharides. 

The reproducibility of the relative peak intensities of the above pairs of diagnostic peaks 

obtained within the same MALDI-PSD segment was checked in eight measurements taken under 

the same conditions. In each comparison, the intensity of the higher peak in each pair was 

normalized to 100%, then the relative intensity of the lower peak was calculated (Fig. 1.4). 

Because there is no overlap in the error bars obtained for any pair, the anomeric configurations 

can be unambiguously distinguished. 

 

1.4 Conclusions 

In conclusion, contrary to the often encountered view that relative peak intensities are not 

generally reliable in PSD, we demonstrate that even without a curved-field reflectron, it is 

possible to get rather stable relative peak intensities for mass spectral fragments whose m/z 

values do not widely differ. Reproducibility improves when these peaks are intentionally 

acquired within the same PSD segment with the laser intensity held constant, even if the target 
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crystals vary substantially in shape and quality. Thus, not only is it possible to differentiate 

linkage position by MALDI-PSD analysis of [disaccharide + Cl]- ions using negative ion PSD of 

chloride adducts on a linear-field reflectron MALDI-TOF MS, but it is also established that 

differentiating anomeric configurations is viable by comparing relative peak intensities of 

diagnostic fragments. Carbohydrates seem particularly amenable to this methodology because, 

often, the fragment ions serendipitously fall within a narrow m/z range. The fragmentation 

profiles and relative peak abundances in PSD spectra are expected to present important hints for 

determining the glycosidic linkage types and anomeric configurations of even more complex 

glycoconjugates.  
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Chpater 2: MALDI Linear-Field rTOF Post-Source Decay Analysis of Glycosidic Linkages 

and Anomeric Configurations in Underivatized Oligosaccharides 

 

2.1 Introduction 

Following the advances in proteomics, there is a growing interest in the importance of 

glycomics, i.e., the study of the breadth of sugar forms (structure and function of glycans) in 

biological organisms. Carbohydrates or saccharides are the most abundant biological compounds 

found on earth. They are well known as energy reservoirs and structural materials in cell walls. 

However, it has become clear that oligosaccharides and glycoconjugates (e.g., glycoproteins and 

glycolipids) serve as crucial mediators for a wide variety of complex cellular events1. 

Carbohydrates also play an important role in specific molecular recognition, protein folding, 

stability, and pharmacokinetics due to their great structural diversity. Moreover, glycosylation is 

a ubiquitous form of post-translational modification to both proteins and lipids.  

Gaining a clear understanding of the crucial biological roles of oligosaccharides requires 

complete structural characterization of carbohydrates or glycoconjugates which includes 

determinations of the numbers and types of monosaccharide units, ring substituents, sequences, 

branching, linkage positions and anomeric configurations between adjacent monosaccharide 

units. In most cases, merely knowing the monosaccharide sequence is inadequate, thus, 

unambiguous differentiation of both linkage positions and anomeric configurations represents an 

essential aspect of the fine stereochemical analysis of oligosaccharides. 

Although permethylation is a well established method for linkage determination in 

oligosaccharides, the analysis involving gas chromatography-mass spectrometry (GC-MS) is 

labor intensive and time consuming2. NMR is a powerful technique which allows unambiguous 
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determination of the linkage positions and anomeric configurations of oligosaccharides3. The 

major disadvantages are that relatively large quantities (micromolar level) of highly purified 

sample and long acquisition times are required.  

Mass spectrometry (MS) has emerged as an important technique for structural analysis of 

oligosaccharides4, offering certain advantages such as lower sample consumption, higher 

sensitivity, shorter acquisition times, and less stringent sample purity requirements. Anomers and 

linkage isomers which have identical masses cannot be easily distinguished in mass 

spectrometry, but to aid in this endeavor, separation steps are often performed prior to mass 

spectrometric identification. Nevertheless, MS does have the capability to differentiate 

underivatized saccharide stereoisomers as demonstrated when coupled with several different 

desorption/ionization techniques such as field desorption (FD)5, 6, laser desorption (LD)7, 8 and 

fast atom bombardment (FAB)9, 10.  

FD-MS has been used primarily for molecular mass determination of the protonated 

molecular ion and component monosaccharide units because the glycosidic bond cleavages are 

usually not prominent and the cross-ring fragmentations are often minor5, 6. Both glycosidic bond 

cleavages and cross-ring fragmentations are produced in LD-MS, from which complete sequence 

information can be deduced, but only tentative information concerning linkage positions is 

provided7, 8. 

Coupled with collision-induced dissociation (CID) or metastable decay, FAB-MS has 

demonstrated great potential for linkage determination of oligosaccharides, although 

derivatization has been involved in many cases11. In the positive ion mode, different fragment 

ion abundances were obtained by CID of FAB-generated [M + glycerol + H]+ precursors for a 

series of underivatized disaccharides12. But the possibility to differentiate both linkage positions 
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and anomeric configurations of oligosaccharides was greatly limited because the spectral 

differences between these positive-ion CID spectra were minor12. 

Metal cationization has been widely used in MS13; it has been shown that the fragments 

obtained in the CID spectra of mono- and di-lithiated quasi-molecular ions of disaccharides and 

small oligosaccharides can be used to differentiate linkage position isomers14-16. Cobalt 

complexes have also been used to differentiate the anomeric configuration of 1-3, 1-4 and 1-6 

glucosyl-glucose disaccharides by measuring the kinetic energy release for the metastable decay 

of [Co3+(acac)2/disaccharide]+ 17. It was shown that complexes possessing α-linked disaccharides 

consistently displayed greater kinetic energy release values than those possessing β-linked 

disaccharides. 

In the negative mode, FAB-MS together with CID and metastable fragmentation tends to 

produce more abundant ring cleavages of underivatized oligosaccharides which allows linkage 

position analyses18, 19. Assignment of anomeric configurations was also attempted for glucosyl-

glucose disaccharides based on the relative CID fragment abundances of the m/z 221 precursor19. 

But the differences between the anomers were not always pronounced enough for unambiguous 

identification. Linkage determination has also been achieved by liquid secondary ion mass 

spectrometry/fourier transform mass spectrometry (LSIMS/FT-MS) in the negative mode20, 21. 

Electrospray tandem mass spectrometry (ES-MS/MS) has been used to differentiate the 

Ca2+- and Mg2+-coordinated branched trisaccharide isomers22.  In the negative mode,  ES-

MS/MS has been used for linkage determination of underivatized oligosaccharides23. Later, an 

attempt was made to determine directly both linkage positions and anomeric configurations for 

all underivatized isomers in a glucopyranosyl disaccharide series based on characteristic 

fragments and abundances of ES in-source CID mass spectra24. Decomposition of anionic 
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adducts has also been investigated for differentiation of linkage positions25, 26 and anomeric 

configurations26 of disaccharides in the negative ion mode using ESI-MS/MS. Molecular orbital 

calculations performed on deprotonated glucopyranosyl disaccharides showed that the anomeric 

configurations and the stereochemistry at the 2-position of the non-reducing ring might have a 

significant effect on disaccharide fragmentation27.  

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has become 

established as a powerful tool to characterize carbohydrates28-30.  Although the vast majority of 

mass spectral analyses of neutral saccharides are performed in the positive mode via adduct 

formation with H+ or with metal cations, a potential limitation for positive ion MALDI analysis 

is that facile decomposition and nonspecific cleavages are often induced for certain unstable 

alkali metal ion adducts31, 32. Moreover, the inability to simultaneously analyze neutral and acidic 

oligosaccharides for MALDI in the positive ion mode is also a noteworthy drawback. 

The above limitations potentially can be resolved by using negative ion mode MALDI 

MS analysis of oligosaccharides which has been gaining popularity after a series of β-carboline 

compounds, e.g., harmane, non-harmane and harmine, were introduced as efficient MALDI 

matrixes33-35. The tendencies for fucosylated oligosaccharides to lose fucose and for sialylated 

oligosaccharides to lose sialic acid as seen in most positive ion MALDI spectra are not as 

apparent in negative ion mode analysis36. In addition, the acidic oligosaccharides, which readily 

ionize as [M - H]- anions, can be far more amenable to detection in negative mode MALDI 

analysis than in positive mode. However, unlike acidic oligosaccharides, neutral 

oligosaccharides exhibit a much lower tendency to deprotonate, rendering the [M - H]- signal 

intensity generally weaker.  
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Anion attachment represents a promising alternative method to charge neutral saccharides 

in negative ion MALDI-MS using β-carboline compounds as the MALDI matrix and 

structurally-informative fragments were readily produced after decompositions of [M + HSO4 - 

H2O]-36 and [M + Cl]-37-40. Although not truly tandem MS, post-source decay (PSD) can provide 

valuable information about the structures of gas-phase ions generated by MALDI41, 42. When 

subjected to PSD fragmentation in the positive ion mode, linkage isomers of saccharides are not 

readily distinguished based upon the PSD spectral patterns because saccharides are frequently 

cleaved at the glycosyl linkages and more specific cross-ring cleavage ions are often rather weak 

in positive mode PSD29, 43, 44. On the contrary, when subjected to PSD fragmentation in the 

negative ion mode, prominent cross-ring cleavages are usually produced along with glycosyl 

bond cleavages. PSD of both deprotonated molecules and anionic adducts of oligosaccharides 

has been performed and some success for differentiation of linkage positions as well as anomeric 

configurations in oligosaccharides has been shown37-40, 45-47 .  

Recent studies in negative ES-MS have established that more than a dozen stable anionic 

adducts of carbohydrates (anion attachment) can be observed in the gas phase and some of these 

anionic adducts could offer structural information upon CID26, 48-53. But the corresponding 

studies of anion attachment of oligosaccharides in negative ion mode MALDI-MS have not been 

systematically exploited36-40. The current study focuses on studying the PSD fragmentation 

patterns of MALDI-generated anionic adducts of oligosaccharides. The current study compares 

different anions for their ability to form anionic adducts with saccharides of varying sizes in 

MALDI-rTOF MS and evaluates their PSD patterns for the possibility of yielding structurally-

informative fragments. Our goal is to document the effects of linkage positions and anomeric 

configurations of neutral oligosaccharides on the PSD patterns of their anionic adducts. We 
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evaluate the application of anion attachment with PSD in MALDI linear-field reflectron TOF 

MS not only as a technique to determine linkage positions, but also to differentiate anomeric 

configurations in underivatized oligosaccharides.  

 

2.2 Experimental 

2.2.1 Chemicals 

All neutral oligosaccharides were purchased from Sigma Chemical Co. (St. Louis, MO) 

and prepared at 1 mM in a solution of 4:1 methanol/water. D-Glucuronic acid was purchased 

from Aldrich (Milwaukee, WI) and prepared at 1 mM in a 4:1 solution of methanol/water. 

Hydrochloric acid, acetic acid, ammonium nitrate, ammonium fluoride, ammonium chloride, 

ammonium bromide, ammonium iodide and ammonium acetate were obtained from Aldrich 

(Milwaukee, WI) and were prepared at 1 mM in a solution of 4:1 methanol/water. Harmine and 

harmine hydrochloride were purchased from Aldrich (Milwaukee, WI). Both matrixes were 

prepared at 20 mg/mL in a solution of 4:1 methanol/water. All chemicals were used as received 

without further purification. 

2.2.2 Mass Spectrometry 

Mass spectra were acquired on an Applied Biosystems Voyager Elite MALDI-TOF mass 

spectrometer equipped with delayed extraction (Applied Biosystems, Framingham, MA) and a 

pulsed N2 laser (λ = 337 nm). An extraction voltage of 20 kV was typically employed. All mass 

spectra were acquired in the negative reflectron mode employing delayed extraction. Laser 

intensity was adjusted to just above the threshold energy for appearance of oligosaccharide 

anionic adducts. When acquiring PSD spectra, laser intensity was adjusted to 10-30% above this 

threshold, and the mirror ratios in the PSD segment list were manually calculated and specified 
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such that the targeted ions in question would be focused and collected within the same PSD 

segment. All mass spectra and PSD spectra consist of an average of 50-100 laser shots. Reported 

m/z values show nominal masses only (i.e., values after the decimal places have been truncated). 

The instrument was externally calibrated by monoisotopic peaks of anionic dopants, harmine 

matrix and oligosaccharides. Data processing was performed using IGOR Pro 4.07 (Wave 

Metrics Inc., Lake Oswego, OR). 

MALDI samples were prepared using an optimized “thin-layer” method. Corresponding 

ammonium salts were used when investigating six different anionic species, i.e., acetate, 

fluoride, chloride, bromide, iodide and nitrate anions, for their abilities to yield anionic adducts 

of oligosaccharides in MALDI. First, 2 µL of 1 mM ammonium salt solution, 2 µL of 1 mM acid 

and 4 µL of harmine matrix solution (all in 4:1 methanol/water) were mixed. Next, a 0.5 µL 

aliquot of this final matrix solution was deposited onto a sample plate and dried to form the 

matrix layer. 0.5 µL of disaccharide solution was then deposited on top of the matrix layer and 

allowed to dry. 1 mM HCl in a 4:1 solution of methanol/water was sued when testing chloride 

anion whereas 1 mM HNO3 was used when testing nitrate anion (no introduction of other 

anions). For all the other ions, i.e., acetate, fluoride, bromide and iodide anions, 5% acetic acid in 

a 4:1 solution of methanol/water was used during sample preparation. Acetic acid was chosen 

because it does not form acetate adducts with the tested oligosaccharides (see results below) 

which might complicate the interpretation of results. Acidic condition is preferred since harmine 

as MALDI matrix works best at low pH36. PSD experiments were performed on stable anionic 

adducts (Cl-, Br-, I- and NO3
-) of oligosaccharides. 
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2.3 Results and Discussion 

2.3.1 Anion Comparison and Anion Adducts of Neutral and Acidic Oligosaccharides 

Employing the thin-layer sample preparation with harmine as the matrix, six anionic 

species (all in ammonium salt form), i.e., ammonium acetate, fluoride, chloride, bromide, iodide 

and nitrate, were tested for their abilities to form anionic adducts with a series of neutral and 

acidic oligosaccharides having different sizes (Table 2.1) (11, 22, 25, 28-32) in MALDI-TOF 

MS. From small monosaccharides such as α-D-glucose (28) to larger oligosaccharides such as γ-

cyclodextrin (eight sugar units) (31), all of the tested saccharides can form anionic adducts with 

nitrate, chloride, bromide and iodide. In contrast, anionic adducts of oligosaccharides were not 

observed for fluoride and acetate in this study. When serving as the attaching anions to smaller 

saccharides (monosaccharides, disaccharides and trisaccharides) in negative ion MALDI, nitrate, 

chloride, bromide and iodide appear to have the advantage over bisulfate which only forms 

adducts with tetrasaccharides or larger oligosaccharides36. 

