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ABSTRACT 
 
 

In addition to habitat loss and fragmentation, habitat degradation can have 
important consequences for biodiversity and population persistence, including effects on 
ecological and genetic processes beyond decreased demographic viability and the loss 
of genetic variation. Particularly interesting is the potential for evolutionary changes and 
adaptation to degraded habitats, that can affect population viability even in the short-
term. Here, I explore how environmental changes after habitat degradation affect the 
evolutionary dynamics of populations of the rainforest cycad Zamia fairchildiana, 
specifically how habitat degradation affects gene dispersal, inbreeding, directional 
selection, and genotype-by-environment interactions, and the potential for genetic 
differentiation between populations. Colonies of Z. fairchildiana showed little genetic 
differentiation in neutral molecular markers across study sites, thus can be considered 
as subpopulations. Subpopulations in the disturbed habitat are experiencing different 
environmental conditions when compared to subpopulation in their native habitat. 
Disturbed-habitat subpopulations showed a faster life-history. This faster life history is 
associated with a weaker spatial genetic structure and higher levels of inbreeding in the 
disturbed-habitat subpopulations. In addition, higher light availability in the disturbed 
habitat seems to be a major agent of selection on traits like leaf production that have the 
potential to respond to selection in these subpopulations. Different traits were under 
selection in the native-habitat subpopulations, suggesting the potential for genetic 
differentiation between native and disturbed-habitat subpopulations. Genotype by 
environment interactions in seed germination and seedling survival, in response to light 
and water availability, further suggested that subpopulations can adaptively diverge 
between habitats, but the relative role of genetic and environmental factors, particularly 
maternal effects, on the magnitude and rate of genetic differentiation between 
subpopulations remains to be evaluated. These results suggest that habitat degradation 
can have important consequences for the evolutionary dynamics of populations of this 
cycad, not necessarily typical of habitat loss and fragmentation. This study identified 
factors and processes important for population persistence in degraded habitats, but 
population responses to habitat degradation are complex. Thus further studies and 
long-term experiments are required for better understanding the effects of habitat 
degradation on population viability. 
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GENERAL INTRODUCTION 
 

HABITAT DEGRADATION AND POPULATION VIABILITY 

 

Habitat loss and degradation are the major threats to species persistence 

worldwide (Myers 1997). The consequences of habitat loss and declining population 

sizes have received considerable attention in conservation biology. It is well 

documented that habitat loss and fragmentation result in species extinctions, and that 

the amount and distribution of remaining habitat area and the scale of fragmentation 

can influence the patterns of species loss (reviewed in Fahrig 2003; Saunders et al. 

1991; Turner 1996). The mechanisms underlying species extinctions are diverse, but 

usually involve declining population abundance and migration rates, invasion by exotic 

species, and changes in forest dynamics or the trophic structure of communities 

(Laurance et al. 2002). In addition to habitat loss, the degradation of the environmental 

conditions in the remaining habitat (i.e. habitat degradation) can affect species 

extinction rates and the extinction-colonization dynamics of metapopulations (Fleishman 

et al. 2002). Nevertheless, evaluating the effects of habitat degradation on species 

diversity is complex, because it is difficult to separate the effects of habitat loss, 

fragmentation, and degradation; and many factors, including the disturbance history of 

the ecosystem, may affect species and community responses to habitat degradation 

(Caley et al. 2001; Danielsen 1997; Ewers and Didham 2006). For example, studies of 

lepidoptera and birds suggest that habitat disturbance can increase or decrease species 

richness and that trends depend on the scale of the analysis (Hill and Hamer 2004). 

 

Although habitat loss represents a more critical issue, habitat degradation may 

have relevant consequences for population viability, beyond the typical effects of habitat 

loss and fragmentation of decreased demographic viability and loss of fitness and 

genetic variation. Furthermore, most ecosystems around the world are directly or 

indirectly impacted by human activities (Sanderson et al. 2002), and in many cases 

habitats may be highly degraded, even if large areas of habitat remain in the landscape. 

For example, in a global assessment of the forest ecosystems of the world it was 

 1



estimated that only 36% of the total forest cover can be considered primary forest, i.e. 

forest of native species with no visible influences of human activity; and that primary 

forests are declining rapidly because of deforestation and forest modification by 

selective logging and other human interventions (FAO 2005). In the case of tropical 

forests, deforestation and forest fragmentation, as well as extractive activities, result in 

remaining habitat patches that can be highly degraded, or that differ drastically from the 

original habitat in forest structure and species composition (Laurance 2004; Noble and 

Dirzo 1997; Tabarelli et al. 2004; Wagner 2000). Therefore, habitat degradation of the 

environmental conditions in the remaining habitat, in addition to habitat loss, needs to 

be considered when evaluating population viability in human-impacted landscapes. 

 

Evaluating the effects of habitat degradation on population persistence requires a 

wide-ranging approach. Decreased demographic viability resulting from habitat 

fragmentation and degradation is widespread in plant populations, e.g. many 

population-level studies have shown decreased fecundity and recruitment in fragmented 

habitats (e.g. Aguilar and Galetto 2004; Bruna and Oli 2005; Kery et al. 2000; Kolb 

2005; Wolf and Harrison 2001). However, the direct impact of increased mortality or 

decreased reproductive output on the long-term persistence of populations in 

fragmented habitats needs further exploration (Hobbs and Yates 2003). Furthermore, 

few studies have evaluated directly the effects of modified habitat quality on the 

demographic viability of plant populations (but see Bawa and Seidler 1998; Brys et al. 

2005; Colling and Matthies 2006). Despite general trends of negative effects of habitat 

degradation on plant survival and fecundity, population responses are likely to be 

complex, and other aspects of population viability, besides demographic rates, may be 

affected by habitat fragmentation and degradation. A viable population not only has a 

positive growth rate and low probability of extinction by stochastic processes, but should 

also exhibit high levels of individual fitness and genetic variation that confers the ability 

to respond adaptively to environmental changes (Soule 1987), which may be 

compromised by habitat degradation.  
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To fully understand the effects of habitat degradation on population viability, 

genetic factors, as well as ecological and demographic factors, need to be considered. 

