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Abstract 

 

 Reproductive science plays an important role in conservation biology. Quantitative 

studies of basic reproductive biology in wildlife are critical for the development of successful 

assisted reproductive technologies. Investigation of the volume regulatory mechanism of 

spermatozoa could produce options to improve the cryopreservation of spermatozoa and 

provide a non-hormonal contraceptive option for men, both of which could have significant 

impacts on global biodiversity preservation. Volume regulation of somatic cells involves the 

movement of osmolytes through various channels, including potassium channels. The 

potassium channels involved in volume regulation of human, monkey, and murine 

spermatozoa were investigated. Flow cytometry was used to gauge the sensitivity of the 

volume regulatory process of spermatozoa to various potassium channel inhibitors and a 

simultaneous hypotonic challenge. Channels potentially involved in regulatory volume 

decrease of spermatozoa varied with species but included voltage-gated (Kv) channels 1.4, 1.5, 

1.7, 4.1, 4.2 and 4.3 as well as TWIK1, TWIK2, TASK1, TASK2, TASK3, TREK2 , and minK. The 

presence of some of these channels was confirmed by western blotting and 

immunocytochemistry. Changes in the motility patterns of human and monkey spermatozoa in 

the presence of potassium channel inhibitors during hypotonic stress were also observed, 

suggesting a relationship between volume regulation and motility. To evaluate potential 

organic osmolytes involved in, and compare effects of CPAs on, volume regulation, the 

isotonicity of murine epididymal spermatozoa was measured using a null point method. 

Spermatozoa were then exposed to high concentrations of various osmolytes and cryoprotective 

agents in isotonic medium to evaluate which compounds were able to penetrate the sperm 

plasma membrane.  The osmotic responses of spermatozoa from strains of mice known to have 

spermatozoa of high (B6D2F1) and low (C57BL6) post-thaw fertility were compared during 

various osmotic challenges in various media. These experiments indicated that spermatozoa 

from B6D2F1 mice may have better volume regulation capabilities than spermatozoa from 

C57BL6 mice, suggesting that better post-thaw fertility of murine spermatozoa could be 

influenced by the volume regulatory process. The knowledge gained from these experiments 

could contribute to improved sperm handling and preservation techniques and be used to 

develop non-hormonal male contraceptives based on inhibiting volume regulation.  



 

 xv 

Keywords: conservation biology, spermatozoa, volume regulation, potassium channels, 
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Chapter 1  

General Overview 

 

Conservation biology is a crisis discipline developed in response to the realization that 

we are in a period of unprecedented loss of biological diversity. While extinction can be a 

natural process, current extinction rates are 100 times those of historical background rates and 

99% of modern extinctions, those occurring in the last 10,000 years since the Pleistocene epoch, 

can be attributed to human activity (Lawton and May 1995, Regan and others 2001, Pimm 2001).  

A mass extinction is the loss of a large number of taxa in a brief geological time frame (e.g. 

several million years). There have been five in the historical record (Meffe and Carroll 1997). 

The current crisis is unique in that the cause is a biological species rather than natural 

phenomena such as continental shifts or climate change.  The connection between the current 

loss of biodiversity and human activities is well-documented and abundant (Ehrlich and Ehrlich 

1981, Wilson 1989 and 1992, Myers 1990, Raven 1990, Soulé 1991). Conservation issues are 

gaining recognition and support from the general public and the response has been the 

expansion of conservation biology as a discipline. Scientists now recognize that the threats to 

biodiversity are intricate and require the attention of experts from a wide range of disciplines as 

well as public involvement. A concerted, immediate effort is required to prevent a mass 

extinction that rivals and surpasses the great extinction episodes of the prehistoric past (Meffe 

and Carroll 1997).  

 

Causes of the Biodiversity Crisis 

The root causes of the biodiversity crisis are threefold: i) the expanding human 

population, ii) the high per capita resource consumption in developed countries, and iii) low 

efficiency of resource use (Meffe and Carroll 1997). The world population has expanded from 

one billion in 1850 to just over 6.5 billion today, and is expected to reach 10 billion by 2050 

(Primack 2004). The consequence of this rapid growth is a greater need for resources and space. 

The growth of the global population is not uncontrollable as countries such as Cuba, Mexico, 

Costa Rica, Venezuela, and Thailand have demonstrated by significantly lowering their 

population growth rates in a relatively short period (Meffe and Carroll 1997).  
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Equally important as the number of people on the planet is the rate at which resources 

are consumed. Resource consumption at some level is unavoidable as humans require natural 

resources to survive. Larger populations demand more resources that create a greater human 

impact on the environment, and ultimately higher rates of biodiversity loss (Primack 2004). For 

example, nitrogen pollution is greatest in rivers with the highest human population densities 

and rates of deforestation are greatest in countries where human population growth rates are 

highest (Primack 2004). Resource consumption rates are highest in the United States where 30% 

of the annual global resource consumption is achieved by 5% of the world’s population (WRI 

2003).   

Linked to, yet distinct from, the consumption of natural resources is the efficiency of 

their use. In developed countries, convenience is the ultimate driving force behind product 

design and delivery. Single use household items are prevalent and create a “throw-away” 

mentality that is desirable for the average household. This attitude accelerates resource 

consumption that drives habitat loss, as the resources are extracted, and ultimately biodiversity 

loss. As the population of the world continues to grow, so does the number of people around 

the world aspiring to join the middle class and its associated consumption habits. With 

countries such as China, India, and the former Soviet Union, emerging into the world market, 

conservation of resources must become a platform issue for all governments and societies. 

 

Direct causes of biodiversity decline 

The three root causes listed above are the stimuli for the direct causes of biodiversity 

decline: loss of habitat (destruction, fragmentation, and alteration), introduced species, 

overexploitation/over-harvesting, pollution, increased spread of disease, and synergistic effects 

among these factors (Primack 2004, Meffe and Carroll 1997).  

Habitat destruction is the primary direct cause of biodiversity loss (Primack 2004, Meffe 

and Carroll 1997). As the human population and human activities expand, suitable habitats that 

can sustain wildlife populations will shrink. In the United States, only 42% of natural vegetation 

remains and in regions of the East and Midwest, less than 25% remains (Stein and others 2000). 

Habitat loss for endangered species is due to several principal activities globally (in order of 

decreasing importance): agriculture (affecting 38% of endangered species), commercial 

developments (35%), water projects (e.g. dams and canals, 30%), outdoor recreation (27%), 
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livestock grazing (22%), pollution (20%), infrastructure and roads (17%), disruption of fire 

ecology (13%), and logging (12%) (Stein and others 2000). The World Conservation Union 

(IUCN) implicates physical destruction of habitat in 73% of all species listed under the 

categories of extinct, rare, endangered, and vulnerable (Campbell and others 1999). 

Fragmentation is the separation of existing habitats into smaller isolated patches that 

cannot sustain the species within them indefinitely (Meffe and Carroll 1997). Aside from 

leading to smaller population size, fragmentation also prevents migration and thus gene flow 

(Frankham and others 2002). It is one of the leading causes of biodiversity loss due to habitat 

destruction and can increase the likelihood that a species will become endangered or extinct 

(Myers 1997). One such effect of fragmentation is the increased rate of exotic species invasion 

(discussed below) through the creation of disturbed habitats (Meffe and Carroll 1997). Species 

adapted to dispersed and fragmented habitats such as lakes, reefs, caves and rocky outcrops 

may be able to cope with increasing habitat fragmentation; however, others may not have the 

necessary phenotypic plasticity in life history traits that enable them to survive in small habitat 

patches (Orians and Soulé 2001). 

The effects of invasive species on ecosystems are the second leading cause of 

biodiversity loss (Meffe and Carroll 1997). Invasive species are those that have been moved 

beyond their native ranges and flourish in a habitat to the detriment of other species or 

community structure and function. Some of the most well known examples include kudzu 

vines in the southeastern United States, zebra mussels in North America, exotic birds in Hawaii, 

rats and goats on many Pacific islands, and crop pests around the world (Myers 1997). Natural 

processes have always moved individuals across substantial environmental barriers and the 

biota of some environments (e.g. oceanic islands) have been created entirely by natural long-

distance dispersal followed by in situ speciation (Orians and Soulé 2001). However, human 

activities are causing an unprecedented movement of thousands of species. Invasive species can 

cause the loss of native species by out-competing them for resources and upsetting the delicate 

balance of the ecosystem. Endangered native animals and plants can be especially vulnerable to 

newly introduced species (Cowan and Tyndale-Biscoe 1997). Not all species introduced into a 

new environment succeed. While there are many accidental introductions that fail and thus go 

undetected, a “normal” success rate for deliberate introductions is 10-40% (Lawton and Brown 

1986). A species that successfully colonizes a new area is often one that can quickly and 
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aggressively out-compete the local species for habitat and resources, making their presence a 

serious threat. Major reductions in populations of native species, and in some cases extinction, 

due to invasive species are of considerable conservation concern.  

In today’s world, market demand for goods and resources is a driving force behind 

over-exploitation and over-harvesting of species. As the human population continues to grow, 

so will the demand for products that directly and/or indirectly threaten species worldwide. 

Currently one-third of endangered mammals and birds are impacted by over-exploitation 

(Hilton-Taylor 2000). Many restrictions on the harvesting of wild animals are not consistently 

enforced and, in countries rife with civil war and political unrest, restrictions do not exist 

(Primack 2004). In these countries, where poverty is a daily battle, harvesting the animals is a 

means of survival.  As a result, countries such as Colombia, the Democratic Republic of the 

Congo and Haiti have seen declines of up to 80% in their populations of large primates, 

ungulates, and other mammals (Primack 2004). Meat from wild animals, or bushmeat, is a 

valued source of protein in poor and developing nations and has pushed many threatened 

species to the brink of extinction, especially in Africa (Primack 2004). Overharvesting of fish 

stocks has caused the collapse of numerous fisheries (e.g. cod in Newfoundland, sardines from 

Monterey Bay; Pimm 2001). The illegal trade of wildlife on the global market is a $10 billion/yr 

business not including the edible fish market (Hemley 1994). In each of these cases, as the 

animals become rarer they become more valuable, increasing the willingness of the local 

population to extract these species, and creating a strong incentive for their overexploitation. 

Legal harvesting also has its complications, the least of which is setting the maximum 

sustainable yield for a species; that is, the greatest amount of a resource that can be harvested 

each year and replaced through population growth without decreasing the fitness of the 

population (Essington 2001).  

Pollution is perhaps the most subtle threat to wildlife but is no less potent. It can come in 

the form of pesticides, sewage, fertilizers from agricultural fields, industrial chemicals and 

wastes, emissions from factories and automobiles, and sediment deposits from eroded hillsides 

(Primack 2004). Each of these forms of pollution can affect an individual directly or indirectly 

by lowering the quality of the water, air, and land on which it depends. There is also growing 

evidence that pollution is altering the reproductive cycles, endocrine physiology and early-life 
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stage survival of many animals, especially teleost fishes (Rolland 2000). Global climate change 

may yet prove to be the most deadly challenge to wildlife as a result of pollution.  

As available habitats dwindle, and population densities increase, there will be more 

intra- and inter-species (including humans and domestic animals) contact. This contact can 

expose species to new diseases and disease-carrying vectors to which they have no natural 

immunity (Hayden and others 2002).  Having higher densities of animals in a confined space 

prevents them from migrating away from their feces, saliva, old skin, and other sources of 

infection (Primack 2004) and creates a favorable environment for a parasite as it can easily reach 

the next host within or between populations. Overcrowding can lead to a deterioration of 

environment and food availability that lowers nutritional status leading to weaker animals and 

a higher susceptibility to infection. Stress can also depress the immune system. Pollution may 

increase susceptibility to infection by introduction of pathogens, particularly in aquatic 

environments (Epstein 1998, Aguirre and others 2002). Each of these pathways to increased 

disease transmission has negative impacts on populations, and the synergistic effects can be 

devastating.  

The threats facing biodiversity create a formidable task for conservation biologists. The 

increasing number of endangered species and the unlimited potential strategies for protecting 

them require prioritization and elaborate knowledge of the intricacies of the natural world.  

Thus, defining biodiversity and its various levels is a fundamental starting point for directing 

conservation efforts. 

 

Levels of Biodiversity 

Biodiversity, as defined by the World Wildlife Fund (1989), is “the millions of plants, 

animals, and microorganisms, the genes they contain, and the intricate ecosystems they help 

build into the living environment.” All living organisms fall into a number of categories under 

the general umbrella of biodiversity.  While there are many levels of biodiversity, three well-

known categories are ecosystem, species, and genetic diversity. Beyond these three, one can 

discuss biodiversity in terms of higher taxa, evolutionary lineages, populations, etc. There is no 

“correct” level by which to measure biodiversity. Each level is critical for the continuation of life 

on earth (Purvis and Hector 2000).  
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Ecosystem 

The most general classification of biodiversity is at the ecosystem level. This is 

composed of biomes, areas of land characterized first by their dominant vegetation followed by 

their precipitation and elevation gradients (Meffe and Carroll 1997). Preservation of this level of 

biodiversity is critical for its ability to accommodate the millions of different species with 

unique survival requirements. A current example is the Bicknell’s thrush. This species breeds 

only in scrubby boreal forests above 2,800 feet on top of mountains in New Hampshire, Maine, 

New York, Vermont and eastern Canada, regions under high pressure from ski resort 

development, communications tower construction, wind energy projects, acid rain, mercury 

and global warming (Associated Press 2006). The many conservation efforts directed at the 

species level, such as captive breeding programs, are useless without the availability of suitable 

habitat into which the animals can be subsequently released. Discussion of conservation at the 

ecosystem level is valuable for presenting the importance of environmental goods and services 

performed by viable ecosystems on which human life depends (e.g. production of oxygen and 

removal of CO2 by green plants) (Meffe and Carroll 1997). 

 

Species 

Species diversity includes the entire range of species found on earth (Primack 2004). 

There are approximately 1.5 million living and 300,000 fossil species described and named 

(Meffe and Carroll 1997). Estimates of the total number of the planet’s species are between 5 and 

30 million, although some estimates are much higher (Meffe and Carroll 1997). The species level 

of biodiversity is the most widely recognized classification of biodiversity by those outside the 

scientific community. Charismatic species, such as the giant panda, fascinate the public and 

encourage financial support of conservation efforts by public and private contributors for 

projects that benefit multiple species and habitats.  It is also the level at which major pieces of 

conservation legislation are directed (e.g. the Endangered Species Act (ESA) and the 

Convention on International Trade of Endangered Species (CITES)). A large majority of 

conservation efforts are directed at the species level.  

 

Genetic 

The ultimate source of biodiversity at all levels is genetic variability (Meffe and Carroll 

1997). This level of diversity includes all forms of all genes (i.e. alleles) found in all organisms 
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on Earth, and is the material upon which the agents of natural selection act (Meffe and Carroll 

1997). Genetic studies have a wide range of applications to conservation biology as they are 

useful for identifying populations of conservation concern, detecting hybridization, 

understanding species biology, detecting inbreeding depression and loss of genetic diversity, 

especially for small populations, and resolving population structures (Frankham and others 

2002). Inbreeding is the mating of individuals that are genetically related by descent; this often 

results in inbreeding depression (Frankham and others 2002). Data from bird and mammal 

populations indicate that inbreeding depression, a loss of fitness that results from the breeding 

of relatives that often occurs in small, isolated populations, significantly affects birth weight, 

survival, reproduction, and resistance to disease which puts them at risk of extinction (Keller 

and Waller 2002, Saccheri and others 1998). These issues make genetic management a key 

concern for conservation biologists, particularly for captive breeding programs where the 

mating population may be small and closely related. 

 

Role of Reproductive Science in Conservation 

Conservation biology is a dynamic, multidisciplinary field that combines a wide array of 

disciplines in an effort to manage and protect our finite natural resources from the genetic to the 

ecosystem level. Wildt and others (2003) appropriately portrayed the field of biodiversity 

conservation as a jigsaw puzzle (Fig. 1.1). Each discipline represented in Figure 1.1 can 

contribute strategic information for protecting biodiversity. As reproduction is the basis for the 

perpetuation of all species, reproductive science impacts conservation biology at all levels of 

biodiversity management. 
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Figure 1.1. Representation of the multidisciplinary approach to conservation biology where 
professionals from various fields combine their expertise to preserve biodiversity (adapted from 

Wildt and others 2003). 
 

Reproductive science and wildlife conservation 

Reproductive strategies of wildlife vary extensively, from differences in courtship 

behaviors to gamete physiology.  Within the framework of conservation biology, reproductive 

science embraces any and all methodologies and practices required to address priorities for 

understanding, monitoring, enhancing, or controlling reproduction (Wildt and others 2003). 

With regard to threatened and endangered wildlife, the ability to manipulate the reproductive 

process by promoting, or sometimes preventing, successful reproduction is particularly 

valuable. For some endangered species, intervention by scientists performing a variety of 

assisted reproductive technologies (ART) to promote reproduction coupled with in situ 

conservation efforts has played an integral role in preventing extinction. For example, the black 

footed-ferret, a native to the western great plains of the United States, was rescued from 

extinction when the last 18 individuals were removed from the wild and placed in a captive 

breeding program. Transabdominal-intrauterine artificial insemination via laproscopy and 
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cryopreservation methods for semen were two techniques that played a major role in a 

conservation project that involved the reintroduction of this species in its native range. As of 

2001, 350 black-footed ferrets survive in wild populations (Howard and others 2003).  

Contributions from the reproductive biology community to conservation efforts are 

principally through captive breeding programs. Understanding the reproductive biology of a 

species is critical for designing effective conservation strategies, especially when developing 

ART for captive populations. Herein lies one of the major problems when working with wildlife 

– a lack of knowledge of their basic reproductive biology. A study by Wildt and others (2003) 

revealed the shallowness of reproductive knowledge for most wildlife species. In a literature 

survey of wildlife reproductive biology studies, 75% of 256 species were represented by 3 or 

fewer articles (Wildt and others 2003).  Because each species is unique and has specific 

reproductive strategies and physiology, ART cannot always be easily extrapolated to other 

species. There is a clear need for larger, comprehensive, multidisciplinary, and more 

coordinated research efforts to study basic reproductive biology of threatened wildlife species 

across many different taxa.  

Despite the seeming paucity of research, ART have been developed and used on a 

variety of non-domestic species with varying degrees of success (Leibo and Songsasen 2002). 

Reproductive technologies such as artificial insemination, in vitro fertilization, embryo transfer, 

cryopreservation of gametes and embryos, gamete intra-fallopian transfer (GIFT), oocyte 

maturation, nuclear transfer, intracytoplasmic sperm injection, and sperm sexing can be used to 

support breeding programs. These technologies, however, are predominantly used for captive 

breeding programs with the intentions of contributing to the wild populations by introducing 

new individuals or new genes (e.g. via AI). The American Zoological Association has 

recognized the value of captive breeding programs for managing biodiversity by creating 

species survival plans (SSP).  These plans coordinate efforts of accredited institutions to manage 

the breeding of a species in order to maintain a healthy and self-sustaining population that is 

both genetically diverse and demographically stable. There are currently active SSPs for 110 

species (AZA 2006). Assisted reproductive technologies such as AI and cryopreservation can 

also be used to bolster the genetic diversity of isolated wild populations where these techniques 

can be applied in the field. This approach is more difficult as it requires close monitoring of the 

social dynamics and reproductive cycles within the population.  
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Stimulated by the realization that biodiversity loss is outpacing our ability to develop 

species-specific ART, the idea of the genome (genetic) resource bank (GRB) was developed. 

Genome resource banks for wildlife are organized collections of stored gametes, embryos, and 

tissues from individuals whose contribution to the gene pool is too valuable (genetically 

diverse) to lose (Holt and others 2003). These banks allow for controlled distribution of valuable 

genetic material aimed at maximizing a species’ genetic variability in the wild and in captivity 

by protecting species against epidemics, natural disasters and social or political upheavals 

(Wildt and others 1997). Genome resource banks are also used to preserve lines of animals with 

desirable genetic characteristics such as transgenic mice. The growing number of transgenic 

mice used in research has been problematic for laboratories with limited space. Genome 

resource banks permit the creation of certain lines of mice in high demand, eliminating the 

space, money, and manpower required to sustain a live colony. Central to the functionality of 

these banks is the ability to create offspring using frozen-thawed gametes (Holt and others 

2003).  

Genome resource banks are also used to preserve genetic diversity within the plant 

kingdom. Although traditional cryopreservation is most common, vitrification and dehydration 

methods have been used on a variety of plant species, especially for tropical species that are 

unable to tolerate dehydration (Villalobos and others 1991).  While large genetic banks have 

been developed for plant materials (e.g. seeds and shoots), especially food crops, a large 

majority of seeds lose germination vigor after 40 years of storage (Charles 2006, Graner and 

Börner 2006). To maintain reproductive potential, these stocks must be periodically germinated 

and re-stored.  

With the concerted efforts of scientists, zookeepers, and veterinarians in identifying and 

manipulating factors that influence reproductive success, it seems that captive species should 

thrive. Indeed, this is sometimes the case, yet success can be fraught with the paradoxical 

occurrence of unbridled reproduction that can result in a saturated, overwhelmed captive 

habitat (Wildt and others 1993).  In these circumstances, there is a need to manage the rate at 

which the individuals reproduce (i.e. by reversibly suppressing reproduction via contraception, 

until more suitable facilities are available). Contraception is also a valuable option when 

preventing reproduction can avoid a critical decline in a population or sub-population. This can 

mean protecting native species by preventing the reproduction of an invasive species or 
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preventing the unsustainable growth of an indigenous species that endangers the integrity of its 

own population and the populations of other species that share its habitat (e.g. African 

elephants).  

 

Human reproductive science in conservation 

Some scientists have strongly supported the notion that controlling the size of the global 

human population is the key to protecting biodiversity (Hardin 1993, Johns 2003). While this is 

not the panacea for preventing extinctions, slowing population growth, particularly in 

developing countries where biodiversity is highest, could ease the pressure on these valuable 

habitats. Methods of contraception have evolved over the last century and have resulted in 

several reliable forms, especially for women. Men, on the other hand, have very few available 

contraceptive options, most of which are unsatisfactory because of their cost, irreversibility, or 

general undesirability.   

Humans are a slow breeding mammal in that they reach sexual maturity late, have a 

small chance of becoming pregnant during any given menstrual cycle, and have long natural 

intervals between births (Potts and Short 1999).  Despite these biological disadvantages, the 

global human population continues to rise. There is no consensus about the predictions of the 

human population growth, but predictions of the earth’s carrying capacity range from 1.5 to 100 

billion with most figures falling between 15 and 30 billion (Cairns 2004). As the human 

population continues to increase, planetary resources will become strained and have a direct 

effect on the human quality of life. The use of contraceptives can make a significant contribution 

to slowing population growth, especially in countries where population growth rates are 

already high (Lutz and Qiang 2002).  

For conservation biologists, these projections are of concern and make immediate action 

against loss of biodiversity even more imperative. Africa, a biodiversity hotspot and home to a 

large number of endangered species, is perhaps the most troubled continent.  In 2000, Africa’s 

human population was approximately 780 million. At current growth rates, the African 

population will increase 116% by 2050 (Rice 2006).  If population growth does not drop to 

replacement level or lower before 2065, Africa’s population is expected to reach 4.45 billion 

before stabilizing (Potts and Short 1999).  This kind of unsustainable growth would be 

devastating for the already threatened populations of wildlife in Africa.   
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There are many issues that propel contraceptive research for humans that are not 

necessarily powerful driving forces of development for wildlife contraception, such as health 

issues and the desire for family planning. The desire to provide more readily available and 

diverse contraceptive options for humans provides a flow of information that can be used to 

form new ideas for contraceptive strategies in wildlife. Providing a variety of readily available 

and affordable contraceptive methods to more people will reduce unwanted pregnancies and 

decrease the incidence of unsafe abortions, which in underdeveloped countries contribute to the 

potentially preventable deaths of approximately half a million women worldwide every year 

(Hutchinson 1993).  

Contraception affords couples the ability to delay or space the births of their children. 

The use of contraceptives for family planning has played a major role in curbing the birth rate 

of some populations over the past 40 years (e.g. China). The prospect of a contraceptive for men 

within the next 5 years (Kamischke and Nieschlag 2004, Heinemann and others 2005) will be a 

welcome addition to the limited possibilities currently available to men (condoms, vasectomy, 

withdrawal, periodic abstinence; Nieschlag and others 2000, Weber and Dohle 2003). Studies 

show that both partners would like the man to play a more active role in family planning and 

that, in many countries, willingness of men to adopt a contraceptive is high (Heinemann and 

others 2005, Bajaj 1999, Martin and others 2000, Glasier and others 2000, Weston 2002). The 

development of a male-directed contraceptive for humans is sure to spawn new contraceptive 

strategies directed at males in wild and captive animal populations.  

Intertwined with the exponential growth of the human population and its consequences 

for the quality of human life are the effects that this growth will have on wildlife and the 

environment.  While this may not be the leading cause for using contraception on an individual 

basis, it is certainly a cause for concern for humanity as a whole, and a legitimate rationale for 

governments, policy makers, and other institutions to promote contraceptive use.  There are 

abundant examples of how human population growth is affecting wildlife. For example, the 

African wetlands inhabited by the Nile hippopotamus have been developed for human use and 

logging is displacing monkeys in Indonesian forests (Graham and others 2002, Wilson and 

Wilson 1975). Such encroachments greatly reduce the habitable ecosystems for impacted 

species, leaving habitats that are increasingly fragmented and isolated (Nave and others 2002). 

Curbing human population growth will slow habitat loss and the extinction of vulnerable 
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species while allowing for the development and implementation of more sustainable lifestyles 

that are beneficial for both wildlife and human populations. 

 

Cryopreservation of Spermatozoa 

Studies of gamete physiology have been, and will continue to be, fundamental to 

developing effective ART, especially in the use of frozen-thawed spermatozoa. Techniques to 

freeze spermatozoa were first developed to meet the demands of domestic animal breeders who 

have increasingly used artificial insemination to maintain their stocks (Gao and others 1997).  

With the discovery that glycerol could be used as an effective cryoprotectant (Polge and others 

1949), development of successful cryopreservation schemes for spermatozoa from a variety of 

species became the focus of numerous empirical studies. Today the practical application of 

cryopreserved semen has expanded beyond agriculture.  The flexibility that a successful 

cryopreservation scheme allows has several advantages that are also useful in endangered 

species conservation.   

 

Advantages of cryopreservation 

An important advantage of freezing spermatozoa is the ability to ship the semen of 

genetically valuable animals rather than the animals themselves, eliminating stress and the risk 

of injury to the animal, while simultaneously reducing costs and allowing for a wider 

distribution of selected semen. For endangered species this can be especially beneficial when 

the removal of individuals from the wild, in order to infuse new alleles into a captive 

population, may further weaken an already vulnerable wild population.  When cryopreserved 

semen is used, ejaculation does not need to be timed with female reproductive cycles, 

eliminating the need to co-ordinate animal transport or availability with time-sensitive 

processes, an especially advantageous aspect when working with species of unpredictable or 

unknown breeding cycles and behaviors. In cases where a valuable animal dies prematurely, its 

genetic material can be stored and used to maintain the genetic variability of the population or 

reinforce that of others in the future.  
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Successes and areas of improvement 

Despite decades of research, post-thaw sperm motility and conception rates from 

cryopreserved semen for most species are low. The notable exceptions are the dairy industry 

where AI is the method by which the majority of animals are produced (Iritani 1980) and in 

human fertility clinics where IVF and ICSI with cryopreserved spermatozoa are routine 

(Gunasena and Critser 1997).  Surprisingly, some clinics have found that, when controlling for 

concentration and donor selection, results with frozen-thawed spermatozoa are similar to those 

with non-frozen spermatozoa (Bordson and others 1986, DiMarzo and others 1990). In addition 

to the differences between species, as with humans, there are distinct differences in sperm 

freezability among individuals within a species. Research on individual variability is in its early 

stages with several hypotheses such as a genetic determinant of freezability (Thurston and 

others 2002) and a critical provision of osmolytes needed to regulate cellular volume effectively 

during freeze-thawing (Cooper and Barfield 2006).  

Low success rates (e.g. post-thaw motility, production of offspring) have been attributed 

to numerous factors with the foremost being the empirical development of these techniques 

despite a lack of knowledge about the fundamental cryobiology of mammalian spermatozoa 

(Gao and others 1997).  In order to elucidate this problem, many scientists argue the need for 

more information about the complicated membrane structure of the spermatozoa and the 

varying species sensitivities to osmotic stress, cryoprotectants, and water influx/efflux (Watson 

and Fuller 2001).  Others agree that biophysical properties such as sensitivity to cold shock, 

membrane composition, and permeability to water and cryoprotectants must be understood 

within and across species before advancements in sperm cryopreservation for wildlife are 

successful (Pukazhenthi and Wildt 2004). The research presented in this dissertation is one step 

of many required to elucidate the mechanisms by which spermatozoa cope with osmotic 

challenges. By understanding these mechanisms and the limits within which they can function, 

detailed protocols or methods can be designed that account for this volume regulation, thereby 

improving post-thaw motility and conception rates.  

 

Sperm volume changes during cryopreservation 

The viability of mammalian spermatozoa is highly sensitive to osmotic stress and the 

associated cell volume excursion (Gao and others 1997). The osmotic challenges and 
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accompanying volume changes that spermatozoa undergo during cryopreservation are 

dramatic relative to physiologically relevant osmotic fluctuations. To understand the extent of 

volume regulation needed by spermatozoa to survive the freeze-thaw process, the osmotic 

challenges during cryopreservation need to be considered. 

The first osmotic challenge a spermatozoon encounters during the freezing process is the 

addition of a cryoprotective agent (CPA). This is a compound that minimizes the formation of 

intracellular ice crystals by decreasing the chemical potential of the solvent water, physically 

expressed as the osmolality and freezing point of the solution (Karow 1997). There are two 

types of CPAs: penetrating (e.g. glycerol and dimethylsulfoxide (DMSO)) and non-penetrating 

(e.g. sucrose). The most commonly used CPA is glycerol. When high concentrations of glycerol 

are used, the hyperosmotic solution drives water egress from the cell. The initial shrinkage is 

fast because water leaves the cell quicker than the CPA enters. Hyperosmotic stress reduces 

sperm motility and although the mechanism is unknown, it is generally believed that 

‘cryoinjury’ is related to hyperosmotic stress (Gao and others 1993). Indeed, studies have shown 

that a change in the osmotic environment by exposure to CPAs for as little as 15 min, without 

cryopreservation, causes a loss of motility (Critser and others 1988). As glycerol enters the cell, 

the water lost during the initial shrinkage is regained. 

The second osmotic challenge occurs as extracellular water freezes during the cooling 

process.  As cells cool to -5˚C, the cells and the surrounding medium remain unfrozen and 

supercooled (Gao and others 1997).  Supercooled water has, by definition, a higher chemical 

potential than the partially frozen extracellular solution, causing water to flow out of the cells 

osmotically and freeze externally leaving high concentrations of salts (Gao and others 1997).  

Between -5˚ and -10˚C ice forms extracellularly but the cell contents remain unfrozen and 

supercooled. As cooling proceeds to approximately -40°C, the solution becomes increasingly 

concentrated, reaching osmolality values greater than 20 times isotonic (Mazur and others 

1981). If cooling is sufficiently slow, the intracellular water content will reach equilibrium with 

the extracellular solution so that cell volume is diminished and ice crystals do not form. 