It appears that the gas-phase basicity (GB) plays an important role for the successful 

observation of anionic adducts in MALDI MS. The gas-phase basicities of fluoride (1529 

kJ/mol) and acetate (1427 kJ/mol) are all higher than the gas-phase basicity of [harmine - H]- 

(between 1373 and 1407 kJ/mol)37. While the gas-phase basicities of all the other anions, i.e., 

nitrate (GB 1329.7 kJ/mol), chloride (GB 1372.8 kJ/mol), bromide (GB 1331.8 kJ/mol) and 

iodide (GB 1293.7 ± 0.84 kJ/mol), are all lower than the gas-phase basicity of [harmine - H]-. 

This is in agreement with our previous finding that the gas-phase basicity of an anion must be 

lower than that of [matrix - H]- in order to form the anion adduct with a neutral analyte37. Also, it 

appears that Cl- gives the strongest adduct signal among all the anions investigated since the gas-

phase basicities of harmine, saccharides and chloride are closest. 
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Table 2.1.  Lists of saccharides analyzed by PSD of anion adducts.
 
 
 
 

No. Formula Name 
1 Glcβ1-6Glc gentiobiose 
2 Glcα1-6Glc isomaltose 
3 Glcβ1-4Glc cellobiose 
4 Glcα1-4Glc maltose 
5 Glcβ1-3Glc laminaribiose 
6 Glcα1-3Glc nigerose 
7 Glcβ1-2Glc sophorose 
8 Glcα1-2Glc kojibiose 
9 Glcα1-1βGlc α,β-trehalose 
10 Galβ1-6Gal  
11 Galα1-6Glc melibiose 
12 Galβ1-4Glc lactose 
13 Galβ1-4Man epilactose 
14 Galβ1-4Gal  
15 Galα1-4Gal  
16 Glcα1-6Fru palatinose 
17 Glcβ1-4Fru lactulose 
18 Glcα1-3Fru turanose 
19 Glcα1-2Fru sucrose 
20 Galβ1-3Ara  
21 Galα1-6Glcα1-2Fru raffinose 
22 Galα1-6 Galα1-6Glcα1-2Fru stachyose 
23 Glcα1-6Glcα1-6Glc isomaltotrisoe 
24 Glcβ1-4Glcβ1-4Glc cellotriose 
25 Glcα1-4Glcα1-4Glc maltotriose 
26 Glcα1-6Glcα1-4Glc panose 
27 Galα1-3Galβ1-4Galα1-3Gal 3α, 4β, 3α-galactotetraose 
28  glucose 
29  α-cyclodextrin 
30  β-cyclodextrin 
31  γ-cyclodextrin 
32  glucuronic acid 
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D-glucuronic acid, an acidic saccharide containing one carboxylic acid moiety, can also 

form adducts with nitrate (m/z 256), chloride (m/z 229, 231), bromide (m/z 273, 275), and iodide 

(m/z 321) in MALDI.  In all cases, a strong peak corresponding to [M - H]- (m/z 193) is 

observed in addition to the respective adduct peaks. Figure 2.1a is a representative negative 

MALDI reflectron mass spectrum of glucuronic acid and iodide. The acidic oligosaccharides 

generally produce stronger signals, and deprotonation appears to occur more readily than anion 

attachment. Nitrate, chloride, bromide and iodide can serve as good candidates for simultaneous 

detection of intact neutral and acidic oligosaccharides in the negative ion mode since neutral and 

acidic oligosaccharides often coexist as mixtures for carbohydrates from biological sources.  

Of the four anions (i.e., chloride, bromide, iodide and nitrate) that form observable 

adducts with melibiose (11), PSD of [melibiose + anion]- was performed to see whether 

structurally-informative fragments could be obtained. PSD of [melibiose + Br]- (Figure 2.1b), 

[melibiose + I]- (Figure 2.1c) and [melibiose + NO3]- (Figure 2.1d) produce Br-, I- and NO3
- as 

the sole major product ions, respectively; hence, structural information of saccharides is not 

obtained. In contrast, structurally-informative sugar fragments are observed upon PSD of 

[melibiose + Cl]-. The PSD decomposition patterns might be explained by considering that [M - 

H]- ions of disaccharides often have gas-phase basicities close to that of chloride, but 

substantially higher than those of nitrate, bromide and iodide. Unlike chloride, the weak 

attractions of nitrate, bromide and iodide for protons cannot compete with the disaccharide upon 

PSD, leading to loss of anions and neutral disaccharide, without structurally-informative 

disaccharide fragments. Chloride thus remains a preferred anion for structural determination 

employing anion attachment followed by PSD using MALDI-TOF37 and is used for the PSD 

experiments hereafter. 

 32



 
 
 

 

A C 

D B 

 
 
Figure 2.1. (a) MALDI-TOF mass spectrum of iodide adducts of glucuronic acid. Both 
[glucuronic acid - H]- at m/z 193 and [glucuronic acid + I]- at m/z 321 are formed.; PSD of: (b) 
bromide; (c) iodide; and (d) nitrate adducts of melibiose yield Br-, I- and NO3

-, respectively, 
without structurally-informative disaccharide fragments.  
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2.3.2 PSD of Chloride Adducts of Disaccharides for Linkage Differentiation 

To further exploit the chloride attachment approach for carbohydrate analysis, four 

groups of disaccharides (Table 2.1) are investigated by PSD of mass-selected chloride adducts 

of: (1) nine glucopyranosyl glucoses (1-9): Glcβ1-6Glc (gentiobiose), Glcα1-6Glc (isomaltose), 

Glcβ1-4Glc (cellobiose), Glcα1-4Glc (maltose), Glcβ1-3Glc (laminaribiose), Glcα1-3Glc 

(nigerose), Glcβ1-2Glc (sophorose), Glcα1-2Glc (kojibiose), Glcα1-1βGlc (α,β-trehalose); (2) 

six different hexose-hexose disaccharides with at least one hexose other than glucose (10-15): 

Galβ1-6Gal, Galα1-6Glc (melibiose), Galβ1-4Glc (lactose), Galβ1-4Man (epilactose), Galβ1-

4Gal, Galα1-4Gal; (3) three glucopyranosyl fructoses plus one galactopyranosyl fructose (16-

19): Glcα1–6Fru (palatinose), Galβ1–4Fru (lactulose), Glcα1–3Fru (turanose), Glc1–2Fru 

(sucrose); and (4) one hexose-pentose disaccharide (20): Galβ1–3Ara. The negative ion MALDI 

mass spectra of the disaccharides (Table 2.1, 1-19) all show peaks at m/z 377 ([M + Cl]-) except 

for Galβ1–3Ara (20) ([M + Cl]- peak appears at m/z 347). 

It was shown that the neutral losses observed in PSD spectra of the chloride adducts of 1-

6, 1-4 and 1-3 linked glucopyranosyl glucoses disaccharides (1-6 linkage, Figure 2.2a, 2.2b; 1-4 

linkage, Figure 2.3a, 2.3b; 1-3 linkage, Figure 2.4a, 2.4b) were diagnostic of the glycosidic 

linkage positions between adjacent glucose moieties54. To widen the applicability of findings to 

other disaccharides, the PSD spectra of chloride adducts of 1-2 and 1-1 linked glucopyranosyl 

glucoses disaccharides (1-2 linkage, Figure 2.4c, 2.4d; 1-1 linkage, Figure 2.4e), and a variety of 

1-6 and 1-4 linked hexose-hexose disaccharides with at least one hexose other than glucose 

(Figure 2.2c, 2.2d, 2.3c, 2.3d, 2.3e and 2.3f) are also investigated. From the analysis of these five 

series of PSD spectra, generalizations can be made about hexose-hexose disaccharides with 

respect to the relationship between PSD fragmentation patterns and linkage positions (Table 2.2). 
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Figure 2.2. Negative ion PSD of chloride adducts of 1-6 linked disaccharides. (a) gentiobiose 
(Glcβ1-6Glc); (b) isomaltose (Glcα1-6Glc); (c) Galβ1-6Gal; and (d) melibiose (Galα1-6Glc). 
The α- (isomaltose) and β-configuration (gentiobiose) in 1-6 linked glucopyranosyl 
disaccharides can be readily differentiated by examining whether the relative abundance ratio of 
m/z 251:281 is larger than unity (β isomer) (Figure 2.2a) or smaller than unity (α isomer) (Figure 
2.2b). This peak intensity difference is also applicable to other 1-6 linked disaccharides. 
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Figure 2.3. Negative ion PSD of chloride adducts of 1-4 linked disaccharides. (a) cellobiose 
(Glcβ1-4Glc); (b) maltose (Glcα1-4Glc); (c) lactose (Galβ1-4Glc); (d) Galβ1-4Man; (e) Galβ1-
4Gal; and (f) Galα1-4Gal. A clear-cut differentiation between the α- (maltose) and β- 
configuration (cellobiose) in 1-4 linked glucopyranosyl disaccharides can be made by simply 
checking whether the relative abundance ratio of m/z 263:281 is larger than unity (β isomer) 
(Figure 2.3a) or smaller than unity (α isomer) (Figure 2.3b). This peak intensity difference also 
holds true for other 1-4 linked disaccharides. 
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Figure 2.4. Negative ion PSD of chloride adducts of: (a) laminaribiose (Glcβ1-3Glc); (b) 
nigerose (Glcα1-3Glc); (c) sophorose (Glcβ1-2Glc); (d) kojibiose (Glcα1-2Glc); (e) trehalose 
(Glcα1-1βGlc); (f) . For 1-3 glycosyl linkages, the relative abundance ratio of m/z 161:179 is 
consistently lower for the α isomer (nigerose) (Figure 2.4b) than for the β isomer (laminaribiose) 
(Figure 2.4a). Even though the m/z 161:179 ratio is larger than unity for both 1,3-linked 
anomers, nevertheless, the difference in relative ratios is sufficiently large to permit distinction 
between the α- and β-configurations. 
For 1-2 glycosyl linkages, the relative abundance ratio of m/z 215:221 is consistently lower for 
the α isomer (kojibiose) (Figure 2.4d) than for the β isomer (sophorose) (Figure 2.4c) which 
allows for clear differentiation. Peaks at m/z 215 in Figures 2.4c and 2.4d are chlorine-containing 
fragment ions. 
For 1-1 linked trehalose (Glcα1-1βGlc) (Figure 2.4e), a non-reducing disaccharide, usually high 
peak intensity at m/z 341 is observed because of the lack of reducing end hydroxyl group.  
For Galβ1–3Ara (Figure 2.4f), a hexose-pentose, prominent product ion peaks at m/z 179 with 
charge retention on the non-reducing ring and at m/z 131 with charge retention on the reducing 
ring are produced upon unambiguous cleavage of the glycosidic bond on the reducing end side. 

 37



 
 
Table 2.2. Diagnostic PSD neutral losses and fragment peaks (in parenthesis) of chloride adducts 
of disaccharides. Mass differences resulting from neutral losses are calculated from deprotonated 
saccharides. 
 
 
 
 

 

Link Presence Absence Relative Ion 
Abundance 

 
1-6 

 -162 
(179) 

 -120 
(221) 

-90 
(251) 

 -60 
(281) 

  
263 

  
α251/281 < 1 < β251/281

 
1-4 

-180 
(161) 

-162 
(179) 

   
 

-78 
(263) 
 

-60 
(281) 

 
251 

   
α263/281 < 1 < β263/281

 
1-3 

-180 
(161) 

-162 
(179) 

 -120 
(221) 

       
α161/179 > 3 > β161/179 

 
1-2 

 -162 
(179) 

 
(215) 

-120 
(221) 

 -78 
(263) 
 

    
281 

 
1 < α215/221 < β215/221

 
1-1 

 -162 
(179) 

         

 
 
 
 
 
 
 
 
 
 

 38



 The major neutral losses observed in the PSD spectra of chloride adducts of four 1-6 

linked disaccharides (Figure 2.2a-d) are the same, and the major neutral losses observed in the 

PSD spectra of chloride adducts of six 1-4 linked disaccharides (Figure 2.3a-f) also show 

uniformity. Because the diagnostic losses for these 1-6 and 1-4 linked disaccharides remain 

virtually unchanged no matter how the reducing end or the non-reducing end vary for these 

disaccharides, it is fairly safe to conclude that these diagnostic losses are characteristic of the 

glycosidic linkage positions between adjacent monosaccharide units, independent of the 

constituent hexose of the disaccharides. It thus appears that negative ion PSD fragmentation 

patterns of chloride adducts of disaccharides are mainly influenced by the linkage position 

between the monosaccharide rings independent of the hexose structures and the anomeric 

configurations.  