Genetic processes can affect population viability in many ways (reviewed in Amos and 

Balmford 2001; Frankham 1995; Hedrick 2001; O'Brien 1994). Theoretical and empirical 

research suggests that population viability may be affected by reduced fitness as a 

consequence of inbreeding depression (Hedrick and Kalinowski 2000), the 

accumulation of non-beneficial mutations (Lande 1995; Lynch and Gabriel 1990), or 

decreased evolutionary potential after loss of genetic variation mostly by genetic drift 

(Ellstrand and Elam 1993). Both ecological and genetic factors were considered 

relevant for population viability in the early conservation biology literature (Frankel and 

Soule 1981; Franklin 1980; Schonewald-Cox et al. 1983; Shaffer 1981), but 

demographic issues have become prevalent in population viability analyses in the last 

decades (Beissinger 2002; Menges 2002; Reed et al. 2002). Demographic viability has 

been suggested to be more relevant for conservation (Caro and Laurenson 1994; Lande 

1988; Schemske et al. 1994), and there has been debate on the relevance of genetic 

and ecological criteria to define significant units for conservation (Crandall et al. 2000; 

Fraser and Bernatchez 2001; Moritz 1994). However, combining ecological and genetic 

information in evaluating population viability is promising (Allendorf and Ryman 2002; 

Oostermeijer et al. 2003), and will provide valuable information not only for conservation 

biology, but also to understand population dynamics in general. 

 

HABITAT DEGRADATION AND THE EVOLUTIONARY DYNAMICS OF POPULATIONS 

 

Genetic-related concerns in conservation have focused on the loss of fitness by 

inbreeding depression, and the risks of extinction in populations with extremely 

depauperated genetic diversity (e.g. by pest susceptibility), that can affect population 

viability within a few generations after environmental change. Many studies in plants 

have detected significant inbreeding depression soon after habitat degradation, but the 

loss of genetic diversity usually happens at a slower rate, depending on the life-span of 

organisms, the severity of population size reductions, and the role of gene flow in the 

rate of loss of genetic variation (reviewed in Lowe et al. 2005; Young et al. 1996). 
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Genetic variation in populations of interest is usually evaluated with neutral molecular 

markers (like isozymes, AFLPs, microsatellites, SNPs), and many studies have 

estimated the levels of diversity and genetic differentiation between plant populations in 

degraded habitats using these genetic markers (e.g. England et al. 2002; Galeuchet et 

al. 2005; Honnay et al. 2005; Hooftman et al. 2004; Jacquemyn et al. 2003; Murren 

2003). These studies can provide information about patterns and mechanisms behind 

the loss of genetic variation, e.g. by identifying genetic bottlenecks, reduced effective 

population sizes, and changes in gene flow. In addition, neutral molecular markers can 

be used to assign individuals to particular populations, infer paternity relationships, and 

reconstruct phylogenetic and phylogeographic trends, all of which have important 

applications in conservation biology (reviewed in Avise 1994; Haig 1998; Hedrick 2002; 

Morin et al. 2004). 

 

Although the levels of genetic diversity and genetic differentiation exhibited by 

neutral molecular markers may be informative, the potential effects of the amount and 

distribution of genetic variation on population viability might be better evaluated using 

quantitative genetics (Frankham 1999; Lynch 1996; Storfer 1996), given that genetic 

variation in quantitative traits is not well estimated by neutral molecular markers (McKay 

and Latta 2002; Merila and Crnokrak 2001; Reed and Frankham 2001). Quantitative 

genetics can be used to evaluate genetic issues in ecologically-relevant traits, and can 

help linking ecological and genetic factors affecting population viability to contribute a 

more comprehensive understanding of the ecological and evolutionary mechanisms 

governing population persistence, which should be the major target of conservation 

(Moritz 2002; Myers 1997; Smith et al. 1993). Loss of genetic variation and genetic 

differentiation in traits linked with the phenotype and fitness of individuals can be directly 

associated with population parameters like demographic rates and the evolutionary 

potential to respond to future environmental change (like global warming for example 

(Bawa and Dayanandan 1998)). Furthermore, quantitative genetic tools can be used to 

explore the role of natural selection and phenotypic plasticity or genotype-by-

environment interactions on the response of populations to environmental change and 

the process of genetic differentiation between populations.  
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Of particular interest is the potential for evolutionary changes in populations 

exposed to novel or extreme environmental conditions in degraded habitats. 

Populations that are demographically viable and have enough genetic variation could 

respond adaptively to environmental change in degraded habitats. The potential for 

evolutionary changes and adaptive genetic differentiation has received little attention in 

conservation. Nevertheless, there is increasing evidence that evolution by natural 

selection can happen at a time scale comparable to ecological processes, thus it may 

have important implications for conservation in the short-term (Palumbi 2001; Stockwell 

et al. 2003; Zimmer 2003). The accelerated rate of environmental change in degraded 

habitats can promote rapid evolution in populations, if it results in strong directional 

selection on traits that have genetic variation to respond to selection (Kinnison and 

Hendry 2001). Evolutionary changes in degraded-habitat populations will influence not 

only their persistence on those habitats, but also the spatial genetic structure of 

populations, as a result of genetic differentiation between populations from modified 

habitats and the populations that remain in the native, undisturbed habitats (Palumbi 

2001; Reznick and Ghalambor 2001; Stockwell et al. 2003). Plants can exhibit strong 

genetic differentiation at small spatial and temporal scales (reviewed in Linhart and 

Grant 1996; Petit and Hampe 2006), and it is possible that rapid evolutionary changes 

in degraded habitats are widespread for plant species. Identifying the conditions that 

favor adaptive evolutionary changes and genetic differentiation between populations is 

therefore important in conservation, especially because adaptation in response to 

habitat degradation may become essential for population persistence when habitats are 

severely degraded in the long-term (Burger and Lynch 1995; Lynch and Lande 1993). 

Furthermore, adaptation to degraded habitats could also have negative effects on 

population viability, because populations will lose genetic variation in the process of 

adaptation, and because genetic differentiation between populations in contrasting 

habitats might result in outbreeding depression with continuing gene flow. 

 

In addition to the effects on population persistence and the genetic structure of 

populations, evolutionary changes by natural selection and other forces like genetic drift 
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can have implications for many aspects of conservation biology (McKay and Latta 2002; 

Stockwell et al. 2003). Evolutionary changes can play a major role in the success of 

invasive species and the susceptibility of communities to invasion (reviewed in Ellstrand 

and Schierenbeck 2000; Lambrinos 2004; Lee 2002; Mooney and Cleland 2001), the 

decline of populations subject to overexploitation (Conover and Munch 2002; Haugen 

and Vollestad 2001), or the metapopulation dynamics of species where dispersal 

patterns evolve in response to habitat degradation (Sih et al. 2000). But the outcome of 

evolutionary changes on populations and communities may be affected by the rate of 

habitat degradation, or the characteristics of the landscape, for example evolutionary 

changes may happen preferentially in some populations (e.g. sink vs. source, or core 

vs. peripheral populations) (Holt and Gomulkiewicz 2004; Lowe et al. 2005). Only by 

integrating ecological, molecular, and evolutionary approaches will we be able to 

understand how habitat loss, fragmentation, and degradation can affect ecological, 

genetic, and evolutionary process that interact to determine population viability and 

species persistence in human-dominated landscapes. 