However, if cooling is too slow, the cells will be exposed to extremely hypertonic conditions for 

a prolonged period resulting in cell death.  

Upon thawing the cells go through reverse volume changes.  As water is converted from 

the solid to liquid state it lowers the extracellular solute concentrations and the osmotic gradient 



 

 16 

pulls water into the cells. Several studies have indicated that any lethal osmotic injury likely 

occurs during warming and rehydration rather than cooling (Watson and Fuller 2001), yet the 

mechanism is currently unknown. This may be the result of the inability of the cell membrane to 

cope with rapid changes in volume which disrupt cytoskeletal elements (Watson and Fuller 

2001). Regardless of the mechanism, understanding cellular damage sustained in the thawing 

process requires a focus on how osmotic stress can be modified or how the membrane can be 

made more resistant. However, without first understanding sperm volume regulation and its 

mechanism across the membrane in general, overcoming complications of the cryopreservation 

process will be unachievable.  

Finally, during cryoprotectant removal, a large change in volume occurs as water flows 

into the CPA-containing cell because the water influx is faster than the glycerol efflux. Rapid 

cryoprotectant removal is especially harmful causing loss of membrane integrity and motility 

(Gao and others 1993, 1995). Theoretically, if cryoprotectant is not removed before insemination 

the spermatozoa will undergo a 4.3-fold expansion of osmotically active internal water as the 

cells are transferred from a solution of approximately 1300 mmol/kg to the female tract which 

is approximately 300 mmol/kg (Hammerstedt and others 1990), although the extent of cellular 

expansion due to the movement of cryoprotectant and water is temperature-dependent.  

Extensive swelling can be overcome with a multi-step dilution removal of the CPA. Diluting the 

CPA-loaded suspension once with CPA-free medium causes a 1.6-fold increase in cell size. By 

diluting the suspension eight times with fixed volumes of CPA-free medium, there is only a 1.2-

fold increase in volume. If the eight dilutions are of fixed molarity rather than fixed volume, 

then the increase is less than 1.1 times isosmotic, an increase that is inconsequential (Gao and 

others 1993).  

Each step of the cryopreservation process forces spermatozoa to cope with drastic 

osmotic challenges and potentially large changes in cell volume. Volume regulation must be 

functional during the challenges to maintain membrane integrity. It is clear that for 

spermatozoa undergoing cryopreservation, the ability to maintain a critical volume is extremely 

important for cell viability in ART techniques, with the exception of ICSI.   
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Conclusion 

Reproductive science has an important role in conservation biology. Most of the 

contemporary threats to biodiversity are caused by human action and any effort to reduce the 

current global population rate will be beneficial. While reproductive biology cannot provide a 

solution to the biodiversity crisis itself, it will undoubtedly contribute integrally to the multi-

disciplinary effort required to preserve threatened and endangered species. Assisted 

reproductive technologies represent a valuable avenue of research, especially for species in 

captive breeding programs and wild populations with low numbers. Descriptive studies of 

basic reproductive biology in wildlife are critical for the development of successful ART, 

especially cryobiological research. Investigation of the volume regulatory mechanism in 

spermatozoa is an avenue of basic research that could produce options for improving the 

preservation of spermatozoa, and also a non-hormonal contraceptive option for men, both of 

which could have significant impacts on global biodiversity preservation. 
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Chapter 2  

The Study of Cell Volume Regulation 

 

The regulation of cellular volume is an extremely narrow aspect of sperm physiology 

but a vital one, although very little is known about the process. The contribution of knowledge 

on sperm volume regulation to conservation biology is not immediately obvious but within the 

framework of reproductive sciences, and assisted reproductive techniques or technology (ART) 

in particular, this area of study could be of great importance. This dissertation contributes to the 

field of conservation biology by examining an aspect of sperm physiology that, if understood, 

could play an important role in improving sperm preservation techniques as well as serving as 

a potential target for male-directed contraception. The volume regulatory process of 

spermatozoa is an under-studied phenomenon and the experiments described in this 

dissertation serve as a starting point for future research that could make the potential 

applications of these studies a reality. 

 

Volume Regulation by Somatic Cells 

Regulation of cellular volume is vital for a wide range of physiological functions. 

Exposure to anisotonic conditions challenges a variety of cells during normal cellular processes. 

Some cells are challenged as a result of a pathological condition, maturation (erythrocytes), cell 

growth, differentiation, hypertrophy, and apoptosis (Wehner and others 2003). Cell migration 

and shape changes require volume adaptations and cell volume has been identified as a 

regulatory mechanism of cell metabolism (Lang and others 1998).  

 

Regulatory adjustments 

Because a homeostatic cell volume is critical to many facets of cellular function, any 

change in cell volume must be dealt with rapidly and efficiently. As a result, somatic cells have 

many different mechanisms to cope with osmotic challenges, and the activated mechanisms 

vary according to the magnitude of osmotic challenge, the time since the challenge occurred, 

and the nature of the challenge. Changes in osmolality can be hyper- or hypotonic, and they 

require the appropriate cell-mediated responses of regulatory volume increase (RVI), regulatory 
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volume decrease (RVD), respectively, and in some cases, isovolumetric (isovolumic) regulation 

(IVR). 

Regulatory volume increase is the augmentation of intracellular osmolyte content and 

associated water that increases cell volume after a hyper-osmotic challenge (see Fig. 2.1). 

Sodium channels are typically the first to be activated. During RVI, the main inorganic osmolyte 

taken up by cells is sodium (Wehner and others 2003).  There are four mechanisms by which 

this happens: the simultaneous activation of the Na+/H+ antiporter and the Cl-/HCO3- 

antiporter,  operation of the Na+-K+-2Cl- symporter (NKCC), activation of the Na+-Cl- symporter 

(NCC), and operation of Na+ channels (Fig. 2.1, Okada 2004). The predominant pathway that 

operates varies with cell type and environment.  For example, in the absence of HCO3- most 

cells utilize the Na+-K+-2Cl- symporter, while availability of HCO3- activates the Na+/H+ 

antiporter and the Cl-/HCO3- antiporter (Okada 2004). Mechanisms of RVI will not be fully 

discussed here as mechanisms of RVD are more relevant to the topic of this dissertation. 

However, the reader is referred to several excellent reviews for more complete information on 

RVI (Lang and others 1998, Okada 2004, Wehner and others 2003) 

RVD is the reduction of intracellular osmolyte content and associated water to reverse 

swelling caused by a decrease in extracellular osmolality. Ion channels, specifically K+ and Cl-, 

have received the most attention in volume regulatory investigations. Rapid and efficient 

adjustments to cellular osmolality are most easily achieved by transporting ions across the 

membrane and as a result, ion channels are the most frequently activated transport system 

during cell swelling events (Lang and others 1998). A wide variety of channel proteins from 

different families is used in RVD responses, both selective and non-selective.  The non-selective 

channels are indirectly involved in volume regulation by allowing the passage of cations into 

the cell, as dictated by the negative membrane potential, which can activate more selective 

channels involved in RVD, such as Ca2+-activated K+ channels (Lang and others 1998). These 

channels and other mechanisms of RVD are discussed below.  
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Figure 2.1. The mechanisms involved in RVI and RVD of somatic cells during hyper- and hypo-osmotic challenges, respectively. See 
text for details. Adapted from Okada (2004). 



 

 27 

The response evoked by gradual changes in osmolality is called isovolumetric (or 

isovolumic) regulation (IVR). Under IVR, cells compensate for changing osmolality in such a 

way that cell volume adjustments are undetectable. There is evidence that the mechanisms used 

during IVR are different from those used in response to abrupt changes in extracellular 

osmolality (i.e. RVI and RVD; Souza and others 2000, Pasantes-Morales and others 2000, Franco 

and others 2000). While the stimuli for these changes can occur over the same range of 

osmolalities, the difference is the rate of change in osmolality. Organic osmolyte channels are 

activated as a method of augmenting intracellular inorganic electrolytes only if an osmotic 

challenge lasts for an extended period of time (i.e. hours or days, Wehner and others 2003) and 

thus are an important component of the IVR process. During epididymal transit, spermatozoa 

are exposed to changes in osmolality that occur over days or weeks, depending on the species 

(Cooper 1998).  It is hypothesized that IVR is the mechanism by which spermatozoa accumulate 

osmolytes that are used for volume regulation upon ejaculation into the female reproductive 

tract (Cooper and Yeung 2003).  

Associated with the mechanisms involved in RVI, RVD and IVR is the movement of 

water. In principle, any changes in volume of animal cells under anisotonic conditions reflect 

the permeability of the plasma membrane to water (Wehner and others 2003). This permeability 

is increased by water channels or aquaporins, specialized membrane proteins which mediate 

the facilitated diffusion of water (Maunsbach and others 1997, Marinelli and LaRusso 1997, Ma 

and Verkman 1999). The presence of these proteins enhances osmotic behavior in response to 

deviations from isotonicity; a movement of water will occur changing cell volume until the 

difference in osmolality is abolished and a new chemical equilibrium across the membrane is 

achieved (Wehner and others 2003). This would suggest that the cell responds according to the 

Boyle van’t Hoff plot, which describes a linear relationship between cell volume and 

extracellular osmolality. However, the cell is not a perfect osmometer because of the presence of 

osmotically-inactive, intracellular water (Lucké and McCutcheon 1932). By plotting the 

reciprocal of extracellular osmolality against relative volume, the percentage of osmotically 

inactive water can be determined (Wehner and others 2003).  
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Mechanisms of RVD  

During RVD, somatic cells utilize the K+-Cl- symporter, coupled activation of the K+/H+ 

antiporter and the Cl-/HCO3- antiporter, and separate conductive ion channels (Fig. 2.1). In 

addition to ionic mechanisms, efflux of organic osmolytes has been discovered to be an 

important component of the RVD response. 

The K+-Cl- symporter (KCC), while also activated by oxidizing agents and low Mg2+ 

concentrations, can mediate KCl efflux from swollen cells (Lauf and Adragna 2000).  Swelling-

induced activation has been demonstrated in the red blood cells of many species and several 

other cell types (Okada 2004). Some evidence suggests that swelling-induced activation is 

produced by a phosphorylation-dephosphorylation event, although in human erythrocyte 

ghosts, the absence of ATP does not prevent swelling-stimulated K+-Cl- symporter activity 

(Sachs and Martin 1993).  Nevertheless, as long as there is a difference between the chemical 

potentials for K+ and Cl- across a membrane favoring efflux of electroneutral K+ and Cl- , the K+-

Cl- symporter may have a role in volume regulation, and has been implicated in volume 

regulation of murine spermatozoa (Klein and others 2006). There is considerably less evidence 

for the involvement of the K+/H+ antiporter and the Cl-/HCO3- antiporter. Necturus erythocytes 

require operation of these transporters to accomplish RVD (Okada 2004). 

To maintain electroneutrality with the efflux of K+ through channels engaged in the 

RVD process, there is significant involvement of Cl- channels. In cases of extreme osmotic 

challenge, cells will release Cl- by all available anion channels (Okada 2004). However, there are 

some specific channels that are unequivocally associated with RVD and cell-volume expansion. 

For example, CLC-2, a member of the chloride channel (CLC) gene family of Cl-channels, is 

activated by hyperpolarization and cell swelling (Grunder and others 1992).  The most common 

Cl- channel identified in volume regulatory Cl- efflux is a volume-sensitive outwardly-rectifying 

Cl- channel (VSOR).  While extensive research has been conducted on this channel, the 

activation mechanisms are largely unknown or controversial (Okada 2004). In addition, VSOR 

channels are activated during RVI and under conditions of isotonicity, as in swelling induced 

by active solute transport (Okada 2004). Other Cl- channels implicated in RVD are the cloned 

BRI-VDAC (volume-dependent anion channel), ICln, and the P-glycoprotein (multi-drug 

resistance (MDR) protein; Lang and others 1998).  
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Volume regulation does not depend solely on the conductance of inorganic ions. Large 

changes in ion concentration within the cell can disrupt cell structure and interfere with the 

function of macromolecules (Lang and others 1998).  Imbalance in the ion gradient can also 

affect the transporters mentioned above, further altering intracellular osmolality and disrupting 

cell function (Trump and Berezesky 1995).  In recent years, the role of organic osmolytes in RVD 

has become more evident. Organic osmolytes are molecules that provide osmolality without 

compromising cellular processes (Lang and others 1998).  There are three types of organic 

osmolytes present in mammalian cells: polyalcohols (or polyols), methylamines, and amino 

acids and their derivatives (Lang and others 1998).  In addition to their being used in the 

volume regulatory response, organic osmolytes also counteract the adverse effects of inorganic 

ions and can protect the cell from harmful effects of high temperatures and dehydration. From a 

review of the literature, it is obvious that there is a ubiquitous presence in vertebrates of an 

organic osmolyte channel that responds during the volume regulatory process (Perlman and 

Goldstein 1999).   

A wide variety of osmolytes has been identified in RVD of somatic cells including 

sorbitol, myo-inostitol, glycerophosphocholine (GPC), taurine and betaine. There is strong 

evidence that all of these osmolytes may move through the same channels (Wehner and others 

2003). The most well studied osmolyte is taurine of which it is estimated some 30-50% of the 

intracellular content leaves the cell during RVD (Wehner and others 2003).  Channels involved 

in taurine transport have been termed VSOR-Cl-, a voltage-sensitive organic anion channel 

(VSOAC) and a voltage-responsive anion channel VRAC. Although osmolytes may utilize the 

same channel, their efflux from the cell is dictated by osmotic thresholds and the length of 

exposure to hypo-osmotic conditions. For example, studies on rat and rabbit collecting duct 

cells indicate that taurine release is at 50% activation when the difference from isotonic (∆) 

reaches 250 mmol/kg (Kinne 1998). Taurine is the second osmolyte to be released in a sequence 

of activation (betaine ∆ 200 mmol/kg, myo-inositol and taurine ∆ 250 mmol/kg, sorbitol ∆ 350 

mmol/kg, GPC ∆ 400 mmol/kg; Kinne 1998).  In addition, each osmolyte is associated with a 

particular lag period, the time between exposure to hypo-osmolality and activation of release. 

For sorbitol, the lag time is 20 seconds while it is 7.5 min for GPC. Other osmolytes fall within 

this range (myo-inositol and taurine 2 min, betaine 5 min; Kinne 1998).  
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 The contribution of organic osmolytes versus that of ions in a given volume regulatory 

response varies from species to species.  Skate erythrocytes exposed to hypo-osmotic conditions 

efflux far more taurine than K+, the latter being some 10% of the former (Dickman and 

Goldstein 1990).  Equine erythrocytes, on the other hand, have very small taurine effluxes 

compared to the large amounts of K+ lost during a hypo-osmotic challenge (Gibson and others 

1993).  This difference could be due to the initial levels of taurine or K+ in the cell or, since many 

of the experiments included a pre-incubation period for the uptake of taurine (Perlman and 

Goldstein 1999), a difference in the rate of taurine uptake over the same incubation time. 

 

Potassium Channels and RVD 

Potassium channels are the most widely investigated component of the volume 

regulatory process. Activation of potassium channels brings about volume regulatory 

potassium efflux resulting from the outwardly-directed electrochemical gradient.  

 

 Structure and conductance 

The architecture of the potassium channel was established from Streptomyces lividans, 

with a nucleotide sequence showing similarity with all described potassium channels (Doyle 

and others 1998). All K+ channels are tetramers (i.e. comprised of four α-subunits each of which 

is composed of two, four, or six membrane-spanning segments) with four-fold symmetry about 

a central pore.  Two of the membrane-spanning α-helices of each subunit form the pore region, 

which consists of roughly 30 amino acids.  This pore region contains the turret (loops that 

connect putative membrane-spanning segments), the pore helix, and the selectivity filter.  An α-

subunit is situated such that two α-helices face the inner wall of the pore while any others face 

the lipid membrane.  The helices that face the pore are slightly tilted so as to form a teepee 

shape, yet slightly kinked so that they open as a flower would, facing the extracellular surface.  

The area in the opening of the flower, or the inner helices, encircles the pore region, which is 

composed of the K+ channel signature sequence, otherwise known as the selectivity filter.  The 

outer helices are also tilted in the same manner as the inner helices and are positioned in a 

staggered configuration between, yet just beyond, the inner helices, with their carboxyl ends in 

close proximity near the center of the channel (Doyle and others 1998).    
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Just below the ends of the outer helices, in the center of the channel, is a large cavity 

filled with polarizable water (Fig. 2.2).  This arrangement serves two purposes. First, when an 

ion passing through the straight narrow pore reaches the center of the plasma membrane, it 

must be able to pass through the maximum energy barrier.  Normally, a cation will bring the 

negative ends of dipoles closer with its electrostatic field in an attempt to stabilize itself.  

However, at the center of the membrane, the polarizability of the surrounding environment is 

minimal, and the energy of the cation is very high.  This cavity in the center of the potassium 

channel overcomes this electrostatic instability by simply surrounding the ion with polarizable 

water.  Second, the arrangement of the outer helices centers their carboxyl ends at a point that 

coincides with this large cavity.  The ends of these helices create a negative electrostatic 

potential that attracts cations to this point and thus into the selectivity filter just beyond the 

water filled cavity.  This arrangement effectively solves the problem of an electrostatic barrier 

facing a cation crossing a lipid bilayer and ensures that the ions continue to move along the 

channel properly (Doyle and others 1998). 
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Figure 2.2. Diagram of the polarizable water center and orientation of the outer helices of a 
potassium channel. This structure negates the electrostatic barrier that a cation would face when 

crossing a lipid bilayer making conductance rapid and efficient. Modified from Doyle and 
others (1998). 
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A K+ ion in the cavity in the middle of the channel is fully hydrated, bound to four water 

molecules.  In order to enter the selectivity filter, the ion must shed these molecules in order to 

fit.  The selectivity filter is constructed so that the oxygen rings from the helices stack up in a 

configuration that just fits the dehydrated potassium ion (Fig. 2.3).  Therefore, when an ion 

enters the filter it must become dehydrated. The carbonyl oxygen atoms lining the filter take the 

place of the water oxygen atoms (Hille 1973).  This arrangement is highly selective for 

potassium. Even dehydrated ions that are smaller than potassium (1.33 Å) cannot pass through 

this filter (e.g. Na+).  The carbonyl oxygens may be able to replace the oxygens of one or two 

water molecules, but because the dehydrated Na+ molecule is so small (0.95 Å), the remaining 

two water oxygens cannot be replaced because there is not the required proximity to the 

carbonyl oxygens.  The filter is only 12 Å (Angstroms) long or 0.0012 µm, minimizing the 

distance over which K+ must interact strongly with the channel.   
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Figure 2.3. Longitudinal view of ions passing through the pore of a potassium channel (A) with 
cross-sectional views at the corresponding levels where ions are in close contact with carbonyl 
oxygens within the filter (B) and in the aqueous cavity where the ion is surrounding by its water 

of hydration (C). Adapted from Armstrong 2003. 
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In a 150 mM K+ solution, two ions can be found in the selectivity at any one time.  One 

ion is at the end nearest the central cavity and the other closest to the external environment.  

This structure suggests that when one ion is present, it is bound very tightly; however when a 

second ion is present it creates a repulsion within the filter.  Thus, when a second ion enters the 

filter, the attractive force between a K+ ion and the selectivity filter becomes perfectly balanced 

by the repulsive force between the two ions, releasing the K+ from its tight association with the 

filter and thus allowing for conduction (Doyle and others 1998). In this way, ions pass through 

the filter in single file.  

 

Classification 

Potassium channels are classified according to their structure.  All K+ channels are 

tetramers, that is, they have four α-subunits (Fig. 2.4A, Coetzee and others 1999).  The structural 

differences of these subunits and the number of pores formed by them define the classification 

of a particular channel.  There are three groups of K+ channels: those which have subunits with 

six transmembrane domains (TMD) and form one pore (Fig. 2.4B), those that have 2 TMDs per 

subunit and form one pore (Fig. 2.4C), and those that have four TMDs per subunit and form 

two pores (Fig. 2.4D, Wickenden 2002).  

 Within these groups are families of K+ channels categorized by specific properties, 

determined by their α-subunit. Within the subclass of channels having 6 transmembrane 

domains and one pore, channels are grouped into one of two families, voltage-gated (Kv) and 

Ca2+-activated.  The voltage-gated family has eight subfamilies including Kv1-Kv6 and Kv8-Kv9 

(Coetzee and others 1999).  Members of these families include shaker (Kv1), shab (Kv2), shaw 

(Kv3), shal (Kv4), silent (Kv5-9), EAG, and KvLQT-related channels. The second family in this 

group is that of Ca2+-activated K+ channels, which includes subfamilies reflecting the extent of 

charge conductance: large (BKCa), intermediate (IKCa), and small conductance (SKCa) channels.   

Channels having 2 transmembrane domains and one pore are all inwardly rectifying, 

that is, they pass currents over a hyperpolarized voltage range (e.g. the cell becomes more 

negative internally so these channels allow the influx of potassium to balance the 

hyperpolarization event). This family has seven subfamilies with varying degrees of inward 

rectification, including channels which are G-protein regulated, ATP-sensitive, or those 

belonging to the ROMK1 group (Wickenden 2002, Coetzee and others 1999).  K+ channels 
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having four transmembrane domains and two pores do not yet have any further classifications, 

as there are only 14 members.  These channels are often referred to as “leak channels,” some of 

which can be extensively modulated by factors such as pH (Coetzee and others 1999).   
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Figure 2.4. A diagram of the orientation of the TMDs around the single pore of a 6TMD 
potassium channel (A). Each section of the blue cylinder surrounding the pore (the darker 

circular center) represents one of the four subunits. All subunits are oriented identically to that 
of the displayed section with two TMDs in contact with the pore. Sketches of the 

transmembrane domains of one α-subunit of 6TMD-1 pore (B), 2TMD-1 pore (C), and 4TMD-2 
pore potassium channels (D).  Purple TMDs indicate those that are in contact with the channel 

pore. 
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A further classification of each group can be made according to their modulatory β-

subunits, which include cytoplasmic proteins, single transmembrane spanning proteins (minK- 

and minK-related proteins) and large ATP-binding cassette transport-related proteins 

(Wickenden 2002). β-subunits play crucial roles in the regulation of channel activation (time and 

voltage dependency of channel opening) and inactivation (channel closure in response to a 

change in membrane potential or other factor). For voltage-gated potassium channels, one β-

subunit is bound to the intracellular surface of each of the tetrameric α-subunits. β-subunit 

configurations differ for Ca+ and Na+ channels (Hanlon and Wallace 2002).  

 

Channels involved in somatic cell RVD 

Several K+ channels have been implicated in regulatory volume decrease of somatic 

cells. Among these are large-conductance, calcium-activated K+ channels (BKCa or maxi-K+), 

intermediate conductance, calcium-activated K+ channels (IKCa), small conductance, calcium-

activated K+ channels (SKCa), two voltage-gated delayed rectifier channels (Kv1.3 and Kv1.5), 

minK channels, and TASK2, a two-pore domain K+ channel (Wehner and others 2003). 

Large-conductance calcium-activated potassium channels (BKCa), also known as maxi-K+ 

channels, are so named for their high range of conductance of 100-250 pS (at 0 mV) (Wehner 

and others 2003).  Various blockers can inhibit conductance via these channels such as Ba2+, 

quinine, tetraethylammonium (TEA), charybdotoxin, and iberiotoxin.  To date, BKCa channels 

have been found in neurons, skeletal muscle, smooth muscle, and in epithelial cells, situated on 

the apical membrane.  In addition to being activated by Ca2+, these channels are sensitive to 

membrane depolarization (Wehner and others 2003).  The activation of BKCa channels during 

hypotonic stress has been demonstrated in a wide variety of cells.  In the A3 cell line derived 

from the rabbit medullary thick ascending limb, the probability of open BKCa channels 

significantly increases when negative pressure is applied to a patch pipette in addition to a 

hypotonic stress (Taniguchi and Guggino 1989).  This suggests that these channels may be 

stretch-activated or closely linked to a stretch-activated component that regulates channel 

function. 

The intermediate conductance calcium-activated potassium channels (IKCa) are also 

named for their unitary conductance, which ranges from 20-80 pS (at 0 mV).  These channels are 

weakly inwardly rectifying, voltage-independent and activated by nanomolar changes in 
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concentration of intracellular Ca2+.  This sensitivity to Ca2+ is mediated by calmodulin binding 

to the C-terminal domain.  IKCa channels are efficiently blocked by charybdotoxin and 

clotrimazole, and virtually insensitive to apamin.  These channels are typically found in 

epithelia and endothelium-rich tissues, which generally require an effective osmotic cell 

homoeostasis to support high rates of vectorial transport (Wehner and others 2003).  Several 

reports indicate the involvement of this type of channel in hypotonically-induced K+ release 

such as those in the human epithelial cell line Intestine 407, human T lymphocytes and 

transformed Madin-Darby canine kidney cells (Wehner and others 2003).  

Small-conductance, calcium-activated potassium channels (SKCa) exhibit an even smaller 

conductance at around 4-18 pS at 0 mV.  These channels are also activated by nanomolar 

concentrations of Ca2+, are inwardly rectifying, and voltage-independent.  Apamin efficiently 

blocks certain isoforms of SKCa channels (SK2) while others are blocked less effectively (SK3) or 

only marginally (SK1 & SK4) (Wehner and others 2003).  DL-tubocurarine, however, is known to 

block all isoforms of SKCa with a high selectivity.  In Mz-ChA-1 cells, hypotonic stress induces 

an efflux of K+ contributed to the SKCa channels, which is partially blocked by apamin and 

completely blocked by Ba2+ suggesting that other K+ channels are likely to be involved (Wehner 

and others 2003). 

A voltage-gated K+ channel, Kv1.3, has been identified as a potential mediator of RVD.  

This channel is a delayed rectifier that is blocked by tetraethylammonium (TEA), 4-

aminopyridine, charybdotoxin, and dendrotoxin (Coetzee and others 1999).  The most 

convincing evidence that Kv1.3 is involved in RVD comes from experiments with a murine T-

lymphocyte cell line that lacks voltage-dependent K+ channels and therefore does not exhibit 

RVD in the face of hypotonic challenge.  Transfection of these cells with Kv1.3 allows them a 

complete volume regulatory response and a detectable voltage-activated K+ current that can be 

blocked by charybdotoxin (Deutsch and Chen 1993). The contribution of Kv1.3 to the volume 

regulatory response has also been evaluated in human T-lymphocytes.  In this case, margatoxin, 

which is highly specific for the Kv1.3, is able to suppress RVD at concentrations in the 

nanomolar range (Khanna and others 1999). 

Like Kv1.3, Kv1.5 is a voltage-gated K+ channel of the delayed rectifier group.  Unlike 

Kv1.3, though, this channel is blocked by 4-aminopyridine, but not by TEA, charybdotoxin or 

dendrotoxin (Coetzee and others 1999).  Transfection of this channel into the murine fibroblast 
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cell line Ltk- prevents swelling under hypo-osmotic conditions and generates a voltage-

activated outward current of K+ that can be abolished by the K+ channel blocker quinidine 

(Felipe and others 1993).  This channel is also involved in the cell volume decrease associated 

with apoptosis of pulmonary artery smooth muscle cells.  In these channels, inhibition of 

outward K+ currents with 4-aminopyridine can prevent apoptotic volume decrease and 

attenuate apoptosis (Ekhterae and others 2001). 

The KvLQT1/IsK potassium channel complex, also known as the minK channel, has been 

found to be significantly involved in RVD of tracheal epithelial cells in mice.  These cells are 

generally insensitive to Ba2+, apamin, and only slightly sensitive to TEA. Tracheal cells from 

knockout mice lacking the β-subunit (IsK) are unable to regulate their volume during osmotic 

challenge. In tracheal cells with intact minK channels, clofilium, a blocker of the KvLQT1/IsK 

complex, potently inhibits RVD (Lock and Valverde 2000). 

A member of a more recently discovered family of K+ channels, TASK2, has been 

associated with volume regulation in Ehrlich ascites tumor cells (Niemeyer and others 2001).  

TASK, which stands for TWIK (tandem of P domains in weak inward rectifier K channels)-

related acid-sensitive K+ channel, forms two pores and seems to be involved in the background 

K+ conductance detected in many cell types (Wehner and others 2003).  These channels are 

generally insensitive to classic K+ channel blockers such as TEA, 4-aminopyridine and Ba2+, but 

are blocked by quinine and with a high potency by clofilium (Lesage and Lazdunski 2000).  

When TASK2 is expressed in HEK293 cells, the resulting K+ currents are similar to those in 

Ehrlich cells and can be blocked by clofilium.  Transcripts of TASK2, but not TASK1 and 

TASK3, have been identified in Ehrlich ascites tumor cells (Niemeyer and others 2001). 

 

Measuring Cell Size 

As the focus of this dissertation is the mechanism by which spermatozoa maintain a 

functional volume, techniques for determining sperm volumes are discussed. A number of 

methods for measuring changes in cell volume during RVD or RVI have been developed 

including those based on the principles of dye dilution, light scattering (flow cytometry), 

dynamic fluorescence quenching (DFQ), fluorescence self-quenching, cell height, morphometry, 

atomic force microscopy, laser scanning reflection microscopy, scanning conductance 

microscopy, ion-sensitive electrodes, and electrical sizing (impedance), nuclear magnetic 
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resonance(NMR) and electronic spin resonance (ESR) (Srinivas and others 2003). For advantages 

that will be discussed later, flow cytometry was chosen as the method by which to evaluate 

sperm volume for this research.  

Of the listed methods, electronic cell sizing is the most widely used for measuring cell 

volume. A wide variety of cells have been analyzed using electronic cell sizing machines, 

usually a Coulter Counter, where the size of the particles is derived from the electrical 

impedance created when the cell passes between two electrodes and displaces the equivalent 

volume of electrolyte solution. As examples, the volumes of porcine blood platelets (Tomasiak 

and others 2005), human airway epithelial cells (Braunstein and others 2004), guinea pig colonic 

epithelial cells (Manabe and others 2004), newborn rat cardiomyocytes (Taouil and Hannaert 

1999), human cervical cancer cells (Shen and others 1996), erythrocytes from a variety of species 

(Blank and others 1994, Weiser 1985), spermatozoa (see Petrunkina references in Chapter 3), 

human platelets (Livne and others 1987), and mitochondria from the ciliated protozoon 

Tetrahymena pyriformis (Poole 1983) have been estimated using electronic sizing. Nuclear 

magnetic resonance (NMR) and electron spin resonance (ESR) have also been widely used on 

cells such as human erythrocytes (Herrmann and Muller 1986), human spermatozoa (Du and 

others 1994), rat hippo-campal sections (Buckley and others 1999), frog epithelial cells (Civan 

and others 1988), and cells of the microalga Phaeodactylum tricornutum (Schobert and Marsh 

1982).   

 

Flow cytometry 

Broadly defined, flow cytometry is a system for measuring and analyzing the signals 

that result as particles flow in a liquid stream through a beam of laser light (Givan 2001).  This 

technology has a wide range of applications from cell sorting to detection of cell surface 

proteins that can help in clinical diagnosis of disease. Although flow cytometers vary greatly in 

the cellular characteristics that they are capable of measuring, all cytometers have three 

common elements: a light source that can be focused, fluid lines (columns through which fluids 

including the cell suspension will flow) and controls that direct the fluid through a beam of 

light, and an electronic network for detecting the light signals resulting from the intersection of 

the particles with the light and then converting these signals to numbers that are proportional to 

light intensity (Givan 2001).   