The characteristic PSD fragmentation patterns for each linkage position can be 

summarized by stating that observation of the PSD fragments [M - H - 162]-, [M - H - 120]-, [M - 

H - 90]-, and [M - H - 60]- with the absence of  [M - H - 78]- are characteristic of the 1-6 linked 

disaccharides (Figure 2.2a-d, Table 2.2).  Appearance of the PSD fragment peaks of [M - H - 

180]-, [M - H - 162]-, [M - H - 78]- and [M - H - 60]- with the absence of [M - H - 90]- are 

indicative of the 1-4 linked disaccharides (Figure 2.3a-f, Table 2.2).  Observation of the PSD 

fragmentation pathways producing [M - H - 180]- and [M - H - 162]-, as well as the weak [M - H 

- 120]-, appears to be the pattern for the 1-3 linked disaccharides (Figure 2.4a, 2.4b, Table 2.2). 

Lastly, the 1-2 linked disaccharides (Figure 2.4c, 2.4d, Table 2.2) are characterized by the 

appearance of PSD fragment peaks for [M - H - 162]-, [M - H - 120]-, [M - H - 90]- and [M - H - 

78]-.  
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Observation of the PSD fragment peak of [M - H - 162]- with a remarkably strong [M - 

H]-, appears to be characteristic of the 1-1 linked disaccharides (Figure 2.4e). Although only one 

1-1 isomer (Glcα1-1βGlc) out of three possibilities (Glcα1-1βGlc, Glcα1-1αGlc and Glcβ1-

1βGlc) has been studied here, we have tentatively included in Table 2.2 the fragmentation peaks 

diagnostic for the 1-1 linked disaccharides since its fragmentation pattern is highly characteristic 

(Figure 2.4e, Table 2.2). From decompositions of chloride adducts of Glcα1-1βGlc, a high 

intensity peak at m/z 341 corresponding to the deprotonated molecule [M -H]- is observed. 

Unlike other glucopyranosyl glucoses disaccharides where one of the glucoses is considered as 

the reducing ring, all three forms of trehalose are non-reducing disaccharides wherein the linkage 

has been formed between two reducing hydroxyl groups on the two glucose units. It appears that 

upon PSD, chloride adducts of trehalose require more energy to undergo initial HCl loss because 

they lack the acidic reducing end hydroxyl group. Thus, more of the available energy is 

consumed in the first step of decomposition (HCl loss) and the remaining [M - H]- product ions 

are less susceptible to consecutive decompositions25. This rationalizes the unusually high 

abundance of the [M - H]- peak for trehalose that does not readily undergo further 

fragmentations.  

Deprotonated molecules [M - H]- at m/z 341 and the peak at m/z 179, corresponding to 

the loss of a hexose from [M - H]-, are consistently observed in PSD studies of [disaccharide + 

Cl]- adducts for all hexose-hexose disaccharides, although the intensity varies substantially. 

Observation of peaks at m/z 179 in PSD studies of [disaccharide + Cl]- for all hexose-hexose 

disaccharides shows great similarity to the decomposition pattern of [disaccharide - H]- reported 

in LSIMS20, FAB-MS/MS19 and an ESI MS/MS study of [disaccharide + Cl]- 25, but differs 

somewhat from a previous FAB-MS/MS study of [disaccharide - H]- 18. Similarities in the 
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decomposition spectra of [disaccharide + Cl]-  and [disaccharide - H]- precursors strongly 

suggest that the fragmentation pathway of the former requires neutral loss of HCl from the 

chloride adducts prior to consecutive decompositions. 

The neutral losses for differentiating linkage positions observed in our MALDI-PSD of 

[saccharides + Cl]- investigation are similar but not identical to those from other studies15, 18-20, 25, 

38. These similarities are observed even under largely variable conditions (positive mode, 

negative mode; lithiated cations, deprotonated ion, chloride adduct of saccharides; sector high 

energy CAD, low energy CAD, PSD; LSI, FAB, ES, MALDI) suggest a correlation between the 

linkage positions and fragmentation mechanisms and/or steric requirements for cross-ring 

fragmentations. The minor differences between our results and those obtained by Yamagaki et 

al.38 are possibly due to the different experimental conditions employed: PSD with linear-field 

reflectron vs. PSD with curved-field reflectron. It appears that more fragment ions are observed 

in our PSD with linear-field reflectron perhaps because of the smaller sizes of oligosaccharides 

employed in our study. Another contributing factor might be that the laser intensity in our PSD 

experiments using the linear-field reflectron can be changed greatly from segment to segment to 

improve fragment ion abundances without saturating the detector. It is a real advantage 

compared to PSD with a curved-field reflectron where the chosen laser intensity may create a 

dynamic range problem whereby lower fragment ion signals are barely visible next to high 

intensity peaks. 

 2.3.3 Determination of the Reducing End 

So far, all the disaccharides studied are hexose-hexose and the constituent 

monosaccharide units are stereoisomers which cannot be discriminated by single-stage MS. 

Sequence information can be obtained by MS when the constituent monosaccharide units have 
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different masses. For example, the hexose-pentose disaccharide: Galβ1–3Ara (20), has two 

monosaccharide units with different masses. The PSD mass spectrum of the chloride adduct of 

Galβ1–3Ara at m/z 347 is shown in Figure 2.4f. Along with the deprotonated molecule [M - H]-, 

prominent product ion peaks at m/z 179 (with charge retention on the non-reducing ring) and at 

m/z 131 (with charge retention on the reducing ring) are produced upon unambiguous cleavage 

of the glycosidic bond on the reducing end side. Cleavages on the non-reducing side forming 

product ions at m/z 161 or m/z 149 are disfavored20 and are detected in much lower abundances. 

A very weak peak at m/z 221 is also observed. This fragmentation pattern is very similar to the 

1-3 linked hexose-hexose disaccharides (Table 2.2).  

2.3.4 PSD of Chloride Adducts of Fructose-Containing Saccharides  

Figure 2.5 shows the PSD mass spectra of [M + Cl]- of fructose-containing saccharides. 

Three glucopyranosyl fructoses plus one galactopyranosyl fructose (16-19) characterized by 

different linkages are studied. It is obvious that these fructose-containing isomers with differing 

linkage position give quite different PSD product ion spectra. For the fructose-containing 

disaccharide series (Figure 2.5a-d), observation of PSD peaks at m/z 179, 221, 251, 281 and 341 

is characteristic of the 1–6 linkage; appearance of PSD peaks at m/z 161, 179 and 251 is 

indicative of the 1–3 linkage; and PSD peaks appearing at m/z 179, 197, 215 and 341 is 

characteristic of the 1–2 linkage. Cross-ring cleavages are not prominent for the 1–4 linked Gal-

Fru and observation of PSD peaks at m/z 161, 179 with small cross-ring cleavage peaks at m/z 

263 and 281 are characteristic of the 1-4 linkage. The PSD spectra presented here are 

qualitatively similar to those obtained by ES-CID of chloride adducts of these fructose-

containing disaccharides25, except for Galβ1–4Fru whereas the cross-ring cleavages of fructose 

were not observed under ES-CID25. On the other hand, our PSD spectrum of chloride adducts of  

 42



 
 
 

A B

DC 

E F

 
 
 
Figure 2.5. Negative ion PSD of chloride adducts of fructose-containing saccharides. (a) 
palatinose (Glcα1–6Fru); (b) lactulose (Galβ1–4Fru); (c) turanose (Glcα1–3Fru); (d) sucrose 
(Glc1–2Fru); (e) raffinose (Galα1-6Glcα1-2Fru); and (f) stachyose (Galα1-6Galα1-6Glcα1-
2Fru). PSD of the chloride adduct of non-reducing sucrose yields chlorine-containing fragment 
ions (m/z 215 and m/z 197). Chlorine-containing product ions are also observed at m/z 377 for 
raffinose (Figure 2.5e) and at m/z 539 for stachyose (Figure 2.5f) due to the neutral loss of the 
fructose residue (162 Da neutral) from the corresponding [M + Cl]- precursors. 
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Galβ1–4Fru is very similar to that of [M - H]- obtained under FAB-CID 19. Also, the PSD 

fragmentation patterns of 1-6 and 1-4 linked fructose-containing disaccharides were similar to 

their counterparts obtained from non fructose-containing disaccharides.  

Sucrose (Glcα1–2Fru) (Figure 2.5d) is unique among all the disaccharides studied here. 

First, it is a fructose-containing disaccharide. Second, it is a non-reducing disaccharide wherein 

the linkage is formed between two reducing hydroxyl groups on the glucose and the fructose 

units. Figure 2.5d shows the PSD spectra of chloride adduct of 1-2 linked sucrose. The 

deprotonated molecule [M - H]  at m/z 341 is substantially higher in abundance than those with 

1-3, 1-4 and 1-6 linkages. An interesting phenomenon is that the PSD spectrum of chloride 

adducts of sucrose also shows chloride-containing product ions at m/z 197 and 215 as shown in 

Figure 2.5d. The observation of chlorine-containing fragments from chloride adduct precursors 

has not yet been reported in MALDI-PSD MS. The unusually high abundance of [M - H]  peaks 

at m/z 341 may be attributed to the lower acidity of the non-reducing end sugar, causing more 

energy to be consumed during the neutral loss of HCl from [M + Cl] , leaving the formed [M - 

H]  ion with less internal energy for further decomposition .   

2.3.5 PSD of Chloride Adducts for Differentiation of Anomeric Configurations 

In our previous study , with the linkage position assigned, anomeric configurations of 1-

6, 1-4 and 1-3 linked glucopyranosyl-glucose disaccharides were successfully differentiated by 

comparing the relative abundances of diagnostic peaks that were intentionally acquired within 

the same PSD segment from the chloride adducts of these disaccharides. 

As shown in Table 2.2, the disaccharides with different anomeric configuration, but the 

same linkage, have significant differences in the PSD mass spectra of their chloride adducts, 

independent of the hexose rings. For example, the α- (melibiose: Galα1-6Glc) (Figure 2.2d) and 

-

-

-

- 25
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β-configuration (Galβ1-6Gal) (Figure 2.2c) with 1-6 linkage can be readily differentiated by 

examining whether the relative abundance ratio of m/z 251:281 is larger than unity (β isomer) 

(Figure 2.2c) or smaller than unity (α isomer) (Figure 2.2d). This finding agrees well with the 

peak intensity difference between the α anomer (isomaltose) (Figure 2.2b) and β anomer 

(gentiobiose) (Figure 2.2a) in 1-6 linked glucopyranosyl glucose54.  

Similarly, a clear-cut differentiation between the α- (Galα1-4Gal) (Figure 2.3f) and β-

configuration, i.e., lactose (Galβ1-4Glc) (Figure 2.3c), Galβ1-4Man (epilactose) (Figure 2.3d) 

and Galβ1-4Gal (Figure 2.3e), with 1-4 linkage can be made by simply checking whether the 

relative abundance ratio of m/z 263:281 is larger than unity (β isomer) or smaller than unity (α 

isomer). This finding agrees well with the peak intensity difference between the α anomer 

(maltose) (Figure 2.3b) and β anomer (cellobiose) (Figure 2.3a) in 1-6 linked glucopyranosyl 

glucose54.  

For 1-3 glycosyl linkages, the relative abundance ratio of m/z 161:179 is consistently 

lower for the α isomer (nigerose) (Figure 2.4a) than for the β isomer (laminaribiose) (Figure 

2.4b). Even though the m/z 161:179 ratio is larger than unity for both 1,3-linked anomers, 

nevertheless, the difference in relative ratios is sufficiently large to permit distinction between 

the α- and β-configurations54. 

For 1-2 linked glucopyranosyl glucose disaccharides, the relative abundance of m/z 215 

vs m/z 221 ([M - H - 120]-) of the β isomer (sophorose) (Figure 2.4c) is much higher than that of 

the corresponding α isomer (kojibiose) (Figure 2.4d). 

Notably, the relative abundance of m/z 161 vs m/z 179 in the negative ion PSD mass 

spectra of [disaccharide + Cl]- vary largely for the different linkages. The 1-6, 1-2 and 1-1 linked 

disaccharides show higher abundances of m/z 179 vs m/z 161, while the reverse is observed for 
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1-4 and 1-3 linked disaccharides, which is similar to previous studies in LSIMS/FTMS 20 and ES 

MS/MS 25. Similar tendencies are also observed in disaccharides other than glucopyranosyl 

glucose disaccharides and larger oligosaccharides. This distinction appears to be a potential 

indicator to differentiate the 1-6, 1-2, and 1-1 linkages (higher m/z 179) from the 1-4 and 1-3 

linkages (higher m/z 161). For the PSD of chloride adducts of fructose-containing disaccharides, 

Glcα1–2Fru, Glcα1–3Fru and Glcα1–6Fru display higher m/z 179 peaks than m/z 161, while 

Galβ1–4Fru gives the reverse tendency. This difference is likely a reflection of the varying steric 

requirements for glycosidic bond cleavage. 

Noteworthy is the fact that the PSD spectra of disaccharides with the same anomeric 

configuration and same linkage position show comparable relative ion abundances for our 

proposed diagnostic peaks, regardless of the constituent monosaccharide structures. 