 

RESEARCH GOALS AND JUSTIFICATION 

 

Cycads are one of the most threatened groups of plants in the world (Donaldson 

2003). The persistence of cycad species is threatened mainly by habitat destruction and 

in some cases by overexploitation of populations (for ornamental uses). Many species 

persist as small isolated populations, often in highly degraded habitats. Consequently, 

information on how habitat degradation may affect the ecological and evolutionary 

dynamics of populations is crucial for cycad conservation. Demographic studies have 

shown that the population growth rate of cycad populations mostly depends on high 

adult survivorship and episodic recruitment (Negron-Ortiz et al. 1996; Perez-Farrera et 

al. 2006; Raimondo and Donaldson 2003), similar to the demographic patterns showed 

by woody perennials in general (Franco and Silvertown 2004; Silvertown et al. 1993). 

Therefore, habitat loss and the reduction of population size, and especially adult 

mortality, should have strong negative effects on the population growth rate of cycads. 

Population isolation may also have negative consequences for cycad populations. 
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Pollination and seed dispersal in natural populations seems to be limited to short 

distances (Donaldson 1997; Mound and Terry 2001; Tang 1987; Tang 1989), and 

population genetic studies have suggested that population isolation after habitat 

fragmentation may result in loss of genetic variation (Gonzalez-Astorga et al. 2006; 

Keppel et al. 2002). 

 

The negative effects of population decline and isolation can result in high 

population extinction, as observed in many cycad species. Nevertheless, many species 

are able to persist in fragmented and degraded habitats, and habitat degradation could 

have important effects on their population biology, beyond negative demographic effects 

or the loss of genetic variation. There is virtually no information on how habitat 

degradation can affect the life-history, the distribution of genetic variation and genetic 

structure, or the evolutionary potential of cycad populations. Of particular interest is the 

potential for adaptive evolution in degraded habitats, as for many species, adaptation to 

disturbed environmental conditions may be the only way to guarantee species 

persistence in the long-term. I chose Zamia fairchildiana as a model to investigate the 

consequences of habitat degradation on the ecological and evolutionary dynamics of 

cycad populations, and the potential of cycad species to adapt to disturbed habitats. 

Zamia fairchildiana is a cycad typical of the rainforests of Central America (Norstog and 

Nicholls 1997). In contrast to most other Zamia and cycad species, Z. fairchildiana still 

has large populations in their native habitat, that is relatively undisturbed by 

anthropogenic influences in parts of the distribution range of the species. Z. fairchildiana 

also has large populations in fragmented and degraded habitats, and therefore it 

constitutes an ideal species for exploring population responses to habitat degradation. 

 

Here, I combine information from observational studies, molecular and 

quantitative genetic analyses, and manipulative experiments in natural and controlled 

environments to explore how environmental changes after habitat degradation affect the 

life-history of Z. fairchildiana and the evolutionary dynamics of populations, the effects 

of habitat degradation on evolutionary forces like gene dispersal, inbreeding, directional 

selection, and genotype-by-environment interactions, and the potential for adaptive 
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genetic differentiation between populations. This research is presented in three parts. 

First, I explore how environmental changes in degraded habitats affect the growth and 

fecundity rates of populations, and the subsequent effects on the distribution of genetic 

variation and inbreeding levels within populations. Second, I compare the patterns of 

directional selection between native and degraded habitats, and estimate levels of 

heritability for ecologically-relevant traits (mostly related to growth), to evaluate the 

potential response to selection in populations of Z. fairchildiana. Third, I describe 

genotype-by-environment interactions in seed germination and seedling survival, that 

depending on the relative contribution of genetic and environmental effects, particularly 

maternal effects, determine the potential for adaptive genetic differentiation between 

populations from native and degraded habitats in Z. fairchildiana. Finally, I integrate all 

the results to discuss population responses to habitat degradation, and highlight the 

need for further information that will provide a more detailed understanding on the 

overall effect of habitat degradation on the ecological and evolutionary dynamics of this 

species. 

 

STUDY SYSTEM 

 

  Study species 
 

Cycads are the most ancient seed plants that still alive, the most basal lineage in 

the phylogeny of gymnosperms and seed plants (Hajibabaei et al. 2006), therefore they 

represent an important group of plants from an evolutionary point of view. Fossil 

evidence suggests that Cycads appeared towards the end of the Paleozoic era and 

dominated the world flora during the Mesozoic. The extant species closely resemble 

many of the fossils in the Mesozoic, thus Cycads are considered ‘living fossils’ (Norstog 

and Nicholls 1997). Nevertheless, Cycads possess complex interactions with bacterial 

root symbionts, and insect herbivores, and pollinators (Schneider et al. 2002), and 

insect pollination probably first appear in this lineage of plants (Klavins et al. 2005). 

Nevertheless, we know very little about the biology of Cycads in their natural habitats. In 
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particular, there is scanty information about the diversity of genera like Cycas in Asia, 

and Zamia and Ceratozamia in America (Donaldson 2003). 

 

Currently, there are aproximately ca. 300 taxa of Cycads (species and 

subspecies) distributed in the tropical and subtropical regions around the world 

(Donaldson 2003). These cycad taxa are grouped in 11 genera, five of which appear in 

the Neotropics. In the Neotropics, the genus Zamia is the richest in species. 

Furthermore, Zamia species are very diverse in habitats (from desertic to rainforest 

ecosystems) and habits, i.e. species with subterraneous and aerial stems, and a rich 

variety of leaf morphologies. Most species of Zamia, as is common for Cycads, are 

endemic, and have restricted distribution within one country (Stevenson et al. 2003).  

 

Zamia fairchildiana (Cycadales: Zamiaceae) inhabits the understory of lowland 

and mountain wet-forest between 0-1500 masl on the Pacific slope of SW Costa Rica 

and W Panama (Gomez 1982). Throughout the geographical range of the species, 

populations of Z. fairchildiana appear in large tracts of mature, relatively unaltered 

rainforest (hereafter referred as the ‘native habitat’) and also in degraded or disturbed 

habitats (hereafter referred as the ‘disturbed habitat’). Zamia fairchildiana is classified 

as a vulnerable species in the Red list of the IUCN because of habitat destruction 

(Donaldson 2003), but the species still has large populations in undisturbed and 

disturbed habitats in Costa Rica and Panama. 