 

 40 

Because flow cytometry has developed gradually with the slow convergence of several 

different areas of scientific study, the date of the first cytometer cannot be defined. Some of the 

earliest accounts of this technology’s being applied to measuring cell size involve the counting 

and sizing of red blood cells (Coulter 1956, Fulwyler 1965).  The machines used in these 

experiments are the predecessors of modern day flow cytometers, but the basic theory is the 

same. The types of biological cells that have been studied by flow cytometric techniques are too 

numerous to list. The important point for this dissertation is that this technique is a valid 

method for measuring cell size and thus estimating relative cell volume. 

The process of measuring cellular characteristics with a flow cytometer begins with a 

laser beam. Lenses within the cytometer are used to focus the laser and adjust the diameter of 

the beam at the point of intersection with the fluid suspension of particles.  The suspension is a 

combination of sheath fluid, a buffer that is typically a phosphate-buffered saline, and the cell 

suspension to be analyzed. These fluids combine within the flow chamber. The cell suspension 

is injected into the center of the sheath stream after which both streams of fluid are accelerated 

through a narrowing channel. This hydrodynamic focusing keeps the cell suspension in a 

central core as it flows within the sheath stream (Fig. 2.5) as it exits the flow chamber.   

 

Figure 2.5. The flow of sheath fluid through the analysis point (where the laser meets the core of 
fluid) when injected at relatively slow (left) or fast (right) speeds. Increased flow rate causes the 
diameter of the core to increase, potentially catching more than one particle at the analysis point 

simultaneously, resulting in inaccurate values (from Givan 2001).  
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The stream of fluid then transects the focused laser beam perpendicularly at a point 

referred to as the analysis, observation, or interrogation point. The emerging light, or signal, is 

collected by lenses positioned around the analysis point. These lenses focus the light onto 

photodetectors, photodiodes or photomultipliers that convert the light signals into electric 

impulses that are proportional to the intensity of the light received by them.  Typically there are 

four or more photodiodes around the analysis point. This includes one in the direct line of the 

laser, on the opposite side of the analysis point used to detect forward scattered light, and three 

or more photomultipliers at right angles from the laser beam that detect side scattered light of 

the same or different colors from that of the illuminating beam. Specific filters are installed on 

the photodiodes to ensure that signals are generated only when light of the color of interest is 

detected. 

The term forward scatter light (FSC) can be misleading as it is not light that passes 

directly through a particle without deflection. Rather, it is light of the same color as the 

illuminating beam that has been deflected to a small angle from the direction of the original 

beam (Givan 2001).   Placed in front of the forward-angle photodetector is an obscuration bar 

which prevents undeflected light from reaching the detector. However, if light has been 

deflected it will bypass the obscuration bar, strike the diode, and generate a signal. This signal is 

recorded as FSC.  These signals are not direct measures of volume or size but are related to the 

refractive index and cross-sectional area of the particles. Thus, it can distinguish between classes 

of particles (i.e. larger versus smaller) because larger particles will deflect more light than 

smaller particles of the same refractive index (Givan 2001).  

Light coming out of the analysis point at right angles will be a mixture of colored light 

that may or may not be of the same wavelength (color) as the illuminating beam. Light that is 

the same wavelength as the illuminating beam is referred to as side scatter light (SSC).  This 

light is detected when something in the flow stream causes the beam to be deflected to the side.  

This light is therefore a reflection of particle size, shape, and surface texture as well as internal 

structure. The rougher or more irregular a particle is, the more it will scatter light to the side.  

Light that differs in wavelength from SSC may be emitted from a cell if it contains an 

endogenous fluorescent compound or if it has been intentionally exposed to a fluorescent stain.  

This fluorescence will be registered by one of the photodetectors equipped with a filter specific 

for that color.  
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The electric signals that leave the photodiodes are amplified and then recorded by an 

analog-to-digital converter (ADC). The ADC evaluates the continuous distribution of signals 

and groups them into discrete ranges. The ADC comprises channels that represent a specific 

light intensity range. The number of channels that an ADC has, is determined by the operator 

who adjusts the photodetector voltage and amplifier gain. Typically there are 1024 channels, 

although there can be more or fewer. The output data are recorded by the cytometer electronics 

as light intensities on a scale of 0 to 1023 (for a 1024 channel ADC).  These values are analyzed 

and used to compare the different groups of particles that may be defined by the results of the 

experiment.  

 

Validity of using flow cytometry to measure cell size 

Methods of measuring cell size by flow cytometry have been corroborated against 

established cell-sizing methods.  Bovine corneal endothelial cell size was estimated during a 

series of osmotic challenges, both hypertonic and hypotonic, by flow cytometry and 

measurements of cell heights under microscopy.  In addition, predicted volume changes caused 

by exposure to ionophores were consistent between flow cytometry results and cell height 

measurements. During osmotic challenge and exposure to ionophore, flow cytometric and cell 

height measurements were in agreement. Flow cytometry also had a higher sensitivity to rapid 

volume change than the traditional method of measuring cell height (Srinivas and others 2003).  

The use of flow cytometry for estimating sperm cell volume has only recently been 

validated. In the past, methods for measuring sperm cell volume included electronic sizing by a 

Coulter counter, calculation from spermatocrit (packed cell volume), stereology by electron 

microscopy, volume exclusion methods using differential radioisotope labeling of intracellular 

and intercellular spaces, and estimation from the concentration of entrapped fluorophore 

(Yeung and others 2002).  To validate the use of flow cytometry for measuring relative sperm 

volumes, cauda epididymidal spermatozoa from heterozygous mice were exposed to hypo- and 

hyper-osmotic conditions with and without the presence of quinine, an agent that prevents 

volume regulation, and their volume changes gauged by flow cytometry and electronic sizing 

(Yeung and others 2002). A high linear correlation existed between measurements obtained 

with these two methods, including distinct subpopulations. In addition, the difference in size 

between the heterozygous spermatozoa, which can regulate volume, and spermatozoa from c-
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ros knockout mice, which cannot, was clearly reflected by forward scatter measurements. This 

validation was also performed with human spermatozoa, where both flow cytometry and 

electronic sizing detected comparable decreases in cell size when spermatozoa were treated 

with Triton, exposure to which causes loss of plasma membrane and cytoplasm (Yeung and 

others 2003). The strong correlation between the flow cytometric measurements and the 

volumes estimated by the previously established method of electronic sizing validate the use of 

this technique for estimating sperm volume.   

 

Advantages of flow cytometry 

One of the most important advantages of flow cytometry over electronic sizing is its 

ability to distinguish between cells with intact and disrupted plasma membranes (an index of 

their viability) by the use of fluorescent dyes. In a Coulter counter, which measures size from 

the electrical impedance, the signal is proportional to the volume and electrical characteristics. 

Intact cells and the nuclei of disrupted cells appear as separate peaks but could be easily 

confused with debris. For spermatozoa without much cytoplasm, it is often routine to use a 

separate method for detecting cell viability, with electronic sizing. However, the use of flow 

cytometry eliminates the need for two methods (one for measuring cell size and the other for 

viability) as it can assess both parameters for a single spermatozoon simultaneously. In a flow 

cytometer, cells with leaky plasma membranes have a refractive index closer to that of the 

surrounding medium and will therefore create dimmer forward scatter signals (Givan 2001), 

therefore it is usual to introduce a fluorescent membrane-impermeant dye so that non-vital cells 

are marked and can be eliminated from analysis by gating them out electronically.  

Regulation of cellular volume has been well studied in somatic cells. Fortunately, many 

of the methods used to investigate volume regulation in somatic cells can be modified for 

spermatozoa. The following chapter will discuss the importance of volume regulation for 

spermatozoa with specific reference to monkeys, humans, and mice.  
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Chapter 3 

Regulation of Volume by Spermatozoa 

 

The ability to maintain and regulate cellular volume is one of the most fundamental cell 

homeostatic mechanisms. It is critical to normal function and survival of all cell types studied. 

While it has been generally accepted that spermatozoa have mechanisms for adjusting their 

volume at times of osmotic stress, the physiological significance of volume regulation for sperm 

function has only recently been appreciated.  

 

Significance of Volume Regulation 

While most evidence for the necessity of sperm volume regulation for fertility is 

gathered from experiments where volume regulation is intentionally inhibited, the earliest 

evidence was presented in case studies of natural infertility in domestic stock. The observations 

made on spermatozoa from these infertile animals were recorded but forgotten until similar 

seminal profiles were observed in transgenic mice. Altogether, the evidence from both natural 

and induced cases of infertility confirms that volume regulation is essential for fertility, 

especially during natural mating.  

 

Male infertility in domestic species 

Cases of natural infertility can often highlight previously unstudied, yet essential aspects 

of gamete function. The Dag defect was first reported in a single Jersey bull, after which the 

syndrome was named.  Spermatozoa collected from this bull were sharply angulated at the 

midpiece/principal piece junction (the site of the cytoplasmic droplet, Blom 1966). Upon further 

investigation with ultramicrographs, the tail was found to be coiled or rolled up within a single 

intact plasma membrane. Flagellar angulation and coiling can occur during severe hypo-

osmotic events which exceed the volume regulatory capacity of the cell (Drevius 1963).  

This defect was later observed in other breeds of cattle, boars, mongrel dogs, and 

stallions (Cooper and Barfield 2006). For most bulls, increasing the ejaculation frequency 

significantly reduced the percentage of coiled spermatozoa in semen as the distal caudal sperm 

reserves were depleted and unaffected spermatozoa from the proximal cauda contributed to the 
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ejaculate; some other bulls appeared to have more proximally affected spermatozoa (Swanson 

and Boyd 1962, Hopwood and others 1963, Gustafsson and others 1972, 1974).  In addition, 

fixed spermatozoa from several epididymal regions of bulls and boars with the defect showed 

that in some males the sperm tails were straight until the spermatozoa entered the distal cauda, 

whereas in others, tail coiling occurred within segments from the proximal cauda to the distal 

caput (Cooper and Barfield 2006). This suggested that the defect resulted from an epididymal 

dysfunction, and while it received some attention at the time, further interest waned until the 

infertility of the transgenic c-ros tyrosine kinase knockout mice was discovered. 

 

Male infertility in transgenic mice 

The c-ros knockout mice were initially studied because the ros gene is an oncogene 

expressed during organ development.   It was isolated from the oncogene of the chick retrovirus 

UR2 and a human isolate identified in a transfection tumorgenicity assay (Neckameyer and 

Wang 1985). The chick and human isolates encode truncated proteins that lack a c-ros-specific 

extracellular domain. The protein is an “orphan” receptor (the ligand is unknown) and is 

expressed in the Wolffian duct and thus in some of the derivatives of the Wolffian duct, such as 

the epididymis. Targeted mutations of the c-ros gene by homologous recombination in 

embryonic stem cells were used to generate mice carrying the mutation (Sonnenberg-

Riethmacher and others 1996).  Female mice were fertile, but the male mice, although healthy, 

were infertile as a consequence of the failure of the initial segment of the epididymis to develop 

(Sonnenberg-Riethmacher and others 1996, Yeung and others 1999). Despite their infertility, 

male knockout mice exhibited normal mating behavior and could be used to stimulate 

pseudopregnancy in female mice and the cauda epididymidal spermatozoa were able to 

fertilize oocytes in vitro (Sonnenberg-Riethmacher and others 2006).  Upon exposure to female 

tract fluids, however, these spermatozoa swelled and angulated or formed hairpin bends 

(displayed flagellar angulation of 180°) at the site of the cytoplasmic droplet, and were unable to 

migrate to the site of fertilization (Yeung and others 2000). By contrast, spermatozoa from wild-

type mice, or fertile heterozygous mice, under the same hypo-osmotic challenge perform 

regulatory volume decrease (RVD) to maintain their volume and a straight flagellum.   

For spermatozoa from the c-ros tyrosine kinase knockout mice, their journey ends at the 

uterotubal junction (Yeung and others 2000). Post-coital assessments of sperm motility and 
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numbers of spermatozoa in the uterus 1 hour after mating were found to be similar between 

females mated with knockout and wild-type or heterozygous males. Flushing of the oviducts 4 

hours after mating revealed that females mated to wild-type or heterozygous mice had high 

numbers of spermatozoa (>1000 on average) in the oviducts while females mated to knockout 

mice were devoid of spermatozoa in the oviducts. Histology confirmed the absence of 

spermatozoa from the uterotubal junction (Yeung and others 2000). 

Another transgenic mouse model that produces spermatozoa with swollen 

morphologies is the GPX5-Tag2 mice (Cooper and others 2004).   Glutathione peroxidase 5 

(GPX5) is a secretory protein that is strongly expressed in the distal caput region of the 

epididymis and lightly expressed in the cauda (Lahti and others 2001).  The expression of this 

protein is controlled by androgens, and it has been shown to bind to the acrosome during 

sperm transit through the epididymis (Jimenez and others 1990, Vernet and others 1997).  GPX-

Tag2 transgenic mice were created by using the promoter of the GPX5 gene to direct the SV 40 

T-antigen to the caput epididymidis in an attempt to disable caput epididymidal function. 

Epididymal proteins specific to the initial segment (mEP17, CRES, and HE6) were down-

regulated in these mice as a result of a change in function of the initial segment. Spermatozoa 

from these males can neither reach the site of fertilization nor fertilize oocytes in vitro (Sipilä 

and others 2002). When spermatozoa from these mice are released into conventional culture 

medium, the flagellum displays angulation, as in the c-ros KO mice, an indication of swelling 

(Sipilä and others 2002, Yeung and others 2002). In this model, unlike the c-ros knockout mice, 

the angulation occurs within the epididymis and is maintained upon release (Yeung and others 

2002). These examples of infertility, natural and transgenic, emphasize the importance of 

volume regulation for fertilization.  

 

Volume regulation as a target for contraception 

Because volume regulation is a necessary function, it may be a valuable target for male-

directed contraception. There are several potential contraceptive approaches (Cooper 1992). At 

the epithelial level of the epididymis, synthesis and transport of osmolytes that are used by 

spermatozoa during volume regulatory events could be inhibited. Alternatively, a drug could 

be designed to disrupt or neutralize the osmolytes in the epididymal lumen thereby preventing 

the spermatozoa from acquiring them. It may also be possible to target the spermatozoa 
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themselves by creating a drug that blocks the channels that take up and/or release osmolytes 

during osmotic stress. Each of these options requires an understanding of the volume 

regulatory process in spermatozoa, including which channels may be involved and which ions 

and osmolytes are integral to the osmotic response. 

 

Need for Volume Regulation 

Spermatozoa need to perform volume regulation because of the different osmolalities of 

fluids in the male and female tract. Spermatozoa are subjected to osmotic challenges 

experimentally in order to examine the mechanisms involved but the source of the spermatozoa 

and the way they are handled prior to measurement can influence the results obtained. 

 

Osmotic differences in male and female reproductive tract fluids 

Volume regulation is necessary for spermatozoa because of the various osmolalities to 

which they are exposed. While spermatozoa are in the rete testis, the surrounding fluid is 

approximately 290 mmol/kg (Yeung and others 2006). As the spermatozoa migrate through the 

epididymis, they are exposed to fluids of increasing osmolality that can reach higher than 400 

mmol/kg in the hamster and mouse (Cooper and Yeung 2003). The spermatozoa are held at this 

high osmolality in the cauda epididymidis until ejaculation. For murine spermatozoa, the 

difference in extracellular osmolality at ejaculation is approximately 100 mmol/kg, as the 

female post-coital uterine contents are approximately 330 mmol/kg (Yeung and others 2000). 

Human spermatozoa face a similar, albeit less severe, decrease in osmolality, as they move from 

the vas deferens (342 mmol/kg, Hinton and others 1981), through cervical mucus (287 

mmol/kg, Rossato and others 1996), uterine fluid (284 mmol/kg, Casslen and Nilsson 1984), 

and into oviductal fluid (274 mmol/kg, Menezo and others 1982). There are no data for the 

osmolalities of male and female tract fluids in monkeys. Failure to meet these osmotic 

challenges can prevent spermatozoa from reaching the site of fertilization.  

 

Experimental hypotonic challenges 

The study of volume regulation is complicated by osmotic changes that can occur during 

the collection of spermatozoa. Of primary importance is minimizing these challenges and 

ensuring that the spermatozoa are not faced with non-physiological osmotic challenges during 
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the collection process as this could result in improper volume regulation during the 

experimental osmotic challenge. Data collected under improperly managed conditions would 

be difficult if not impossible to interpret. Studies in which spermatozoa are pre-incubated with 

inhibitory drugs before exposure to hypo-osmolal solutions are limited by the knowledge of the 

true isotonicity of spermatozoa, as the osmotic events under study may occur during this pre-

incubation and thus be missed during the experiment. In this dissertation, spermatozoa were 

exposed to the inhibitory drugs and a hypo-osmolal challenge simultaneously.   

Ideally spermatozoa will not be exposed to a change in their osmotic environment 

before the experimental osmotic challenge. However, the source of the spermatozoa 

(epididymal or ejaculated) should influence how spermatozoa are handled prior to 

experimentation. Studies of murine and monkey epididymal spermatozoa have mimicked 

nature, in that epididymal contents were transferred immediately into medium of the 

osmolality of the female tract. This constitues a large osmotic challenge, from 430 mmol/kg in 

the cauda epididymidis (Yeung and others 1999) to 330 in the uterus (Yeung and others 2000). 

In other experiments, porcine epididymal spermatozoa (normally bathed in 333 mmol/kg, 

White and MacLeod 1963) were first transferred to a semen extender (around 300 mmol/kg) 

and then washed through Percoll (also 300 mmol/klg) before measurements of osmotic 

response were assessed (Petrunkina and others 2001). The problem with this experimental 

design is that the spermatozoa may have already responded osmotically before measurements 

are made when subjected to further hypotonic treatment of another ~150 mmol/kg. 

The problem of pre-experimental osmotic challenges is unavoidable when dealing with 

ejaculated spermatozoa, which are merely epididymal spermatozoa that have already been 

exposed to a hypotonic insult during ejaculation (see above). For bovine semen (osmolality 340-

355 mmol/kg, White and MacLeod 1963, Petrunkina and others 2001) spermatozoa are either 

subjected to “swim up” in medium around 310 mmol/kg or are diluted in an extender (around 

300 mmol/kg) and subsequently centrifuged through Percoll density gradients at around 300 

mmol/kg. Sometimes sperm-rich fractions are selected for study, especially for boars (semen 

osmolality 333 mmol/kg, Petrunkina and others 2001, 2004a) and dogs (semen 317 mmol/kg, 

Petrunkina and others 2004b). For boars, transfer of spermatozoa to extender and washing 

through Percoll at 300 mmol/kg is also done, and for dogs only Percoll washing. Again, the 
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osmotic responses observed may be less marked than those occuring unobserved during sperm 

preparation. 

Several experimental designs for human ejaculated spermatozoa (coming from the vas 

deferens at 342 mmol/mg, Hinton and others 1981) exist: sperm are washed (Yeung and others 

2003) or subjected to density gradient centrifugation through Percoll made up in media of the 

average osmolality of liquefied seminal plasma (330 mmol/kg, Yeung and Cooper 2001), the 

individual’s own seminal osmolality (Barfield and others 2005, Yeung and others 2005a, Klein 

and others 2006) or that of the female tract (290 mmol/kg, Fetic and others 2006). In each case, 

the osmotic status of the spermatozoa at the time of measurement may not have been identical, 

but control experiments of spermatozoa subjected to the same anisotonic solutions without 

inhibitors were performed. 

 

Current Knowledge of Sperm Regulatory Volume Decrease 

Development of RVD potential 

The ability of spermatozoa to undergo RVD is acquired in the epididymis (Yeung and 

others 1999, 2002b, 2004b). Murine caput spermatozoa appear to have no capacity for RVD, as 

swelling after a hypotonic challenge is not reversed. Quinine also does not elicit a response 

from the caput sperm whereas in cauda spermatozoa a dose-dependent increase in size is 

observed (Yeung and others 2002). Spermatozoa from cynomolgus monkeys also show a 

maturation of RVD. Cauda spermatozoa are able to recover from swelling after 20 minutes of 

exposure to hypotonic conditions; corpus spermatozoa show a less extensive recovery, and 

caput spermatozoa do not exhibit an osmotic response (Yeung and others 2004b). These 

differences could be due to changes in the plasma membrane lipid composition that is 

associated with maturation in the epididymis (Jones 1999), changes which are known to alter 

ion channel activities (Brown and London 1998) as well as osmolyte content of the cell. 

 

Role of potassium ions in sperm volume regulation   

Ion channels are extremely important to spermatozoa in that the channels are key 

elements in the communication between the sperm cell, its environment, and the egg (Darszon 

and others 1999).  Evidence from several studies has suggested the involvement of various ion 

channels in sperm RVD, especially K+ channels. It is known that luminal concentrations of K+ 
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increase along the length of the epididymis, giving spermatozoa the opportunity to accumulate 

this osmolyte (Turner 2002) and the concentration of intracellular K+ in spermatozoa is high (120 

mM for bulls, Chou and others 1989, Babcock 1983; 80-100 mM for mice, Zeng and others 1995).  

The first description of RVD in mammalian spermatozoa was offered by Kulkarni and 

others (1997). In that report, many inhibitors and ionophores were used to determine which 

types of channels may be involved in a volume regulatory response by bovine spermatozoa. 

Quinine was used to prevent the efflux of K+ during a hypo-osmotic challenge which induced 

swelling in spermatozoa, and valinomycin, a K+ ionophore, was used to reverse the hypo-

osmotic swelling. Subsequent studies also implicated K+ as a key osmolyte for sperm RVD. 

Quinine-sensitive ion channels were detected in human, murine, canine and porcine 

spermatozoa and confirmed in bovine spermatozoa (Yeung and Cooper 2001, Yeung and others 

2002, Petrunkina and others 2001, 2004b).  

Measurements of K+ within and surrounding spermatozoa have been recorded.  Luminal 

K+ concentrations are high in the epididymis and increase from the caput epididymidis to the 

cauda epididymidis in the rat, boar, and hamster but decrease in the bull, ram, and man (Turner 

2002, Cooper 1986). Intracellular K+ concentrations of spermatozoa may also change during 

epididymal transit. In rabbit spermatozoa, K+ concentrations increase in the sub-acrosomal 

space from 0.3 mM in the caput to 7.4 mM in the cauda, in the equatorial segment from 0.6 mM 

to 9.2 mM, in the midpiece from 0.5 mM to 6.8 mM, and in the principal piece from 0.4 mM to 

0.5 mM (Oliphant and others 1985). Similarly, ovine spermatozoa contain 49.8 mM K+ while in 

the corpus and 64 mM in the distal cauda, and porcine spermatozoa contain 64.1 mM K+ in the 

corpus and 78.1 in the distal cauda. In contrast, intracellular K+ concentrations of bovine 

spermatozoa decrease from the caput to the distal cauda, dropping from 75 mM to 49 mM, 

respectively (Cooper 1986). These concentrations are much higher than what is reported for 

blood plasma (4.6 mM). 

Judged by the significant role of potassium in volume regulation by somatic cells and 

the high concentration of K+ in spermatozoa, a role for K+ in regulatory volume decrease of 

sperm cells is likely. The high concentration of potassium could provide the spermatozoa with 

sufficient ions for expenditure during physiological osmotic challenges. Indeed, studies in mice 

(Yeung and others 1999), bulls (Kulkarni and others 1997, Petrunkina and others 2001), boars 

(Petrunkina and others 2001), humans (Yeung and Cooper 2001, Yeung and others 2003), dogs 
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(Petrunkina and others 2004b), and monkeys (Yeung and others 2004b) have demonstrated a 

sustained increase in size when spermatozoa are exposed to hypotonic media in the presence of 

quinine, a broad-spectrum K+ channel blocker. The reversal of the effects of quinine by the K+ 

ionophore valinomycin demonstrated in bovine (Yeung and others 2003, Petrunkina and others 

2001), murine (Yeung and others 2005b), and human (Yeung and Cooper 2001) spermatozoa 

further supports the involvement of K+. 

 

Role of cation and anion channels in sperm volume regulation 

Potassium channels have been previously studied in spermatozoa as the channels are 

believed to play a role in the events that prepare a spermatozoon for fertilization, and several 

have been identified in spermatozoa, spermatogenic cells and testicular tissue (Fig. 3.1). 

Voltage-gated channels Kv1.1 and Kv1.2 have been localized to the principal piece and head, 

Kv3.1 to the annulus and Girk1 to the connecting piece of murine epididymal spermatozoa, and 

the presence of the mRNA of Kv1.1, 1.2 and 3.1 confirmed (Felix and others 2002). Slo3, a 

potassium channel regulated by pH and membrane voltage, is expressed in seminiferous 

tubules by developing spermatocytes in humans and mice (Schreiber and others 1998). Large-

conductance Ca2+-activated K+ channels are expressed in germ cells but undergo a down-

regulation in post-meiotic germ cells that coincides with an up-regulation of voltage-gated 

potassium channels (Gong and others 2002). Voltage-gated, delayed, outwardly-rectifying K+ 

(probably Kv1.3) channels are also expressed in the cytoplasm of primary spermatocytes and 

post-meiotic elongating spermatids in rats (Jacob and others 2000) and the inwardly rectifying 

(Kir) channel in spermatozoa from mice (Munoz-Garay and others 2001). Complete inhibition of 

these channels by barium (Ba) prevents membrane hyperpolarization which may indicate a role 

for the Kir channels in capacitation by enhancing K+ permeability (Munoz-Garay and others 

2001). Specifically, Kir5.1 is expressed in the rat testis, and the protein has been detected in the 

seminiferous tubules, on spermatogonia, primary and secondary spermatocytes, spermatids, 

and the head and tail of spermatozoa from rats (Salvatore and others 1999). 

To maintain electro-neutrality, the loss of cations through channels needs to be balanced 

by efflux of anions and the involvement of anion channels in spermatozoa has also been 

reported. In murine and human spermatozoa, RVD can be prevented by broad spectrum anion 

channel blockers. Although one specific anion channel involved in RVD of somatic cells, ClC-3, 
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was found in human sperm extracts, it was not detected in murine sperm extracts (Yeung and 

others 2005a,b). A volume sensitive anion and osmolyte channel (possibly ClC-3) was described 

for boar spermatozoa (Petrunkina and others 2004a).  
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Figure 3.1. Representation of potassium (K) and calcium (Ca) channels that have been idenfied 
on different regions of spermatozoa from various species. Channels that are underlined have 
been reported to be involved in volume regulation of somatic cells. CaV, voltage-gated Ca 

channel; CNG, cyclic nucleotide-gated channel; GIRK, G-protein inwardly rectifying K channel; 
Kv, voltage-gated potassium channel; TRCP, transient receptor potential cation channel.  
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As discussed for somatic cells, the role of organic osmolytes in volume regulation of 

spermatozoa is currently being investigated. As spermatozoa lack the machinery to produce 

these osmolytes, they must depend on uptake from the environment, most likely in the 

epididymis.  As reviewed by Lang and others (1998), in contrast to the rapid uptake of ions, 

osmolyte accumulation occurs over a matter of hours or even days.  Within the epididymis, 

there are several low molecular weight, water-soluble compounds present at high 

concentrations that could act as osmolytes, including L-carnitine, glycerophosphocholine and 

myo-inositol (Cooper, 1986, 1998) and spermatozoa take several days to traverse the epididymis, 

allowing ample time for these osmolytes to be accumulated. Evidence from murine 

spermatozoa suggests that the epididymal secretions glutamate, L-carnitine, taurine, sorbitol 

and myo-inositol have the potential to be utilized for volume regulation. The addition of these 

osmolytes at concentrations considered to be equal to that of intracellular concentrations to 

hypotonic medium eliminates the concentration gradient that would normally drive the 

osmolyte efflux response during RVD. Because this gradient was lacking, the osmolytes were 

unable to leave the cell. Thus, RVD was inhibited resulting in a sustained increase in sperm size 

(Yeung and others 2004a, 2006).  

The accumulation of organic osmolytes for sperm volume regulation may occur through 

isovolumetric regulation, by which the cells gradually take up osmolytes available to them in 

the epididymal lumen when they encounter the increasing osmolality generated by the 

secretion of osmolytes by the epididymis (Cooper and Yeung 2003).  This can be a lengthy 

process taking up to 5 days in the mouse (Dadoune and Alfonsi 1984), which parallels the 

length of time for somatic cells to acquire organic osmolytes. In this situation, changes in cell 

volume would be undetectable yet there would be a continual increase in intracellular 

concentrations of osmolytes.  The osmolytes acquired in the epididymis could then be used in 

the subsequent volume regulation required by the spermatozoa encountering hypotonicity 

during their transition from the epididymis to the site of fertilization. 

 

Isotonicity and Potential RVD Osmolytes 

The response of a spermatozoon to an osmotic challenge depends on its intracellular 

tonicity. However, there are very few studies that attempt to measure intracellular isotonicity, 

and it is likely that there are differences even between closely related species. In most studies, 
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isotonicity is assumed to fall between 280-300 mmol/kg for a wide variety of species (Table 3.1). 

From a review of literature on osmotic tolerance limits of spermatozoa, the lowest presumed 

isotonicity is that of frog spermatozoa (220 mmol/kg) and the highest for the domestic turkey 

(370 mmol/kg).  In each paper, the osmolality of the “isotonic” solution is given but without 

reference to scientific evidence of the intracellular isotonicity of the spermatozoa of that species. 

If the true osmotic challenges and subsequent volume regulation of spermatozoa are to be 

understood, the intracellular isotonicity of spermatozoa from each species must be evaluated as 

there are likely to be significant differences which would affect interpretation of data and 

potentially cryopreservation success.  

 

 
Common Name 

 
Scientific Name 

Presumed 
Isotonicity 
(mmol/kg) 

 

Reference 

imperial eagle Aquila adalberti 300 Blanco and others 2000 
golden eagle Aquila chrysaetos 300 Blanco and others 2000 
domestic cattle Bos taurus  290 Guthrie and others 2002 
domestic dog Canis lupus familiaris 290 Songsasen and others 2002 
common horse Equus caballus 325 Ball and Vo 2001 
peregrine falcon Falco peregrinus 300 Blanco and others 2000 
domestic cat Felis silvestris 300 Pukazenthi and others 2002 
domestic chicken Gallus domesticus 313 Blanco and others 2000 
Bonelli’s eagle Hieraaetus fasciatus 300 Blanco and others 2000 
human Homo sapiens 286 Gao and others 1993 
serval Leptailurus serval 300 Pukazenthi and others 2002 
rhesus macaque Macaca mulatta 300 

285 
Rutllant and others 2003 
Agca and others 2005b 

domestic turkey Meleagris gallopavo 371 Blanco and others 2000 
clouded leopard Neofelis nebulosa 300 Pukazenthi and others 2002 
chimpanzee Pan troglodytes 290 Agca and others 2005a 
koala Phascolarctos cinereus goldfuss 300 Johnston and others 2006 
leopard frog* Rana pipiens 220 Costanzo and others 1998 
wood frog*  Rana sylvatica 220 Costanzo and others 1998 
boar Sus scrofa domesticus 290 Gilmore and others 1998 
common wombat Vombatus usrinus shaw 300 Johnston and others 2006 
mice* Mus musculus, various 

strains 
290 

280-300 
290 

Willoughby and others 1996 
Walters and others 2005 
Koshimoto and Mazur 2002 

Asterisks (*) indicate measurements on epididymal rather than ejaculated spermatozoa. 
 