2.3.6 Influence of Laser Intensity on Relative Peak Intensities of Diagnostic PSD fragment 

pairs 

Relative peak intensities (RPI) are not generally reliably reproducible in PSD when these 

spectra are composites of several different “stitched” spectral segments acquired under 

somewhat varying ionization conditions29. However, employing a novel approach, we 

demonstrated that even without a curved-field reflectron38-40, 55-62 that allows acquisition of an 

entire PSD spectrum under the same conditions for each laser shot, and even if the target crystals 

may vary substantially in shape and quality, rather reproducible relative PSD peak intensities 

acquired within the same PSD segment of a limited m/z range (approximately 40 m/z units) with 

our MALDI linear-field reflectron TOF mass spectrometer can be obtained under the same laser 

intensity54.  

 46



It is impossible to acquire all PSD spectra using the same laser intensity all the time, even 

for anomeric disaccharides. So a study was further undertaken to see whether the relative peak 

intensities of our proposed diagnostic fragment pairs vary greatly with laser intensity. The 1-6 

and 1-4 linked glucopyranosyl glucose disaccharides were selected for this study. The stability of 

the relative ion abundances was checked in four measurements with the laser intensity value set 

at increasing increments up to about 1.5 times the threshold value (Figure 2.6). The relative 

intensity of each diagnostic peak pair was calculated with the peak intensity of m/z 281 

normalized to 100%. As can be seen from figure 2.6, the relative peak intensities are fairly stable 

regardless of the laser intensity used. Considering the uncontrollable variations of crystallization 

on the MALDI target, the reproducibility was satisfactorily high and the anomeric configurations 

can be unambiguously distinguished.  

2.3.7 PSD of Chloride Adducts of Oligosaccharides 

It is desirable to extend the results obtained from disaccharides to oligosaccharides and 

see how the PSD of chloride adduct precursors can be used to establish the linkage position and 

anomeric configuration in saccharides of larger size. 

Both raffinose (Galα1-6Glcα1-2Fru) (21) and stachyose (Galα1-6Galα1-6Glcα1-2Fru) 

(22) are non-reducing saccharides, containing the identical Glcα1-2Fru linkage at what is 

normally the reducing end. The formation of chlorine-containing product ions is also observed at 

m/z 377 for raffinose (Figure 2.5e) and at m/z 539 for stachyose (Figure 2.5f) due to the neutral 

loss of the fructose residue (162 Da neutral) from the corresponding [M + Cl]- precursors in PSD 

mass spectra. But no PSD peaks at m/z 197 are observed in either case, which contrasts with the 

previous ES-CID study. As concluded previously for decomposition of ES-generated chloride 

adducts25, the observation of chlorine-containing product ions corresponding to loss of fructose  
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Figure 2.6. Relative peak intensities as a function of laser intensity: (a) RPI of m/z 251 vs. m/z 
281 in 1-6 linked disaccharides; (b) RPI of m/z 263 vs. m/z 281 in 1-4 linked disaccharides. RPI 
in each pair is calculated with peak intensity of m/z 281 normalized to 100%. Subtle variations in 
the PSD experiments are inevitable, but the RPI is fairly stable regardless of laser intensity. 
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as a result of cleavage on the fructose side of the glycosidic bond upon PSD of [M + Cl]-, e.g., 

m/z 215 from sucrose (Figure 2.5d), m/z 377 from raffinose (Figure 2.5e), and m/z 539 from 

stachyose (Figure 2.5f) is diagnostic for the Glcα1-2Fru linkage at the downstream end. In sharp 

contrast, chlorine-containing fragments are not observed in PSD of the 1-1 linked pyranose on 

the reducing end (Figure 2.4f). PSD of chloride adducts clearly serves as a means to differentiate 

a fructose on the reducing end from a 1-1 linked pyranose on the same position which is virtually 

indistinguishable previously21. 

As shown in Figure 2.5e, the 1-6 linkage between two glucose rings in raffinose can be 

clearly obtained by the major losses of 60 Da (m/z 281), 90 Da (m/z 251), 120 Da (m/z 221) and 

162 Da (m/z 179) from the negatively charged disaccharide moiety at m/z 341 resulting from the 

fructose unit loss in raffinose, together with the absence of a peak corresponding to loss of 78 

Da. The α anomeric configuration of this 1-6 linkage in raffinose can be safely assigned since 

the relative abundance of m/z 251:281 is smaller than unity, which is characteristic of the α 

anomeric configuration with 1-6 linkage (Table 2.2). The 1-2 linkage between rings 2 and 3 in 

raffinose can be readily identified by the chlorine-containing product ions observed at m/z 377.  

The linkages and anomeric configurations in stachyose (Galα1-6Galα1-6Glcα1-2Fru) 

can be identified by the negative ion MALDI-PSD mass spectrum of [stachyose+Cl]- (Figure 

2.5f) via a similar process. The major losses of 60 Da (m/z 281), 90 Da (m/z 251), 120 Da (m/z 

221) and 162 Da (m/z 179) from the negatively charged disaccharide moiety at m/z 341 resulting 

from the glucose-fructose unit loss in stachyose, together with the absence of peaks 

corresponding to loss of 78 Da, indicate the 1-6 linkage between the first and second glucose 

ring. The major losses of 60 Da (m/z 443), 90 Da (m/z 413), 120 Da (m/z 383) and 162 Da (m/z 

341) from the negatively charged trisaccharide moiety at m/z 503 resulting from the fructose unit 
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loss in stachyose, indicate another 1-6 linkage between rings 2 and 3. The α anomeric 

configuration of these two 1-6 linkages in stachyose can be safely assigned since the relative 

abundances of both m/z 251:281 and m/z 413:443 are smaller than unity, which is characteristic 

of the α anomeric configuration with 1-6 linkage (Table 2.2). The 1-2 linkage between the third 

and fourth ring can be easily identified by chlorine-containing product ions observed at m/z 539. 

The negative ion MALDI-PSD mass spectrum of the chloride adduct ions of 

isomaltotriose (Glcα1-6Glcα1-6Glc) (23) is shown in Figure 2.7a, which is essentially the same 

as that of the truncated stachyose (Figure 2.5f). Both the two 1-6 linkages and two α anomeric 

configurations of these two 1-6 linkages can be deduced by a similar process.  

The negative ion MALDI-PSD mass spectrum of [cellotriose+Cl]- (Glcβ1-4Glcβ1-4Glc) 

(24) is reported in Figure 2.7b. The major losses from the [M - H]- ion at m/z 503 of 60 Da (m/z 

443), 78 Da (m/z 425) and 162 Da (m/z 341), together with the absence of peaks corresponding 

to loss of 90 Da clearly reveal the 1-4 linkage of the reducing end in cellotriose (Table 2.2). The 

1-4 linkage between the first and second ring (non-reducing end) can also be clearly obtained by 

the major consecutive losses from the negatively charged disaccharide moiety at m/z 341 

resulting from the glucose unit loss from the reducing end in cellotriose. These consecutive 

losses are: 60 Da (peak at m/z 281), 78 Da (peak at m/z 263) and 162 Da (peak at m/z 179), 

together with the absence of a peak corresponding to loss of 90 Da. The β anomeric 

configuration of these two 1-4 linkages in cellotriose can be safely assigned since the relative 

abundances of both m/z 263:281 and m/z 425:443 are larger than unity, which is characteristic of 

the β anomeric configuration with 1-4 linkage (Table 2.2). 

The negative ion MALDI-PSD mass spectrum of the chloride adduct of maltotriose 

(Glcα1-4Glcα1-4Glc) (25) (Figure 2.7c) is similar to that of cellotriose (Figure 2.7b). The two 1- 
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Figure 2.7. Negative ion PSD of chloride adducts of oligosaccharides. (a) isomaltotriose (Glcα1-
6Glcα1-6Glc); (b) cellotriose (Glcβ1-4Glcβ1-4Glc); (c) maltotriose (Glcα1-4Glcα1-4Glc). 
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4 linkages can be determined as was done above. The α anomeric configuration between the first 

and second ring (non-reducing end) in maltotriose can be safely assigned since the relative 

abundance of m/z 263:281 is smaller than unity, which is characteristic of the β anomeric 

configuration with 1-4 linkage (Table 2.2). However, the relative ion abundance of m/z 425 vs 

m/z 443 is larger than unity, which implies β anomeric configuration with 1-4 linkage and fails 

to show the correct α configuration of the reducing end 1-4 linkage in maltotriose. Careful 

review of the spectra reveals that the relative abundance of m/z 425 vs m/z 443 is much closer to 

unity in maltotriose (Figure 2.7c) than that in cellotriose (Figure 2.7b). 

The negative ion MALDI-PSD mass spectrum of the chloride adduct of panose (Glcα1-

6Glcα1-4Glc) (26) is reported in Figure 2.8a. The major losses from the [M - H]- ion at m/z 503: 

60 Da (m/z 443), 78 Da (m/z 425) and 162 Da (m/z 341), together with the absence of peaks 

corresponding to loss of 90 Da clearly reveal the 1-4 linkage of the reducing end in panose 

(Table 2.2). The 1-6 linkage type between the first and second ring (non-reducing end) in panose 

can also be clearly obtained by the major consecutive losses from the disaccharide moiety at m/z 

341 resulting from the glucose unit loss from the reducing end. These consecutive losses are: 60 

Da (m/z 281), 90 Da (m/z 251), 120 Da (m/z 221) and 162 Da (m/z 179) together with the 

absence of a peak corresponding to loss of 78 Da. The α anomeric configuration of the 1-6 

linkage can be safely assigned since the relative abundance of m/z 251:281 is smaller than unity, 

which is characteristic of the α anomeric configuration with 1-6 linkage (Table 2.2). Similar to 

what happens in cellotriose, the relative abundance of m/z 425 vs m/z 443 in panose also fails to 

show characteristics of the α anomeric configuration with a 1-4 linkage of the reducing end. In 

this case, the relative abundance of m/z 425:443 deviates far from unity in panose (Figure 2.8a). 
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Figure 2.8. Negative ion PSD of chloride adducts of oligosaccharides. (a) panose (Glcα1-
6Glcα1-4Glc); (b) 3α, 4β, 3α-galactotetraose (Galα1-3Galβ1-4Galα1-3Gal). 
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The negative ion MALDI-PSD mass spectrum of the chloride adducts of 3α, 4β, 3α-

galactotetraose (Galα1-3Galβ1-4Galα1-3Gal) (27) appears in Figure 2.8b. The identity of the 1-

3 linkage of the reducing end in galactotetraose is only supported by one major loss of 120 Da 

(m/z 545) from the [M - H]- ion at m/z 665. In PSD of chloride adducts of 1-3 linked 

disaccharides (laminaribiose and nigerose), only one cross-ring fragment via loss of 120 is 

observed (Figures 2.4a and 2.4b). The major losses from the negatively charged trisaccharide 

moiety at m/z 503 resulting from one galactose unit loss from the reducing end in 

galactotetraose, of 60 Da (m/z 443), 78 Da (m/z 425) and 162 Da (m/z 341), together with the 

absence of a peak corresponding to loss of 90 Da clearly reveal the 1-4 linkage between the 

second and third ring in galactotetraose (Table 2.2). The 1-3 linkage type between the first and 

second ring (non-reducing end) in this galactotetraose can also be obtained by the major losses of 

162 Da (peak at m/z 179) and 180 Da (peak at m/z 161) from the negatively charged 

disaccharide moiety at m/z 341 resulting from two galactose units loss from the reducing end in 

galactotetraose. In this case, the cross-ring fragment at m/z 221 is not observable. The α 

anomeric configuration between the first and second ring (non-reducing end) in this 

galactotetraose can be determined by the relative abundance of m/z 161 vs m/z 179 which is 

much closer to that of nigerose (Figure 2.4b). The larger than unity relative abundance of m/z 

425:443 is consistent with the β anomeric configuration with a 1-4 linkage (Table 2.2), clearly 

reveals the β anomeric configuration between rings 2 and 3 in galactotetraose. The anomeric 

configuration of the 1-3 linkage of the reducing end in galactotetraose cannot be determined 

because of the lack of pertinent fragmentations. 
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It appears that for the α anomeric configuration with 1-6 linkage and the β anomeric 

configuration with 1-4 linkage other than at the non-reducing end, the relative peak abundances 

of diagnostic fragments still hold and the differences exaggerate in both cases. For the α 

anomeric configuration with 1-4 linkage not in the non-reducing end, the relative peak 

abundances of diagnostic fragments flip and vary significantly, in ways that are quite different 

from that of β anomeric configuration with 1-4 linkage: relative ion abundances of m/z 443:425 

are too low in panose (almost zero) (Figure 2.8a) and much higher in maltotriose (Figure 2.7c) 

than that of cellotriose (Figure 2.7b).  

 

2.4 Conclusions 

Various anions can form anionic adducts with oligosaccharides in negative ion MALDI-

MS. Employing negative ion MALDI in the presence of various anions, weakly acidic and 

neutral oligosaccharides can form [M + anion]- adducts in varying degrees of preference to [M - 

H]-. The anion attachment approach provides a simple means to simultaneously analyze neutral 

and acidic carbohydrates without switching the instrument polarity. 

Contrary to common opinion that relative peak intensities are not generally reliable in 

linear reflectron PSD, we demonstrate that the relative peak intensities of the oligosaccharide 

fragment peaks intentionally acquired within the same PSD segment are rather stable, even if the 

laser intensities vary greatly and the target crystals may vary substantially in shape and quality. 