 

In the Osa Peninsula in SW Costa Rica, Z. fairchildiana is a small tree in the 

understory, that can get up to 2 m of height, and has a crown of 5-20 compound leaves 

(Figure iA, iB). The number of leaflets increases progressively with age, from 4-6 

leaflets in the seedlings to about 50-60 in the adults. Leaflet number has been used to 

describe the developmental stage (or age-stage) of plants in demographic studies in 

other Zamia species (Clark and Clark 1987; Negron-Ortiz and Breckon 1989). Plants 

may take around 10 years to reach the minimum size for reproduction, and may live for 

several decades (L. D. Gomez, personal communication). Leaf production occurs in 

annual flushes, and every year the stem increases in height during growth episodes. 
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Leaf production peaks around May-June, coinciding with the first peak in rainfall during 

the year. At this point, most activity by the specialist herbivore Eumaeus minyas 

(Lepidoptera: Lycaenidae) can be observed on young leaves (Figure iiA, iiB). Leaves 

are heavily prickled, presumably as a defense for herbivory, and the number of prickles 

in leaves is variable among individuals (although it tended to be higher in the native-

habitat individuals). Cycads also produce potent toxins in leaves and other plant parts 

that act as a chemical herbivory defense (Castillo-Guevara and Rico-Gray 2003). The 

larvae of E. minyas and other cycad herbivores are thought to gain chemical protection 

from the ingestion of the cycad toxins (DeVries 1976; Nash et al. 1992). Leaves of 

rainforest Zamia species have a very long life-span compared to other plants, and have 

structural features intermediate between sun- and shade-adapted species (Lee et al. 

1990), but their photosynthetic ability decays after a few years, in part due to the heavy 

cover of epiphylls on the leaflets (Clark et al. 1992).  

 

Cycads are dioecious, i.e. male and female cones are produced in separate 

individuals (Figure iC, iD). The mechanism of sex determination is unknown, and sex 

changes are extremely rare (Norstog and Nicholls 1997). Zamia fairchildiana females 

produce one cone with 50-200 seeds, and males produce 1-3 cones with 150-600 

sporophylls (parts of the cone containing pollen sacs). Reproductive events are annual 

and synchronous, but every year only a small percentage of individuals of the 

population produce reproductive organs, as is common in Zamia species (Clark and 

Clark 1987; Negron-Ortiz et al. 1996). Cone production starts around August, when the 

second annual peak in rainfall begins. Pollination is carried out by small beetles (Figure 

iiC, iiD), when the dry season starts by December. During this study pollinators of Z. 

fairchildiana were collected for the first time, and taxonomic specialists have determined 

that they represent two new species (currently in the process of description, W. Tang, 

personal communication) of the genera Pharaxonotha (Coleoptera: Erotylidae) and 

Rhopalotria (Coleoptera: Belidae). 

 

Seed development lasts for ca. 12 months, and mature seeds have a sarcotesta 

(outer seed layer) with a bright red to orange color. Most seeds are dispersed locally by 
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gravity when the cone parts rot away, which occurs at the end of the rainy season 

(November-December) the following year after pollination. Seeds begin to form a radicle 

sometime during the dry season, and the first leaf emerges after the start of the rainy 

season in March-April. Seedlings quickly develop root nodules containing nitrogen-fixing 

bacteria that eventually form specialized roots or ‘coralloid roots’ in the adults. Newly-

emerged seedlings have one leaf with 4-6 leaflets, and accumulate reserves in the 

subterraneous stem until the next dry season, when most seedling mortality occurs. 

Seedlings that are older than one year also have a high risk of mortality, but survival 

probability increases with age-stage in individuals. 

 
Figure i. Juvenile (A) and adult (B) individuals of Z. fairchildiana in habitat; and female (C) and male (D) 
cones in reproductive adults. 
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For this study, three patches or colonies of individuals of Z. fairchildiana were 

chosen in each of two study sites, each site representing one type of habitat: the native-

undisturbed habitat, and the degraded habitat. The patches are considered 

subpopulations because the neutral genetic differentiation between them is very low, i.e. 

the FST value across habitats is small (see Chapter 1). Subpopulations within habitats 

consist of discrete and isolated patches with a few hundred individuals, and are 

separated at least 1 km from each other. All subpopulations were located in sites with 

similar topography, in stream or river banks with steep slopes (around 30%), which is 

the common habitat for Z. fairchildiana in the study sites. The only conspicuous 

difference between subpopulations from the two habitats is that plant density was higher 

in the patches of individuals in the degraded habitat. 

 
Figure ii. Herbivores and pollinators of Z. fairchildiana. A. Larvae and B. Adults of Eumaeus minyas, an 
specialized herbivore. Pollinators of the genera Pharaxonotha (C) and Rhopalotria (D). Pictures of 
pollinators provided by Dr. W. Tang, scale bar=1 mm. 
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  Study sites 

 

The study was carried out in two sites: a native-habitat site within ‘Corcovado 

National Park’, and a disturbed-habitat site in the buffer zone of the National Park, 

within the ‘Golfo Dulce’ Forest Reserve. Separate patches of individuals of Z. 

fairchildiana in the native-habitat site were located near ‘Sirena’ station’ (8°32’25’’N, 

83°23’50’’W), and in the disturbed habitat site near ‘El Tigre’ station (8°28’46’’N, 

83°35’10’’W), both ranger stations of the ‘Area de Conservación Osa’ (ACOSA, SINAC, 

Costa Rica). The two study sites were separated by a linear aerial distance of 

approximately 20 kilometers (Figure iii).  

 

Study sites had 0-150 m of elevation. Soils in the Osa Peninsula are 

predominately of tectonic and erosive origin, dominated by Ultisols in the dissected 

terrain (Cleveland et al. 2004), where Z. fairchildiana occurs. The mean annual 

temperature is 26°C. Rainfall reaches 4000-6000 mm every year. Rainfall is distributed 

across the year between a rainy season and relatively mild dry season that last for 

about four months (Janzen 1983). There is a peak in rainfall in August-November and 

the dry season lasts from December-April (Figure iv).  

 
Figure iii. Average (±SE) monthly rainfall in the native- and disturbed-habitat sites for the last seven 
years. Closed circles: native-habitat site, Open-circles: disturbed habitat site. Daily rainfall data were 
provided by the ACOSA administration of Costa Rica. 
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The native habitat is a wet forest with high species diversity and high endemism, 

e.g. ca. 50 tree species than can reach more than 10 cm dbh. The forest type in the 

native- and disturbed-habitat sites was classified as ‘dense broad-leaved evergreen 

well-drained lowland forest’ by an ecosystem assessment study carried out by the 

Costa Rican National Biodiversity Institute, INBio (Kappelle et al. 2003). The forest has 

a dense canopy that is approximately 25 m tall and the understory is relatively open. 

There is a high density of large trees and lianas (greater then 10 cm dbh), and very few 

species are deciduous. Tree and liana species are predominantly bird- and mammal-

dispersed, which is a feature, together with tree species composition, that makes the 

rainforest at the Osa Peninsula similar to the rainforest in the Choco biogeographical 

region of South America (Panama-Colombia-Ecuador Pacific drainage) (Gentry 1988).  