Table 3.1. List of species and the presumed isotonicity of spermatozoa in studies on osmotic 
tolerance limits. 
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The osmotic tolerance limits of spermatozoa from the domestic chicken, domestic 

turkey, golden eagle, Bonelli’s eagle, imperial eagle, and peregrine falcon have been compared 

(Blanco and others 2000). The spermatozoa from raptors were more tolerant of hyperosmolality 

with 91 to 96.8% “viable” (as determined with the SYBR-14/propidium iodine stain technique) 

after a 10 minute exposure to a 3000 mmol/kg solution. Peregrine falcon spermatozoa were 

extremely intolerant of hypo-osmolality (50 mmol/kg) with only 2.8% viability while golden 

eagle spermatozoa were more tolerant with 76.3% viable. Spermatozoa from Bonelli’s eagle 

were the most tolerant of hyperosmolality with 96.8% viability after 10 minutes at 3000 

mmol/kg, which was statistically different from golden eagle spermatozoa with 91% viability. 

It is clear that even between raptors there are differences in osmotic tolerances which could 

indicate a difference in sperm isotonicity resulting in varying degrees of osmotic challenge for 

spermatozoa from different species when exposed to the same hypo- or hyper-osmotic solution.  

 

Osmolyte load and volume regulation 

These osmotic tolerance limits may be related to differences in amount or type of organic 

osmolytes at the cell’s disposal. Spermatozoa from the infertile c-ros knockout mice have 

reduced intracellular concentrations of carnitine (19% less), taurine (23%), myo-inositol (29%), 

and glutamate (45%) compared with spermatozoa from wild-type mice (Xu and others 2003, 

Yeung and others 2004a). Failed volume regulation by these spermatozoa may be the outcome 

when there are not enough osmolytes within the cell to counter large swelling events. 

Spermatozoa from GPX5-Tag2 mice, which are also unable to regulate volume, are bathed in a 

fluid of lower osmolality while in the cauda epididymidis compared with that of wild-type 

mice of the same strain, which may cause the observed sperm swelling in the epididymal canal. 

There are also differences in the luminal concentrations of the inorganic osmolyte K+ in c-ros 

and wild-type mice. A higher concentration of K+ was the only difference detected in the cauda 

epididymidal fluid of knockout mice compared to that of wild-type mice. Yeung and others 

(2004a) speculate that if exposure to higher concentrations of extracellular K+ leads to K+ uptake, 

as occurs in others cells, then this accumulation of K+ may inhibit the accumulation of other 

necessary organic osmolytes. The absence or decrease of osmolytes in the epididymal fluid may 

prevent the sperm from accumulating the necessary amounts of osmolytes for responding to 

osmotic challenges and thus lower their osmotic tolerance limits. 
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In somatic cells, the predominant osmolyte used during volume regulatory events varies 

with cell type and magnitude of the osmotic challenge. Therefore, deficiencies of just one 

osmolyte may pose problems during volume regulation. For example, rabbit inner medullary 

collecting duct cells lose betaine when the change in extracellular osmolality is approximately 

200 mmol/kg, and lose GPC when that difference is approximately 400 mmol/kg. Inositol, 

taurine, and sorbitol are released for the osmotic challenges between 200 and 400 mmol/kg 

(Kinne 1998). Cardiomyocytes release taurine in response to large osmotic challenges and 

primarily K+ when the change in osmolality is less severe and more gradual (IVR) (Souza and 

others 2000). In contrast, hippocampal tissue cells use taurine for IVR and glutamate, taurine, 

and K+ during RVD (Franco and others 2000).  

 

Freezability and osmolyte load  

If osmolyte imbalance affects RVD response and thus fertility, then it may play a role in 

the different freezabilities of spermatozoa from different strains of mice. Poor post-thaw fertility 

as judged by in vitro fertilization of C57BL/6N mice oocytes was first published by Tada and 

others (1990) where the percentage of fertilized eggs was 12.9% compared to other strains 

(DBA/2N 63.5%, ddY 48%, C3H/HeN and ICR 35%).  Subsequently, Songsasen and Leibo 

(1997) found that simple exposure of spermatozoa to cryoprotectant reduced the fertilization 

rates in two strains of mice (129/J and C57BL/6J) but not in a third strain (B6D2F1). In 

cryopreservation experiments, the B6D2F1 spermatozoa also had higher fertilization rates in 

post-thaw IVF tests (61.2%) compared with the other two strains (17.2% for 129/J and 3.0% for 

C57BL/6J). Further experiments showed that these differences were mainly attributable to 

differential sensitivity to the osmotic shocks associated with the addition and removal of 

cryoprotectant. Because the freezabilities of spermatozoa are different for the different strains 

(and poorer results were produced with inbred strains of mice), this suggests a genetic basis for 

osmotic tolerance and post-thaw survival. Other studies that reveal a potential genetic 

component to freezabilities have been made on spermatozoa from cattle, humans, horses, and 

pigs (Beatty and others 1976, Kramer and others 1993, Amann and Pickett 1987, Gilmore and 

others 1996, respectively). 

In addition to the differences in freezability of spermatozoa from closely related species 

or different strains of mice, there are also documented reports of individual differences. 
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Anecdotal evidence confirms individual differences in dogs, bulls, boars, stallions, and humans 

(Holt 2000). Applicable research has been done in several species including bulls (Beatty and 

others 1976), mice (Tada and others 1990, Songsasen and Leibo 1997), dogs (Yu and others 

2002), men (Leibo and others 2002), and geese (Lukaszewicz and Kruszynski 2003). Each of 

these studies provides evidence that particular males produced spermatozoa that were more 

capable of surviving the cryopreservation procedure.  

Individual differences in RVD capabilities have also been reported. Repeated collections 

from 8 boars indicated that there were “good” and “bad” responders. Good responders were 

those that had spermatozoa showing an initial swelling followed by a constant or reduced 

volume after 20 minutes of exposure to hypotonic conditions; bad responders showed no 

decrease in volume after the initial swelling and, in some cases, an increase in volume during 

the 20 minute exposure (Petrunkina and others 2004a). A good RVD response was associated 

with a high fertility index (calculated from data based on >30 inseminations for each animal). 

Spermatozoa from subfertile bulls display low RVD and poor oviduct binding (Khalil and 

others 2006). Similar evidence has also linked volume regulatory capability with fertility in bulls 

(Petrunkina and others 2001).   

Spermatozoa from different species vary greatly in many ways, and their osmotic 

tolerance limits and freezability are likely no exception. Even so, the volume regulatory 

capabilities of all spermatozoa may depend on mechanisms that have been preserved through 

evolutionary time, as they have been for somatic cells. These mechanisms may vary in the 

channels used and the amounts of organic and inorganic osmolytes involved in volume 

adjustments, but the knowledge gained from the study of spermatozoa from any species is a 

valuable starting point for this relatively new area of research. In this dissertation, volume 

regulation by spermatozoa of humans, monkeys, and mice is described.   

 

Value of Studying Volume Regulation of Monkey Spermatozoa 

Non-human primate populations have not escaped the globally-recognized threats to 

biodiversity of habitat destruction, hunting, and genetic isolation. Frequent reports of 

dwindling population numbers have stimulated research into assisted reproductive 

technologies for vulnerable primate species, especially in captive breeding programs. Only 50% 

of threatened primate species are maintained in zoos worldwide, and many of the rare species 
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do not naturally breed well in captivity (Morrell and Hodges 1998). Assisted reproductive 

technologies (ART) have the potential to supplement in situ conservation efforts by 

strengthening the genetic integrity of the captive populations. These techiniques can be 

performed presently with fresh gametes or in the future with cryopreserved gametes.  

As explained in previous chapters, availability of viable frozen-thawed spermatozoa is 

vital for success of many ART techniques, especially where wildlife is involved. Semen has been 

collected from at least 20 species of non-human primate and cryobiological studies conducted 

on at least 10 species (Leibo and Songsasen 2002). While sperm survival as judged by 

progressive motility after cryopreservation is generally acceptable, fertility remains low. Only 

13 full-term pregnancies in 5 species have been achieved with cryopreserved spermatozoa 

(Leibo and Songsasen 2002).  

There are many potential reasons for the less than desirable results achieved with 

frozen-thawed primate spermatozoa, among them being the type of cryoprotectant used. 

Glycerol is the most commonly used cryoprotectant for primate sperm cryopreservation, but the 

optimal proportion of glycerol varies with freezing method (Morrell and Hodges 1998). 

Extended exposure to glycerol has resulted in significant reductions in progressive motility as 

seen in cynomolgus monkeys (exposure > 25 min, Mahone and Dukelow 1978) and marmosets 

(exposure > 10 min, Morrell 1997). Because glycerol moves relatively slowly (compared with 

water) across the plasma membrane, the deleterious effects seen in thawed spermatozoa may be 

associated with the osmotic shock that occurs during CPA removal (Leibo and Songsasen 2002).  

General knowledge on how primate spermatozoa respond to osmotic challenges would 

be potentially useful for seeking out the root cause of CPA toxicities and improving 

cryopreservation success. There has been very little research on volume regulation of primate 

spermatozoa, although there is one report of osmotic tolerance limits and membrane 

permeability of rhesus macaque spermatozoa (Agca and others 2005b).  Published concurrently 

with the work presented here is evidence that Cl- channels may be involved in primate sperm 

RVD (Yeung and others 2004b). Aside from these reports, the mechanisms by which primate 

spermatozoa control their cellular volume are unknown.  

The volume regulatory process can also provide a target for preventing unwanted 

pregnancies, and any knowledge gained through the study of cynomolgus spermatozoa may 

have relevance for human studies. The cynomolgus monkey epididymis is a good primate 
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model for that of the human, since the maturation of spermatozoa within the duct resembles 

that of man, with respect to acquisition of motility (Yeung and others  1993, 1996), acquisition of 

ability to undergo the acrosome reaction (Yeung and others 1996, 1997), changes in sperm 

surface charge (Fain-Maurel and others 1984), modification of sperm antigens (Mahony and 

others 1994, Yeung and others 1997, 2000, 2001), development of the acrosomal response to 

second messengers (Mahony and others 1996), condensation of nuclear chromatin (Golan and 

others 1997) and diminution of sperm head size (Yeung and others 1997, Gago and others 2000, 

Soler and others 2000). Research in this model may provide clues to the development of a male-

directed contraceptive for men as well as captive primates.  

There have been many calls within the scientific community for more basic research 

especially on sperm properties that may be a factor in cryopreservation success (Watson 2000, 

Morrell and Hodges 1998).  With so little information on sperm volume regulation available, 

these studies are a starting point for further investigation into this phenomenon as it pertains to 

primates. 

 

Value of Studying Volume Regulation of Murine Spermatozoa 

Mice are classic model species for studying a wide range of physiological phenomena. 

Their short generation time and the ease with which they can be obtained and handled make 

them a common laboratory species for preliminary experiments with a human health focus. A 

large amount of research on sperm volume regulation has been performed using murine 

models. Although there are significant differences between human and murine sperm 

morphology (i.e. head shape and overall volume), knowledge gained from studies using murine 

spermatozoa contributes to the general understanding of the relatively unstudied mechanism of 

volume regulation in spermatozoa, which may involve ion channels that are conserved across 

species.  

As found with monkey spermatozoa, cryopreservation of murine spermatozoa is a 

valuable tool for scientists. The growing number of transgenic mice used in scientific research 

has put pressure on laboratories to find adequate housing facilities. For some, maintaining the 

frozen gametes rather than a live colony of mice is more efficient and cost effective. 

Cryopreservation of murine spermatozoa is also important for the preservation of valuable 

genetics in genome resource banks. Although GRBs are often associated with protecting 
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charismatic endangered species, there are many rare and endangered species in the Muridae 

family. There are currently 451 Muridae species on the IUCN Red List of Endangered Species 

excluding those of least concern: 37 classified as critically endangered, 77 as endangered, 106 

classified as vulnerable, and the remainder as lower risk (conservation-dependent), near 

threatened, or data deficient.   

 

Value of Studying Volume Regulation of Human Spermatozoa 

Although volume regulation is a relatively unstudied phenomenon in human 

spermatozoa there is evidence that volume regulation is required for natural fertilization. The 

association of poor semen quality (lower sperm motility) with reduced expression of sperm 

aquaporins (Saito and others 2004) suggests that water fluxes are important for fertility. The 

greater ability of spermatozoa from fertile males to regulate volume than those of infertile 

patients (Fetic and others 2006) confirms the suspicion that the inability of spermatozoa to 

regulate their volume may provide one cause of an otherwise idiopathic infertility. As the 

human population continues to grow, numerous contraceptive options are needed to limit the 

expansion that, currently unchecked, is fuelling an environmental catastrophe with 

consequences not only for humanity but for the endangered species it creates. As this burden 

should be shared by males, new contraceptive options are needed (Barfield and others 2006). 

Mimicking these cases of natural male infertility, such as impairing sperm volume regulation, 

may one day be induced as a form of contraception and provide modern humans with the 

means to control when they reproduce. 

Although male contraception per se is apparently of little interest to major 

pharmaceutical companies, there are sources of funding for promoting fertility when 

conception is not easy.  Although clinical trials are usually carried out on animal models before 

being applied to humans, valuable techniques developed for use in humans can be applied to 

wildlife (Barfield and others 2006). Therefore, the conservation biologist interested in 

developing ART for endangered and threatened species should pay close attention to 

developments in human reproduction.  

 

Research on volume regulation in each of these species has relevance to wildlife 

conservation in addition to increasing the general reproductive knowledge of animal species. 
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The following chapter details the experiments carried out on spermatozoa from monkeys, mice, 

and humans to learn more about the channels and osmolytes involved in volume regulatory 

events. 
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Chapter 4 

Materials and Methods 

Animals 

Adult males of the Cynomolgus fascicularis species housed at the University of Muenster, 

Germany were used in these experiments. All mice were at least 70 days old and of the C57BL6 

strain or B6D2F1 strains (Charles River, Sulzfeld, Germany). The experiments using 

spermatozoa from monkeys and mice were conducted according to the German Federal Law on 

the Care and Use of Laboratory Animals (license no. G67/2001 for both species). All human 

semen samples were donated by healthy men between 24 and 55 years of age at the Institute for 

Reproductive Medicine in Muenster, Germany. Each man signed a written consent form, 

satisfying the local Ethics Committee, that his semen could be used for research purposes.  

 

Collection of Spermatozoa 

Mice 

The mice were killed by asphyxiation with CO2 followed by cervical dislocation. All 

murine spermatozoa utilized in these experiments were extracted from the epididymis. The 

testis-epididymis complex was dissected and the cauda epididymidis isolated.  The capsule of 

the cauda epididymidis was gently torn open with fine forceps to expose the tubule.  The tubule 

was then carefully uncoiled so that the entire length of the mid and distal cauda tubule was 

exposed (Fig. 4.1A). Beginning from the distal end, closest to the vas deferens, sections of the 

tubule were cut out (Fig. 4.1B) and placed in separate 10 µl drops of Biggers–Whitten–

Whittingham (BWW) medium (Biggers and others 1971) with or without inhibitor on a plastic 

spatula (Fig. 4.1C).  The order in which the inhibitors were tested was rotated between 

experiments to ensure that the location of the spermatozoa within the cauda epididymidis or 

time before incubation did not confound the results.  The contents were then gently teased from 

the tubule (Figs. 4.1D & E) and the tubule removed from the drop (Fig. 4.1F).  The drop was 

then dispersed in 200 µl of the same medium and the sperm suspensions placed in an incubator 

(37°C, 5% (v/v) CO2 in air). After approximately 2 min, sperm suspensions were gently agitated 

to ensure dispersal of the spermatozoa and the incubation continued for 5 – 75 min.   
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Figure 4.1. Extraction of murine cauda epididymidal spermatozoa as described in the text. 
Yellow arrows indicate the tubule and red arrows indicate spermatozoa. 

 
For Western blot experiments and immunocytochemical studies, murine epididymal 

spermatozoa were obtained by cannulation of the cauda epididymidis. The cauda epididymidis 

was isolated along with a portion of the proximal vas deferens.  The vas was cannulated with a 

0.5 mm i.d. /0.8 mm o.d. PVC catheter (Dural Plastics, Silverwater BC, NSW, Australia) that 

had been pulled out over a flame to form a narrow pipette-like tip and tied in place with 5/0  

suture thread (Braun Surgical GmbH, Melsungen, Germany). The cannula was attached to a 1 

ml tuberculin syringe filled with PBS420 (2.7 mM KCl, 5.2 mM Na2HPO4, 1.8 mM KH2PO4,) with 

sufficient NaCl to achieve approximately 420 mmol/kg (the osmolality of murine epididymal 

fluid, Yeung and others 1999). This medium was chosen to limit osmotic changes during sperm 

collection. A small cut was then made in the epididymal tubule at the proximal cauda region, 

just beyond the flexure and the contents of the cauda epididymidis were flushed out and 

collected with a 25 µl positive displacement pipette as it seeped out from the cut.  Spermatozoa 

were dispersed in the PBS420 at room temperature and then put on ice until samples from all 

mice had been collected.  Samples were centrifuged at 2000 g for 2 min, the diluted epididymal 

plasma was removed and the sperm pellet stored at -80°C until use.   

A B 

F E D 
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Monkeys 

Ejaculated spermatozoa were collected from 15 cynomolgus monkeys on several 

occasions. The monkeys were anaesthetized with Ketamine HCl (Park Davis Ltd., Berlin, 

Germany, 12 mg/kg) and prepared for rectal-probe electro-ejaculation as described by 

Weinbauer and others (1994). A homemade device delivering 6 V at 50 Hz in a square wave 

form through a rectal probe approximately 15 cm long and 1.5 cm in diameter was used to 

stimulate the monkeys. The current was applied for 2 sec up to 15 times after which, if no 

ejaculate was produced, the procedure was discontinued. Most monkeys produced an ejaculate 

after 3 or 4 stimulations. The samples were brought to the laboratory in an incubator at 37°C 

within 30 min and the exudate was isolated by physically removing the coagulum with forceps. 

A portion of the exudates was taken to assess sperm concentration and osmolality.  

 

Humans  

Human ejaculated spermatozoa were collected by masturbation at the Institute for 

Reproductive Medicine of the University in Muenster, Germany. Samples were collected in 

specialized graduated cylinders for easy volume measurement. Samples were received in the 

laboratory within 5 min from the time of ejaculation. A standard semen analysis according to 

the World Health Organization (WHO 1999) guidelines was performed by the laboratory 

technicians on all samples after liquefaction for 30 min at 37ºC. The values for specific semen 

parameters are detailed below for individual experiments.   

 

Routine Measurements of Post-liquefaction Semen Osmolality 

All measurements of osmolality were made with a vapor pressure device (Wescor Vapro 

model 5520, Kreienbaum Messsystem, Langenfeld, Germany). This system was used because 

dew point depression is not affected by sample viscosity or the presence of suspended particles 

(Sweeney and Beuchat 1993) and small samples can be measured. The osmometer was 

calibrated each day with 10 µl of a 290 mmol/kg standard supplied by the manufacturer. When 

semen was being measured, a delay of 2 min was employed before measurement to ensure 

chamber saturation and reproducible results. All measurements were made on a 10 µl aliquot of 

semen. Reproducibility and accuracy, ascertained on 10 measurements of a 290 mmol/kg 
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standard, established a coefficient of variation (CV) of 1.5% and a mean deviation of 0.7% from 

the true value. After the 2 min delay, the CV was 0.7%.  

 

Osmolality of Human Semen during Liquefaction 

Eighteen semen samples were obtained in the institute by 15 healthy volunteers of 

median age 28 years (range 24-55) who masturbated after abstinence times of 3-6 days. 

Ejaculates were measured (mean ± SEM, range) for semen volume (3.8 ± 0.5, 1.3-7.1 ml), sperm 

concentration (41.2 ± 11.2, 8-127 million/ml), sperm number (160.8 ± 56.3, 17-631 

million/ejaculate), percentage motility grades a (36.8 ± 2.5, 25-55), b (13.7 ± 1.6, 7-21), c (7.1 ± 0.9, 

1-13), d (42.4 ± 1.5, 35-50) and normal morphology (13.3 ± 1.7, 2-19). Eight of these samples were 

judged to be normozoospermic by WHO (1999) criteria.  

Ejaculates were mixed well in the collecting cylinder with a glass rod upon receipt in the 

laboratory within 2-5 min of production and the osmolality measured. One aliquot was 

removed and measured every 5 min during the 30 min liquefaction period at 37°C with 5% 

(v/v) CO2 in air.  

 

Incubation Media and Inhibitors 

Media 

All chemicals were from Sigma (Taufkirchen, Germany) except for clofilium tosylate 

(Alexis Biochemicals, Grünberg, Germany) and phrixotoxin (Alomone Labs, Jerusalem, Israel). 

The basal medium used unless otherwise specified was Modified Biggers–Whitten–

Whittingham (BWW) medium (Biggers and others 1971). For experiments with murine 

spermatozoa, the osmolality was adjusted to 330 mmol/kg (BWW330) and for experiments on 

human and monkey spermatozoa the osmolality was 290 mmol/kg (BWW290). BWW330 was 

chosen as 330 mmol/kg is the osmolality of post-copulatory uterine contents (Yeung and others 

2000) whereas BWW290 is medium of similar osmolality to that of the human female tract (see 

Chapter 3). These media are anticipated to be hypotonic to both epididymal and ejaculated 

spermatozoa which are thus subjected to physiologically relevant osmotic challenges in all 

species. The details of the medium are listed in Table 4.1. For incubation with the inhibitors, all 

media were adjusted to pH 7.4, contained 4 mg/ml bovine serum albumin (BSA) and were 

warmed (37°C) before use. For flow cytometric measurements, BSA-free medium of the same 
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composition containing the vital dye propidium iodide (PI, 0.5 mg/ml water; final 

concentration 6 µg/µl) was used. 

 

 

 
Component 

Final concentration 
(mM) for BWW330 

KCl 4.8 
CaCl2·2H2O 1.7 
MgSO4·2H2O* 1.2 

KH2PO4 1.2 
Na pyruvate 0.25 
Glucose 5.5 
Na lactate 26 
NaHCO3 25 
NaCl 108** 
Hepes 20 

 
Table 4.1. Composition of BWW medium.  

* MgCl2 substituted for MgSO4·2H2O when testing the effects of BaCl2. 
** Concentration of NaCl in BWW290 was 80 mM.  

 

Channel blockers 

 One of the most commonly used inhibitors of potassium channels, and the one used as a 

control in these experiments, is quinine. Quinine is an alkaloid from the bark of Chinchona nitida, 

and is most well-known for its ability to combat malaria. It was the first chemical compound 

successfully used against an infectious disease (Encyclopedia Britannica 2007). Quinine has 

been reported to block a wide variety of K+ channels including A-type, delayed outward, and 

Ca2+-dependent K+ currents. In addition, voltage-dependent Ca2+ inward currents and Na+ 

outward currents are also inhibited (Kuriyama and others 1995). Quinine is suspected of acting 

on the external surface of channels, as is the case with maxi-K+ channels in bovine chromaffin 

cells, with enhanced blocking action during membrane hyperpolarization (Glavinovic and 

Tifaro 1988).  

Other common inhibitors used to characterize K+ channels are tetraethylammonium 

(TEA) and 4-aminopyridine (4AP). TEA was the first, and remains the most frequently used, K+ 

channel blocker (Kuriyama and others 1995). Although a specific mechanism of action is yet to 

determined, TEA blocks most classes of K+ channel with varying affinities (Cooke and Quast 

1990). Four-aminopyridine also blocks many classes of K+ channel, but is more selective and 
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more potent than TEA. A wide range of more specific inhibitors such as barium, clofilium, 

cadmium, glybenclamide, and flecainide is used to identify K+ channels involved in volume 

regulation. The channels inhibited by these compounds are listed in Table 4.2.  

Naturally occurring toxins are also used to identify potassium channels. Charybdotoxin, 

a scorpion toxin, is known to block maxi-K+ channels by direct occlusion of the channel through 

a specific interaction site on the extracellular side of the membrane (Kuriyama and others 1995). 

A variety of other channels is reported to be inhibited by charybdotoxin, including Ca2+-

dependent, Ca2+-insensitive, and voltage-gated K+ channels (Kuriyama and others 1995). 

Apamin, a toxin isolated from the honey bee (Apis mellifera), selectively blocks small-

conductance K+ channels by acting on the external surface of the channel (Seagar and others 

1984, Blatz and Magleby 1986, and Capiod and Ogden 1989).  

The channel blockers used in these studies are involved in the volume regulation of 

somatic cells and were used at concentrations effective for somatic cells (see Table 4.2). 
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Inhibitor (abbreviation in Figs.) 

Concentrations 
tested 

 
Function 

 
References 

4-aminobutyrate (4AB)*, ** 500 µM, 1 mM Inhibits carnitine transport   Kido and others 2001 
4-aminopyridine (4AP) 1 mM, 4 mM Blocks voltage-gated K+ channels Wehner and others 2003 

Mathie and others 1998 
Apamin (APM)* 200 nM, 1 µM Potently inhibits SKCa 

 
Vergara and others 1998 

BaCl2 (Ba) 1 mM, 5 mM Inhibits BKca  
TASK3 

Wehner and others 2003 
Kim and others 2000 

Cadmium chloride (Cd)** 0.2 mM, 2 mM Inhibits Kv4.3 Calmels and others 2001 
Charybdotoxin (CTX)* 10 nM, 100 nM Inhibits Kv1.3 

Inhibits IKCa, BKca 

Inhibits maxi-K+ 

Deutsch and Chen 1993 
Wehner and others 2003 
Kuriyama and others 1995 

Clofilium tosylate (CLO) 10 µM, 100 µM Inhibits TASK2 
Inhibits minK channels 

Niemeyer and others 2001 
Lock and Valverde 2000 

Dendrotoxin-α* 150 nM, 400 nM Inhibits Kv1 channels Gasparini and others 1998 
Flecainide (FLE)** 10 µM, 100 µM Inhibits Kv4.2 

Inhibits Kv4.3 
Caballero and others 2003 
Amberg and others 2002 

Gadolinium (Gd)*,** 10 µM, 1 mM Inhibits stretch activated-ion channels 
ORCC (VDAC)†  

Kraznai and others 2003 
Taouil and Hannaert 1999 
Thinnes and others 2001 

Glybenclamide (GLY)* 10 µM, 100 µM ATP-dependent K+ channels Macho and others 2001 
Hydroxyaspartate (HOA)* 20 µM, 1 mM Glutamate transport inhibitor Chen and Swanson 2003 
Margatoxin (MTX)* 10 nM, 200 nM Inhibits Kv1.3 Garcia-Calvo and others 1993, 

Khanna and others 1999 
Phlorizin (PHZ)*,** 5 µM, 500 µM Blocks SGLT1 (SLC5A1) ‡ 

Inositol transport inhibitor 
Loo and others 1999 
Higgins and Kane 2003 

Phrixotoxin (PTX)** 10 µM, 100 µM Blocks A-type currents, specifically Kv4.2 
and Kv4.3 

Diochot and others 1999 

Quinine (QUI) 0.3 mM***, 0.8 mM*,** Broad spectrum channel blocker Wehner and others 2003 
Tetraethylammonium chloride (TEA) 10 mM, 50 mM Broad spectrum channel blocker, BKCa Wehner and others 2003 
Table 4.2.  List of inhibitors used to identify potential channels involved in RVD of monkey, murine, and human spermatozoa. *Not tested on 
human spermatozoa, ** not tested on cynomolgus spermatozoa, *** not tested on murine spermatozoa, † Outwardly-rectifying chloride channel 

(voltage-dependent anion-selective channel), ‡ sodium glucose transporter 1. 
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Measurement of Cell Size by Flow Cytometry 

Changes in sperm cell volume were measured in a flow cytometer (Coulter Epics XL, 

version 3.0, Krefeld, Germany) according to the method validated against an electronic cell sizer 

by Yeung and others (2002, 2003). All flow cytometer settings (voltage, gain, signal trigger 

threshold, analysis windows, etc.) in the flow cytometer protocol used for each experiment were 

constant throughout the studies. The flow cytometer was calibrated before each experiment 

with 5 µm diameter standard spherical beads (Coulter Electronics Ltd, Luton, England). The 

forward and side scatter values generated by the calibration procedure before each experiment 

were recorded. The size distribution profile of the measured particles was analyzed using 

Accucomp software provided by the manufacturer. The mean (± SEM) forward scatter of the 

standard beads (n = 134) was 386.26 ± 0.66 (CV 2.0%) and the side scatter was 507.05 ± 1.52 (CV 

3.5%), indicating that the machine was stable and that measurements between experiments 

were similar.  

A minimum of 5000-6000 cells was analyzed in the flow cytometer for PI (emission at 

605–635 nm), to eliminate signals from non-viable cells, and for forward and side scatter of laser 

with an excitation at 488 nm, to gate out debris. Forward scatter signals were analyzed after 

gating for viable (PI-excluding) spermatozoa. For each individual sperm sample from monkeys, 

mice and men, a non-treated sample was always included, which served as a control value for 

comparison for each replicate treatment sample, as well as a positive response sample with 

quinine. Relative cell sizes were calculated by dividing the mean forward scatter of cells 

incubated in inhibitor by the mean forward scatter of cells from the same sperm sample 

incubated without inhibitor at each time point. An example of the data collected from flow 

cytometry analysis is shown in Fig. 4.2. 
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A B

 

Figure 4.2. Scatter plots produced from the flow cytometer analysis of control murine 
spermatozoa (A) and spermatozoa incubated with quinine (B) during a hypotonic challenge. 
The forward scatter (y-axis) is plotted against the side scatter (x-axis) and the small blue box is 
set to display potential contamination of red blood cells in the sample. The large purple box 
contains the plots of spermatozoa that have higher forward/side scatter values and are 

considered swollen. The average forward scatter values for these data are 353 in A and 532 in B.  
 

Monkey spermatozoa 

Monkey spermatozoa were dispersed in the appropriate medium for 1–2 min and 

incubated at 37°C in 5% (v/v) CO2 in air for 5 and 30 min. For flow cytometric measurement, 10 

µl of sperm suspension (approximately 2-10 x 106 spermatozoa/ml) were added to 200 µl of the 

same BSA-free and PI-containing medium. After gentle agitation to mix the sample, flow 

cytometric measurements were recorded immediately. The methods used for preparing 

monkey spermatozoa are outlined in Fig. 4.3. 
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29 ejaculates from 15 Cynomolgus monkeys (Macaca fascicularis) (6.4 – 22 y)

Rectal electroejaculation

Exudate (323 [290-372] mmol/kg) diluted in BWW290 ± inhibitors

1.5 µl sperm suspension
under 18x18mm coverslip in

20 µm deep chamber

50 µl sperm suspension
+ 3 µl PI 

+ 200 µl BWW290 ± inhibitors

Ejaculate to lab. within 5-15 min (37°C)

Incubated 30 min (37°C)

Videorecording

CASA (HT)

Flow Cytometry (Epics XL)

Forward and side scatter (size)

Figure 4.3. Flow diagram of the methods used to prepare monkey ejaculated spermatozoa for 
analysis of kinematic parameters with CASA and relative size with flow cytometry. Details are 

given in the text.  
 