Our proposed characteristic neutral losses in MALDI-PSD mass spectra of the chloride adducts 

of neutral oligosaccharides and the relative ion abundances of selected diagnostic fragment pairs 

allow simultaneous determination of both linkage information and anomeric configurations of 

the oligosaccharides.  
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Competitive fragmentation pathways are revealed and rationalized in PSD processes of 

chloride adducts of oligosaccharides. For specific glycosidic linkage types, PSD spectra of 

oligosaccharides with the same anomeric configuration show the same trend of relative ion 

abundance for the diagnostic fragment peaks, independent of monosaccharide structure. It 

strongly indicates that the fragmentation pathways observed in negative ion PSD spectra are 

largely affected by the anomeric configuration between the monosaccharide rings for the 

particular linkage positions. It becomes clear that differentiating anomeric configuration of 

glycosidic bonds is viable by comparing relative peak intensities of diagnostic peaks in negative 

ion PSD via anion attachment. The fragmentation profiles and relative peak abundance in PSD 

spectra are expected to present important hints in determining the glycosidic linkage types and 

anomeric configuration of more complex glycoconjugates. The potential usage of MALDI linear 

reflectron TOF MS in stereoisomeric chemistry thus has been greatly expanded. Considering the 

popularity of normal MALDI-TOF MS world-wide and the fact it will remain a major workhorse 

in the near future, our results will hopefully inspire more interest in PSD analysis of 

glycoconjugates. 
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Chapter 3: Characterization of Synthesized Titanium Oxide Nanoclusters by MALDI-TOF 

Mass Spectrometry 

 

3.1 Introduction 

Titania (i. e. species composed of titanium and oxygen) represents an important material 

which is used widely in photocatalysis1-3, sensor technology4, optical coatings5, and pigments6. It 

has been used for the destruction of toxic organic compounds and microorganisms such as 

bacteria and viruses, in addition to its applications in purification of polluted air and 

wastewaters2, 3. Titania’s advantages over other materials are that it is relatively inexpensive, 

non-toxic, and it exhibits a high photo-stability in adverse environments, among other desirable 

surface properties. It is also being used in low-cost, highly efficient dye-sensitized solar cells7, 8. 

Titania itself has a relatively large band gap and is unable to absorb a significant part of the 

visible light spectrum. But when coupled with suitable charge transfer dyes, it can quantitatively 

convert visible light photons into electric current7, 8. It has been widely used as a model transition 

metal oxide due to its rather simple electronic structure which is characterized by a filled valence 

band and an empty conduction band9. 

Cluster models have been frequently used in theoretical calculations of titanium dioxide 

bulk or surface properties10-12. However, for experimental study of titania clusters produced by 

evaporation and sputtering, it is difficult to achieve control over particle size, size distribution, 

and shape because the reactions of molecular precursors require rather high temperatures. There 

are many reports on isolated titanium (IV) nanoclusters produced by wet chemical methods13, 14, 

but, to our knowledge, there are no reports on isolated stable nanoclusters with diameters less 

than 1 nm. 
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High-temperature organic solution phase synthesis is a very promising method to develop 

many nanocrystals with controlled shapes and sizes. In this method, one can control the growth 

of the nanoparticles by choosing the proper capping ligand. We seek to produce titania clusters 

by reaction of titanium alkoxide in a non-polar solvent, along with an air- and water-free 

environment, because hydrolysis of titanium alkoxide is difficult to control if there are even trace 

amounts of water. 

Both transmission electron microscopy (TEM) and powder X-ray Diffraction (XRD) 

analyses are typically employed to measure the shapes, sizes, and size distributions of 

nanocrystal samples. However, standard TEM instrumentation is not so readily adapted to the 

analysis of nanoparticles that are less than 1 nm in size. First, it is statistically insignificant to 

infer average size and a size distribution for the ensemble by examining only a tiny region in a 

TEM image because the chosen areas of the grid may not be representative of the ensemble15. 

Second, it is not easy to definitively determine the boundary between the cluster and grid on a 

TEM image when cluster sizes are smaller than about 2-3 nm15. Moreover, changes in the size of 

clusters may occur during the drying process, possibly caused by, but not limited to, aggregation 

and chemical changes (e.g., oxidation or hydration). Fitting XRD data to the Scherer equation to 

calculate cluster size is of limited accuracy, because the Scherer equation strictly applies only to 

uniformly shaped, noninteracting nanoparticles with an assigned distribution of sizes15, 16. 

Mass spectrometry (MS) represents an alternative means to determine sizes and size 

distributions of nanoparticles by obtaining accurate mass information. The mass spectra of 

nanoparticles will provide size information through calculation from the known particle density 

values. Also, valuable structural information may be obtained concerning nanoparticle 

composition through knowledge of fragmentation pathways, and the relative abundances of 
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nanoparticle components. Beyond its widely acknowledged applications in biological, molecular 

and polymeric systems, MS has been successfully used to characterize various nanoparticles 

such as fullerences17, 18, silica clusters19, metal chalcogenide clusters20-24, gold nanocrystals25-28  

and several other nanomaterials29-33. 

Electrospray (ES) ionization34, 35 coupled with tandem MS (MS/MS) has become a 

powerful tool for analyses of nanoparticle composition22-24, 30, 36-38 provided that the nanoparticle 

can be suspended in a solvent of moderate polarity without decomposition or other reactions. 

Laser desorption/ionization (LDI) TOF-MS has also been used to record mass spectra and 

determine specific atomic compositions of large gold nanocrystals with masses of tens of kilo-

Daltons without the use of matrixes25-28. In sharp contrast, in the absence of suitable matrixes, 

biological polymers like proteins, DNAs and carbohydrates, as well as large (e.g., 10,000 Da) 

synthetic polymers tend to fragment under laser irradiation, thus making it very problematic to 

observe intact molecular ions. However, matrix-assisted laser desorption/ionization (MALDI) 

can be used for fast analyses of sizes and size distributions of nanoparticles when suitable 

matrixes are found. Although not truly tandem MS, post-source decay (PSD)39, 40 can provide 

additional valuable information about the structure of analytes observed by MALDI-TOF. 

Because TiO2 has been used as a photo-catalyst for killing bacteria, but bactericidal efficiency 

has been shown to be dependent on the size of the nanoparticles present, the current study seeks 

to determine sizes and size distributions of ultra small TiO2 nanoparticles using MALDI-TOF 

and LDI-TOF mass spectrometry with PSD analysis. This report presents results of our synthesis 

and characterization of ultra small TiO2 nanoparticles (i.e., < 1 nm). 

3.2 Experimental 

3.2.1 Materials 
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All chemicals were purchased and used as received without further purification. Distilled, 

de-ionized water (Milli-Q Systems, Millipore Corporation, Billerica, MA) was used throughout. 

Matrixes used in this experiment: dithranol, α-cyano-4-hydroxycinnamic acid (α-CHCA), 2,5-

dihydroxybenzoic acid (DHB), or sinapinic acid were purchased from Aldrich Chemical 

(Milwaukee, WI, USA). Titanium tetrabutoxide (Ti(OC4H9)4),  trioctylamine ([CH3(CH2)7]3N), 

benzyl ether, toluene, methanol, and chloroform were also purchased from Aldrich Chemical 

(Milwaukee, WI, USA). 

3.2.2 Nanoparticle Preparation 

Titania clusters were prepared using titanium tetrabutoxide (Ti(OC4H9)4) as the precursor 

and trioctylamine as the capping agent in a benzyl ether solvent with heating. Trioctylamine was 

chosen as the capping ligand because its 3-dimensional structure may prevent smaller clusters 

from aggregating to form larger particles. The synthesis experiment was carried out in a three-

necked flask equipped with a condenser and an argon stream. Typically, 1 ml Ti(OC4H9)4 and 1 

ml trioctylamine were added into 10 ml hot benzyl ether at 563 K with stirring for 24 hours; the 

color of the solution changed gradually from yellow to dark red as the reaction continued.  The 

size-selection process involved centrifugation using a pair of solvents (i.e., toluene and 

methanol) to get different sized TiO2 clusters; the final products were re-dissolved in toluene. 

The term “raw nanoparticles” refers to precipitation without size-selection throughout this paper.  

After size selection, the cluster sample suspensions appeared red, except for the raw 

nanoparticles suspensions which were slightly gray. Although one could anticipate the formation 

of stoichiometric TixO2x, when clusters are formed, there is usually a slight deviation from this 

strict 1:2 stoichiometry.  

3.2.3 XRD and TEM 
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XRD patterns were recorded using an x-ray diffractometer (CuKα, Philips X’pert 

systems, Natick, MA). The TiO2 cluster suspensions were deposited onto a single Si substrate, 

and each diffraction pattern (2θ = 20 - 80 degrees) was scanned for 12 hours due to the relatively 

low signal-to-noise ratio of TiO2 clusters. A JEOL-2010 (JEOL, Peabody, MA) transmission 

electron microscope (TEM) operating at an accelerating voltage of 200 kV was used to 

investigate the morphology of the raw clusters.  

3.2.4 Mass Spectrometry 

Mass spectra were acquired on an Applied Biosystems Voyager Elite MALDI-TOF mass 

spectrometer with delayed extraction (Applied Biosystems, Framingham, MA) equipped with a 

pulsed N2 laser (λ = 337 nm). Either dithranol was used as the matrix, or no matrix at all was 

used, which implies Laser Desorption/Ionization (LDI) in the latter case. An extraction voltage 

of 20 kV was typically employed. Laser intensity was adjusted to just above the threshold energy 

for appearance of titanium-containing ions except in PSD experiments where the energy was 20-

30% higher. All mass spectra were acquired in the positive reflectron mode employing delayed 

extraction. Each nanoparticle mass spectrum consists of an average of 50-100 traces. In 

preparation for MALDI, 3 µL of nanoparticle suspension was mixed with 3 µL of dithranol 

matrix in chloroform; then, 1 µL of the mixture was deposited onto the MALDI plate and 

allowed to air-dry. The diameters of the investigated particles were always smaller than the 

surface area illuminated by the laser beam, thus, data in mass spectra originate from many 

individual nanoparticles. The instrument was externally calibrated using monoisotopic peaks 

from the dithranol matrix (MH+ at m/z 227.071) and from oxidized insulin chain B (MH+ at m/z 

3494.651); Angiotensin I was used for PSD calibration. Data processing was performed using 

IGOR Pro 4.07 (Wave Metrics Inc., Lake Oswego, OR). 
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3.3 Results and Discussions 

When TixO2x clusters are formed, there is usually a small deviation from this exact 

stoichiometry, but for the purpose of this text, we will use the term “TiO2” to represent the 

clusters. TiO2 nanoparticles are usually produced by hydrolysis of organometallic compounds. 

During the hydrolysis process, it is very easy to incur aggregation to form larger particles. In our 

case, TiO2 nanoclusters were produced by reaction of Ti(OC4H9)4 in a thermal solvent system. 

Trioctylamine was chosen as the capping ligand because its bulky 3-dimensional structure may 

prevent smaller clusters from aggregating to form larger particles. Like most organometallic 

compounds, Ti(OC4H9)4 is highly moisture-sensitive. The reaction was therefore carried out 

under an argon atmosphere. After reaction, post-treatment size-selection would allow tuning of 

the particle size and size distribution.   

In the suspension of nanoparticles, the energetic barrier to aggregation caused by steric 

hindrance from capping ligands (such as trioctylamine used here) is strongly dependent on the 

energy of mixing between the tethered capping groups and the solvent. Introduction of a 

nonsolvent (methanol in this case), miscible with the original dispersing solvent (toluene), 

destabilizes the nanoparticle dispersions. The nanoparticles then “aggregate” and precipitate, 

leaving many of the synthetic by-products in solution. The resulting powders may be redispersed 

in a variety of solvents, e.g. alkanes and aromatics, if the capping ligands are well bound to the 

surface of the nanoparticles. By employing this treatment, fine tuning of the particle size and 

size-distribution can be achieved. After such size-selection, the resulting TiO2 clusters (with 

capping ligands) were maintained in toluene where they exhibit good stability. 

TEM images of the raw nanoparticles are shown in Fig 3.1(a); from these, we can 

estimate that the mean nanoparticles size is about 2.5 nm and that there are some elongated 
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nanocrystals produced as well. The length of these less predominant elongated nanocrystals is 

approximately 5 nm with widths of ~ 1-2 nm. Because of the projective nature of the TEM 

image, it is not straight-forward to deduce the exact percentage of elongated particles vs 

spherical ones. The high resolution micrograph (Fig 3.1(b)) clearly shows that the lattice plane 

along the growth direction of the nanocrystals is (001). After size selection, the cluster 

dimensions could not be determined by TEM because the employed TEM is not capable of 

adequate resolution. For particles with even smaller size (estimated to be less than 1 nm in our 

case), owing to the low contrast across the boundary between a cluster and the grid, high quality 

TEM images are challenging to obtain. The organic layer on cluster surfaces also affects the 

quality of TEM images. The organic groups at the cluster surface cannot be observed with 

electron beams, nor can the size of this organic group “shell” be determined15. 