 

The disturbed-habitat site is dominated by fragmented forest that has been 

altered by anthropogenic disturbances like selective logging, hunting, and mining. The 

vegetation type in the disturbed habitat is similar to the native habitat. Human pressure 

on the forest, by deforestation and other activities, has been present in the Osa 

Peninsula since the 1930s, when gold mining and banana plantations were established, 

but has been greatest after the 1950s, when colonization was facilitated by the 

construction of the Panamerican highway (Rosero-Bixby et al. 2002; Sader and Joyce 

1988). Corcovado National Park, in the Osa Peninsula, was created in 1975, in forests 

where human disturbance in the 20th century was never severe. In the native-habitat 

site, Sirena Station, a few subsistence farmers established between the 1940s and 

before the declaration of protected area, but these places were restricted to the coastal 

strip, and the forest cover in the dissected terrain (where Z. fairchildiana inhabits) was 

never cleared or greatly disturbed (Phillips 1985). 
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Figure iv. Map of the Osa Peninsula in SW Costa Rica showing forest cover (lowland mixed dense forest 
in dark green, and montane forests in lighter shades of green) and the location of the two study sites. 
Sirena station (within Corcovado National Park) was the native-habitat site, and El Tigre station (within 
Golfo Dulce Forest Reserve) was the disturbed-habitat site. The forest cover map was extracted from the 
Ecomapas project report, by INBio of Costa Rica (Kappelle et al. 2003). 
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CHAPTER 1 
 

“Life-history changes after habitat degradation and the fine-scale spatial 
genetic structure in populations of a rainforest cycad” 

 
ABSTRACT 
 

Fine-scale spatial genetic structure (SGS) of populations resulting from gene 

dispersal limitation is common in plants, and can have important implications for 

population biology as it affects effective population size, the levels of inbreeding, and 

the patterns of viability selection. Here, we explore how life-history differences between 

populations from contrasting habitats may affect the strength of spatial genetic structure 

and inbreeding in a tropical rainforest cycad (Zamia fairchildiana). Patches of individuals 

across the landscape showed very low genetic differentiation at the neutral molecular 

level, i.e. low FST. However, subpopulations recently exposed to higher light availability 

in degraded habitats showed substantial differences in their life-history. In the 

degraded-habitat subpopulations individuals grew faster, reproduced earlier, and 

invested more in reproduction than plants from subpopulations in their native habitats. 

Disturbed-habitat subpopulations also showed higher frequency of reproduction and 

greater mate availability. The degraded-habitat subpopulations showed weaker SGS, 

i.e. a smaller slope in the linear regression of genetic relatedness on linear distance, 

suggesting that gene dispersal is less restricted in this habitat. In addition, contrary to 

what is expected for populations with weak SGS, higher levels of biparental inbreeding 

were found in the disturbed-habitat subpopulations. Changes in the strength of SGS 

and the levels of inbreeding after habitat degradation will affect the distribution of 

genetic variation within populations, and may have important consequences for 

population viability, therefore they should be of concern in conservation biology. 
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INTRODUCTION 

 

Habitat loss and degradation are the major threats to species persistence 

worldwide (Myers 1997). In addition to direct effects of habitat modifications on the 

demographic viability of populations, the patterns of genetic exchange and the 

distribution of genetic variation between populations can be altered as a result of 

anthropogenic activities. If this is the case, then information on the spatial genetic 

structure of populations is necessary to delineate appropriate significant units for 

conservation (Fraser and Bernatchez 2001; Moritz 1994), and for restoration programs 

that seek to minimize negative effects of movement of individuals between populations 

(e.g. because of outbreeding depression (Frankham 1995)). Consequently, studies 

focused on determining the scale of genetic structure between populations are common 

in conservation biology (e.g. England et al. 2002; Galeuchet et al. 2005; Honnay et al. 

2005; Hooftman et al. 2004; Jacquemyn et al. 2003; Murren 2003). One issue that has 

received far less attention is the potential effects of habitat modifications on the 

distribution of genetic variation at a fine-scale or at the within-population level.  

 

Fine-scale spatial genetic structure (SGS), i.e. the non-random distribution of 

genotypes in space, is a wide-spread phenomenon in plant populations and in 

populations of other sedentary organisms where the distance of propagule dispersal is 

small compared to the area covered by a population. Spatial genetic structure can result 

from past demographic events, adult and seed source density, or micro-environmental 

selection (Enos 2001; Jones and Hubbell 2006), but dispersal limitation is probably the 

main process affecting fine-scale SGS within populations (Vekemans and Hardy 2004). 

SGS has important consequences for population biology, as it affects effective 

population sizes, levels of inbreeding, and patterns of viability selection (Schnabel et al. 

1998). Therefore, changes in SGS within populations after habitat degradation may be 

important to consider in the context of conservation biology, not only because of its 

potential effects on population viability, but also because it will determine adequate 

sampling strategies to maximize the representation of the genetic variation in a 

population (for restoration or captive-breeding purposes for example). 
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Higher levels of inbreeding in populations affected by habitat loss and 

degradation are common (reviewed in Lowe et al. 2005). Changes in the SGS within 

populations could also be widespread in human-dominated landscapes if life-history or 

other traits influencing gene dispersal are altered in degraded habitats. In the case of 

tropical rainforests, deforestation, habitat fragmentation and degradation, and extractive 

activities result in forest that differ drastically from the original habitat in forest structure 

and species composition (Noble and Dirzo 1997; Tabarelli et al. 2004; Wagner 2000). 

Habitat degradation can affect plant survival and reproductive rates, and many studies 

have shown decreased recruitment and lower levels of genetic variation in degraded-

habitat populations of plants (reviewed in Lowe et al. 2005; Young et al. 1996). In 

addition, habitat degradation can alter the patterns of mating and gene dispersal. For 

example, habitat fragmentation and degradation can affect patterns of pollen movement 

and seed production within populations (Ghazoul 2005; Nason and Hamrick 1997). 

However, there are very few studies that have explored the consequences of altered 

mating patterns and gene flow on the fine-scale SGS within populations (but see Chung 

et al. 2004; van Rossum and Triest 2006; Young and Merriam 1994). These studies can 

help predict the effects of habitat degradation on the levels and distribution of genetic 

variation within populations and other genetic factors affecting population fitness. 

 

Zamia fairchildiana is a long-lived cycad (Gymnospermae) typical of the 

understory of tropical rainforests in the Costa Rica and Panama (Gomez 1982). In part 

of its distribution range, populations of Z. fairchildiana persist in forest affected by 

fragmentation and other anthropogenic activities (i.e. disturbed habitats), where 

environmental conditions differ considerably from their native habitats. This cycad 

species, as most understory plants in tropical forests, is particularly affected by changes 

in light availability (Clark and Clark 1987), as light is by far the most limited resource in 

these habitats (Brienen and Zuidema 2006; Chazdon et al. 1996; Clark and Clark 1992). 