Murine spermatozoa 

Murine spermatozoa were incubated in the appropriate medium for 5 and 75 min, at 

which time approximately 80 µl sperm suspension (approximately 2-10 x 106 sperm/ml) were 

added to 200 µl of the same BSA-free and PI-containing medium. Upon gentle agitation to mix 

the sample, flow cytometric measurements were recorded immediately.  

 

Human spermatozoa 

The semen samples used in inhibitor experiments were from twenty six ejaculates 

obtained after abstinence periods of 3.8 ± 0.5 (range 2 -10) days from 20 volunteers (mean ± 

SEM, range: age 29.6 ± 1.7 y, range 24 – 55).  Ejaculates were measured for semen volume (4.0 ±  

0.4 ml, 1.3 – 7.8), osmolality (316.8 ± 5.0 mmol/kg, 278 – 383), sperm concentration (41.2 ± 6.8 

million/ml, 3.8 -127), sperm number (173.3 ± 36.1 million/ejaculate, 24.7 – 571.5), percentage 

motility grades a (35.0 ± 2.1, 21 - 55), b (14.2 ± 1.6, 4 - 28), c (8.5 ± 0.9, 1 - 15), d (42.6 ± 1.1, 35 - 53), 
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and percentage normal morphology (15.0 ± 1.0, 5 - 22). Fifteen of these ejaculates were 

normozoospermic (WHO 1999). 

Upon liquefaction, the osmolality of 10 µl of human semen was measured.  Spermatozoa 

were washed through an 80% (v/v) / 40% (v/v) Percoll gradient (Biosciences, Freiburg, 

Germany) adjusted to the individual seminal osmolality by combining high and low osmolality 

Percoll media. Four BWW media were made up for mixture with Percoll (Table 4.3) to create 

solutions of high and low osmolality for the 80% and 40% levels of the Percoll gradient. The 

80% Percoll solutions were prepared 10 ml at a time by mixing 8 ml Percoll with 2 ml BWW 

High 80% or BWW Low 80% solution (see Table 4.3).  The 40% Percoll solutions were prepared 

by mixing 4 ml Percoll with 6 ml BWW High 40% or BWW Low 40% solution (see Table 4.3). 

The mean final osmolalities were 393 mmol/kg for High 80% Percoll, 251 mmol/kg for Low 

80% Percoll, 364 mmol/kg for High 40% Percoll, and 256 for Low 40% Percoll. The relevant 

proportions of the low (A) and high (B) osmolality BWW solutions to achieve the osmolality of 

the individual’s seminal plasma (C) were determined by the following formula: 

 

C = (A + xB) / (1+x), where x = (C-A) / (B-C) 

 

 

 High 80% Low 80% High 40% Low 40% 
KCl 24 24 8.01 8.01 
CaCl2·2H2O 8.5 8.5 2.8 2.8 
MgSO4·2H2O* 6 6 2 2 
KH2PO4 6 6 2 2 
Na pyruvate 1.25 1.25 .42 .42 
Glucose 27.5 27.5 9.19 9.19 
Na lactate 130 130 43.42 43.42 
NaHCO3 125 125 41.75 41.75 
NaCl 468 240 194 85 
Hepes 100 100 33.4 33.4 
Final Osmolality 
(mmol/kg) 

 
1600 

 
1050 

 
530 

 
350 

 
Table 4.3. Final concentrations (mM) of the components of the modified BWW media used to 

create Percoll solutions of high and low osmolalities.  
 
 



 

 86 

Spermatozoa were centrifuged at 500g for 20 min, and the pellet was isolated by 

removing all but 100 µl of the supernatant. The pelleted spermatozoa were resuspended in the 

remaining supernatant and placed in an incubator at 37 °C min 5% (v/v) CO2 in air. 

After 5 and 30 min incubation in the appropriate medium ± inhibitor, 40 µl sperm 

suspension (approximately 2-10 x 106 spermatozoa/ml) were added to 200 µl of the same BSA-

free and PI-containing medium. Upon gentle agitation to mix the sample, flow cytometric 

measurements were immediately recorded under the same flow cytometer settings as used for 

ejaculated monkey spermatozoa. A flow diagram of these methods is represented in Fig. 4.4. 

 

30 donors (32 y)

Masturbation

1.5 µl sperm suspension
under 18x18mm coverslip in

20 µm deep chamber

50 µl sperm suspension
+ 3 µl PI 

+ 200 µl BWW290 ± inhibitors

Liquefied at 37°C for 30 min, measure OPSP (320 [298-383] mmol/kg)

Videorecording

CASA (HT)

Flow Cytometry (Epics XL)

Forward and side scatter (size)

Percoll (BWWSP)-purified pellet diluted in BWW290 ± inhibitors

Incubated 30 min (37°C)

 

 
Figure 4.4. Flow diagram of the methods used to prepare human ejaculated spermatozoa for 
analysis of kinematic parameters with CASA and relative size with flow cytometry. Details are 

given in the text. 
 

The ability of the Percoll washing step to remove non-sperm cells was evaluated on 23 

ejaculates collected from 17 men by expressing the number of non-sperm cells as a percentage 

of the total number of sperm and non-sperm cells.  The percentage of spermatozoa with 

cytoplasmic droplets (Cooper and others 2004) before and after the Percoll wash was 
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determined after fixation in the WHO diluent used for assessing concentration (WHO 1999) and 

examined in a wet preparation by phase contrast microscopy at 40x magnification.  The same 

observer performed all evaluations. 

 

Effect of pH on RVD and Action of Inhibitors 

To determine the effect of pH on the RVD response, human spermatozoa were 

incubated in BWW290 at pH 6.3, 7.4, or 8.4 and murine spermatozoa were incubated in BWW330 

at pH 6.3, 7.4, or 8.4.  For media of pH 6.3, Hepes was replaced by Mopso (final concentration 20 

mM). Because a pH of 8.4 only just falls within the buffering capabilities of Hepes, spermatozoa 

were also incubated at pH 8.4 buffered with 20 mM Tris to determine if the buffering system 

influenced RVD. All media were adjusted to the desired pH with 1M HCl or 1M NaOH.  Flow 

cytometric measurements were taken as described above after incubation times of 5 and 75 min 

for murine spermatozoa and 5 and 30 min for human spermatozoa. 

 

Measurement of Motility using Computer-aided Semen Analysis 

Aliquots (1.5 µl) of human and monkey sperm suspensions were taken after 5 and 30 

min incubations and viewed on a pre-warmed (37°C) dual-sided sperm analysis chamber (2X-

Cel chamber, 20 µm depth, Hamilton Thorne, Beverly, MA, USA) using a negative phase 

contrast 10x objective and 3.3x photo-ocular.  Several fields of view were video-recorded over 

approximately 1.5 min for later analysis using the Hamilton Thorne CASA system software, 

IVOS Version 10.8.  For each sample, approximately 200 spermatozoa were tracked and 

measured for curvilinear velocity (VCL), straight-line velocity (VSL), averaged path velocity 

(VAP), amplitude of lateral head displacement (ALH), beat cross frequency (BCF), linearity 

(LIN=VSL/VCL x 100) and straightness (STR=VAP/VCL x 100). Measurements were made on 

50 frames at a frame rate of 50 Hz, minimum contrast 60, minimum size 3, minimum of 25 track 

points, and minimum VAP of 10 µm/sec. The percentage of motile spermatozoa were estimated 

visually.  
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Reproducibility of Sperm Responses to Quinine 

Human 

Thirty semen samples were obtained after abstinence times (mean ± SEM, range) of 3.8 ± 

0.4, 2-10 days from 11 healthy volunteers of age 29.7 ± 2.0, 24-55 years. Ejaculates were 

characterized  by semen volume (3.9 ± 0.3, 1.3-7.1 ml), sperm concentration (36.8 ± 5.6, 4-97 

million/ml), sperm number (145.7 ± 29.9, 17-631 million/ejaculate), percentage motility grades 

a (35.6 ± 1.9, 21-55), b (14.2 ± 1.3, 4-28), c (8.5 ± 0.8, 1-16), d (42.1 ± 1.0, 35-53) and normal 

morphology (14.1 ± 1.0, 2-20). Thirteen of these samples were judged to be normozoospermic by 

WHO (1999) criteria. 

Ejaculates were placed in an incubator with 5% (v/v) CO2 in air at 37°C during 

liquefaction. After 30 minutes, seminal osmolality was measured, the spermatozoa Percoll 

washed, and approximately 5-10 µl of pelleted spermatozoa were added to 200 µl BSA-free 

BWW290 containing 3 µl PI with or without 0.3 mM quinine (control).  After a 30 min incubation 

period, relative size of spermatozoa was gauged using flow cytometry as described above. 

 

Monkey 

The size of ejaculated spermatozoa, as reflected in forward scatter, was measured at 5 

and 30 min during incubation with control medium (BWW290) and BWW 290 containing 0.3 mM 

quinine. Comparisons were made among males (20 samples, 13 males) and among multiple 

ejaculates produced by 6 males on different occasions. 

 

Mice 

The size of epididymal spermatozoa, as reflected in forward scatter, was measured at 5 

and 75 min during incubation with control medium (BWW330) and BWW330 containing 0.8 mM 

quinine. Comparisons were made among males (spermatozoa originating from one or two 

epididymides: 42 samples, 24 males) and between epididymides (spermatozoa that had been 

collected from both epididymides of the same male: 36 samples, 18 males). 
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Western Blotting 

Murine sperm extracts 

For membrane protein extraction, murine epididymal spermatozoa flushed through the 

vas deferens from the cauda epididymidis were washed in PBS420 and centrifuged for 5 min at 

500g. Pellets were resuspended in 0.5 ml medium and an aliquot was further diluted (30 µl 

sperm suspension + 180 µl medium). The sperm concentration was assessed by measuring the 

absorbance of 100 µl of the diluted aliquot at 405 nm in duplicate in a Spectramax250 

spectrophotometer (Molecular Devices, Munich, Germany) against a blank of PBS420. The 

concentration of the original sperm suspension (million/ml) was calculated using the following 

formula: 

 

C = [(mean absorbance of duplicates – mean blank)/0.014] x dilution factor (7) 

 

 The sample was then transferred into Eppendorf tubes so that each tube contained 6x106 

spermatozoa. One ml PBS medium was added to each tube and the spermatozoa centrifuged at 

500g for 5 min. The supernatant was removed and the sperm pellets pellets frozen and stored at 

-20°C.  

 

Human sperm extracts 

Preparation of ejaculated human spermatozoa began with Percoll washing of the sample 

after liquefaction. Fifty µl lysis buffer (below) were added to the pellet of a Percoll-washed 

sperm sample and intensely vortexed for 3 min.  The samples were kept on ice and incubated in 

the lysis buffer for 1 h and vortexed intermittently.  The samples were then centrifuged at 

20,000g for 20 min at 4°C (Heraeus Biofuge Stratus, Kendro Lab Products, Langendselbold, 

Germany).  The supernatant was collected and protein was measured using a Lowry protein 

assay using BSA as standard (BIO-RAD Munich, Germany). Aliquots of 50-60 µg of protein 

were frozen and stored at –80°C.  Although no sonication was performed, the presence of 

nuclear, mitochondrial and cytosolic proteins cannot be excluded. However, functional 

potassium channels are membrane proteins that contain transmembrane domains.  
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Adsorption of antibodies 

To prepare the pre-adsorbed control, primary antibody was added to the control peptide 

antigen (1 µg peptide per 1 µg antibody: TASK2, TASK3, Kv4.3, Kv4.2; 3 µg peptide per 1 µg 

antibody: Kv1.5, Kv1.4, as recommended by Alomone Labs (Jerusalem, Israel) and incubated 

overnight at 4°C on a rotating plate. Unadsorbed primary antibody was also rotated overnight 

at 4°C. Aliquots of the resulting adsorbed solution and primary antibody were frozen and kept 

at -20°C until use. Westerns blots of all channels potentially present as indicated from the 

results of the inhibitor experiments were performed except for Kv1.7 because of the 

unavailability of appropriate antibodies. 

 

Polyacrylamide gel electrophoresis 

Thawed pellets of murine spermatozoa were taken up in 50 µl lysis buffer (125 mM 

NaCl, 25 mM Hepes, 10 mM EDTA, 10 mM Na-pyrophosphate, 10 mM NaF, 0.1% (w/v) SDS, 

0.5% (w/v) deoxycholate, and 1% (v/v) Triton-X100 at pH 7.3) containing 10 µl protease 

inhibitor cocktail (Sigma) and phosphatase inhibitor 1 mM Na3VO4 and intensely vortexed for 3 

min. The samples were kept on ice for 1 h with frequent vortexing. The suspension was 

centrifuged for 20 min at 20,000g at 4°C and the supernatant was collected. One aliquot of 

frozen human protein was thawed and prepared for each lane of the gel. Lysates were heated at 

65°C for 10-15 min.   

Polyacrylamide gel electrophoretic separation of murine and human proteins was 

carried out using 4-12% (w/v) NuPAGE Novex Bis-Tris precast gels (8 x 8 cm, 1 mm thick; 

Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions, with 50 µg protein 

sample in each lane after heating at 65°C for 10 min in the absence of dithiothreitol (DTT).  

Separated proteins were transferred onto ECL-Hybond membranes (Hybond ECL, Amersham 

Pharmacia, Uppsala, Sweden) using 150 mA at 35 V for 3 h and stained with Ponceau Red to 

check protein loading and visualize the molecular weight markers. After blocking nonspecific 

binding sites with StartingBlock (Pierce,  Perbio Science, Bonn, Germany) for 1 h at room 

temperature, the membrane was incubated with primary affinity-purified rabbit antibodies 

against Kv1.4, Kv1.5, Kv4.2, Kv4.3, TASK2 and TASK3 diluted 1:2,500 (Alomone Labs, 

Jerusalem, Israel) followed by a secondary goat anti-rabbit horseradish peroxidase-conjugated 

antibody diluted 1:250,000. Peroxidase-bound protein bands were visualized using the ECL-
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Plus method (Femto-signal, Pierce). The molecular weights of the signal bands were analyzed 

using line densitometer software (ChemImage Systems, version 5.5, 15440, Alpha Innotech 

Corp., San Laendro, California, USA). 

 

Immunocytochemical Localization 

Murine epididymal spermatozoa were collected by cannulation of the cauda 

epididymidis into PBS420. Half of the suspension was then transferred to another Eppendorf 

tube, centrifuged for 5 min at 500g, and resuspended in 0.5 ml PBS420 for comparison between 

washed and unwashed spermatozoa. Human spermatozoa were washed through Percoll 

adjusted to 320 mmol/kg as described above and resuspended in 3 ml of PBS320. They were 

centrifuged for 5 min at 500g and resuspended in 0.5 or 1 ml PBS depending on concentration. 

For each species, 5 µl of the sperm suspension were smeared across a polylysine slide 

(Menzel GmbH and Co KG, Braunschweig, Germany) and air-dried at room temperature for at 

least 15 min. Slides were placed in a Wheaton staining jar and submerged in 4% (w/v) 

paraformaldehyde in PBS for 30 min. The paraformaldehyde was poured off and replaced with 

PBS for washing. The jar was then placed on a rotating plate for 5 min and the PBS was changed 

twice during this time. A circle with an inner diameter of approximately 1 cm was drawn in the 

centre of the slide with a grease pen (Dako, Denmark). In some instances the cells were 

permeabilized by placing a drop of 0.1% (v/v) Triton X-100 in PBS over the cells within the 

circle for 5 min followed by washing in PBS.  

Cells were then blocked by covering them with PBS containing 3% (w/v) BSA 

(approximately 30 µl) and incubated for 30 min. The slides were washed and a drop of primary 

antibody (1:60) or adsorbed antibody (adsorbed with 10x more antigen than recommended) was 

placed over the spermatozoa and incubated overnight at room temperature in a humid 

chamber.  For detection of minK, incubation with secondary antibody only was used as a 

negative control rather than an adsorbed antibody preparation as insufficient antigen was 

available.  Slides were washed in PBS for 20 min in the dark and a drop of secondary antibody 

(1:200, anti-rabbit IgG TRITC conjugate, Sigma) was incubated with the spermatozoa for 1 h.   

Slides were washed in PBS for 20 min, mounted with Vectashield anti-fade medium (Vector 

Laboratories, Burlingame, CA USA) and observed with a Zeiss Axiovert 200 fluorescence 
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microscope.  Immunolocalization of TASK3 and Kv1.7 was not performed because of lack of 

appropriate antibodies. 

 

Determination of Sperm Isotonicity 

In order to determine if the entry of putative osmolytes and cryoprotectants into 

spermatozoa were by osmo-sensitive channels, cell swelling (indicating osmotic influx of water 

following solute entry) was determined under isotonic conditions. Because these conditions 

have never been defined for spermatozoa, epididymal spermatozoa were incubated in BWW of 

osmolality extending beyond the values measured for epididymal fluid (400-480 mmol/kg, 

Cooper and Barfield 2006). Basic BWW was modified with additional NaCl, choline Cl, sucrose, 

or lactose to obtain the different osmolalities. The final ionic strengths, osmolalities, and 

concentrations of Na+ and Cl- are listed in Table 4.4. Ionic strength (µ) was calculated from the 

formula, µ = ½ Σmz2, where m is the molar concentration and z is the charge on each species in 

solution.  

Murine spermatozoa were incubated in the various media for 10 and 75 min. At the 

appropriate time point, 80 µl sperm suspension (approximately 2-10 x 106 spermatozoa/ml) 

were added to 200 µl of the same medium without BSA and containing PI. Upon gentle 

agitation to mix the sample, flow cytometric measurements were recorded as detailed above.  

The method of null-point volume change was employed in which spermatozoa from the 

murine cauda epididymidis were incubated in a range of osmolalities in the absence and 

presence of 0.8 mM quinine. In hypotonic media, spermatozoa should swell and initiate RVD; in 

the presence of quinine, this is inhibited and the cells remain swollen (Yeung and others 2002). 

In hypertonic media, spermatozoa will shrink; quinine can partially prevent regulatory volume 

increase (RVI) in lymphocytes (Grinstein and others 1983) and may prevent reversal of 

shrinkage with spermatozoa remaining shrunken. Isotonicity was interpreted as the osmolality 

at which there was no change in sperm cell volume in response to quinine. The mean isotonic 

osmolality was obtained by linear regression. 
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 NaCl Sucrose Lactose Choline Cl 

BWW 340     
Ionic strength (µ) 0.189 0.177 0.177 0.179 

Measured Osm. (mmol/kg) 335 336 336 338 
[Na+] mM 171 159 159 159 
[Cl-] mM 128 116 116 121 

BWW 380     
Ionic strength 0.207 0.177 0.177 0.192 

Measured Osm. (mmol/kg) 360 377 377 377 
[Na+] mM 189 159 159 159 
[Cl-] mM 146 116 116 146 

BWW 420     
Ionic strength 0.237 0.177 0.177 0.205 

Measured Osm. (mmol/kg) 423 413 413 420 
[Na+] mM 219 159 159 159 
[Cl-] mM 176 116 116 173 

BWW 460     
Ionic strength 0.267 0.177 0.177 0.219 

Measured Osm. (mmol/kg) 487 455 455 458 
[Na+] mM 249 159 159 159 
[Cl-] mM 206 116 116 200 

BWW 500     
Ionic strength 0.291 0.177 0.177 0.230 

Measured Osm. (mmol/kg) 528 492 492 496 
[Na+] mM 273 159 159 159 
[Cl-] mM 230 116 116 223 

 
Table 4.4. The various media used in isotonicity experiments. Osm, osmolality. 
 

Permeability of the Plasma Membrane to Osmolytes 

 To examine the spermatozoon’s permeability to various potential osmolytes, 

compounds were added to BWW made up to 280 mmol/kg by decreasing the concentration of 

NaCl from 108 mM (as in BWW330) to 83 mM. Only one osmolyte, at a concentration of 250 mM, 

was present in the media in each experiment. The mean (± SD) osmolality of these solutions was 

533.7 ± 11.0 mmol/kg (n=39), an osmolality chosen based on the results of the isotonicity 

experiments.  

The following is a list of the osmolytes tested (abbreviation in Figs., see Chapter 5) 

[formula weight (d)/density (g/ml)]: acetamide (Ace) [59], adonitol (Ado) [152], L-arabitol 

(LAr) and D-arabitol (Dar) [152], D-arabinose (Ara) [150], betaine (Bet) [154], L-carnitine HCl 

(Car) [161], dimethyl sulfoxide (DMS) [78/1.1], D-dulcitol (Dul) [182], meso-erythritol (mEr) 



 

 94 

[122], ethyl(hydroxymethyl)propane (EHM) [134], ethylene glycol (EG) [62/1.11], formamide 

(For) [45/1.13], fructose (Fru) [180], glucose (Glc) [180], Na and K glutamate (Glt) [147], 

glutamine (Gln) [146], Cd-free glycerophosphocholine (GPC) [257], glycerol (GLY) [92/1.26], 

glycine HCl (Gly) [75], myo-inositol (mIn) [180], lactose (Lac) [360], L-lysine (Lys) [146], maltose 

(Mal) [360], D-mannitol (Man) [182], melibiose (Mel) [342], L-proline (Pro) [115], (S)-propane-

1,2-diol (PD2) [76/1.01], propane-1,3-diol (PD3) [76/1.05], raffinose (Raf) [595], sarcosine (Sar) 

[89], serine (Ser) [105], D-sorbitol (Sor) [182], sucrose (Suc) [342], taurine (Tau) [125], trehalose 

(Tre) [378], tris(hydroxymethyl)ethane (THM) [120], thiourea (Thi) [76], and urea (Ure) [60]. 

Spermatozoa were incubated at 37°C in 5% (v/v) CO2 for 75 min in the absence and 

presence of 0.8 mM quinine HCl. Swelling under isotonic conditions indicates the diffusion of a 

permeant compound drawing in osmotically-obligated water, and quinine-sensitivity of the 

channels mediating influx would be revealed by different cell sizes in the presence and absence 

of this inhibitor.  

 

Osmotic Responses of Spermatozoa from Different Strains of Mice 

Spermatozoa from two strains of mice, C57BL6 and B6D2F1, were exposed to media of 

varying degrees of hypotonicity. The basal BWW medium (see above) was modified with NaCl 

or sucrose to create solutions with osmolalities between 160 and 530 mmol/kg (see Table 4.5). 

To evaluate the effect of Cl, the NaCl content of the basal BWW (330 mmol/kg) was replaced 

with Na gluconate. The Na+ and Cl- concentrations and ionic strength of these media are shown 

in Table 5. Volume responses of PI-intact cells were also monitored with time for spermatozoa 

from the two strains of mice of differing post-thaw fertility, B6D2F1 having a high fertility and 

C57BL6 having low fertility (Songsasen and Leibo 1997).  

Epididymal spermatozoa were collected as described in the inhibitor experiments and 

were incubated in the appropriate media with flow cytometric measurements (same settings as 

in the inhibitor experiments) being recorded every 15 min for 2 h to create an osmotic response 

time profile.  
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Osmolality 
mmol/kg 

 
[solute] mM 

 
[Na+] mM 

 
[Cl-] mM 

 
Ionic Strength 

 NaCl    
530 227 278 235 0.296 
330 108 159 116 0.177 
245 6.25 58 14 0.075 
160 0.1 51 8 0.069 
     
 Sucrose    
530 322 65 22 0.083 
330 172 65 22 0.083 
245 93 65 22 0.083 
160 2.5 65 22 0.083 
     
 Na gluconate    
330 0 159 116 0.177 
330 58 159 58 0.177 
330 87 159 29 0.177 
330 101 159 15 0.177 
     

 
Table 4.5. The various media used to profile the osmotic response of C57BL6 and B6D2F1 mice. 

 

Statistics 

Comparisons between the forward scatter measurements from spermatozoa incubated 

in different inhibitors were performed using a one-way repeated measures  analysis of variance 

(ANOVA) followed by Dunnett’s post hoc test against the control.  For data that were not 

normally distributed, one-way ANOVA on ranks was followed by Dunnett’s post hoc test 

against the control. Comparisons of the non-sperm cells and spermatozoa with cytoplasmic 

droplets before and after Percoll centrifugation were made using the Mann-Whitney Rank sum 

test. Values were considered significantly different with P < 0.05.  

The change in osmolality during liquefaction of human semen was examined for each 

sample by linear regression. One-way ANOVA on ranks was performed to determine 

differences with time for all the samples. Differences were accepted with P< 0.05.  

For evaluation of the repeatability of the response to quinine for a given monkey, 

mouse, or man, one-way repeated measures ANOVA was performed. The mean squares (MS) 

values generated in this analysis were used to calculate the intraclass correlation coefficient (an 
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index of reliability of a given parameter of a single man). The following is the applicable 

formula (Sokal and Rolf 1995): 

 

Intraclass correlation coefficient (ri)  

= [(MS between - MS within)/2] / {[(MS between – MS within)/2] + MS within} 

 

Differences in sperm kinetic data for monkey and human spermatozoa were compared 

by one way ANOVA for repeated measures, followed by Dunnett’s post-hoc test. Volume 

changes by various treatments were expressed as a ratio of each control value by one way 

ANOVA followed by a Dunnett’s post-hoc test or for non-normal distributions by the 

nonparametric Kruskal–Wallis one way ANOVA on ranks followed by Dunn’s test. 

Null points for isotonicity experiments were determined by linear regression analysis. 

Effects of quinine on penetration and the size differences at different osmolalities were 

examined by paired t-tests. Significant changes in size with time were tested with one way 

ANOVA (performed on Ranks when not normally distributed or with unequal variance). 

Comparisons between mouse strains with time were made with two way ANOVA (SigmaStat, 

Version 2.03, SPSS Inc., Erkrath, Germany). Differences were considered to be significant when 

P<0.05.   
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Chapter 5 

Results 

 

Volume Regulation of Spermatozoa 

Volume regulation was studied by subjecting epididymal and ejaculated spermatozoa to 

physiologically relevant osmotic challenges and measuring their volume (forward scatter) by 

flow cytometry in the absence and presence of putative inhibitors of potassium channels that 

operate to control volume regulation of cells. As spermatozoa should not need to regulate their 

volume under isotonic conditions, regardless of the presence of quinine (Kulkarni and others 

1997, Petrunkina and others 2001), persistent cell swelling in the presence of quinine during 

hypotonic stress was taken to indicate the inhibition of active volume regulation for monkey, 

murine, and human spermatozoa. BWW330 with 0.8 mM quinine was used as the positive 

control for murine spermatozoa on the basis of previous studies showing that these cells remain 

swollen when exposed simultaneously to quinine at this concentration and a hypotonic 

challenge (Yeung and others 2002).  Human and monkey spermatozoa were exposed to BWW290 

and 0.3 mM quinine under hypotonic conditions as a positive control. This concentration of 

quinine was based on previous studies that showed no toxic effects at this concentration on 

human spermatozoa (Yeung and Cooper 2001, Yeung and others 2003). 

 

Volume Regulation of Monkey Ejaculated Spermatozoa 

Effects of channel inhibitors on volume and kinematic parameters 

The osmolality of the exudate of ejaculates from 15 monkeys was 333 ± 6 mmol/kg 

(mean ± SEM). The size of ejaculated spermatozoa at 5 min incubation in BWW290 was no 

different from that examined after 30 min (1.0045 ± 0.0047, n = 26, expressed as ratios of the 5 

min values) indicating that the spermatozoa were effectively volume regulating in media of 290 

mmol/kg. Of the range of channel inhibitors tested in this medium at both time points, only 

quinine (0.3 mM) and 4-aminopyridine (0.4 mM) increased the sperm size examined at 30 min 

(Fig. 5.1). None of the specific K+ channel inhibitors (margatoxin, charybdotoxin, dendrotoxin or 

clofilium) nor the less specific TEA or BaCl2 affected volume. 
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The viability of ejaculated spermatozoa (% membrane intact) was not affected by any of 

the 22 different treatments at the various doses of tested blockers. The highest mean viability 

was achieved by the quinine treatment group (87 and 85% at 5 and 30 min, respectively), the 

lowest by the dendrotoxin group (70 and 71%) compared with control values maintained at 83 

and 79%.  
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Figure 5.1. The effect of channel inhibitors on the size (expressed as ratio of non drug-treated 
control value, mean + SEM, ordinate) of monkey ejaculated spermatozoa incubated for 30 min 
in quinine (QUI), 4-aminopyridine (4AP), tetraethylammonium (TEA), BaCl2 (Ba), margatoxin 
(MTX), charybdotoxin (CTX), dendrotoxin-α (DTX), apamin (APM), glybenclamide (GLY), and 
clofilium (CLO). Inhibitors and concentrations given on the the abscissa. * significantly different 

from drug-free controls (p < 0.05). 
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In addition to causing an increase in cell volume, quinine and 4AP altered sperm 

kinematic parameters (Table 5.1). Neither inhibitor had a significant effect on sperm vigor 

(curvilinear velocity, VCL) but both depressed straightness (STR), linearity (LIN), and beat cross 

frequency (BCF) and increased the amplitude of lateral head displacement (ALH), indicative of 

reduced forward progression. Quinine additionally depressed average path velocity (VAP) and 

straight line velocity (VSL). With the other blockers tested, no effects on sperm kinematic 

parameters could be detected (data not shown). 

 

 Control QUI (0.3 mM) 4AP (4 mM) 

VAP (µm/s) 102.6 ± 6.6     85.4 ± 4.1*   85.9 ± 6.2 
VSL (µm/s)   86.4 ± 5.6     53.5 ± 3.2*   61.4 ± 6.3 
VCL (µm/s) 128.8 ± 6.1 137.4 ± 5.2 121.7 ± 5.8 
ALH (µm/s)     5.1 ± 0.2      8.9 ± 0.4*      6.8 ± 0.4* 
BCF (Hz)   31.9 ± 0.4    23.9 ± 0.6*    29.0 ± 1.3* 
STR   91.5 ± 0.5    71.1 ± 1.6*    76.1 ± 4.2* 
LIN   72.5 ± 1.7    40.1 ± 1.8*    51.9 ± 4.7* 
Motility (%)  48.5 ± 6.4  60.3 ± 4.8  57.2 ± 5.9 

 
Table 5.1. Effects of channel inhibitors on kinematic parameters of monkey ejaculated 
spermatozoa; mean ± SEM, n=25 (QUI), n=7 (4AP), * p<0.05 compared to control. 
 

Repeatability of monkey ejaculated sperm responses to quinine 

The intra-class correlation coefficients calculated on the repeated measurements of 

relative cell size for control and quinine-treated cells for a given monkey were generated using 

the average forward scatter value of cells with intact plasma membranes as indicated by 

propidium idodide fluorescence. The coefficient for control (0.494) and quinine spermatozoa 

(0.262) indicate that there were large differences between ejaculates from the same individual in 

terms of the volume of the spermatozoa and that these differences were exaggerated when the 

cells were exposed to quinine. Figure 5.2 displays the forward scatter values recorded on 

replicate semen samples from the same monkey. The differences between collections from a 

given monkey are apparent (i.e. approximately 40 channel numbers difference in control 

measurements for monkey 3 and for measurements in the presence of quinine for monkey 1). 