TiO2 has seven different polymorphic forms, four of which are found in nature. The three 

common natural crystalline forms are: anatase, rutile and brookite. All consist of octahedrally 

coordinated Ti cations arranged in edge sharing chains, but they differ in the number of shared 

edges and corners. The octahedra in anatase share four edges and four corners, whereas the rutile 

Ti octahedral shares two edges and six corners, while brookite Ti octahedral shares three edges 

and five corners6, 41, 42. Figure 3.2 shows the XRD patterns of TiO2 raw nanoparticles (Curve A) 

and size-selected TiO2 clusters (Curves B-D). According to the XRD data, all the peaks in curve 

A (raw nanoparticles) can be indexed as anatase TiO2
43. We estimated the raw anatase particle 

size using the Scherer equation16. On the basis of the (100) peak, the average particle size is 2.3 

nm, whereas on the basis of the (200) peak, it is 2.5 nm. These estimations are in good agreement 

with the results from TEM observations except that there are some elongated nanocrystals 

observed in the TEM images. After size-selection, there are large differences between XRD 
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Figure 3.1. TEM images of anatase raw nanoparticles: (a) Low resolution TEM shows some 
elongated nanoparticles by ~5×1.5nm  in size; (b)High resolution micrograph demonstrate the 
elongated nanoparticles growth along [001] direction. 
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Figure 3.2. XRD patterns of Raw TiO2 nanoparticles and Size-selected TiO2 clusters:  Curve A is 
the pattern of nanoparticles, which can be indexed as anatase, the size of the clusters decreases 
from curve B to curve D. 
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patterns. For curve B, the (200) peak becomes much broader compared with other peaks in this 

curve. However, the XRD pattern of curve B can still be confidently indexed as the anatase 

phase of TiO2. The XRD patterns presented in curve C and curve D are extremely weak, peaks 

are broad, and the data are noisy. They are quite different from the XRD patterns of anatase and 

rutile, although the positions of the broad (200) peak maxima seem to coincide more with those 

of anatase. This suggests that long range ordering structures in the size-selected clusters do not 

exist, and that the solids are essentially X-ray amorphous6. This may be caused by the extremely 

high surface area-to-volume ratio. Experimental X-ray absorption fine structure (XAFS) data 

show that Ti-O bond lengths in nanocrystalline titanium dioxide are shorter than the bulk phase 

value of 1.94 Å and can be as low as 1.79 Å for surface atoms, resulting from Ti-OH bonding44, 

45. It was also reported that the curvature of the surface causes a decrease in the coordination 

number of the titanium ion from the normal octahedral environment (six) to where it has a 

coordination number of four or five44-46. According to the simulation of Naicker et al.47 for small 

nanoparticles, the bulk phase structural features of TiO2 will exhibit decreased importance as the 

surface atoms make up a larger fraction of the total.  

Initially, a limited effort was made to find appropriate matrixes that would allow us to 

obtain MALDI-TOF mass spectra of the size-selected clusters. However, the use of several 

commonly employed matrixes (i.e., α-cyano-4-hydroxycinnamic acid (α-CHCA), 2,5-

dihydroxybenzoic acid (DHB), and sinapinic acid) failed to result in detection of titanium oxide 

ions; only matrix peaks were observed. In the presence of these organic acid matrixes, the 

titanium oxide nanoparticles appeared to clump together, which makes the usual functions of the 

MALDI matrix (i.e. isolation of analyte molecules and transfer of absorbed photon energy to 

analyte species) inefficient. Moreover, the use of methanol as solvent for these matrixes was 
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found to accelerate precipitation and aggregation (clumping) of the titanium oxides, further 

obscuring the ability to observe titanium oxide species in mass spectra. 

The use of dithranol as the matrix, however, did yield signals representative of positively 

charged titanium oxide species. Unlike the above three organic acid matrixes, dithranol lacks a 

strongly acidic group. Matrix solutions were prepared by dissolving 10 mg of dithranol in 1 mL 

of dry chloroform without the use of methanol. Naturally occurring titanium is composed of five 

stable isotopes: 46Ti (10.8%), 47Ti (9.9%), 49Ti (7.5%), 50Ti (7.3%), with 48Ti (73.8%) being the 

most abundant; this unique isotopic pattern facilitates the assignment of titanium-containing 

species. Using Laser Desorption/Ionization (LDI) without any matrix also gave signals 

corresponding to titanium oxide cations. This is in accordance with the fact that TiO2 is a fairly 

strong UV absorber, and TiO2 itself has been used as a matrix for MALDI experiments48-50. The 

observation of similar results by MALDI and LDI without the presence of a matrix has some 

precedent; similar behavior was observed when studying ferrite nanoparticles29 and rhenium 

halide nanoparticles51. 

Numerous detected peaks in the spectra showed isotopic clusters characteristic of 

titanium-containing ions. Careful review of the isotopic patterns revealed that these titanium 

oxide species were uniformly singly charged. Above m/z 250, titanium isotopic peak patterns 

exhibited considerable overlap, thus making the spectra rather complicated to interpret. Figure 

3.3 shows the isotopic distribution comparison of the m/z range from 440 to 455 centered at m/z 

448. The top spectrum is the positive ion reflectron MS experimental result, the middle spectrum 

is the theoretical isotopic distribution of Ti6O10
+, and the bottom one is the theoretical isotopic 

distribution of Ti6
+. The singly charged ions can be directly assigned from the experimental data 

due to the high resolution of the instrument in the reflectron mode used in this experiment. The 
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Figure 3.3. Isotopic distribution comparison for TiO2 nanoparticle sample that has undergone 
size selective precipitation. (A) Positive reflectron MS experimental results centered at m/z 448; 
(B) theoretical isotopic distribution of Ti6O10

+; (C) theoretical isotopic distribution of Ti6
+. 

 73



experimental data deviate slightly from the theoretical isotopic distribution and some overlap 

with other desorbed ions at both ends of the isotopic pattern can be clearly seen. 

Figure 3.4 shows the MALDI mass spectra from m/z 250-5000 acquired for three TiO2 

nanoparticle preparations, each being characterized by a different size distribution. Upon 

MALDI irradiation, each monodispersed sample presented a broad normal-shaped distribution of 

ions with a single maximum that were analyzed and subjected to mathematical treatment. The 

smoothed peak maxima were determined to be around m/z 1130 (A), 1030 (B) and 520 (C) for 

samples of progressively decreasing cluster size, as determined by fractional crystallization. 

Possibly owing to the fact that each spectrum represents data obtained from irradiation of 

multiple particles, the obtained maxima exhibited only minor variations (4.7 + 1.7 %) in replicate 

samples. Coupled to the peak shift, a narrowing of the peak shape is also observed as size 

becomes smaller. It should be noted that the major dithranol matrix peaks (i.e., m/z 225, 226, 227 

and 211) are well below the range of the smoothed peak maxima. Higher mass matrix peaks 

appear in only minor abundances, hence, they have a negligible influence on nanoparticle size 

calculations. 

Varying the laser power changes the individual titanium oxide peak intensities without a 

significant change in the position and shape of the high-intensity broad normal-shaped MS peak 

maximum. No m/z shift suggests that titanium oxide nanomaterials are ionized without the 

ligand shell. Even at lower laser powers, the capping material is most likely lost in the laser 

plume, as was previously observed for other nanocrystal measurements by LDI-TOF MS21, 27.  

Employing certain assumptions, LDI- and MALDI-TOF MS have found use for the 

determination of nanoparticle sizes21, 26-28. If the nanocrystals are presumed to be spherically  
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Figure 3.4. Positive ion reflectron mode MALDI-MS spectra of TiO2 nanoparticles with 
progressively decreasing size as the result of size-selective precipitation. Dithranol was used as 
the matrix. Using the density value of anatase crystalline form, the diameters of the three 
samples were calculated to be 0.98nm (A), 0.95 nm (B) and 0.75 nm (C), respectively. Data 
processing was performed using IGOR Pro 4.07 (Wave Metrics Inc., Lake Oswego, OR). LDI-
TOF mass spectra yielded similar results. 
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shaped and the mass of attached protons or cations can be ignored, the diameter (d) of 

nanomaterials can be calculated employing eq. 1. 

    (m/z)exp = (π/6) NA(d3) ρ /z                 (1) 

where (m/z)exp is the smoothed peak maximum obtained from MALDI or LDI mass spectra, NA 

is Avogadro’s number, ρ and z are the density of, and charge carried by, the nanoparticles, 

respectively. 

Assuming TiO2 nanoparticles have the same density as the bulk TiO2, the densities (ρ) of 

the two most important TiO2 crystalline forms, anatase and rutile, are 3.84 × 10 –21 g/nm3 and 

4.26 × 10 –21 g/nm3, respectively. Using the density value of the anatase crystalline form, the 

diameters of the three samples (Fig. 3.4A-C) were calculated to be 0.98 nm, 0.95 nm and 0.75 

nm, respectively. Thus, low resolution MALDI-TOF peak maxima are shown to correlate with 

anatase cluster size, and the possibility to use MALDI-TOF-MS to estimate clusters size is 

affirmed. The size distributions of TiO2 nanoparticles obtained from MALDI-TOF-MS and 

equation (1) are in good agreement with our TEM observations. 

Upon increasing the laser power, peaks below m/z 200 progressively emerge, and these 

were subjected to PSD. Figure 3.5A is the LDI-TOF mass spectrum of TiO2 nanoparticles 

showing the mass range centered at m/z 167. Figure 3.5B is the theoretical isotopic distribution 

of Ti2O3Na+, while figure 3.5C is the PSD spectrum of the precursor ion [Ti2O3+Na]+ at m/z 167. 

Neutral loss of Ti2O3 yields Na+ at m/z 23. This demonstrates that MALDI-TOF and LDI-TOF 

peaks originating from titanium oxide nanoparticles can contain sodium (a ubiquitous 

contaminant). 
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Figure 3.5. (A) LDI-TOF mass spectrum of TiO2 nanoparticles showing mass range centered at 
m/z 167. (B) theoretical isotopic distribution of Ti2O3Na+. (C) PSD spectrum of precursor ion 
[Ti2O3+Na]+ at m/z 167. Neutral loss of Ti2O3 yields Na+ at m/z 23. This demonstrates that 
MALDI-TOF and LDI-TOF peaks originating from titanium oxide nanoparticles may contain 
sodium. 
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Characterization of an isolated titanium oxide molecular cluster prepared by controlled 

hydrolysis of titanium tetraethoxide in the presence of methacrylic acid was previously 

performed by electrospray TOF-MS30. The cluster fragmentation patterns were carefully studied 

and the experimental results suggest that the core structures of the fragmentation products are 

analogous to those found in bulk titanium oxide materials. The polycondensation of Ti(OC4H9)4 

has been studied by electrospray, LDI and MALDI52-54. Several possible structures of the 

oligomers of Ti(OC4H9)4 detected by ESI using direct infusion of alcoholic solutions were 

given53, 54. The LDI and MALDI mass spectra resulting from alcoholic preparations of 

Ti(OC4H9)4 also showed three series of peaks corresponding to ions containing at least three 

titanium atoms52. Our mass spectra are more complex than those of previous reports52-54, with 

titanium isotopic peak patterns spread from m/z 200 to around 3000. One major difference 

between those experiments and ours is that the previous studies focused on the hydrolysis-

polycondensation behavior of alcoholic solutions containing Ti(OC4H9)4, whereas we are 

interested in the TiO2 nanoparticles synthesized by the thermal solvent process.  

It should be noted that the expected molecular ions of Ti(OC4H9)4 (e.g. protonated at m/z 

340) did not stand out in mass spectra because of their low abundances and because of the 

significant number of other species appearing in this region of the spectrum. Potentially, 

incomplete hydrolysis6 of all butoxide ligands may be responsible for some of the background 

peaks. It is very likely that some proportion of the alkoxy groups will remain in the hydrolysates. 

Similarly, complete condensation of the alkoxide to TiO2 was very unlikely, and some 

proportion of the hydroxide groups formed during hydrolysis is likely to remain in the 

hydrolysates. Sample impurities and the complexity of resulting cluster compounds complicate 

interpretation, especially without separation of synthetic products55.  

 78



 

3.4 Conclusions 

We have shown that a stable TiO2 cluster suspension is produced by the thermal solvent 

process, and clusters with different sizes are obtained by size-selection. XRD patterns of clusters 

with sizes less than 1 nm are very different from the principal peaks of the larger particles 

stemming from the extreme surface area-to-volume ratio. We successfully used MALDI-TOF 

and LDI-TOF MS to characterize ultra small (< 1 nm) nanoparticles. Peak maxima observed in 

MALDI-TOF and LDI-TOF mass spectra were shown to correlate with nanoparticle size. The 

obtained size distributions of TiO2 nanoparticles are in good agreement with TEM measurements 

made on the identical samples. PSD analysis of inorganic nanomaterials has also been 

performed. PSD data demonstrate that MALDI-TOF and LDI-TOF peaks originating from 

titanium oxide nanoparticles may appear as sodium adducts.  The ability to obtain detailed 

information concerning subnanometer titania nanoparticles has important implications for the 

continuing development of nanoparticle-based bactericidal agents. 
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Chapter 4: Characterization of Inorganic Nitrate and Perchlorate Compounds by Negative 

MALDI-TOF Mass Spectrometry and Post-Source Decay 

 

4.1 Introduction 

Inorganic nitrate and perchlorate salts are widely used as oxidizing reagents in a variety 

of industrial applications, including use as blasting agents in mining explosives, and composite 

propellants in solid rocket fuel1, 2. They are also the major ingredients of home-made improvised 

explosive devices utilized by terrorists3. In construction and development, dynamite, i.e., 

nitroglycerin, has almost been replaced totally with ammonium nitrate fuel oil (ANFO) and 

slurry explosives in which inorganic nitrates and perchlorates are the main components. Nitrate 

salts are also widely used as the oxidizers in black powder in addition to their wide utilization as 

fertilizers. Furthermore, inorganic nitrate salts exist as pollutants and have been found in 

sidestream cigarette smoke (SSS) and mainstream cigarette smoke (MSS)4. Even higher 

abundances of nitrates exist in ashes of the cigarette after combustion. The carcinogenicity of 

cigarette smoke caused by nitrosamines and nitrate compounds in MSS has been linked to the 

nitrates in fertilizers5. Nitrates, nitric acid and closely related nitrogen oxides are also important 

atmospheric6 and stratospheric species7. 