In this paper we describe how differences in canopy cover between native and 

disturbed habitats are associated with significant differences in life-history traits, and 

how these differences may be affecting the levels of SGS and inbreeding within 
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populations of Z. fairchildiana. In particular, we evaluate how differences in growth and 

fecundity rates could affect SGS and the levels of inbreeding through their effects on the 

frequency of reproduction and mate availability within populations. 

 

METHODS 
 

  Sampled populations 

 

Six populations of Z. fairchildiana where chosen for monitoring growth and 

fecundity rates. Three populations were located in old-growth, undisturbed forest within 

Corcovado National Park (Sirena Station). The other three populations were located in 

disturbed forests, near El Tigre station that lies outside the National park, in an area 

affected by deforestation, logging, hunting, and mining for the last five to six decades. 

Out of the three populations, the largest population in each habitat was selected for 

genetic analyses (populations P2 and P8 in Table 1.4) 

 

  Estimation of growth, fecundity, and mate availability 

 

In three populations/habitat, we sampled all individuals present in a 100 x 20 m 

transect in the native habitat or a 50 x 10 m transect in the disturbed habitat. Transects 

were smaller in the disturbed habitat to keep similar samples sizes across populations, 

since plant density was higher in this habitat. To estimate the growth rate, we counted 

the number of new leaves in the leaf flush/plant produced in the growing seasons of 

2005 and 2006. Growth rates depend on plant size and may be affected by light 

availability. We estimated total leaf area as the product of the total number of leaflets in 

all leaves by the average leaflet area. Leaflet size is uniform across leaves in an 

individual, thus leaflet area was calculated using digital photos and an imaging software 

for four leaflets randomly chosen from the middle part of a young but mature leaf. We 

also estimated the percentage of canopy openness around the plant, using a spherical 

densitometer. Leaf production for juveniles (smaller than the minimun size for 

reproduction), reproductive and non reproductive individuals was compared between 
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habitats using a repeated-measures GLM, with year and habitat as factors. We used 

leaf area as a covariate in the analysis, to control for size effects on leaf production. 

Population did not have an effect on growth or fecundity measures, and data for 

populations within habitats were pooled in all statistical analyses. 

 

In the reproductive seasons of 2004 and 2005, all adult individuals were checked 

for cone production, to account for all reproductive plants/population. Allocation to 

fecundity was estimated as the slope of the regression between fecundity and plant size 

(Aarssen and Taylor 1992). The minimum size for reproduction is estimated by the 

intercept in this regression. Plant size was estimated as total leaf area, as described 

before. Fecundity was measured as the product of the number of cones (only one in 

females) and cone size, i.e. the number of sporophylls (cone parts bearing seeds or 

pollen sacs). We performed ANCOVA analyses, combining fecundity year for both 

years, to test for differences in fecundity allocation between habitats, i.e. to compare the 

slope of the relationship between plant size and fecundity. We also calculated the 

proportion of females and males out of the total adult population that produce cones in a 

reproductive season. A sex ratio of 1:1 was assumed. Genotypic sex ratios are difficult 

to estimate in cycads because many individual plants do not produce cones in a given 

season, but the only two studies to date have estimated the sex ratio to be 1:1 (Ornduff 

1987; Ornduff 1996). However, if only cone producing plants are counted there is 

usually a sex bias towards more males in a given reproductive season in cycad 

populations, as reproduction is more costly for females, and they reproduce less often. 

We estimated mate availability for females in both reproductive seasons, as the number 

of males/females in each population. Statistical analyses were performed in SPSS 

(SPSS 2003). 

 

  Development of microsatellites for genetic analyses 

 

We developed microsatellite loci following the protocol by Hamilton (1999) using 

DNA extracted from two individuals of Z. fairchildiana from the Montgomery Botanical 

Center collections (Miami, US). Genomic DNA was extracted from dry leaf samples 
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using a DNeasy Plant Mini-kit (QiaGen). DNA was digested with two restriction 

enzymes (Nhe I and Rsa I) and then ligated to SNX linkers that allowed the recovery of 

enriched DNA fragments after hybridization with probes containing AG and AT repeats. 

DNA fragments that successfully hybridize with the probes were cloned using a TOPO-

TA cloning kit (Invitrogen). A total of 25 clones were sequenced in an ABI 3100 

automated sequencer (Applied Biosystems). Out of the 25 clones sequenced, 12 were 

suitable for primer development. We developed primers for these loci using the software 

Primer 3 (Rozen and Skaletsky 2000) (Table 1.1). Six loci showed consistent 

amplification and were highly polymorphic for the two populations under study.  

 

For genetic analyses, we chose only one population per habitat, in order to 

perform an detailed sampling of individuals in three transects/population. A total of 200 

and 250 individuals in the native and disturbed habitat, respectively, were sampled in 

three 100 x 20 m transects in the native habitat and three 50 x 10 m transects in the 

disturbed habitat. The transects were located in different locations, based on 

topographic features, within each population. Approximately 20 g. of dry leaf 

tissue/individual was used to extract DNA using a DNeasy Plant Mini-kit (QiaGen). Each 

loci was amplified in a 10 μl PCR reaction using forward primers with an M13 tail that 

allowed them to anneal with a universal fluorescent-labeled M13 primer (following 

Schuelke 2000). PCR reactions had concentrations of ca. 20 ng of template DNA, 0.02 

μM of forward- and 0.20 μM of reverse- and labeled M13-primers, 0.4 mM of each 

dNTP, 0.2 U of Taq DNA polymerase, 50mM tricine, and 2mM MgCl2. I employed 

touchdown PCR profiles, with an initial denaturation step at 94°C for 3 m; followed by 30 

cycles at 94°C for 30 s, 54°C for 30 s, decreased by 1°C in cycles 2 through 10, and 

72°C for 45 s; and a final extension step at 72°C for 20 min. PCR products were run in 

an ABI 3730 automated sequencer (Applied Biosystems) and allele scoring was 

performed using the software Gene Mapper (Applied Biosystems 2004). Loci were 

tested for Hardy-Weinberg equilibrium (HWE) with the software Arlequin (Schneider et 

al. 2000), and the presence of null alleles using the software Micro Checker (van 

Oostechout et al. 2005).  
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Table 1.1. Primer sequences (R: reverse primer, F: forward primer) for six microsatellite loci for the cycad 
Z. fairchildiana.  
 