 

 

 



 

 104 

 

 

 

Monkey

1 2 3 4 5

F
o
rw
a
rd
 s
ca
tt
e
r 
(c
h
a
n
n
el
 n
o
.)
 

480

500

520

540

560

580

600

620

Control

Quinine

 

 

Figure 5.2. Repeated forward scatter measurements (y-axis) for ejaculated spermatozoa 

incubated in control (●) medium or in the presence of quinine (∇) for 5 monkeys (x-axis). 
Coefficients of variation for control and quinine treated samples were 3.9% and 3.0%, 

respectively.  
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Western blotting  

Although no specific channels involved in RVD by monkey spermatozoa could be 

identified, western blotting was performed on monkey sperm proteins for the channels 

potentially involved in murine and human spermatozoa. No specific bands were detected for 

any of the channels tested (see methods for western blotting of murine and human 

spermatozoa).  

 

Volume Regulation of Murine Epididymal Spermatozoa 

Effects of channel inhibitors on volume 

Preliminary time course experiments indicated that changes in the volume of control- 

and quinine-treated spermatozoa after incubation in hypotonic medium appeared to stabilize 

after approximately 75 min (data not shown); thus the secondary incubation time point of 75 

min was chosen for examining the effects of channel blockers. After 5 min incubation two 

inhibitors caused a significant difference in forward scatter.  Murine spermatozoa incubated in 

quinine (0.8 mM) and 4-aminopyridine (4 mM) were significantly larger than the controls (Fig. 

5.3).  

Several inhibitors induced swelling of murine spermatozoa at 75 min, including quinine 

(0.8 mM), flecainide (100 µM), 4-aminopyridine (4 mM), cadmium (0.2 mM), barium (1 mM), 

phrixotoxin (100 nM), and clofilium (10 µM).  Spermatozoa incubated in phlorizin (500 µM) 

produced significantly lower forward scatter values than those of the control (Fig. 5.4), whereas 

other inhibitors had no effect.  

At 5 min there were no significant differences in the percentage of membrane intact 

spermatozoa between any of the inhibitors tested, as indicated by PI staining. Only flecainide 

(100 µM) and cadmium (0.2 mM) had significantly lower percentages of PI negative cells after 

75 min incubation (control, 63.5 ± 1.8%; flecainide 45.5 ± 3.6%; cadmium 48.0% ± 4.0).   

 

Repeatability of murine epididymal sperm responses to quinine 

The intra-class correlation coefficients calculated on the repeated measurements of 

relative cell size for control and quinine-treated cells for a given mouse were generated using 

the average forward scatter value of cells with intact plasma membranes as indicated by PI 

fluorescence. These values, 0.551 and 0.538 respectively, indicate that there were large 
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differences between spermatozoa collected from different epididymides from the same mouse 

in terms of the volume of spermatozoa whether treated with quinine or  not. Forward scatter 

values recorded for spermatozoa from both epididymides of the same mouse are presented in 

Figure 5.5. 
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Figure 5.3. The effect of channel inhibitors on the size (expressed as ratio of non drug-treated 
control value, mean + SEM, ordinate) of murine epididymal spermatozoa incubated for 5 min in 
quinine (QUI), 4-aminopyridine (4AP), flecainide (FLE), cadmium (Cd), barium (Ba), clofilium 

(CLO), 4-aminobutyrate (4AB), phrixotoxin (PTX), threo-β-hydroxyaspartate (HOA), 
gadolinium (Gd), margatoxin (MTX), charybdotoxin (CTX), apamin (AP), phlorizin (PHZ), 

glybenclamide (GLY), and tetraethylammonium (TEA). Inhibitors and concentrations given on 
the abscissa. N = 56 for quinine, 4-10 for other inhibitors. *, significantly different from drug-free 

controls (p < 0.05). Spermatozoa were incubated in hypotonic solutions for 5 min in the 
presence of one of the listed inhibitors and then size measured by flow cytometry. 
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Figure 5.4. The effect of channel inhibitors on the size (expressed as ratio of non drug-treated 
control, mean + SEM, ordinate) of murine epididymal spermatozoa. See Figure 5.3 for 

abbreviations of inhibitors. Concentrations given on the abscissa. N = 56 for quinine, 4-10 for 
other inhibitors. *, significantly different from drug-free controls (p < 0.05). Spermatozoa were 
incubated in hypotonic solutions for 75 min in the presence of one of the listed inhibitors and 

then size measured by flow cytometry. 
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Figure 5.5. Repeated forward scatter measurements for spermatozoa taken from each 

epididymis of 18 different mice and incubated in control (●) medium or in the presence of 
quinine (∇). Coefficient of variation for control spermatozoa was 4.9% and for quinine-treated 

samples 5.8%. 
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Effects of pH on murine sperm RVD 

After 5 min incubation, murine spermatozoa incubated in drug-free BWW330 at pH 6.3 or 

at pH 8.4 in Hepes buffer were the same size as those at pH 7.4, but those incubated at pH 8.4 in 

Tris were significantly larger.  Results were the same after 75 min incubation (Table 5.2). The 

viability of spermatozoa was not significantly different at different pH values at either time 

point.  

 
pH Buffer 5 min 75 min n 

6.3 Mopso 1.01 ± 0.00 1.10 ± 0.03 7 
7.4 Hepes 1.00 ± 0.00 1.00 ± 0.00 11 
8.4 Hepes 1.00 ± 0.01 0.99 ± 0.04 4 
8.4 Tris  1.11 ± 0.01*  1.33 ± 0.04* 11 

 
Table 5.2. Relative volumes of murine spermatozoa at 330 mmol/kg at different pH (expressed 
as ratio of pH 7.4 control) after 5 and 75 min incubation. Values are mean ± SEM. *, P < 0.05 

compared to pH 7.4 at each time point. 
 

Western blotting 

Two specific bands detected by the antibody against Kv1.5 protein were visible and 

estimated to be of sizes 85 and 76 kDa but were not present when the antibody was adsorbed 

with antigen (Fig. 5.6, lanes 1-4). Incubation of sperm membrane proteins with a TASK2 

antibody also yielded two specific bands, at 113 and 99 kDa, which were not present on 

membranes incubated with the pre-adsorbed antibody (Fig. 5.6, lanes 5-8). When exposed to 

minK antibody, three bands appeared at 23, 20, and 12 kDa. However, the band at 12 kDa was 

not completely absent in the presence of the adsorbed antibodies despite the increased antigen 

concentration (Fig. 5.6, lanes 10, 12). No specific bands were observed when membranes were 

incubated with antibodies against Kv1.4, Kv4.2, Kv4.3 and TASK3 (data not shown).  
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Figure 5.6.  Identification of Kv1.5, TASK2, and minK channels in murine epididymidal 

spermatozoa by Western blotting. Lanes 1 and 2 were incubated with anti-Kv1.5, lanes 3 and 4 
with adsorbed anti-Kv1.5 (pre-incubated with the control peptide antigen), lanes 5 and 6 with 
anti-TASK2, and lanes 7 and 8 with adsorbed anti-TASK2. Lanes 9 and 11 were loaded with 
molecular weight markers. Lane 10 represents proteins exposed to anti-minK and lane 12 to 
adsorbed anti-minK. Specific bands are indicated by arrows and the determined molecular 

weight (kDa). 
 

Immunolocalization 

Kv1.5, TASK2, and minK proteins were detected by immunocytochemistry. Washed and 

unwashed spermatozoa exposed to anti-Kv1.5 antibodies displayed similar patterns of 

fluorescence (Fig. 5.7). The signal was strongest at the connecting piece and faint, patchy 

fluorescence characterized the length of the flagellum. Adsorption of Kv1.5 antibodies resulted 

in loss of fluorescence at the connecting piece on washed and unwashed spermatozoa.  

There was also no difference between washed and unwashed spermatozoa exposed to 

TASK2 antibodies. These cells exhibited a faint fluorescence along the length of the cell with a 

brighter signal on the midpiece, and a bright, concentrated signal from the connecting piece, 

and droplet when present (Fig. 5.8).  

Washed spermatozoa incubated with anti-minK antibody exhibited a light fluorescence 

along the length of the flagellum, patchy fluorescence over the midpiece, and a bright 

fluorescence at the connecting piece (Fig. 5.9). Unwashed spermatozoa displayed a similar 

pattern but with strong fluorescence on the cytoplasmic droplet and connecting piece. When 

exposed to adsorbed minK antibodies, fluorescence of the droplet and connecting piece was lost 

and a faint glow was seen along the length of the cell for both washed and unwashed cells.
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Figure 5.7. Immunolocalization of Kv1.5 proteins on murine epididymal spermatozoa. Frames 
A, C, and E are phase contrast images of the corresponding fluorescence images B, D, and F. 
Images A and B are of washed spermatozoa incubated with anti-Kv1.5, while images C and D 
are of unwashed spermatozoa. Images E and F are of washed spermatozoa exposed to adsorbed 

Kv1.5 antibodies. Arrows in B and D, connecting piece.  Scale bar = 10 µm. 
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Figure 5.8. Immunolocalization of TASK2 proteins on murine epididymal spermatozoa. Frames 
A, C, and E are phase contrast images of the corresponding fluorescence images B, D, and F. 

Images A and B are of washed spermatozoa incubated with anti-TASK2, while images C and D 
are of unwashed spermatozoa. Images E and F are of washed spermatozoa exposed to adsorbed 
TASK2 antibodies. Arrows in B, connecting piece; arrow in D, cytoplasmic droplet; arrowheads 

in B and D, end of midpiece. Scale bar = 10 µm. 
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Figure 5.9. Immunolocalization of minK proteins on murine epididymal spermatozoa. Frames 
A, C, and E are phase contrast images of the corresponding fluorescence images B, D, and F. 
Images A and B are of washed spermatozoa incubated with anti-minK, while images C and D 
are of unwashed spermatozoa. Images E and F are of washed spermatozoa exposed to adsorbed 
minK antibodies. Arrows in B, connecting piece; arrows in D, cytoplasmic droplets. Scale bar = 

10 µm. 
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Volume Regulation of Human Spermatozoa 

Measurement of seminal osmolality during liquefaction 

Within 5 min of being ejaculated, the osmolality of human semen was low (mean ± SEM, 

294 ± 4 mmol/kg, range 269-311) and increased during the time of liquefaction (Fig. 5.10). There 

were statistically significant increases in osmolality with time for 14 of the 18 semen samples. By 

the time of complete liquefaction (30 min), the osmolality (312 ± 5 mmol/kg, range 280-311) was 

in the range reported previously post-liquefaction (Yeung and others 2003). The osmolality was 

significantly lower at 5 min than that obtained at 25 and 30 min. Two men provided two 

ejaculates the osmolality of which increased significantly during liquefaction on both occasions, 

and one man provided two samples but the osmolality of only one increased significantly with 

time.  
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Figure 5.10. The osmolality of liquefying human semen (ordinate) measured within minutes of 

production and during liquefaction at 37°C (abscissa). Each line and symbol combination 
represents an ejaculate from one individual. Significant differences between the average 

osmolality calculated for all ejaculates are distinguished with x and y superscripts (p < 0.05). 
Mean seminal osmolality is significantly different at time points that do not share a common 

superscript.  
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Purification of sperm samples by Percoll gradient centrifugation 

All semen samples were washed through an 80% / 40% (v/v) Percoll gradient adjusted 

to seminal osmolality. Washed samples had a statistically significant decrease of non-sperm 

particles (before, 15.0 ± 2.1%; after, 1.4 ± 0.2%; p < 0.05).  In the same samples, there was also a 

significant reduction in the percentage of spermatozoa bearing a cytoplasmic droplet before and 

after Percoll gradient centrifugation (before, 34 ± 3; after 7 ± 1; p < 0.05).   

 

Effects of channel inhibitors on volume and kinematic parameters 

Spermatozoa from all men in these experiments were capable of volume regulation as 

indicated by the statistically significant (paired t-test, p < 0.05) increase in their forward scatter 

in the presence of quinine compared to the control (mean difference in channel number from 

the control ± SEM, 16 ± 2.8). 

Human spermatozoa had significantly higher forward scatter values when incubated in 

4-aminopyridine (4AP; 4 mM), clofilium tosylate (10 µM), and quinine (0.3 mM) after 30 

minutes compared with control (Fig. 5.11), but there were no significant differences at 5 min 

(data not shown). There were also no significant differences in the percentage of spermatozoa 

with intact plasma membranes in the presence of the different inhibitors, as indicated by the 

exclusion of propidium iodide at either time point.   

There were no significant differences in the percentage of motile spermatozoa incubated 

in the various inhibitors with the exception of cadmium (Table 5.3). Incubation in quinine or 

4AP induced a hyperactivation-like motility in the spermatozoa.  Quinine significantly 

increased VCL and both drugs significantly decreased VSL, STR, and LIN (Table 5.3).  Clofilium 

also decreased VSL and STR. In addition, cadmium decreased VSL, VAP, and VCL, and barium 

significantly increased VAP without affecting the percentage of membrane-intact cells.   
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Figure 5.11. The effect of channel inhibitors on the size (expressed as ratio of non drug-treated 
control, mean + SEM, ordinate) of human ejaculated spermatozoa incubated for  

30 min. See Figure 5.3 for abbreviations of inhibitors. Concentrations given on the abscissa. N = 
19 for quinine, 7-11 for other inhibitors. *, significantly different from drug-free controls (p < 

0.05). 
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 Control QUI  
(0.3 mM) 

4AP 
(4 mM) 

Ba  
(5 mM) 

CLO 
(10 µM) 

Cd  
(2mM) 

VAP (µm/s) 56.3 ± 1.8  56.6 ± 1.7   61.3 ± 2.8   62.6 ± 3.7*  56.6 ± 2.4  35.0 ± 2.5* 
VSL (µm/s) 43.1 ± 2.0   23.2 ± 1.6*     38.3 ± 3.1* 46.6 ± 4.1   39.9 ± 3.0*  24.5 ± 1.5* 
VCL (µm/s) 88.7 ± 2.4 106.0 ± 3.6* 102.7 ± 4.8 99.7 ± 5.9 94.7 ± 4.7  59.4 ± 3.3* 
ALH (µm/s)   5.6 ± 0.3     7.6 ± 0.3*     7.2 ± 0.4   6.4 ± 0.5   6.3 ± 0.5  4.1 ± 0.5 
BCF (Hz) 22.7 ± 0.9   20.0 ± 1.2*   21.9 ± 1.3 21.2 ± 0.9 21.0 ± 1.2 22.8 ± 1.1 
STR 82.6 ± 2.0   46.7 ± 3.5*     71.0 ± 3.2* 81.3 ± 2.6  78.0 ± 3.5* 82.5 ± 2.6 
LIN 49.4 ± 2.7   22.9 ± 1.3*     37.6 ± 3.1* 47.9 ± 3.7 44.8 ± 4.9 42.0 ± 3.5 
Motility (%) 86.2 ± 2.0  86.0 ± 3.1    85.3 ± 3.4 88.3 ± 3.0 86.0 ± 2.9    37.1 ± 12.6* 

 
Table 5.3. Effects of channel inhibitors on kinematic parameters of ejaculated human 

spermatozoa, mean ± SEM, n = 19 (control and QUI), n = 11 (4AP and Ba), n = 10 (CLO), n = 5 
(Cd). 

 

Repeatability of human ejaculated sperm responses to quinine 

There was high repeatability of the forward scatter measurements of spermatozoa in 

separate ejaculates from the same individual. This was shown by the intra-class correlation 

coefficients generated using the average forward scatter value of cells with intact plasma 

membranes as indicated by PI fluorescence.  These values were 0.946 for cells exposed to 

quinine and 0.952 for control cells. Forward scatter measurements recorded for spermatozoa 

from repeated semen samples of 11 men and incubated with and without quinine are presented 

in Figure 5.12.  
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Figure 5.12. Repeated forward scatter measurements for spermatozoa taken from two to four 
ejaculates from 11 men and incubated in control (●) medium or in the presence of quinine (∇). 
Coefficients of variation for control and quinine-treated spermatozoa were 5.3% and 4.7%, 

respectively. 
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Effects of pH on volume regulatory decrease 

After 30 min incubation, spermatozoa incubated in BWW290 at acidic or alkaline pH 

without inhibitors were not significantly different in size from the control (cells in BWW290 pH 

7.4 without inhibitors) although cells in pH 8.4 tended to be larger (Table 5.4). 

 
pH Buffer 5 min 30 min n 

6.3 Mopso 0.998 ± 0.002 0.992 ± 0.003 7 
7.4 Hepes 1.00 ± 0.00 1.00 ± 0.00 7 
8.4 Hepes 1.009 ± 0.004 1.007 ± 0.007 5 
8.4 Tris 1.008 ± 0.004 1.012 ± 0.0002 7 

 
Table 5.4. Relative volumes of human spermatozoa in 290 mmol/kg media of different pH 
(expressed as ratio of pH 7.4 Hepes control) after 5 and 30 min incubation. Values are mean ± 

SEM. 
 
Western blotting 

Specific protein bands were defined as those not present on membranes incubated with 

the antibody that had been pre-adsorbed with that particular channel antigen. One specific 

band detected using an antibody against Kv1.5 protein was estimated to be of size 76 kDa (Fig. 

5.13, lane 1). Antibodies against TASK2 also revealed specific bands determined to be 55 and 72 

kDa (Fig. 5.13, lane 3). Exposure to anti-minK antibodies created a specific band at 14 kDa (Fig. 

5.13, lane 5). Incubation of sperm membrane proteins with TASK3 antibodies yielded 2 specific 

bands of 49 and 75 kDa (Fig. 5.13, lane 7).  No specific bands were observed when membranes 

were incubated with antibodies against Kv1.4, Kv4.2 or Kv4.3 (data not shown).  

 



 

 120 

 

absorbedprimary

76

absorbedprimary

75

49

7676
72

55

72

55

primary absorbed

14

primary absorbed

14

absorbedprimary

75

49

absorbedprimary

75

49

1 2 3 4

5 6 7 8

absorbedprimary

 
 

Figure 5.13.  Identification of Kv1.5, TASK2, minK, and TASK3 channels in human ejaculated 
spermatozoa by Western blotting. Duplicate lanes under 1 were incubated with anti-Kv1.5, 

lanes under 2 with adsorbed anti-Kv1.5 (pre-incubated with the control peptide antigen), lanes 
under 3 with anti-TASK2, and lanes under 4 with adsorbed anti-TASK2. Lanes under 5 were 
incubated with anti-minK, lanes under 6 with adsorbed anti-minK, lanes under 7 with anti-
TASK3, and lanes under 8 with adsorbed anti-TASK3. Specific bands are indicated by arrows 

and the determined molecular weight (kDa). 
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Immunolocalization 

Kv1.5 was localized to the midpiece and posterior post-acrosomal region of the sperm 

head (Fig. 5.14). In the case that a cytoplasmic droplet was still present, there was an intense 

fluorescence at that site (inset in Fig. 5.14A). TASK2 appeared to be localized to the posterior 

post-acrosomal region and neck and possibly along the tail although this staining was very 

weak (Fig. 5.15). Some non-specific staining on the sperm head was still detected on sperm 

incubated with the adsorbed preparation. The protein minK was localized to the posterior post-

acrosomal region of the head and also on the neck of the spermatozoon (Fig. 5.16). However, 

staining was weaker along the midpiece and became more intense again along the principal 

piece of the flagellum.   
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Figure 5.14. Immunolocalization of Kv1.5 on human ejaculated spermatozoa. Phase contrast (A 
and C) and fluorescence (B and D) images of spermatozoa incubated in primary (A and B) or 
adsorbed (C and D) antibody preparations. Arrows in B, post-acrosomal and neck regions; 

arrowheads in B, cytoplasmic droplet. Inset in frames A and B are the phase and fluorescence 
images of a spermatozoon with an intact cytoplasmic droplet. Scale bar = 5 µm. 
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Figure 5.15. Immunolocalization of TASK2 on human ejaculated spermatozoa. Phase contrast 
(A and C) and fluorescence (B and D) images of spermatozoa incubated in primary (A and B) or 

adsorbed (C and D) antibody preparations. Scale bar = 5 µm. 
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Figure 5.16. Immunolocalization of minK on human ejaculated spermatozoa. Phase contrast (A 
and C) and fluorescence (B and D) images of spermatozoa incubated in primary (A and B) or 
with secondary antibody only (C and D) preparations. Braces (B) indicate stain-free midpiece 

compared with head and principal piece. Scale bar = 5 µm. 
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Determination of Isotonicity of Murine Epididymal Spermatozoa 

When spermatozoa swell or shrink osmotically, they lose or gain osmolytes through 

channels activated by RVD or RVI. However, cryoprotectants may not need to utilise channels 

but permeate directly through the membrane. This could be recorded if osmotic movement of 

water is prevented by studying cells at isotonicity. These experiments were designed to 

determine the tonicity of murine cauda epididymidal spermatozoa. 

Because refractive index can alter forward scatter signals (Shapiro 1995), the forward 

scatter of standard beads was measured in every medium used and compared with that 

obtained in standard BWW330 to provide correction factors for all values generated from 

spermatozoa. There was little effect of refractive index on the measurements with a mean (± SD) 

correction factor of 0.988 ± 0.020). 

At 75 min, the extent of swelling induced by quinine in hypotonic medium depended on 

the nature of the medium and was always higher in the presence of NaCl than in low ionic 

strength media (sucrose, lactose) as well as high ionic strength medium containing choline Cl. 

As the osmolality increased, the difference in size between quinine-treated and –untreated 

spermatozoa (reflecting the extent of volume regulation) decreased for all major medium 

components (Fig. 5.17). There was no significant difference between this measure of volume 

regulation and zero (i.e. no volume regulation) when the osmolality reached 528 mmol/kg for 

NaCl, 462 mmol/kg for choline Cl, 458 mmol/kg for lactose but was far lower (377 mmol/kg) 

for sucrose. Linear regression analysis revealed the null point to be 527 mmol/kg for both NaCl 

and choline Cl, 477 mmol/kg for lactose, and 423 mmol/kg for sucrose. These values indicate a 

range of osmolalities within which isotonicity of murine epididymal spermatozoa may be 

achieved. 
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Figure 5.17. Regression lines for the difference in size of murine epididymal spermatozoa 
incubated with and without quinine (ordinate) in media of various osmolality (abscissa) 

composed of high (NaCl, choline Cl) and low (lactose and sucrose) ionic strength. 
 
 

Osmolyte Permeability 

As the null point was dependent on the charge of the major fluid component (ionic 

strength), and the osmolytes to be tested for permeability were both uncharged polyols and 

charged amino acids, the higher tonicity medium (530 mmol/kg) was taken as isotonic for these 

studies. By creating isotonic media with this osmolality the possibility that osmotic swelling, 

and the concomitant opening of volume–sensitive channels, would complicate the study of 

permeability was reduced. The impermeant trisaccharide raffinose (C18) and disaccharides (C12) 

sucrose, trehalose, lactose, melibiose and maltose (>340 d) at 250 mM did not cause 

spermatozoa to increase size above a mean channel number (CN) of 308 in isotonic medium, 

and the upper 95% confidence limit (mean + 2 SD) of the size of spermatozoa in all six 
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impermeant sugars (342 CN) was taken as the size threshold below which compounds were 

considered to be non-penetrating (Fig. 5.18). 

In the absence of extracellular osmotic differences, no bulk water movement can occur, 

but osmotic entry of water can follow penetration of permeant solutes into the cell. Most 

compounds < 200 dalton were thus considered penetrating because they induced cell volume 

increase above this threshold in cells held at isotonicity. The extent of entry was independent of 

the nature of the compound as both uncharged and charged polyols, sugars, and amines all 

caused swelling. Overall, the polyols penetrated to a greater extent than the amines (Fig. 5.18). 

Several polar compounds, including the major epididymal secretions glycerophosphocholine 

(GPC), myo-inositol, L-carnitine, glutamate, as well as serine and lysine, were considered 

impermeant by this criterion (Fig. 5.18). Of the common cryoprotective agents relative order of 

penetrability was DMS>EG>PD2>PD3≥GLY>THM=EHM for spermatozoa from C57BL6 mice 

(Fig. 5.18).  

There was no relationship of swelling to the number of hydroxyl groups or the polarity 

as defined by the C/OH ratio (Storey and others 1998) or the mean molecular cylindrical radius, 

as measured from molecular modeling (Strange and Jackson 1995) or formula (Tsukaguchi and 

others 1998, data not shown). The presence of quinine did not reduce the entry of any permeant 

compound into spermatozoa; on the contrary, significantly larger volumes were achieved in the 

presence of quinine for all compounds tested (Fig. 5.19). Overall, the greater the cell size 

induced by permeating solutes, the greater the effect of quinine (Fig. 5.20).  
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Figure 5.18.  Mean forward scatter (± SEM) of epididymal spermatozoa (ordinate) from C57BL6 mice in isotonic medium (530 
mmol/kg) containing 250 mM of osmolyte (circles, alcohols; hexagons, sugars; squares, amines; diamonds, others) of various 

molecular weights (abscissa). The dashed line represents the threshold below which osmolytes were considered to be impermeable; 
open circles represent polyols, open hexagons represent sugars, shaded squares represent amines, and shaded diamonds represent 

osmolytes that do not fit into the other categories. Left panel, polyols; Right panel, sugars, amines, others.
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Figure 5.19.  Mean difference in forward scatter (FS in presence of quinine – FS without quinine) 
of epididymal spermatozoa from C57BL6 mice (ordinate) in isotonic medium (530 mmol/kg) 
containing 0.25 M osmolytes (see Chapter 4, Methods, for abbreviations) of various molecular 

weights (Da, abscissa). 
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Figure 5.20. Mean forward scatter (± SEM) of epididymal spermatozoa from C57BL6 mice in 
isotonic medium (530 mmol/kg) with (ordinate) or without (abscissa) 0.8 mM quinine and 
containing 250 mM osmolytes of various molecular weights (see Chapter 4, Methods, for 

abbreviations). Dotted line is the line of identity. 
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Osmotic Responses of Spermatozoa from Two Strains of Mice 

NaCl medium 

Because isotonicity in NaCl medium was measured to be 527 mmol/kg (Fig. 5.17), the 

medium of 530 mmol/kg was assumed to be isotonic. At this osmolality there were significant 

differences in the relative volume of the spermatozoa from the two strains of mice at all time 

points except 45 min and after 105 min of incubation (Fig. 5.21, paired t-test, p< 0.05). 

Spermatozoa from the C57BL6 mice were larger at earlier time points than the B6D2F1 

spermatozoa, yet spermatozoa from both strains reached a similar volume at the end of the 2 

hour incubation period. In medium of 330 mmol/kg there were significant differences in 

relative volume at the 30, 45, 75, and 90 min time-points. Throughout the incubation period 

spermatozoa from C57BL6 mice were larger than B6D2F1 mice in 330 mmol/kg medium, with 

the largest difference observed at the 30 min time-point where spermatozoa from the C57BL6 

mice were approximately 50 channel numbers larger. Spermatozoa incubated in medium of 245 

mmol/kg were not significantly different between strains, and there was only one significant 

difference between strains in 160 mmol/kg medium at the 30 min time-point, although the 

C57BL6 spermatozoa tended to be larger.  

Thus, the spermatozoa from the two strains at isotonicity (530 mmol/kg) were not 

different in volume but a difference between strains became evident as the osmolality was 

reduced, with spermatozoa from the B6D2F1 strain coping better at maintaining volume with 

the osmotic challenge. Surprisingly, the lowest osmolality (160 mmol/kg) did not produce the 

largest cells by 120 min, which may reflect the low chloride ion concentration of these media.  
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Figure 5.21. Mean forward scatter measurements ± SEM (ordinate) of epididymal spermatozoa 

from C57BL6 mice (solid circles) and B6D2F1 mice (open circles) over a 2 hour incubation 
period (abscissa) in media of various osmolalities. See legend for color scheme of osmolalities. 
Asterisks indicate a significant difference (p < 0.05) in size of spermatozoa from the two strains 

of mice at the osmolality indicated by the color of the asterisk. 
 

Na gluconate medium 

As the lowest osmolality of NaCl medium tested was obtained at the expense of lower 

Cl-, Na+, and ionic strength, other factors may be influencing osmotic response at such low 

osmolality. If chloride needs to efflux from the cell with K+ to maintain electroneutrality, the 

lower Cl- content of the 160 mmol/kg medium may promote greater Cl- (and hence K+) efflux 

with better volume regulation. In order to check this possibility, media of 330 mmol/kg and 

constant Na+ and ionic strength were made by replacing Cl- with gluconate. Cell volumes were 

indeed smaller with lower concentrations of Cl- (indicative of better volume regulation) and 

generally there was less fluctuation in volume in response to the different osmotic challenges 

when compared with the spermatozoa in media with differing levels of Cl- (Fig. 5.22). In 15 mM 

Cl- at 15 and 30 min and in 29 mM at 30 min spermatozoa from the B6D2F1 strain were 

significantly smaller than those from the C57BL6 strain. However, in 116 mM Cl- at 45 min 
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spermatozoa from the C57BL6 strain were significantly smaller than those from the B6D2F1 

strain. 
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Figure 5.22. Mean forward scatter measurements ± SEM (ordinate) of epididymal spermatozoa 

from C57BL6 mice (open circles) and B6D2F1 mice (solid circles) over a 2 hour incubation 
period (abscissa) in media of 330 mmol/kg and containing various concentrations of Cl-. See 
legend for color scheme of Cl- concentrations. Asterisks indicate a significant difference (p < 
0.05) in size of spermatozoa from the two strains of mice at the Cl- concentration indicated by 

the color of the asterisk. 
 

Sucrose medium 

When sucrose was used to raise the osmolality, the forward scatter measured in 530 

mmol/kg was far lower than that obtained in medium adjusted with NaCl, and spermatozoa 

from the B6D2F1 mice were significantly smaller than spermatozoa from C57BL6 mice despite 

very little change in volume for either strain over time (Fig. 5.23). This may reflect the overall 

lower Cl- concentration in the low ionic strength medium. Sperm sizes at the other osmolalities 

were also below those determined in NaCl medium but increased with decreasing osmolality.  

As found at 530 mmol/kg, there was little volume change in spermatozoa from either strain 

observed in medium of 330 mmol/kg although there were significant differences during the 

first hour of incubation. When osmolality was lowered to 245 mmol/kg, volume gradually 
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increased over 60 min after which the C57BL6 spermatozoa were smaller than B6D2F1 

spermatozoa (significantly at 90 and 105 min). At 160 mmol/kg, spermatozoa from neither 

strain were able to maintain a constant volume. Spermatozoa from the B6D2F1 strain were 

significantly smaller than those from the C57BL6 strain before this capacity was lost and a 

plateau value of approximately 510 channel number was reached (Fig. 5.23). With sucrose the 

lowest osmolality led to the largest sperm volume by 120 min. 
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Figure 5.23. Mean forward scatter measurements ± SEM (ordinate) of epididymal spermatozoa 

from C57BL6 mice (open circles) and B6D2F1 mice (solid circles) over a 2 hour incubation 
period (abscissa) in media of various osmolalities adjusted with sucrose. See legend for color 
scheme of Cl- concentrations. Asterisks indicate a significant difference (p < 0.05) in size of 

spermatozoa from the two strains of mice at the osmolality indicated by the color of the asterisk. 
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Chapter 6 

Discussion and Conclusions 

 

Volume regulation is an extremely important process for spermatozoa, that if disrupted 

leads to infertility. The mechanisms underlying volume regulatory responses of spermatozoa 

from various species are just beginning to be revealed. The experiments described in this 

dissertation contribute to the growing knowledge on sperm volume regulation.  