Perchlorate, an iodide uptake inhibitor, has increasingly been detected in new places and 

in new matrices, such as milk8, vegetables9, 10 and fruits10. There is great concern that perchlorate 

contamination may be far more widespread and serious than currently known. The use of 

perchlorate-containing Chilean nitrate as a major source of fertilizer until 1930s and the use of 

ammonium perchlorate as oxidizers in solid fuel rockets are cited as the major sources11. 

Perchlorate can form naturally by atmospheric processes11. Widespread perchlorate 
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contamination in the environment likely increases the risk of human exposure12, 13 which might 

impair thyroid function.  

Because of the potential illegal use of the commercially available inorganic oxidizers as 

well as concerns over human exposure, it is of major significance to unambiguously identify 

these inorganic salts. 

Ion chromatography (IC) has been recognized as a powerful technique for the analysis of 

both cations and anions in water-soluble inorganic explosives14, 15. But the separate detection of 

positive or negative ions constituting each oxidizer instead of identifying the oxidizer as one 

entity may leave compositional ambiguity in some cases. It is often found that IC does not 

provide definitive identification. It has been observed that in many real samples, high 

concentrations of species that elute in the same region as perchlorate often contain no perchlorate 

at all16. The same problem also existed in the application of capillary electrophoresis (CE) for the 

determination of inorganic ions in explosive residues17, as positive and negative ions were 

detected separately. 

Electrospray mass spectrometry (ES-MS) has already been used for the analysis of 

inorganic and organometallic compounds18 when the chosen solvent can dissolve the analytes 

without causing decomposition and/or reactions. A number of inorganic cations have been 

studied19, 20 and often metal-solvent clusters are formed20, 21. Negative ion mode studies have also 

been carried out recently by ES-MS22-24 and collision-induced dissociation (CID) of these 

anionic clusters has also been attempted22, 24.  

Laser desorption/ionization (LDI) and matrix-assisted laser desorption/ionization mass 

spectrometry (MALDI MS) have not routinely been used for the analyses of inorganic 

compounds and most of the existing studies focus on the characterization of organometallic and 
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inorganic coordination complexes25-29. MALDI or LDI has also been successfully used to 

characterize various nanoclusters30-41. MALDI is a soft ionization technique and favors 

observation of intact molecular ions whereas LDI is more likely to fragment ions since the 

analytes have to directly absorb energy during the laser event. In many cases, both LDI and 

MALDI yielded similar ion peaks with different relative peak abundances25, 32, 40, 41. The 

applications of inorganic compounds as matrixes has also attracted attention42, 43 ever since the 

success of Tanaka et al. who used cobalt powder as a matrix in experiments leading up to 

MALDI44.  

Inorganic nitrates and their clusters22, 24, 45 have been studied in detail by ES-MS and 

MS/MS. Perchlorates and their clusters have also been investigated by ES-MS24, 46. In contrast, 

MALDI MS has not yet been used to characterize these inorganic nitrate and perchlorates 

species. Although not truly tandem MS, post-source decay (PSD)47, 48 can provide additional 

valuable information about the structure of analytes observed by MALDI-TOF MS. The 

properties of these inorganic metal cluster ions are relevant in a number of areas. Studying the 

properties of cluster species provides valuable clues to the transitions between the gaseous and 

condensed phases because cluster ions serve as the essential bridges linking together discrete 

atoms or molecules and bulk materials49, 50. In this study, we explore the use of MALDI-TOF 

MS for the positive identification of inorganic oxidizers. The identities and properties of the ions 

are further investigated by PSD. 

 

4.2 Experimental 

4.2.1 Chemicals 
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The following inorganic salts were used for mass spectrometric determinations: 

magnesium nitrate Mg(NO3)2, calcium nitrate Mg(NO3)2, strontium nitrate Sr(NO3)2, barium 

nitrate Ba(NO3)2, mangnanese nitrate Mn(NO3)2, cobalt nitrate Co(NO3)2, nickel nitrate 

Ni(NO3)2, copper nitrate Cu(NO3)2, zinc nitrate Zn(NO3)2, cadmium nitrate Cd(NO3)2, silver 

nitrate AgNO3, sodium perchlorate NaClO4, potassium perchlorate KClO4, magnesium 

perchlorate Mg(ClO4)2 and calcium perchlorate Ca(ClO4)2, and they were all purchased from 

Aldrich (Milwaukee, WI). Methanol, nitrate acid, harmine and harmane were also purchased 

from Aldrich (Milwaukee, WI) and Milli-Q purified water was used throughout the experimental 

procedures. All chemicals were used as received without further purification.  

4.2.2 Mass Spectrometry 

Mass spectra were acquired on an Applied Biosystems Voyager Elite MALDI-TOF mass 

spectrometer (Applied Biosystems, Framingham, MA) equipped with a pulsed N2 laser (λ = 337 

nm). An extraction voltage of 20 kV was typically employed. All mass spectra were acquired in 

the negative reflectron mode employing delayed extraction. Laser intensity was adjusted to just 

above the threshold energy for appearance of metal cluster ions. When acquiring PSD spectra, 

laser intensity was adjusted to a value 10-30% above the threshold energy for appearance of 

metal cluster ions and the mirror ratios in the PSD segment list were manually calculated and 

specified such that all possible fragments would be collected. All mass spectra and PSD spectra 

consist of an average of 50-100 laser shots. Reported m/z values show nominal masses only (i.e., 

values after the decimal places have been truncated). The instrument was externally calibrated by 

monoisotopic peaks of nitrate, harmine or harmane matrix and oliogsaccharides. Data processing 

was performed using IGOR Pro 4.07 (Wave Metrics Inc., Lake Oswego, OR). 
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MALDI samples were prepared using the “dried-droplet” method51. For inorganic 

nitrates, 5 µL of 3 mM inorganic nitrate solution, 5 µL of 3 mM HNO3 and 5 µL of 10 mg/mL 

harmine or harmine matrix solution (all in 4:1 methanol/water) were mixed; for inorganic 

perchlorates, 5 µL of 2 mM inorganic perchlorate solution and 5 µL of 10 mg/mL harmine or 

harmine matrix solution (both in 4:1 methanol/water) were mixed. Then, a 0.5 µL aliquot of this 

mixture solution was deposited onto a sample plate and allowed to air dry.  

 

4.3 Results and Discussions 

4.3.1 MS and PSD of Nitrate Complexes of Group 2 Metals 

A negative ion mode MALDI-TOF mass spectrum of a Mg(NO3)2 sample with harmine 

as matrix is shown in Figure 4.1a. Nitrate monomer (NO3
¯, m/z 62) and the proton-bound dimer 

(H(NO3)2
¯, m/z 125) are the main background ions. Deprotonated harmine (m/z 211) and the 

nitrate adduct of harmine (m/z 274) are the main matrix ions. Magnesium ions are doubly 

charged in solution and thus yield primary Mg(NO3)3
¯  ions (m/z 210) and some Mg2(NO3)5

¯ 

cluster ions. Because of the overlapping of Mg(NO3)3
¯  ions (m/z 210) and deprotonated harmine 

ions (m/z 211), LDI without any matrix was attempted and the resulting mass spectrum is shown 

in Figure 4.1b. The spectrum is quite similar to that observed under MALDI conditions except 

for the absence of matrix ions. Magnesium cluster ions Mg(NO3)3
¯ and Mg2(NO3)5

¯ are 

unambiguously observed in LDI without the interference of matrix ions. Compared to MALDI 

experiments, much higher laser intensities have to be used in LDI experiments to obtain useful 

spectra, and concomitantly, in-source fragments are observed in LDI. It has been previously 

observed that, compared to organic compounds, inorganic compounds often have higher laser 

desorption thresholds and lower sensitivities52, 53.  In addition, higher laser energy is generally  
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Figure 4.1. (a) MALDI mass spectrum of Mg(NO3)2 with harmine as matrix. (b) LD mass 
spectrum of Mg(NO3)2. (c) MALDI mass spectrum of Mg(NO3)2 with harmane as matrix. 
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required to break the stronger interactions between inorganic cations and anions. The peak at m/z 

46 is assigned as NO2
¯ and the peak at m/z 78 might be ONO3

¯, which are consistent with early 

observations that losses of NO, O2 and O atoms are typical in LDI of nitrate or nitrite 

compounds54, 55. Magnesium cluster ions Mg(NO3)3
¯ and Mg2(NO3)5

¯ are also clearly observed 

in MALDI spectrum (Figure 4.1c) with harmane as matrix ([harmane-H]¯ at m/z 181 and 

[harmane+NO3]¯ at m/z 244).  

A negative ion mode PSD spectrum is shown for Mg(NO3)3
¯ (m/z 210) in Figure 4.2a. 

Nitrate is the only product ion observed from PSD of Mg(NO3)3
¯; presumably, the remaining 

products are neutral Mg(NO3)2 molecules. A mass spectrum from PSD of the cluster Mg2(NO3)5
¯ 

(m/z 358) is shown in Figure 4.2b. The only ionic product is the next lower species Mg(NO3)3
¯ 

and the neutral loss of Mg(NO3)2 molecules is assumed; nitrate is not observed. 

Similarly, all other nitrates of alkaline earth metals (Ca, Sr, Ba) studied yield primarily 

M(NO3)3
¯ and some M2(NO3)5

¯ cluster ions with two metal atoms. The PSD of M(NO3)3
¯ yields 

NO3
¯ as the only product ion whereas the PSD of M2(NO3)5

¯ yields M(NO3)3
¯ as the only 

product ion with no free NO3
¯ formed from metal nitrate clusters with two metal atoms (data not 

shown). No intra-molecular redox reactions are observed. Table 4.1 summarizes the various ions 

observed in MALDI MS and their PSD reactions. The general forms of PSD reaction for these 

two kinds of alkaline earth metal nitrate cluster ions can be written as follows: 

M(NO3)3
¯ → NO3

¯ + M(NO3)2    (1) 

M2(NO3)5
¯ → M(NO3)3

¯ + M(NO3)2    (2) 

 

 

 90



 
 

 

A 

B 

 
Figure 4.2. (a) PSD mass spectrum of Mg(NO3)3¯. (b) PSD mass spectrum of Mg2(NO3)5¯.  
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Table 4.1. PSD reactions of metal nitrate and perchlorate complexes 
 
 
 

Metal complex Precursor  PSD Reactions   
Mg(NO3)3¯ Mg(NO3)3¯ → Mg(NO3)2 + NO3¯ 
Mg2(NO3)5¯ Mg2(NO3)5¯ → Mg(NO3)2 + Mg(NO3)3¯ 
Ca(NO3)3¯ Ca(NO3)3¯ → Ca(NO3)2 + NO3¯ 
Ca2(NO3)5¯ Ca2(NO3)5¯ → Ca(NO3)2 + Ca(NO3)3¯ 
Sr(NO3)3¯ Sr(NO3)3¯ → Sr(NO3)2 + NO3¯ 
Sr2(NO3)5¯ Sr2(NO3)5¯ → Sr(NO3)2 + Sr(NO3)3¯ 
Ba(NO3)3¯ Ba(NO3)3¯ → Ba(NO3)2 + NO3¯ 
Ba2(NO3)5¯ Ba2(NO3)5¯ → Ba(NO3)2 + Ba(NO3)3¯ 
Mn(NO3)3¯ Mn(NO3)3¯ → MnO(NO3)2¯ + NO2

  Mn(NO3)3¯ → Mn(NO3)2 + NO3¯ 
Co(NO3)3¯ Co(NO3)3¯ → CoO(NO3)2¯ + NO2   
  Co(NO3)3¯ → Co(NO3)2 + NO3¯ 
Ni(NO3)3¯ Ni(NO3)3¯ → NiO(NO3)2¯ + NO2   
  Ni(NO3)3¯ → Ni(NO3)2 + NO3¯ 
CuII(NO3)3¯ CuII(NO3)3¯→ CuI(NO3)2¯ + NO3   
 CuII(NO3)3¯ → CuII(NO3)2 + NO3¯ 
CuI(NO3)2¯ CuI(NO3)2¯ → CuIONO3¯ + NO2   
 CuI(NO3)2¯ → CuINO3  + NO3¯  
Zn(NO3)3¯ Zn(NO3)3¯→ ZnO(NO3)2¯ + NO2   
  Zn(NO3)3¯ → Zn(NO3)2 + NO3¯ 
Ag(NO3)2¯ Ag(NO3)2¯ → AgNO3 + NO3¯ 
Cd(NO3)3¯ Cd(NO3)3¯→ Cd(NO3)2 + NO3¯   
Na(ClO4)2¯ Na(ClO4)2¯ → NaClO4 + ClO4¯ 
Na2(ClO4)3¯ Na2(ClO4)3¯ → Na(ClO4)2¯ + NaClO4

Na3(ClO4)4¯ Na3(ClO4)4¯ → Na(ClO4)2¯ + 2NaClO4

K(ClO4)2¯ K(ClO4)2¯ → KClO4 + ClO4¯ 
Ca(ClO4)3¯ Ca(ClO4)3¯ → Ca(ClO4)2 + ClO4¯ 
Ca2(ClO4)5¯ Ca2(ClO4)5¯ → Ca(ClO4)3¯ + Ca(ClO4)2

Mg(ClO4)3¯ Mg(ClO4)3¯ → Mg(ClO4)2 + ClO4¯ 

Mg2(ClO4)5¯ Mg2(ClO4)5¯ → Mg(ClO4)3¯ + Mg(ClO4)2
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4.3.2 MS and PSD of Nitrate Complexes of Transition Metals  

In this study, MALDI-TOF mass spectra of nitrates of transition metal ions with a stable 

2+ oxidation state in solution yield mainly M(NO3)3
¯ ions. There might be some traces of 

M(NO2)(NO3)2
¯ ions, but their origins cannot be confirmed by PSD because of their low 

abundances and the rather large ion selection window (~ 30 Thomsons) of the MALDI-TOF MS 

employed in this study. For manganese nitrate, cluster ions containing two manganese atoms 

(M2(NO3)5
¯) are also observed. The identity of this ion was confirmed by its appearance in the 

MALDI-TOF PSD spectrum using harmane as matrix. 