Locus Primer sequence 

Zf-01 R: AGGACGATCAGAAATGGAAG 
F: GTGGCAAGTGTCCCTGTTG 

Zf-02 R: GGCCACCCTGGATTTCTAA 
F: AAGTCCTGGCATTGCACCT 

Zf-03 R: AGCATTCAAAGGTGGCAAGT 
F: GGACGATCAGAAATGGAAGC 

Zf-04 R: GGTGGAAAACTAATGGGTCAAA 
F: CCCTAAAGGTCCCTTTGCTT 

Zf-05 R: CCCTAAAGGTCCCTTTGCTT 
F: TGGGTCAAAATATGTTATGCTTT 

Zf-06 R: TGACCTTGGATGTGGAAAGA 
F: AGAGCACTTAAACCCAGGACA 

 
 

  Estimation of SGS parameters and inbreeding coefficients 
 

To quantify the strength of SGS, we used the Sp statistics (Vekemans and Hardy 

2004). This measure allows making direct quantitative comparisons of the magnitude of 

SGS among populations. The Sp statistics combines information on the slope of the 

regression of pairwise relatedness on the natural logarithm of distance between 

individuals (bF), and the average relatedness between neighbor plants (F1), according to 

the formula Sp=- bF /(1- F1). We estimated pairwise relatedness coefficients using the 

six microsatellite loci. We estimated the average relatedness among pairs of individuals 

for distance classes of 5 m, ranging from neighboring individuals (less than 5 m from 

each other) to individuals separated by more than 100 m. We estimated pairwise 

relatedness using coefficients proposed by Loiselle et al. 1995 and Ritland 1996 

(Loiselle et al. 1995; Ritland 1996a), as these coefficients usually perform well in the 

estimation of SGS with highly polymorphic loci (Vekemans and Hardy 2004). 

Geographical distance between individuals was calculated as the Euclidian distance 

from two-dimensional spatial coordinates obtained for plants within the transects used 

for genetic analyses. 

 

To estimate the inbreeding coefficient (FIS) for each population we used the same 

relatedness coefficients as for the SGS analysis. Finally, to estimate the degree of 

genetic differentiation showed by the microsatellite markers, we calculated the RST 
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value for the single comparison between the two populations (Michalakis and Excoffier 

1996). We performed the estimation of the Sp statistics and FIS-FST coefficients using 

the software SpaGeDi (Hardy and Vekemans 2002). Jackknifying over loci was used to 

obtaine multilocus averages and SE for all parameters. In addition, 1000 permutations 

of the location of individuals (for SGS parameters) and genes within individuals (for 

inbreeding coefficients) were used to calculate P-values to test for statistical 

significance of the estimates. 

 

RESULTS 

 

  Growth, fecundity, and mate availability 
 

Average canopy openness was significantly higher in the disturbed habitat (GLM 

F=55.64, P<0.001, Figure 1.1). The coefficient of variation for canopy values is lower in 

the disturbed habitat (CV=37.6% versus CV=47.5% in the native habitat). Juveniles, 

non reproductive adults, and reproductive plants had a higher leaf production in the 

disturbed habitat in the two growing seasons (Table 1.2, Figures 1.2A and 1.2B). Higher 

leaf production was positively associated with canopy openness in both habitats and 

both growing seasons (r>0.45 and P<0.05 in all tests). The minimum size to 

reproduction was smaller in the disturbed habitat for females and males, as evidenced 

by the smaller intercept in the fecundity allocation curve (Figure 1.2C and 1.2D). 

Fecundity allocation was higher in the disturbed habitat for males (ANCOVA F=4.31, 

P=0.041, Figure 1.2D), but females had similar fecundity allocation in both habitats 

(ANCOVA F=1.03, P=0.313, Figure 1.2C). 
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Figure 1.1. Distribution of canopy openness values in subpopulations of native (closed circles) and 
disturbed (open circles) habitats. 
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Table 1.2. Effect of habitat on leaf production in different life stages in subpopulations of Z. fairchildiana. 
A rm-ANOVA was used, with habitat as a main factor and leaf area as a covariate. 
 

Life cycle stage SS d.f. F P 
Juveniles 1.23 1 4.49 0.036 
Non-reproductives 79.67 1 54.77 <0.001 
Females 8.71 1 4.22 0.045 
Males 14.78 1 7.56 0.007 

 
 

Population sizes were smaller in the disturbed habitat (Table 1.3). In both 

habitats, no more than 6% of the total number of females, or 15% of the total number of 

males produced cones in a single reproductive season. There was a trend for a higher 

proportion of plants producing cones (both males and females) in the disturbed habitat, 

which resulted in a trend for a higher ratio of males/female in this habitat in both years. 

However, differences were not statistically significant (P values were significant or 

marginally significant, Table 1.3). The trend suggests that more males reproduced in the 

disturbed-habitat populations, but males did not produce more cones or larger cones, or 

had a higher allocation to fecundity.  
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Figure 1.2. Leaf production (mean ± 2SE) in the growing seasons of 2005 (A) and 2006 (B), and 
fecundity allocation for females (C) and males (D) in two habitats. Open circles and dashed lines: 
disturbed-habitat individuals. Closed circles and solid lines: native-habitat individuals. N values on the X 
axis in A and B are shown for each life-cycle stage. 

 
 
 
 
Table 1.3. Proportions of females and males, and male/female ratio in two reproductive seasons for three 
subpopulations in native and disturbed habitats. The last two rows are mean values for each habitat. P 
values are reported for t-tests comparing the parameters between habitats. 
 

females males males/females 
Population # adults 

2004 2005 2004 2005 2004 2005 
P2 420 0.076 0.062 0.176 0.157 2.31 2.54 
P3 316 0.044 0.070 0.114 0.146 2.57 2.09 
P4 156 0.038 0.026 0.103 0.128 2.67 5.00 
P6 402 0.050 0.030 0.090 0.065 1.80 2.17 
P7 510 0.039 0.027 0.090 0.063 2.30 2.29 
P8 656 0.037 0.049 0.085 0.082 2.33 1.69 
disturbed 297.3 0.053 0.052 0.131 0.144 2.517 3.210 
native 522.7 0.042 0.035 0.088 0.070 2.144 2.047 
P value 0.05 0.22 0.21 0.10 0.001 0.07 0.09 
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  Spatial genetic structure and inbreeding levels within populations 

 

The levels of heterozygozity were slightly lower, and the number of alleles slightly 

smaller in the disturbed-habitat population (Table 1.4). Most loci showed deviations from 

Hardy-Weinberg equilibrium (Table 1.4). Separate HWE tests for transects suggested 

that some of the deviations from HWE may be the result of a Walhund effect. Within one 

population, groups of plants in different slopes or separated by a small gorge can be 

relatively isolated at the genetic level (data not shown). The presence of null alleles 

could also have contributed to lack of HWE in two loci, but strong genetic drift given the 

likely small effective population sizes may explain deviations from HWE in different 

directions in several loci. Nevertheless, inferences on the SGS within populations and 

inbreeding estimates should not be affected by this, as the relatedness coefficients used 

to estimate inbreeding do not assume HWE (Vekemans and Hardy 2004).  