The first part of this dissertation was dedicated to characterizing the channels, in 

particular the K+ channels, involved in the regulatory volume decrease (RVD) of monkey, 

murine, and human spermatozoa. Candidate channels were identified by comparing volume 

responses of spermatozoa to blockers of channels that prevent volume regulation of somatic 

cells. The potential channels identified here have pharmacological sensitivities that correspond 

to those found in somatic cells. For each species investigated, potential channels were identified 

from the cell’s response to inhibitors, and the experiments that followed were conducted to 

characterize further these channels on spermatozoa. 

The second part of this dissertation was designed to investigate potential osmolytes that 

could be utilized by spermatozoa during osmotic events. These experiments involved first a 

determination of the isotonicity of spermatozoa, followed by a test of permeability of 

spermatozoa at isotonicity towards a wide range of molecules, including some that are 

commonly used as cryoprotectants and others that spermatozoa are exposed to in high 

concentrations in the epididymis.  

The third part of this dissertation evaluated the osmotic responses of spermatozoa from 

two different strains of mice, one of which has a relatively higher post-thaw fertility rate than 

the other. The reason for the difference in the freezability of spermatozoa from these two strains 

of mice is unknown. These experiments were conducted to determine if this difference in 

freezability could be related to the volume regulatory ability of the spermatozoa.  

This discussion will first address each of these topics, followed by a more general 

discussion on the potential applications of this work in the fields of reproductive and 

conservation biology, as well as future directions of this research area.  
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Volume Regulation by Spermatozoa 

Volume regulation is a complicated process, and it is likely that RVD involves more than 

one channel working in concert with others to reduce volume. Owing to the lack of absolutely 

specific inhibitors, swelling due to blockage of a single channel can not be distinguished from 

that caused by blockage of multiple channels. To screen for possible channels involved, 

inhibitors and doses were chosen for their reported ability to block K+ currents in somatic cells.  

The pharmacological profiles of all channels were compared with the channel blockers 

that did and did not cause swelling of spermatozoa. A Table was constructed for each species 

(see below) to elucidate the logic used in identifying potential RVD channels (those that can be 

inhibited by at least one of the tested blockers). Channels were not excluded if no information 

about the effects of an inhibitor on that channel were available (empty box in the Table), or if 

the channels were insensitive to a tested inhibitor (X in box). 

 
Exposure to Channel Inhibitors 

Monkey 

Cynomolgus monkey ejaculated spermatozoa were evaluated for their response to 

potassium channel inhibitors, including quinine as positive control. Results from employing a 

wide range of inhibitors of channels involved in the volume regulation of somatic cells 

indicated that Kv4.1, 4.2, and 4.3 may be involved in the RVD response because of the cell’s 

sensitivity to 4AP, but not the other inhibitors tested (Table 6.1). By the same logic, the other 

channels listed in Table 1 are most likely not involved in RVD of monkey spermatozoa as 

incubation in these inhibitors in hypotonic conditions did not cause an increase in cell volume.  

The response of monkey epididymal spermatozoa to quinine has also been examined 

(Yeung and others 2004b). Caudal spermatozoa swell in hypotonic medium followed by a 

reduction in volume (RVD). RVD is blocked by quinine and caudal sperm motility is affected 

similarly to ejaculated spermatozoa with decreases in VSL and LIN. Corpus epididymidal 

spermatozoa also swell in hypotonic medium but are unable to reduce their volume to the 

extent of caudal spermatozoa. Caput spermatozoa showed no reaction to the same osmotic 

challenges. Unfortunately, the large numbers of epididymal spermatozoa needed to test the 

range of inhibitors used on ejaculated sperm were unavailable for comparison.  
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Mouse 

Murine epididymal spermatozoa were sensitive to several inhibitors and this permitted 

several potential channels involved in RVD to be identified. These channels are listed in Table 

6.2 along with their pharmacological profiles that could be demonstrated on murine 

spermatozoa. 

Four-aminopyridine (4AP) is a quaternary ammonium blocker routinely used in 

electrophysiological studies to identify voltage-gated (Kv) channels (Mathie and others 1998). 

The significant increase in sperm size after 75 min incubation in hypotonic medium with 4AP 

thus suggests that voltage-gated potassium channels are involved in volume regulation (Table 

6.2). However, the insignificant results from incubation in TEA, charybdotoxin and dendrotoxin 

exclude the involvement of the majority of Kv channels except Kv1.4 and Kv1.5 (see Table 6.2). 

Voltage-gated potassium channel 1.5 (Kv1.5) has previously been implicated in RVD of 

electrically unexcitable cells (Felipe and others 1993), but there is currently no evidence for the 

involvement of Kv1.4 in volume regulation of other cell types. Recently, a high-conductance, 

4AP-sensitive channel has been identified in human spermatozoa from patch-clamping 

experiments (Gu and others 2004). In addition, 4AP also inhibits RVD of human (Yeung and 

Cooper 2001) and cynomolgus monkey spermatozoa (Yeung and others 2004b). 

The sensitivity of murine spermatozoa to flecainide, cadmium, phrixotoxin, and 4AP 

suggests that the Kv4 potassium channels may have a role in RVD of murine spermatozoa, as in 

monkey spermatozoa. Murine spermatozoa were sensitive to flecainide at 100 µM but not 10 

µM, which is a similar response to that of COS7 cells transfected with Kv4.2 where there was a 

dose-dependent inhibition by flecainide in the µM range (Caballero and others 2003). Murine 

colonic myocytes contain all three Kv4 channels but Kv4.3 transcripts are relatively more 

abundant and extremely sensitive to micromolar concentrations of flecainide (Amberg and 

others 2002). Kv4.3 channels, which mediate the transient outward potassium current in the 

human heart, when transfected into HEK293 cells, are inhibited by cadmium chloride with an 

EC50 of 0.110 µM (Calmels and others 2001).  Phrixotoxin specifically inhibit Kv4.2 and Kv4.3 

by altering their gating properties (Diochot and others 1999). Western blotting did not reveal 

specific bands for Kv4.2 or Kv4.3. The reactivity of the antibodies used in these experiments had 

not been confirmed in mice but had been in the rat, and the sequences are homologous for 15 of 

16 residues with murine Kv4.2 and for 16 of 17 residues with murine Kv4.3.  
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Spermatozoa were significantly larger than controls when incubated in hypotonic 

medium containing clofilium, another quaternary ammonium derivative, and barium chloride.  

The family of potassium channels known to have two pore regions and four transmembrane 

helices (2P-4TM) are blocked by clofilium. These proteins are thought to channel the leak or 

background conductances that maintain the passive properties of the cell (Niemeyer and others 

2001), including volume regulation. The TWIK-related, acid-sensitive potassium channel 2 

(TASK2) in Ehrlich cells is blocked by clofilium with an IC50 of 25 µM and may participate in 

RVD of these cells (Niemeyer and others 2001). The 2P-4TM channels are also characterized by 

an insensitivity or low sensitivity to a range of conventional K+ channel blockers such as 4AP, 

TEA and barium chloride (Niemeyer and others 2001). However, barium was found to inhibit 

TASK3 transfected into COS-7 cells (Kim and others 2000).  

The present results also suggest channels that are unlikely to be involved in volume 

regulatory responses of murine spermatozoa. That glybenclamide did not affect volume 

regulation argues against the utilization of inwardly rectifying (Kir) channels 6.1 and 6.2. By 

similar reasoning the Ca2+-activated K+ channels Slo1 and SK4 (CTX-sensitive) and SK2 and SK3 

(apamin-sensitive) are unlikely to mediate sperm RVD (Coetzee and others 1999, Vergara and 

others 1998). Of the Kv channels, Kv1.2, Kv1.3 and Kv1.6 are inhibited by CTX, and Kv1.3, 

Kv1.6 and Kv1.7 are inhibited by MTX. Tetraethylammonium (TEA) inhibits numerous Kv 

channels (see Table 2, Coetzee and others 1999, Wehner and others 2003), thus ruling out their 

operation in sperm RVD as the process was not affected by these inhibitors. 

Phloridzin, 4-aminobutyrate and threo-β-hydroxyaspartate are inhibitors of channels or 

transporters used by organic osmolytes (myo-inositol [Higgins and Kane 2003]; carnitine, [Kido 

and others 2001]; glutamate [Chen and Swanson 2003], respectively).  Judging by the lack of 

swelling upon incubation in these inhibitors, there was no indication of significant involvement 

of such channels or transporters in the volume regulation of spermatozoa at this osmolality 

during the observed time periods.  Other inhibitors are known to block channels used by 

organic osmolytes that may inhibit RVD of sperm cells, and could be used in future experiments 

for a more thorough investigation of the role of organic osmolytes in RVD.  

Phloridzin is a sodium-dependent hexose transport inhibitor that blocks myo-inositol 

transport in murine oocytes (Higgins and Kane 2003).  However, this non-specific blocker also 

inhibits water transport through the sodium-glucose co-transporter (SGLT1) expressed in 
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Xenopus laevis (Loo and others 1999) and fluid absorption by renal proximal tubules of the 

teleost Carassius auratus (Kanli and Terreros 1997).  Thus, the finding that murine spermatozoa 

incubated in phloridzin were significantly smaller than the control may be due to the inability 

of water to enter the cell.  The time-course experiment confirmed that control spermatozoa 

underwent initial swelling and did not return to their initial volume by the end of the 

incubation period.  The difference between the initial volume, represented by the size of cells 

incubated in phloridzin (in which hypo-osmotic swelling is blocked), and the volume of the 

control cells at 75 min may reflect more the swelling of the control cells (incomplete RVD) rather 

than an RVD effect induced by phloridzin.  

Several potassium channels seem to be involved in volume regulation of murine 

spermatozoa, as judged from the effects of specific channel blockers on this process.  After 

excluding K+ channels not likely to be involved in RVD, Kv1.4, Kv1.5, Kv4.2 Kv4.3, and minK 

remain as putative channels, suggestions consistent with the inhibitory effects of PTX and 

flacainide (which inhibits both Kv4.2 and Kv4.3) and Cd2+ (which inhibits Kv4.3).  The 

sensitivity to clofilium also suggests an involvement of the TASK2 channel. Western blots 

confirmed the presence of Kv1.5 and TASK2 proteins in sperm membranes but did not provide 

evidence for Kv4.2, Kv4.3, or Kv1.4. These channels, which may have overlapping ranges of 

activation, could work in concert to produce successful volume regulation.  While K+ channels 

appear to have a prominent role in RVD of murine spermatozoa, it is possible that other 

channels are also involved. Current research has determined that various anion and organic 

osmolyte channels and co-transporters contribute to the volume regulatory responses of murine 

spermatozoa (Yeung and others 2005b; Klein and others 2006).  

 

Human 

Candidate channels for regulating volume in human spermatozoa were identified if the 

channels were inhibited by 4AP and/or CLO, which inhibited RVD of human spermatozoa, but 

not inhibited by TEA, PTX, FLC, Ba2+ or Cd2+ as these inhibitors did not prevent RVD (Table 

6.3). According to this response, it is possible that Kv1.4, Kv1.5, Kv1.7, minK and TASK2 are 

involved in volume regulation of human spermatozoa. Of these channels, Kv1.5, minK and 

TASK2 have been previously implicated in RVD of somatic cells, as discussed for murine 

spermatozoa. 
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In summary, several K+ channels may be involved in the volume regulation of human 

spermatozoa, including those in the voltage-gated and acid-sensitive K+ channel families. These 

channels, which may have overlapping ranges of activation, could work in concert to produce 

successful volume regulation. Whereas K+ channels appear to have a prominent role in RVD of 

human spermatozoa, it is possible that other channels are involved. These experiments do not 

rule out the participation of other types of channels blocked by the inhibitors tested here. Thus 

future research should determine if various anion and organic osmolyte channels contribute to 

the volume regulatory responses of human spermatozoa. Evidence for the involvement of Cl- 

channels in human sperm RVD has been presented (Yeung and others 2005a). 

 

Voltage-gated K channels seem to mediate much of the RVD of spermatozoa but these 

channels differ between species: Kv4.1, 4.2, 4.3 in the monkey and mouse but not in man; Kv1.4, 

Kv1.5, minK, TASK1, and TASK2 in man and mouse but not in monkey. The overlap in 

channels potentially involved in RVD of spermatozoa from different species may reflect the 

presence of primitive channels (Sitaraman & Sauna 2000) that evolved to prevent stresses in 

spermatozoa encountered during maturation in the epididymis and upon ejaculation into the 

female tract. 

 

Western Blots 

Monkey 

The voltage-gated Kv4 channels (Kv4.1, Kv4.2 and Kv4.3) are involved in A-type 

currents (rapidly inactivating, 4AP-sensitive, K+ currents: Amberg and others 2002) and can be 

distinguished by flecainide, cadmium and phrixotoxin. However, flecainide, cadmium, and 

phrixotoxin were not tested on monkey spermatozoa, because of the difficulty obtaining 

ejaculates with sufficient normal spermatozoa. Since the Kv4 channels were also identified as 

candidates in murine sperm RVD, monkey spermatozoa were used alongside the murine 

spermatozoa in western blots, rather than in inhibitor experiments that require larger numbers 

of spermatozoa.  Western blotting did not reveal any specific bands for Kv4.2 and Kv4.3, and 

appropriate antibodies for Kv4.1 were not available. The failure to find specific bands during 

western blotting made immunocytochemistry for monkey spermatozoa unjustifiable. It remains 

possible that Kv4.1 is involved in RVD of monkey spermatozoa. 
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Mouse 

Western blotting of proteins from several potential potassium channels (Kv1.5, Kv1.4, 

Kv4.2, Kv4.3, TASK2, TASK3, and minK), revealed specific bands for Kv1.5, TASK2, and minK 

in murine spermatozoa. The specific bands found for Kv1.5 (85 and 76 kDa) were similar to, but 

not identical with, those reported for Schwann cells (90 and 65 kDa, Sobko and others 1998) and 

rat atrium (75 and 60 kDa, Yamashita and others 2000). The TASK2 specific bands at 113 and 99 

kDa were different from the reported value of 45 kDa found in rat kidney by the antibody 

distributor (Alomone Labs, Israel).  MinK proteins were previously found to be 16 kDa in 

canine Purkinje fibers (Han and others 2002), 26, 22, and 17 kDa in Sf9 cells (Alomone Labs, 

Israel), and 23 and 17 kDa in rat heart (Alomone Labs, Israel). These are similar to the bands 

detected in this study at 23, 20, and 12 kDa. Any differences between the values found here and 

those reported in the literature may represent the presence of sperm-specific isoforms of these 

channels in murine spermatozoa.  

 

Human 

Western blot experiments on human spermatozoa revealed two specific bands for 

TASK2 determined to be 55 and 72 kDa. This is in contrast to the reported value of 45 kDa in rat 

kidney membranes (Alomone Labs, Israel) and rat taste receptor cells (Lin and others 2004).  

Immunolocalization revealed a distribution over the principal piece of the flagellum and 

detection at the connecting piece. The presence of TASK2 mRNA has previously been detected 

in post-meiotic germ cells of the mouse (Schultz and others 2003).  

Acid-sensitive TASK3 was also detected in western blots of human sperm proteins. 

Incubation of sperm membrane proteins with TASK3 antibodies yielded 2 specific bands of 49 

and 75 kDa. The value of 49 kDa is identical to the value reported by the supplier for rat 

cerebellum lysates, but the band at 75 kDa has not been reported. Immunolocalization was not 

possible owing to lack of appropriate antibodies. TASK3 is sensitive to Ba2+ in somatic cells 

(Kim and others 2000), and Ba2+ did have a slight effect on motility.   

MinK is a 130 amino acid protein that, when associated with KvLQT1 (Kv7.1), forms the 

potassium channel complex responsible for the underlying slow cardiac current (Barhanin and 

others 1996, Sanguinetti and others 1996). This protein has been implicated in RVD of some 

populations of renal proximal tubule cells (Millar and others 2004); furthermore, murine 
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tracheal epithelial cells from IsK (minK) knockout mice are unable to recover normal size when 

exposed to hypotonic solutions (Lock and Valverde 2000). Vestibular dark cells of the inner ear 

(Wangemann and others 1995) and Xenopus oocytes (Busch and others 1992) also have mink-

mediated currents that are activated by cell swelling. Specific bands for the minK protein were 

detected on western blots. Exposure to anti-minK antibodies revealed a specific band at 14 kDa 

which is similar to one of two bands found at 17 and 23 kDa in rat heart membranes (Alomone 

Labs).   

Voltage-gated Kv1.5 was one of the first potassium channels implicated in RVD of 

somatic cells, and there continues to be evidence from electrically excitable and non-excitable 

cells that this channel is involved in RVD (Wehner and others 2003). In addition to evidence 

from the inhibitor experiments, one specific band for Kv1.5 was detected during western 

blotting and estimated to be of size 76 kDa. Previous reports have indicated two bands 

corresponding to Kv1.5 at 65 and 90 kDa in murine Schwann cells (Sobko and others 1998) and 

60 and 75 kDa in rat atrium (Yamashita and others 2000).  Immunolocalization of Kv1.5 resulted 

in the most intense staining of the proteins tested and was concentrated at the neck of the 

spermatozoa. This corresponds to the site of the cytoplasmic droplet and where there was an 

intact droplet fluorescence was especially strong. 

 

Western blots confirmed the presence in spermatozoa of some of the channel proteins 

considered from the inhibitor experiments to mediate RVD. These proteins had molecular sizes 

similar to, or larger than, those found in somatic cells. The latter could reflect glycosylation of 

the channel.  Indeed TASK2 (Kcnk5) has N-glycosylation sites and treatment with N-glycanase 

action reduces its size from 71 to 55 compatible with its 499 amino acid sequence (Yeung and 

Cooper, unpublished data). 

 

Relationship between Kinematic Parameters and Cell Swelling 

Monkey 

Correlating changes in cell volume and kinematic parameters has been suggested to be a 

more sensitive assay for detecting failure of RVD in spermatozoa, particularly for human 

spermatozoa, the responses of which are smaller than those of murine spermatozoa, 

presumably because of a smaller volume and thus less (osmotically) active fluid (Yeung and 
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others 2003). Since monkey spermatozoa more closely resemble human than murine 

spermatozoa in volume (monkey 37 µm3, Rutllant and others 2003; human 28-34 µm3, mouse 53-

81 µm3; see Gao and others 1997), computer-assisted sperm analaysis (CASA) measurements 

were recorded for monkey spermatozoa in the presence of channel blockers. Indeed, inhibitors 

affecting monkey sperm volume also affected sperm motility parameters. Quinine and 4AP 

created a hyperactivation-like motility by reducing BCF, STR, and LIN and increasing ALH. 

This is similar to motility patterns of human ejaculated spermatozoa exposed to quinine and 

4AP where STR, LIN and VSL are depressed.  

 

Mouse 

Changes in murine sperm motility, while not measured by CASA here, are clearly 

altered by exposure to quinine as this causes the cells to thrash without much forward progress, 

again indicative of a hyperactivation-like motility (Yeung and others 2002). 

 

Human 

In addition to larger forward scatter values, spermatozoa swollen by incubation in 

quinine and 4AP exhibited a hyperactivation-like motility. This corroborates evidence from 

other studies that also found higher incidences of hyperactivated motility of human and 

monkey spermatozoa exposed to QUI or 4AP (Yeung and Cooper 2001, Yeung and others 2003, 

Gu and others 2004). Clofilium caused a less marked change in motility, perhaps indicating an 

incomplete transition towards hyperactivated motility. Although Cd2+ and Ba2+ caused changes 

in sperm motility, the flagellar movements induced did not resemble the hyperactivated-like 

motility that was associated with cell swelling. This analysis of motility supports the 

conclusions from measurement of size with the flow cytometer—that the channels sensitive to 

4AP and clofilium are candidates for RVD.  

 

Changes in cell volume in all three species were associated with changes in motility 

parameters as demonstrated previously for spermatozoa from monkeys (Yeung and others 

2004b), mice (Yeung and others 2002) and man (Yeung and others 2003). This mechanism 

remains to be investigated but it could reflect changes in intracellular ionic strength as a result 

of the swelling or a physical property of a swollen flagellum, altering the fluid dynamics of 

axonemal sliding and flagellar force generation.  
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Repeatability of Response to Quinine 

Monkey 

For the ejaculates from monkeys collected on several occasions there was inconsistency 

in the size of spermatozoa from a given male. The intra-class correlation coefficient for control 

spermatozoa suggested that approximately half of the variation in sperm size occurred between 

ejaculates from the same male while the other half of variation was between males. 

Furthermore, the response to quinine was extremely variable in ejaculates from the same male. 

Some males seemed to produce spermatozoa that were consistent in size between ejaculates 

both in the presence and absence of quinine, whereas others produced spermatozoa that were 

quite different from ejaculate to ejaculate both in their control size and in the presence of 

quinine. This difference may reflect the few males available for study but more likely may 

reflect the method of collecting the ejaculates, which was via rectal probe ejaculation.  

There are reports that electro-ejaculation has a negative influence on semen quality 

(Morrell and Hodges 1998). With the exception of a few trained Great Apes, collection of 

uncontaminated naturally-ejaculated semen is rare; Orangutans (Pongo pygmaeus) and 

chimpanzees (Pan troglodytes) have been conditioned to ejaculate into an artificial vagina 

(VandeVoort and others 1993, Young and others 1995, respectively), and a lowland gorilla 

(Gorilla gorilla gorilla) into a hand-held plastic bag (Pope and others 1997). The problem of 

decreased semen quality with electro-ejaculation is difficult to solve as many studies have used 

different stimulation regimes and probes. Nevertheless, there is at least one report that 

describes no difference in post-thaw motility of spermatozoa collected naturally or by electro-

ejaculation from baboons (Kraemer and Cruz 1969).  

Electro-ejaculation is believed to alter the composition of the semen, which could lead to 

a change in osmolality or pH. Unfortunately, there are no previous reports of the osmolality of 

male reproductive tract fluids in monkeys. The mean osmolality of cynomolgus semen used in 

these studies was 333 ± 6 mmol/kg and the medium used for osmotic challenge was 290 

mmol/kg. Therefore despite variation in semen composition, all spermatozoa would have faced 

an osmotic challenge, allowing significant volume changes to be detected were RVD to be 

inhibited. It is possible, however, that the differences seen between ejaculates from the same 

individual could be attributed to the method of collection if, for example, the probe had a 
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slightly different position in the rectum from one collection to another, stimulating the 

accessory organs differently, and resulting in altered composition of the seminal plasma. 

 

Mouse 

Comparisons of the size of spermatozoa from separate epididymides of the same mouse 

produced intra-class correlation coefficients in the absence and presence of quinine similar to 

those calculated for ejaculated spermatozoa from the monkey. These imply low reproducibility 

between samples but closer agreement between individuals.  If volume regulation depends on 

the epididymal provision of osmolytes to maturing spermatozoa, then these results may reflect 

differences in epididymal secretion of osmolytes or their uptake, which may depend on the 

androgenic status or the sexual activity of the particular male. 

 

Human 

For the ejaculated human spermatozoa there was consistency in the size of spermatozoa 

from a given male on different occasions. The intra-class correlation coefficient for control and 

quinine-treated spermatozoa suggested that only 5% of the variation in sperm size occurred 

between ejaculates from the same male while approximately 95% of variation was between 

males. These results are very different from those for monkey and murine spermatozoa which 

demonstrated far greater within-individual responses. This consistency in swelling response to 

quinine is in agreement with post-thaw motility responses of human spermatozoa that varies 

greatly between, but less within, men (Leibo and others 2002).  

 

Until more is known of osmolyte fluxes in spermatozoa, the reasons for the differences 

in extent of response must remain the speculations given above. As only the mean responses 

were taken and an even wider response would be expected from individual spermatozoa in an 

ejaculate, this may have a physiological function. If osmolyte depletion were responsible for 

swelling and swelling alters the pattern of motility, hyperactivation could be linked to osmolyte 

depletion and only those depleted of osmolytes would undergo hyperactivation at the best 

time. As the time of ovulation is variable with respect to the time of insemination, a wide range 

of responses within the ejaculate may enhance the chance of one spermatozoon achieving 

fertilization. 
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pH Sensitivity of Osmotic Responses to Quinine 

Mouse 

Clofilium-sensitive TASK2 (an acid-sensitive channel) seemed to be involved in RVD of 

murine spermatozoa as indicated by the channel inhibitor and western blot experiments. This 

prompted a closer look at the effect of pH on murine sperm RVD. Results from these 

experiments indicated that regulation of volume may be influenced by the extracellular pH of 

the cell, although not in the manner expected. The conductance of K+ through this acid-sensitive 

channel (when expressed in Ehrlich ascites tumour cells) is strongly inhibited at an acidic pH 

(6.3) and enhanced at an alkaline pH (8.4) (Niemeyer and others 2001). The voltage-gated K+ 

channel Kv1.5, which was also implicated in RVD of mouse sperm cells in these experiments, is 

similarly sensitive to changes in pH. Kv1.5 channels expressed in Xenopus oocytes are blocked at 

pH 6.3 and are insensitive to alkaline pH (Steidl and Yool 1999). If these channels were involved 

one would expect that the return to normal volume would be faster in alkaline hypotonic 

medium than in acidic hypotonic medium, as reported for Ehrlich cells (Hougaard and others 

2001). However, in the current experiments only spermatozoa in alkaline Tris-buffer were 

significantly larger than the control (BWW330 pH 7.4) and not spermatozoa incubated at acidic 

pH.  

Because spermatozoa exposed to an alkaline medium buffered with Hepes (although not 

an optimal buffer at this pH range) were not significantly different from the control, it can not 

be excluded that this increase in volume was an effect of the Tris buffer rather than the pH.  On 

the other hand, this variation in response to pH and the differences found for the size of TASK2 

proteins in these experiments compared to those previously reported for somatic cells may 

indicate that an unknown acid-insensitive channel exists in the murine sperm membrane that is 

inhibited by Hepes.  

 

Human 

The possible involvement of an acid-sensitive channel (TASK2) in RVD prompted the 

investigation of the effect of pH on human spermatozoa, as described for the mouse. The results 

did not indicate acid-sensitivity of human sperm volume regulation. In fact, there was a 

tendency for the cells incubated at pH 8.4 with Tris to be larger than those at other pH after 30 
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min incubation. However, because the cells incubated at pH 8.4 with Hepes were not larger 

than those at 7.4 and 6.3, this may indicate a pH-independent effect of Tris that hinders RVD. 

 

Immunocytochemical Localization of Putative K+ Channels 

Mouse 

Of those channels that could be detected by western blotting, Kv1.5, TASK2, and minK 

could be localized on the murine sperm plasma membrane by immunocytochemistry. The 

strongest fluorescence of all three proteins was observed at the connecting piece suggesting a 

concentration of volume regulatory channels there. The connecting piece anchors the head to 

the neck which is the site of the cytoplasmic droplet while the spermatozoa are in the 

epididymis and before the droplet’s migration along the midpiece to a more distal position. 

Isovolumetric regulation (IVR) is the slow accumulation of osmolytes without a measurable 

change in volume of the spermatozoa in response to a gradual increase in osmolality of the 

epididymal fluid. If IVR is an active process during epididymal migration, the location of these 

channels at the cytoplasmic droplet, the sperm’s largest reservoir of cytoplasm and potentially 

of fluid exchange (Cooper and Yeung 2003), would make sense. When murine spermatozoa are 

exposed to hypotonic conditions, there is an obvious swelling at the cytoplasmic droplet, and 

the cell accommodates to the change in volume and avoids excessive increase in surface area by 

angulating at the site of the droplet or assuming a hairpin-like morphology. Indeed, when a 

cytoplasmic droplet was present the fluorescence on the droplet was intense.  