Unlike group II metal nitrates, more in-source fragmentation is observed for transition 

metal nitrates, as shown in the spectrum for Cu2+ in Figure 4.3a. While abundant Cu(NO3)3¯ is 

observed from the Cu2+ sample as expected, there is also a substantial amount of Cu(NO3)2¯. The 

assignment of Cu(NO3)2¯ is confirmed by the PSD spectrum in Figure 4.3b, and Cu(NO3)3¯ is 

confirmed by the PSD spectrum in Figure 4.3c. It has been previously reported that Cu2+ present 

in MALDI samples can be easily reduced to Cu+56, 57.  

Three kinds of fragmentation pathways exist in PSD of clusters of copper (I or II) nitrate. 

The inferred neutral molecules balance the reaction equation. The first pathway is the elimination 

of neutral metal nitrate complex with the generation of nitrate as shown in equation 3 and 4. The 

same fragmentation pathway also exists in PSD of nitrate complexes with one Group II metal 

atom, where NO3¯ is the only product ion as shown in equation 1. Although NO3¯ is a product 

ion in PSD of all tested nitrate complexes with one transition metal atom, it is not the only 

product ion, nor is it the major one. The second pathway is the elimination of NO2 with 

formation of an oxo-nitrate complex as shown in Equation 5. This reaction is observed for most 

transition metals studied except Cu2+, Ag+ and Cd2+ (Table 4.1). It is not expected that the metal  
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Figure 4.3. (a) MALDI mass spectrum of Cu(NO3)2 with harmine as matrix. (b) PSD mass 
spectrum of Cu(NO3)2¯. (c) PSD mass spectrum of Cu(NO3)3¯. 
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atoms are oxidized to higher oxidation states during these reactions, i.e., metal atoms will 

probably remain in their initial oxidation state upon formation of the oxo-nitrate complex. The 

third pathway is the reduction of metal atom with oxidation of nitrate to neutral NO3 in the gas 

phase via internal redox process during PSD as shown in Equation 6. 

CuII(NO3)3¯ → CuII(NO3)2 + NO3¯   (3) 

CuI(NO3)2¯ → CuI(NO3) + NO3¯   (4) 

CuI(NO3)2¯ → CuIO(NO3)¯ + NO2   (5) 

CuII(NO3)3¯ → CuI(NO3)2¯ + NO3   (6) 

 

Figure 4.4a is the negative ion mode MALDI mass spectrum of Cd(NO3)2. Cluster ions of 

the type Cd(NO3)3¯ are observed as expected. Surprisingly, peaks corresponding to [Cd(NO3)2 + 

harmane - H]¯ are also observed. The PSD of Cd(NO3)3¯ is shown in Figure 4.4b. In general, the 

intensity distributions of the Cd isotope peaks in the cluster ions correspond to the expected 

patterns (106Cd, 1.25%; 108Cd, 0.89%; 110Cd, 12.49%; 111Cd, 12.80%; 112Cd, 24.13%; 113Cd, 

12.22%; 114Cd, 28.73%; 115Cd, 7.49%) as shown by the measured and calculated spectra for 

Cd(NO3)3¯ in Figures 4.5a and 4.5b, respectively. The measured and calculated spectra for 

[Cd(NO3)2 + harmane - H]¯ are shown in Figures 6a and 6b, respectively. These provide an 

additional confirmation of the identity of the recorded cluster ions appearing in Figure 4.4a. 

4.3.3 MS and PSD of Perchlorates Complexes of Group I and II Metals 

The MALDI-TOF mass spectra of sodium perchlorate and potassium perchlorate 

recorded with harmane as matrix yielded a series of cluster ions in the negative-ion mode. 

Figures 4.7a and 4.7b show the respective MALDI mass spectra of sodium perchlorate and 

potassium perchlorate. As the natural isotopic abundance of 35Cl and 37Cl is 75.77 and 24.23%,  
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Figure 4.4. (a) MALDI mass spectrum of Cd(NO3)2 with harmane as matrix. (b) PSD mass 
spectrum of Cd(NO3)3¯.  

 96



 
 

 

A 

B 

 
Figure 4.5. Measured (a) and calculated (b) mass spectra for Cd(NO3)3¯.  
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Figure 4.6. Measured (a) and calculated (b) mass spectra for [Cd(NO3)2 + harmane - H]¯.  
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respectively, the relative sizes of the two peaks generated by the presence of two chlorine atoms 

are approximately at a ratio of 9:6:1. This ratio is evidenced by the ions at m/z 221, 223 and 225 

for sodium perchlorate and m/z 237, 239 and 241 for potassium perchlorate (if the contribution 

of potassium isotopes, i.e., 39K, 93.26%; 41K, 6.73% and 40K, 0.01%, was neglected). In the 

negative-ion mass spectra of both compounds, the relative peak intensities of m/z 99 and 101 

(ClO4
¯) are somewhat smaller than 3:1 while the relative peak intensities of m/z 83 and 85 

(ClO3
¯) are much closer to 3:1. For sodium perchlorate, the mass spectrum in the negative-ion 

mode was characterized by cluster ions of the general formula Nan(ClO4)n+1
¯ (n = 1, 2, 3) that are 

detected as the predominant cluster ions (Figure 4.7a). As anticipated, the MALDI mass 

spectrum of potassium perchlorate (Figure 4.7b) recorded in the negative-ion mode is very 

similar to that of sodium perchlorate, however, only one cluster ion K(ClO4)2
¯ is observed. 

These ion compositions were further supported by PSD analysis of selected precursor 

ions. A typical PSD mass spectrum is shown for Na(ClO4)2
¯ (m/z 221) in Figure 4.8a. 

Perchlorate is the only product ion observed from PSD of Na(ClO4)2
¯. The mass difference 

between perchlorate product ion and Na(ClO4)2
¯ precursor ion is 122 Da, indicating that the 

complementary product is a neutral NaClO4 molecule. A PSD spectrum of the cluster 

Na2(ClO4)3
- (m/z 343) is shown in Figure 4.8b. The only ionic product is Na(ClO4)2

¯ (m/z 221) 

(indicating neutral loss of NaClO4 molecules); perchlorate is not formed. Interestingly, in the 

PSD spectrum (Figure 4.8c) of the cluster Na3(ClO4)4
¯ (m/z 465), the next lower species 

Na2(ClO4)3
¯ (m/z 343) is not observed this time, instead Na(ClO4)2

¯ (m/z 221) is the only ionic 

product as shown in equation 7. Perchlorate is also not formed. The neutral loss of two NaClO4 

molecules is implied.  

Na3(ClO4)4
¯  →   Na(ClO4)2

¯ + 2NaClO4 (7) 
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Figure 4.7. MALDI mass spectra of sodium perchlorate (a) and potassium perchlorate (b). 
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Figure 4.8. (a) PSD mass spectrum of Na(ClO4)2

¯. (b) PSD mass spectrum of Na2(ClO4)3
¯. (c) 

PSD mass spectrum of Na3(ClO4)4
¯. 
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Figures 4.9a shows the MALDI-TOF mass spectrum of calcium perchlorate recorded 

with harmane as matrix in the negative-ion mode. Can(ClO4)2n+1
¯ (n = 1, 2) are detected as the 

predominant cluster ions. The characteristic isotopic pattern of chlorine could be seen by the ions 

at m/z 337, 339, 341 and 343, as well as by the ions at m/z 575, 577, 579 and 581 for calcium 

perchlorate, in the negative-ion mass spectrum (neglecting calcium isotopes). The relative peak 

intensities of m/z 99 and 101 (ClO4
¯) in the negative-ion mass spectrum are also close to 3:1. 

A typical PSD mass spectrum is shown for Ca(ClO4)3
¯ (m/z 337) in Figure 4.9b; 

perchlorate is the only product ion observed. A mass spectrum from PSD of the cluster 

Ca2(ClO4)5
¯ (m/z 575) is shown in Figure 4.9c. The only ionic product is Ca(ClO4)3

¯ (m/z 337). 

 

4.4 Conclusion 

MALDI-MS, as a soft ionization technique, enables positive identification of the 

investigated inorganic oxidizers, and representative cluster ions are obtained in the negative-ion 

mode. The identities and fragmentation properties of the respective cluster ions are further 

characterized by PSD analysis. PSD analysis of selected precursor ions provides additional 

information on the ionic compositions. For qualitative purposes, MALDI-MS is well suited for 

the characterization of the inorganic oxidizers and can be used as a complementary method to 

ion chromatography.  

Complexation with nitrate and perchlorate can stabilize metal ions allowing their 

detection in negative MALDI MS. Copper (II) nitrate ions can undergo internal redox processes 

during PSD, with conversion of CuII to CuI. Oxo ions are prominent from PSD of most transition 

metal nitrate complexes, as expected for “hard” metal cations. Cluster ions with more than one  
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Figure 4.9. (a) MALDI mass spectrum of Ca(ClO4)2 with harmane as matrix. (b) PSD mass 
spectrum of Ca(ClO4)3

¯. (c) PSD mass spectrum of Ca2(ClO4)5
¯. 
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metal atom are most evident for small metals with low charges. Cluster ions consisting of neutral 

inorganic salt and depronated matrix ions are also observed.  
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SUMMARY 

 

Various anions can form anionic adducts with oligosaccharides in negative ion MALDI-

MS. Employing negative ion MALDI with addition of these anions, weakly acidic and neutral 

oligosaccharides can form [M + anion]- in varying degrees of preference to [M - H]- formation. 

The anion attachment approach provides a simple means to simultaneously analyze neutral and 

acidic carbohydrates without switching the polarity. 

Contrary to common opinion that relative peak intensities are not generally reliable in 

linear-field reflectron post-source decay (PSD), we demonstrate that even without a curved-field 

reflectron, the relative peak intensities of the oligosaccharide fragment peaks intentionally 

acquired within the same PSD segment are rather stable, even if the laser intensities vary greatly 

and the target crystals may vary substantially in shape and quality. Our proposed characteristic 

neutral losses in MALDI-PSD mass spectra of the chloride adducts of neutral oligosaccharides, 

and the relative ion abundances of selected diagnostic fragment pairs, allow simultaneous 

determination of both linkage information and anomeric configurations of the oligosaccharides.  

Competitive fragmentation pathways are revealed and rationalized in PSD of chloride 

adducts of oligosaccharides. For specific glycosidic linkage types, PSD spectra of 

oligosaccharides with the same anomeric configuration show the same trend of relative ion 

abundance for specific diagnostic fragment peaks, independent of monosaccharide structure. 

This finding strongly indicates that the fragmentation pathways observed in negative ion PSD 

spectra are largely affected by the anomeric configuration between the monosaccharide rings for 

the particular linkage positions. It becomes clear that differentiating anomeric configurations of 

glycosidic bonds is viable by comparing relative peak intensities of diagnostic peaks in negative 
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ion PSD via anion attachment. The fragmentation profiles and relative peak abundances in PSD 

spectra are expected to present important hints in determining the glycosidic linkage types and 

anomeric configuration of more complex glycoconjugates. The potential usage of MALDI linear-

field reflectron TOF MS in stereoisomeric chemistry thus has been greatly expanded.  

We have shown that a stable TiO2 cluster suspension is produced by the thermal solvent 

process, and clusters with different sizes are obtained by size-selection. XRD patterns of clusters 

with sizes less than 1 nm are very different from the principal peaks of the larger particles 

stemming from the extreme surface area-to-volume ratio. We successfully used MALDI-TOF 

and LDI-TOF MS to characterize ultra small (< 1 nm) nanoparticles. Peak maxima observed in 

MALDI-TOF and LDI-TOF mass spectra were shown to correlate with nanoparticle size. The 

obtained size distributions of TiO2 nanoparticles are in good agreement with TEM measurements 

made on the identical samples. PSD analysis of inorganic nanomaterials has also been 

performed. PSD data demonstrate that MALDI-TOF and LDI-TOF peaks originating from 

titanium oxide nanoparticles may appear as sodium adducts.  The ability to obtain detailed 

information concerning sub-nanometer titania nanoparticles has important implications for the 

continuing development of nanoparticle-based bactericidal agents. 

MALDI-MS, as a soft ionization technique, enables positive identification of the 

investigated inorganic oxidizers, and representative cluster ions are obtained in the negative-ion 

mode. The identities and fragmentation properties of the respective cluster ions are further 

characterized by PSD analysis. PSD analysis of selected precursor ions provides additional 

information on the ion compositions. For qualitative purposes, MALDI-MS is well suited for the  

characterization of the inorganic oxidizers and can be used as a complementary method to ion 

chromatography.  
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Complexation with nitrate and perchlorate can stabilize metal ions allowing their 

detection in negative MALDI MS. Copper (II) nitrate ions can undergo internal redox processes 

during PSD, with conversion of CuII to CuI. Oxo ions are prominent from PSD of most transition 

metal nitrate complexes, as expected for “hard” metal cations. Cluster ions with more than one 

metal atom are most evident for small metals with low charges. Cluster ions consisting of neutral 

inorganic salt and deprotonated matrix ions are observed. 
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