 

Human 

As for murine spermatozoa, the strongest fluorescence of human spermatozoa was 

observed at the connecting piece, the site of the cytoplasmic droplet. Despite confusion in the 

literature over use of the terms cytoplasmic droplet and excess residual cytoplasm when 

describing human spermatozoa (Cooper 2005), the cytoplasmic droplet has recently been 

demonstrated to be a normal component of functioning human ejaculated spermatozoa (Cooper 

and others 2004, Fetic and others 2006). The localization of all three potential human RVD 

channel proteins (TASK2, mink, Kv1.5) to the neck region, combined with the evidence from 

murine spermatozoa, supports the hypothesis that most RVD is mediated through the 

membrane of the cytoplasmic droplet.  
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Summary 

The research presented in this dissertation provides evidence that several potassium 

channels may be involved in RVD of spermatozoa, and while these channels vary among 

monkey, mice, and men, there are commonalities among the species. Many of the candidate 

channels are suggested for at least two of the species examined here, and it is not surprising that 

these channels have been found to be active in RVD of somatic cells. That there is an effect on 

motility is obvious, visually for murine spermatozoa and measurably with CASA for human 

and monkey spermatozoa. The Western blots and immunolocalizations have lent support to the 

presence of the channels in murine and human spermatozoa and validation for future research 

to elucidate the true function of these channels in volume regulation of spermatozoa. The broad 

applications of knowledge on RVD of spermatozoa are discussed below. 
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Channel Gene Inhibitors 

  4AP CLO Ba TEA MTX CTX AP GLY DTX  

Kv1.1 Kcna1 �   �     � 

Kv1.2 Kcna2 � �  �  �   � 

Kv1.3 Kcna3 �   � � �   � 

Kv1.4 Kcna4 � �       � 

Kv1.5 Kcna5 � �       � 

Kv1.6 Kcna6 �   � �    � 

Kv1.7 Kcna7 �    �    � 

Kv2.1 Kcnb1 �   �      

Kv2.2 Kcnb2 �   �      

Kv3.1 Kcnc1 �   �      

Kv3.2 Kcnc2 �   �      

Kv3.3 Kcnc3 �   �      

Kv3.4 Kcnc4 �   �      

Kv4.1 Kcnd1 �         

Kv4.2 Kcnd2 �         

Kv4.3 Kcnd3 �         

Kv7.1 Kcnq1 � � � �      

Kv7.2 Kcnq2 � �  �      

Kv10.1  Kcnh1 � �  �      

Kv10.2  Kcnh5 �   �      

Kv11.1  Kcnh2  �  �      

Kv11.2  Kcnh6    �      

Kv11.3  Kcnh7    �      

Kv12.1  Kcnh8    �      

Slo1 Kcnma1    �  �    

Slo3 Kcnma3    �      

BK1 Kcna1 �   �  �    

Mink (Isk) Kcne1  � X       

SK2 Kcnn2       �   

SK3 Kcnn3       �   

TWIK1 Kcnk1   �       

TWIK2 Kcnk6   �       

TASK1 Kcnk3 X  �/X X      

TASK2 Kcnk5 X � X X      

TASK3 Kcnk9   �       

TREK1 Kcnk2   �       

TREK2 Kcnk10   �       

Kir6.1 Kcnj8        �  

Kir6.2 Kcnj11        �  

 
 

Table 6.1. Pharmacological sensitivities of potassium channels potentially inhibited by channel 
blockers used on monkey spermatozoa (see Chapter 4 for abbreviations; quinine not shown). A 
� indicates that the channel is blocked by the corresponding inhibitor and an X indicates that 
the given channel is insensitive to the inhibitor. Conflicting data are represented by �/X. The 
shaded column highlights the inhibitor that blocked RVD in monkey ejaculated spermatozoa, 
and the bold, underlined channels have profiles that are consistent with results obtained in the 
channel blocker experiments making them potential candidates for involvement in monkey 

sperm RVD.
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Channel Gene Inhibitors 

  4AP CLO PTX FLE Ba Cd TEA MTX CTX AP GLY Gad  

Kv1.1 Kcna1 �      �      

Kv1.2 Kcna2 � �     �  �    

Kv1.3 Kcna3 �      � � �    

Kv1.4 Kcna4 � �           

Kv1.5 Kcna5 � �           

Kv1.6 Kcna6 �      � � �    

Kv1.7 Kcna7 �       �     

Kv2.1 Kcnb1 �      �      

Kv2.2 Kcnb2 �      �      

Kv3.1 Kcnc1 �      �      

Kv3.2 Kcnc2 �      �      

Kv3.3 Kcnc3 �      �      

Kv3.4 Kcnc4 �      �      

Kv4.1 Kcnd1 �     �       

Kv4.2 Kcnd2 �  � �  �       

Kv4.3 Kcnd3 �  � �  �       

Kv7.1 Kcnq1 � �   �  �      

Kv7.2 Kcnq2 � �     �      

Kv10.1  Kcnh1 � �     �      

Kv10.2  Kcnh5 �      �      

Kv11.1  Kcnh2  �     �      

Kv11.2  Kcnh6       �      

Kv11.3  Kcnh7       �      

Kv12.1  Kcnh8       �      

Slo1 Kcnma1       �  �    

Slo3 Kcnma3       �     � 

BK1 Kcna1 �      �  �    
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  4AP CLO PTX FLE Ba Cd TEA MTX CTX AP GLY Gad  

Mink (Isk) Kcne1  �   X        

SK2 Kcnn2          �   

SK3 Kcnn3          �   

SK4 Kcnn4         �    

TWIK1 Kcnk1     �        

TWIK2 Kcnk6     �        

TASK1 Kcnk3 X    �/X  X      

TRAAK Kcnk4            � 

TASK2 Kcnk5 X �   X  X      

TASK3 Kcnk9     �        

TREK1 Kcnk2     �       � 

TREK2 Kcnk10     �        

Kir6.1 Kcnj8           �  

Kir6.2 Kcnj11           �  

  
Table 6.2. Pharmacological sensitivities of potassium channels potentially inhibited by channel blockers used on murine 

spermatozoa (see Chapter 4 for abbreviations; quinine not shown). A � indicates that the channel is blocked by the corresponding 
inhibitor and an X indicates that the given channel is insensitive to the inhibitor. Conflicting data are represented by �/X. The 
shaded columns highlight those of inhibitors that blocked RVD in murine epididymal spermatozoa, and the bold, underlined 

channels have profiles that are consistent with results obtained in the channel blocker experiments making them potential candidates 
for involvement in murine sperm RVD.
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Channel Gene  Inhibitors 

  4AP CLO TEA PTX FLC Ba Cd 

Kv1.1 Kcna1 �  �     

Kv1.2 Kcna2 � � �     

Kv1.3 Kcna3 �  �     

Kv1.4 Kcna4 � �      

Kv1.5 Kcna5 � �      

Kv1.6 Kcna6 �  �     

Kv1.7 Kcna7 �       

Kv2.1 Kcnb1 �  �     

Kv2.2 Kcnb2 �  �     

Kv3.1 Kcnc1 �  �     

Kv3.2 Kcnc2 �  �     

Kv3.3 Kcnc3 �  �     

Kv3.4 Kcnc4 �  �     

Kv4.1 Kcnd1 �      � 

Kv4.2 Kcnd2 �   � �  � 

Kv4.3 Kcnd3 �   � �  � 

Kv7.1 Kcnq1 � � �   �  

Kv7.2 Kcnq2 � � �     

Kv10.1 (EAG1) Kcnh1 � � �     

Kv10.2 (EAG2) Kcnh5 �  �     

Kv11.1 (ERG1) Kcnh2  � �     

Kv11.2 (ERG2) Kcnh6   �     

Kv11.3 (ERG3) Kcnh7   �     

Kv12.1 (ELK1) Kcnh8   �     

Slo1 Kcnma1   �     

Slo3 Kcnma3   �     

BK1 Kcna1 �  �     

Mink (Isk) Kcne1  �    X  

TWIK1 Kcnk1      �  

TWIK2 Kcnk6      �  

TASK1 Kcnk3 X  X   �/X  

TASK2 Kcnk5 X � X   X  

TASK3 Kcnk9      �  

TREK1 Kcnk2      �  

TREK2 Kcnk10      �  

 
 

Table 6.3. Pharmacological sensitivities of potassium channels potentially inhibited by channel 
blockers used on human spermatozoa (see Chapter 4 for abbreviations; quinine not shown). A 
� indicates that the channel is blocked by the corresponding inhibitor and an X indicates that 
the given channel is insensitive to the inhibitor. Conflicting data are represented by �/X. The 

shaded columns highlight those of inhibitors that blocked RVD in human ejaculated 
spermatozoa, and the bold, underlined channels have profiles that are consistent with results 

obtained in the channel blocker experiments making them potential candidates for involvement 
in human sperm RVD. 
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Organic Osmolytes and Sperm RVD 

Osmolyte influx and efflux through volume-sensitive channels are driven by 

extracellular osmolality. During volume regulation in hypotonic media, osmolytes are lost from 

the cell and while this is a natural event for spermatozoa that experience hypotonic conditions 

upon ejaculation, any premature loss of osmolytes (such as during handling for 

cryopreservation) may leave the cell ill-prepared for the critical osmotic challenges that occur 

after manipulation (i.e. after insemination). Premature loss of osmolytes may be prevented, and 

potentially compensated for, if more were known about the permeability to, and uptake of, 

osmolytes into spermatozoa. 

 

Establishing isotonicity of murine spermatozoa 

Many studies on murine epididymal spermatozoa have described them as being ideal 

osmometers with isotonicity being assumed to be around 286, 290, or 300 mmol/kg (Du and 

others 1994, Noiles and others 1995,1997, Willoughby and others 1996, Agca and others 2002, 

Walters and others 2005). These values are nowhere near the reported osmolality of epididymal 

fluid, some 100 mmol/kg higher (Cooper and Barfield 2005). High cauda epididymidal 

osmolality explains why transfer of caudal spermatozoa to media of approximately 300 

mmol/kg induces swelling that requires volume regulation (Yeung and others 2002). Such 

volume-regulating cells cannot be described as ideal (passive) osmometers. In fact, the 

anticipated deviation from linearity of the relationship between cell volume and extra-cellular 

osmolality around physiological values has been recorded, although not adequately addressed 

(Du and others 1994). 

Cytoplasmic osmolality can be determined when cells bathed in a medium have no need 

to respond osmotically. In the present experiments, this was measured for spermatozoa from 

the cauda epididymidis by exposing them to media of various osmolalities.  The osmolality of 

the medium in which the cells did not change volume regardless of the presence of quinine was 

taken to be the intracellular osmolality. The degree of cell swelling in the presence of quinine 

reflected the extent of osmotic water flux that would have occurred had normal volume 

regulation not been inhibited. As anticipated, spermatozoa swelled less as extracellular 

osmolality was increased but the extent of volume regulation depended on the nature of the 

medium. Different values for isotonicity were determined in high and low ionic strength media, 
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with values in the former (~530)  close to the upper limits of the osmolality of caudal fluid (~500 

mmol/kg) and values in the latter (~430) closer to the measured mean values (Cooper and 

Barfield 2005). As the ionic strength of cauda epididymidal fluid is low (Cooper 1998), the lower 

values, established in the low ionic strength media, may reflect the true tonicity of epididymal 

spermatozoa in situ. Whichever value is taken to be the tonicity of murine epididymal 

spermatozoa, it is far higher than the often given “isotonic” values of 290-310 mmol/kg. 

In low ionic strength media, swelling was less extensive than in high ionic strength 

media containing sodium or chloride although dependent on the nature of the non-reducing 

sugar present. This could be indicating a better volume regulatory performance of spermatozoa 

in low ionic strength, or low Cl- media. However, it could also reflect the entry of NaCl into the 

cell at the higher concentrations which would draw in water and exaggerate cell swelling. 

Irrespective of the mechanism, the ionic strength and the nature of the major extra-cellular 

compound responsible for raising the osmolality of the medium can influence intracellular 

tonicity. Alteration in the ionic strength of the environment would affect the charge of the 

membrane and could alter the activity of pumps and channels directly or indirectly related to 

ion fluxes across the membrane. This, in turn, could alter the channels activated during RVD, 

preventing the same osmotic response as would occur in low ionic strength media and creating 

the difference in isotonicity values estimated here.  

 

Permeability of osmolytes and cryoprotectants 

In the study of permeability towards water-soluble compounds, large molecules (C18 tri- 

and C12 di-saccharides) were impermeant as expected. Other studies have suggested the 

impermeability of the murine sperm membrane to di- and tri-saccharides. In fact, non-

permeating solutes, such as sugars, are used to augment the effectiveness of permeating CPAs 

in cryopreservation schemes for certain cell types, allowing the use of lower concentrations of 

permeating CPAs (Gao and others 1997). Agca and others (2002) found that the induction of 

non-linear flagellar forms (angulated swollen spermatozoa, Yeung and others 2002) by 

penetrating cryoprotectants was prevented upon co-incubation with sucrose and raffinose, 

suggesting that these sugars remain outside the cell and prevent excess water influx to the cell.  

Some, but not all, compounds with 6 or fewer carbon atoms penetrated spermatozoa 

enough to induce swelling. The permeability of murine spermatozoa to the polyols (mannitol > 
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D-arabitol > dulcitol > sorbitol > adonitol > m-erythritol > L-arabitol) contrasts with that of 

bovine epididymal spermatozoa (m-erythritol > adonitol > D-arabitol > sorbitol > L-arabitol = 

mannitol = dulcitol) measured by Drevius (1971) from microscopical observations. Arabitol, 

fructose, and mannitol were more penetrating than compounds of the same molecular size, 

which may indicate the presence of transporters in spermatozoa. Of the cryoprotectants tested, 

penetrating order was found to be DMS > EG > PD (2 and 3) = GLY > THM = EHM. Other 

volume measurements of murine spermatozoa have demonstrated a greater permeability at 

room temperature for EG than GLY for B6C3F1 and ICR mice (Agca and others 2002) whereas 

Phelps and others (1999) found the relative permeability EG > GLY > PD2 for ICR mice but GLY 

> EG > PD2 for sperm from the B6C3F1 strain.  

The finding that the propanediols THM and EHM were less penetrating agents than 

glycerol implies that as a cryoprotectant these compounds may result in less swelling during 

initial exposure to the cells than glycerol, which causes a large swelling event owing to the time 

required for this molecule to move into the cell. Limiting the stress on the plasma membrane 

during the addition and removal of cryoprotectant by preventing large changes in volume (via 

dilution addition and removal) has been shown to result in higher numbers of motile 

spermatozoa (Gao and others 1995). The use of cryoprotectants that cause less swelling, such as 

THM and EHM, may help avoid damage to the plasma membrane during the cryopreservation 

process. Although the addition of these polyols to CPA including glycerol was deleterious to 

murine spermatozoa resulting in fewer intact cells post thaw, the effects of these agents alone 

(without the presence of glycerol) were not studied (Storey and others 1998).  

The major epididymal secretions (GPC, glutamate, L-carnitine, myo-inositol) have been 

postulated to provide spermatozoa with the osmolytes needed for volume regulation in the 

female tract (Cooper and Yeung 2003). This may require these osmolytes to be membrane-

permeant, but they did not induce sperm swelling at isotonicity. Estimates of intracellular 

concentrations based on murine sperm volume (Willoughby and others 1996) and osmolyte 

content (Yeung and others 2004a) are 33 mM for L-carnitine and 38 mM for myo-inositol, 

confirming that a substantially higher concentration (250 mM) was applied in these 

experiments. The inability of the epididymal osmolytes to enter the cells could reflect the fact 

that these osmolytes are membrane-impermeant, which may reflect their polarity: myo-inositol 

is uncharged but highly polar whereas L-carnitine and GPC are zwitterions with little charge at 
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neutral pH; GPC is impermeant to renal cells (Zablocki and others 1991). Whatever the 

explanation, the present results suggest that, at epididymal osmolality, spermatozoa are 

impermeable to these secretions. Uptake of these osmolytes may only occur when volume-

sensitive channels are activated during hypertonic stress experienced during epididymal transit 

(Cooper and Yeung 2003), a speculation that requires to be proven. 

The inability of quinine to restrict the entry of osmolytes into murine spermatozoa at 

isotonicity contrasts with the results of Kulkarni and others (1997) who demonstrated that 

quinine was able to block the swelling of bovine spermatozoa caused by high extracellular 

concentrations of many of the same compounds. The explanation could lie in the different 

species but is more likely to reflect the use of ejaculated rather than epididymal spermatozoa 

and the osmotic changes involved in preparing these cells for study. Firstly, bovine seminal 

plasma has an osmolality (mmol/kg) from 341 (White and MacLeod 1963) to 355 (Salisbury and 

Cragle 1956) and in the study by Kulkarni and others (1997) spermatozoa were prepared by 

swim up in 0.15 M NaCl + 5 mM Na phosphate (approx. 310 mmol/kg). This so-called isotonic 

medium (without test compounds) was actually hypotonic since spermatozoa swelled in it in 

the presence of quinine. This swelling would have resulted in an efflux of osmolytes causing the 

volume regulatory capabilities of the spermatozoa to be compromised even before the 

spermatozoa were exposed to quinine or the compounds being tested.  Secondly, during the 

uptake experiments spermatozoa were subjected to a hypertonic medium (0.31 M osmolytes + 

35 mM Na Cl + 5 mM Na phosphate or approx. 390 mmol/kg). Therefore, the inability of the 

spermatozoa to swell in the presence of quinine may actually reflect a blockage of RVI (which 

occurs in response to cell shrinkage) rather than RVD.  

The present results demonstrating that quinine increased the volume of murine 

spermatozoa under isotonic conditions in the presence of penetrating solutes indicates that 

volume regulation occurs even when water entry is associated with that of a permeating solute. 

This increase in volume also implies that cells will regulate volume when penetrating solutes 

enter from hypertonic solutions, which has important implications for cryobiology. The use of 

penetrating cryoprotectants is widespread because in many species they can prevent 

intracellular ice crystal formation. However, the loss of osmolytes from the spermatozoa treated 

in this way may impact post-thaw fertility of the sample. This is discussed further below. 
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Osmotic Response of Spermatozoa from Two Strains of Mice 

An indirect measure of the volume regulation capacity of spermatozoa can be gauged 

from the volume response of spermatozoa to a range of osmolalities over time. It may be that 

the more the osmolyte reserve (those available within the cell for RVD events), the greater the 

ability of the spermatozoon to maintain volume in face of an osmotic challenge. As cytoplasmic 

isotonicity depends on the ionic strength, the actual osmotic challenge presented by the same 

osmolality differs whether NaCl or sucrose is the major osmotic species. NaCl-containing 

medium of 330 mmol/kg was a sufficient stimulus to raise sperm volume initially to a size that 

initiated a time-dependent decline in size (RVD), as reported before (Yeung and others 2002).  

However, in sucrose at 330 mmol/kg swelling was less marked and sperm volume was 

maintained throughout incubation, which can be explained by the more efficient volume 

regulation by spermatozoa in this low Cl- medium. A larger osmotic challenge (245 mmol/kg) 

induced a time-dependent increase in sperm volume in both NaCl and sucrose media. This 

failure to maintain volume at low osmolality is reminiscent of the response of immature (caput) 

spermatozoa that have not acquired their ability to regulate volume (Yeung and others 2002) 

and could be explained by the depletion of the osmolytes responsible for RVD during a non-

physiological osmotic challenge.  

If loss of intracellular osmolytes prevents effective RVD in media of 245 mmol/kg, then 

the indication of some extent of volume regulation (the maintenance of volume over 15-30 min 

before unopposed water entry) in media of made to 160 mmol/kg with NaCl requires 

explanation. This could be the operation of different channels employing other osmolytes at the 

lower osmolality. The extent of osmotic challenge can dictate the sequential operation of cation 

and anion channels (MacLeod and Hamilton 1999, Junankar and others 2004) or sequential 

release of different organic osmolytes (Kinne 1998) in somatic cells, depending on cell type. For 

murine spermatozoa, a physiological challenge (330 mmol/kg in NaCl medium) stimulates the 

release of anions or organic osmolytes initially followed by potassium efflux (Yeung and others 

2005b). At 160 mmol/kg, other osmolytes may be preferentially liberated to maintain volume 

initially but, when supplies are exhausted, a rapid increase in cell volume occurs.  

Finally, although the trends in volume regulation with an anisotonic media were parallel 

in both mouse strains, spermatozoa from the B6D2F1 strain were consistently better at 

regulating volume than those from the C57BL6 strain. Whether the basis for this is a greater 
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initial osmolyte reserve to call upon during hypotonic stress (due to greater epididymal 

reserves of osmolytes) or a greater ability to take up osmolytes during epididymal transit, 

requires detailed study. Nevertheless, the superior volume-regulating ability of B6D2F1 

spermatozoa could, in part, contribute to the higher rates of in vitro fertilization initiated by 

frozen-thawed B6D2F1 spermatozoa than frozen-thawed C57BL6 spermatozoa (Songsassen and 

Leibo 1997). Screening of the amount of osmolytes in the epididymal fluid and in the 

spermatozoa of the different strains may be helpful in predicting post-thaw survival of 

spermatozoa from different species or in detecting individual differences in potential 

cryodamage. In this regard, several recent publications have indicated that the volume 

regulatory ability of spermatozoa is a useful tool in determining cryoprotective efficiency 

(Petrunkina and others 2005) and predicting freezability of canine spermatozoa (Petrunkina and 

others 2004). 

 

Applications and Perspectives 

Cellular volume regulation is vital for all cells and many physiological functions depend 

on the maintenance of a homeostatic volume. For spermatozoa, the inability to sustain a critical 

volume results in failure during unassisted fertilization. The research presented here, while 

valuable for its contribution to knowledge on basic sperm physiology, has many applications to 

the field of conservation biology. These applications have been presented in the introductory 

chapters and will be discussed below with regard to the results of this dissertation and future 

directions of this research topic. 

 

Contraceptive potential 

In previous chapters, the contraceptive potential of mimicking failed volume regulation 

has been mentioned but the approaches not discussed. As the ability for spermatozoa to 

perform RVD is developed during transport through the epididymis (Yeung and others 2002, 

2004a, Cooper and Yeung 2003), any contraceptive method directed at RVD in spermatozoa 

would have its primary action in this organ. There are three possible approaches to disrupting 

volume regulatory mechanisms of spermatozoa while they are in the epididymis (Cooper and 

Yeung 1999).  
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Blocking sperm RVD channels 

The first option is to target spermatozoa with an anti-fertility agent that actively blocks 

the channels in the sperm membrane participating in RVD. For this approach to be effective, the 

osmolyte channels would have to be specific to spermatozoa or the delivery of the drug specific 

to the epididymal lumen. Since the completion of this dissertation research, the nucleotide 

sequences of the potassium channels identified here (minK, Kv1.5, and TASK2) have been 

determined for human spermatozoa and are identical to those found in other tissues and 

published in genomic databases (Yeung and Cooper, unpublished data). Indeed, the ubiquitous 

nature of ion channels in particular makes this approach problematical, especially as the 

concentrations of drug effective on spermatozoa are in the same range as those effective on 

somatic cells.  

Targeting organic osmolyte channels on spermatozoa may also produce an effective 

contraceptive. For this, the mechanism of osmolyte uptake into spermatozoa needs to be 

known. The fact that the compounds found in high concentration in the epididymis (i.e. GPC, 

carnitine, and myo-inositol) were not permeant in these experiments conducted at isotonicity, 

when no volume regulatory channels are open, suggests that these osmolytes need transporters 

or channels to enter the cells. Indeed, an organic cation/carnitine  transporter has been 

identified in human spermatozoa (Xuan and others 2003). Further tests conducted using media 

of a higher osmolality, such as experienced by spermatozoa during epididymal transport, may 

reveal that these molecules can permeate the membrane during RVI. Before this approach 

becomes a reality, the osmolytes released during RVD must be determined. Preliminary studies 

on compounds preventing RVD in hypotonic media have suggested that several small organic 

compounds may be lost by spermatozoa (Yeung and others 2004b, 2006). The experiments 

described here under isotonic conditions serve as a preliminary screening of molecules that 

have the capability to traverse the plasma membrane, making them potential osmolytes.  

Because volume regulation appears to involve a cascade of different channels that are 

activated under different degrees and duration of osmotic challenge (Kinne 1998), any 

inhibitory compound would need to target many different channels; otherwise, the cell may 

circumvent the drug and activate alternative channels. The finding that spermatozoa from 

C57BL6 and B6D2F1 mice maintain volume over 30 min incubation in media of 160 mmol/kg, 

but not 245 mmol/kg, may indeed indicate that the pathways of activation at these varying 
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osmolalities are different. The extent of blockade would be most effective if not limited to 

potassium channels, as Cl- channels are also important in RVD (Yeung and others 2005a,b). The 

diversity of channels involved and the large numbers of spermatozoa that must be affected for 

the contraceptive method to be acceptable make this approach impracticable.  

 

Preventing or reducing the epididymal provision of osmolytes 

A second option would be to target the epididymal epithelium. An action at this level 

could aim to prevent or reduce the synthesis or transport of ions and organic solutes, which 

would alter the composition of the epididymal fluid. As the changing components and 

characteristics of this fluid during epididymal transport are considered to be important for 

maturation of spermatozoa, alterations in the milieu could incapacitate sperm function (Cooper 

1992). Targeting the transport of specific osmolytes known to be major players in the RVD 

process, so that the spermatozoa are unable to acquire them during isovolumetric regulation, 

may leave the sperm ill-prepared for the osmotic challenges that await them at ejaculation. 

Organic cation transporters CT2 and OCTN have been identified in the rat and human 

epididymis (Rodriguez and others 2002, Enomoto and others 2002), but targeting them to 

reduce epididymal carnitine has not yet been attempted. Lowering epididymal carnitine has 

been achieved in another fashion by increasing its urinary excretion (Cooper and others 1997, 

Lewin and others 1997), but infertility was not induced in rats or hamsters and rat spermatozoa 

retained their normal carnitine content. Thus, depleting spermatozoa of epididymal osmolytes 

may be difficult.  

 

Affecting sperm transport 

Finally, a modification of the peritubular muscle action intended to speed the rate at 

which spermatozoa are transported through the epididymis may result in the ejaculation of 

immature spermatozoa. Normally spermatozoa remain in the epididymis for long periods of 

time, from 25 days in the guinea pig (Leibfried-Rutledge and others 1997), one week in the 

rabbit (Orgebin-Crist 1965) to 5 days in the mouse (Dadoune and Alfonsi 1994). If spermatozoa 

require a minimum amount of time in the epididymis to acquire the necessary amounts of 

osmolytes for RVD, then a reduced time in the epididymis may produce osmotically defective 

spermatozoa. 
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Targeting the volume regulatory mechanism of spermatozoa may have many 

advantages over other methods of contraception currently available to men, which include not 

interfering with hormone secretion. There is also the possibility of targeting spermatozoa once 

they reach the female tract with the application of a gel or spermicide. Here, the chances of 

depleting sperm osmolytes may be higher as the sperm concentration is lower. However, 

because there is a variety of acceptable contraceptive methods available to females, this 

approach is not likely to be investigated by pharmaceutical companies.  

 

Handling of spermatozoa 

Of particular importance for the human reproduction field is the finding that the 

osmolality of the ejaculate increases during the liquefaction process. Thus, the immediate 

environment of ejaculated spermatozoa obtained in the laboratory and assessed after 

liquefaction differs markedly from that at sexual intercourse, where the spermatozoa would 

quickly leave the seminal fluid and enter cervical mucus (Sobrero and Macleod 1962). The 

implications of these observations are profound, for spermatozoa ejaculated into the vagina are 

already at an osmolality close to that of cervical mucus (287 mmol/kg, Rossato and others 1996) 

and would not undergo the osmotic changes that occur to spermatozoa obtained in the 

laboratory after liquefaction and transferred to medium of serum-like tonicity for processing. 

New methods of processing semen in the laboratory that avoid extended exposure to the 

seminal plasma may improve the quality of spermatozoa obtained for ART. Whether or not the 

osmolality of semen from other animals also rises with time after ejaculation is unknown and 

would be also important for semen handling considerations.  

 

Short-term storage of spermatozoa 

The determination of isotonicity for epididymal spermatozoa and minimizing volume 

changes to preserve sperm osmolytes may also be important for short-term storage of 

spermatozoa. Many of the diluents currently used for semen are around 300 mmol/kg. 

Depending on the species, this may cause a hypotonic challenge that compromises the 

spermatozoa’s ability to adjust to subsequent osmotic challenges. Attempts have been made to 

mimic epididymal fluid in an effort to preserve spermatozoa in alternative ways to 

cryopreservation, especially for relatively short storage duration. These are based on evidence 
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that spermatozoa held in the epididymis can remain viable for days after death of the animal 

(Kikuchi and others 1999, Soler and others 2003, Yu and Leibo 2002) and even be used to 

produce offspring (Songsasen and others 1998).  

For example, bovine spermatozoa can be stored in the epididymis for weeks without 

significant loss of fertilizing ability (Verberckmoes and others 2004). In an effort to mimic the 

epididymal environment, some investigators have experimented with electrolyte-free (low ionic 

strength) media and have been able to prolong human sperm life for long periods at 4°C (Saito 

and others 1996a,b). Others have recreated the ionic and osmolal environment  to create a 

superior diluent for preserving ejaculated bovine spermatozoa. Preservation in an epididymal-

like fluid (CEP-2) was compared against a Tris diluent (Verberckmoes and others 2004), and 

after 6 days incubation at 5°C, spermatozoa exposed to the Tris diluent had higher percentage 

motility but also more hyperactivated spermatozoa. Hyperactivation is a feature associated 

with hypotonic swelling (osmolyte loss) and is to be avoided when spermatozoa are to be 

stored in a quiescent state. By contrast, the spermatozoa stored in epididymal-like fluid  (CEP-2) 

had more progressively motile spermatozoa, which improved further when sorbitol was added 

(Verberckmoes and others 2004). Further experiments indicated that spermatozoa stored in 

CEP-2 for 6 days at 5°C had fertility rates (as indicated by extrusion of 2 polar bodies by 

oocytes) comparable to those of the commonly used diluent, Caprogen (primarily in New 

Zealand) and superior to that of Triladyl, another conventional diluent (Verberckmoes and 

others 2005). In these experiments, the osmolality of the CEP-2 diluent was adjusted to 320-325 

mmol/kg to approximate that of bovine cauda epididymidal fluid. 

Improvements to short-term sperm preservation have direct application to collection of 

spermatozoa from animals in the field, especially in countries with limited resources. If a 

diluent were developed that could maintain spermatozoa for days beyond its natural “shelf 

life” and avoid the necessity of cryopreservation, then spermatozoa collected from wildlife 

could be transported nearly anywhere in the world. As spermatozoa that have not gone 

through the cryopreservation process have higher rates of fertility, this could improve the 

success of various ART techniques for valuable animals in captivity. For some species 

cryopreservation is difficult (Holt 2000), and although 52 species of animals have been 

produced from frozen spermatozoa, for most endangered species cryopreservation methods 

have not been established. 
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Improving cryopreservation 

During cryopreservation, spermatozoa undergo many drastic volume changes which 

have been identified as a source of cryodamage. These changes in volume are likely to render 

spermatozoa surviving the cryopreservation process incapable of responding to the hypotonic 

challenges they face during insemination or IVF with consequences for fertility (Cooper and 

Barfield 2006). Indeed, recent evidence from dogs demonstrates that the cryopreservation 

procedure reduces the ability of frozen-thawed spermatozoa to regulate volume under (non-

physiological) hypotonic conditions (Petrunkina and others 2004, 2005).  

In this dissertation, comparison of the osmotic responses of spermatozoa from the 

C57BL6 and B6D2F1 mice to varying osmolalities was stimulated by experiments conducted by 

Songsasen and Leibo (1997) in which simple exposure to cryoprotective media significantly 

reduced fertilization rates for the former strain but not the latter. These differences were 

attributed to differential sensitivity to the osmotic shocks associated with addition and removal 

of glycerol. This could be related to the volume regulatory capabilities of spermatozoa from the 

different strains, as the B6D2F1 appear to have superior RVD responses to C57BL6 mice. This 

suggests that the RVD capability has a genetic component, that if elucidated could be a valuable 

predictor of “freezability” of spermatozoa from a wide variety of species. From the results of the 

experiments by Songsasen and Leibo (1997) and others (i.e. Gao and others 1995, Thurston and 

others 2002), it seems clear that avoiding or minimizing osmotic shock as much as possible is 

one way to optimize sperm survival during the cryopreservation process (Holt 2000). 

It may be that some non-physiological osmotic stress during the cryopreservation 

process is unavoidable and to this end it may be beneficial to provide the spermatozoa with 

osmolytes to compensate for those lost during the freezing and thawing process. The osmolytes 

could be made available to the sperm during the addition of cryoprotectant as the hypertonic 

media would cause cell shrinking. The activation of regulatory volume increase to counteract 

the shrinkage may provide an opportunity for the osmolytes to enter the cell. The cell would 

then have a larger reserve of osmolytes for the RVD that must occur during cryoprotectant 

removal. Once the major osmolytes used in sperm RVD are identified, future cryobiological 

experiments could include the addition of these osmolytes to CPA media to determine if this 

could increase the numbers of live sperm recovered post-thaw and impact fertilization rates.  
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Conclusion 

Conservation biology is a diverse field that combines the expertise of scientists from a 

variety of backgrounds. The role of reproductive biology is critical for the conservation of 

endangered species, not only for the development of ART, but for understanding reproductive 

physiology and how it can be integrated into management of wild and captive animals. This 

dissertation explores an area of study that is in its early stages of development as it pertains to 

spermatozoa and for which the full implications are yet to be revealed. Whether the knowledge 

gained from these experiments contributes to improved sperm handling and preservation 

techniques, the development of a non-hormonal male contraceptive or perhaps just a better 

understanding of sperm physiology, is yet to be seen.  Basic science is the foundation of 

scientific progress, and although this dissertation addresses a very narrow aspect of sperm 

physiology, it may be one of the important areas of study that comes together with others to 

make an impact in reproductive biology and ultimately conservation biology.  

In addition to the scientific value of this doctoral research, this document embodies the 

results of a collaboration between often separate areas in the field of reproduction - the study of 

human reproduction and the study of animal reproduction. Exchange of information between 

clinicians and academic scientists can result in novel applications of old and new techniques, 

thereby spreading the potential benefits throughout the animal kingdom. An example of this is 

the application of human contraceptive methods to wildlife (Barfield and others 2006). 

Multidisciplinary research is a growing trend that must be embraced if we are to protect and 

preserve the species that compose our diverse ecosystems. 
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