 

Average relatedness among pairs of individuals was low in both habitats, i.e. 

lower than F=0.06, even for neighbor plants (Figure 1.3). Furthermore, both relatedness 

coefficients showed that average relatedness is lower in the disturbed habitat, 

particularly for the first distance classes corresponding to neighboring plants (separated 

by less than 10 m of distance). In both habitats, distance classes larger than 40 m in the 

native habitat and 30 m in the disturbed habitat had negative average relatedness 

values (Figure 1.3). Negative relatedness coefficients indicate that relatedness among 

pairs of individuals in these distance classes is lower than the coefficient expected for a 

pair of random individuals. Therefore, the transects used in this study were appropriate 

to describe the fine-scale SGS within populations. 

 

Relatedness between pairs of individuals decreased with the logarithm of 

geographical distance in both habitats (Figure 1.3). Both relatedness coefficients 

showed that the slope of the linear regression of pairwise relatedness on the logarithm 

of the distance (bF) is lower in the disturbed habitat (Table 1.5). Lower values for bF and 

F1 resulted in lower values for the Sp statistics, i.e. weaker SGS, in the disturbed habitat 

(Table 1.5). Estimates of average relatedness and the Sp statistics were considerably 
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smaller when using the coefficient proposed by Ritland 1996 (Figure 1.3), as this 

coefficient is usually biased downwards in the presence of rare alleles in microsatellite 

loci. However, this coefficient has larger precision (smaller SE) and showed a significant 

difference in the degree of SGS between habitats (P=0.029 using Ritland’s coefficient; 

P=0.105 using Loiselle et. al’s coefficient). Consistency among the results given by two 

different relatedness coefficients also suggests that the sampling strategy and the 

statistical analyses of SGS were robust. 

 
Table 1.4. Genetic diversity for six microsatellite loci for the cycad Z. fairchildiana. Number of alleles (Na) 
and levels of observed heterozygozity (Hobs) are presented for the subpopulation in native and disturbed 
habitats. *P<0.05, **P<0.01 in Hardy-Weinberg equilibrium tests.  
 

native habitat disturbed habitat Locus 
Na Hobs Na Hobs

Zf-01 15 0.83* 14 0.76 
Zf-02 7 0.96** 7 0.93** 
Zf-03 17 0.83 17 0.73** 
Zf-04 28 0.75** 27 0.80** 
Zf-05 18 0.54** 16 0.35* 
Zf-06 16 0.90** 14 0.81** 

 
 

Inbreeding coefficients were significantly different from zero in both populations 

examined, using the Ritland coefficient (Table 1.5). In addition, both relatedness 

measures showed higher levels of inbreeding in the population from the disturbed 

habitat (Table 1.5). As cycads are dioecious, this estimates represent the magnitude of 

biparental inbreeding, i.e. inbreeding resulting from mating between related individuals. 

Finally, the RST value for the comparison between the two populations was very low, i.e. 

RST =0.011 (SE among loci = 0.005). This indicates that all patches of individuals used 

in this study belong to a large population, with low differentiation at the neutral 

molecular level, thus they represent subpopulations. 
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Figure 1.3. Average relatedness F (±SE) among pairs of individuals in distance classes (d) as a function 
of the logarithm of the distance between individuals. These functions were estimated using the 
relatedness coefficients as defined in Loiselle et al. 1995 (A) and Ritland 1996 (B). Dashed line: 
disturbed-habitat subpopulation. Solid line: native-habitat subpopulation.  
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Table 1.5. SGS parameters (b=slope, F1=relatedness for the first distance class, and Sp statistics) and 
inbreeding coefficients (FIS) for two subpopulations of Z. fairchildiana in native and disturbed habitats. 
Parameters were estimated using the relatedness coefficients defined in Loiselle et al. 1995 and Ritland 
1996. N corresponds to the number of individuals successfully genotyped out of the total initial samples of 
200 and 250 in the native and disturbed-habitat subpopulations respectively. 
 

Loiselle et al. 1995 Ritland 1996 Parameter 
native disturbed native disturbed 

b -0.0144 -0.0079 -0.0060 -0.0029 
SE b 0.006 0.003 0.001 0.001 
F1 0.0470 0.0159 0.0203 0.0036 
SE F1 0.009 0.005 0.003 0.003 
Sp 0.0151 0.0081 0.0061 0.0029 
SE Sp 0.007 0.002 0.001 0.001 
FIS 0.007 0.009 0.076 0.121 
SE FIS  0.075 0.091 0.022 0.068 
N 191 244 191 244 

 
 

DISCUSSION 

 

  Differences in life-history strategy between habitats 
 

In the disturbed habitat, individuals produce more leaves, females and males 

start reproducing at a smaller age, and the allocation to fecundity is greater in females. 

It seems that populations in this habitat have a faster life-history strategy, in the sense 

of the ‘fast-slow continuum’ hypothesis (Franco and Silvertown 1996), where plants 

grow fast, reproduce early, and invest more in fecundity. Higher growth and 

reproductive rates in tropical trees may be associated with high resource environments 

(Baker et al. 2003). In both habitats, around 50% of the variation in leaf production is 

explained by canopy openness. Canopy openness and other structural characteristics 

of these rainforests have strong influences on light availability in the understory 

(Montgomery and Chazdon 2001; Nicotra et al. 1999). Light resources are very 

heterogeneous in the understory of tropical rainforests, but light availability is on 

average higher in the disturbed habitat. Irradiance is the major factor affecting growth 

rates in tropical rainforest trees (Brienen and Zuidema 2006; Clark and Clark 1992). 

Consequently, differences in growth and reproductive rates between native- and 

disturbed-habitat populations of Z. fairchildiana may be mostly associated with light 

availability in these habitats. Variation in light levels is usually associated with 
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differences in growth and fecundity rates in rainforest understory plants, and these 

differences can have significant demographic effects at the population level (Cipollini et 

al. 1994; Svenning 2002).  

 

Differences in life history may have important consequences for the frequency of 

reproduction and mate availability in the disturbed-habitat populations of Z. fairchildiana. 

In cycads, reproduction is highly costly, and only a small percentage of the total adult 

population produces cones in a reproductive season. Plants accumulate carbohydrates 

in the stem for several months before producing new leaves or cones (Norstog and 

Nicholls 1997). Consequently, favorable conditions and enhanced growth can increase 

the probability of reproduction, as higher light availability does in rainforest Zamia 

species (Clark and Clark 1987). Furthermore leaf production may be reduced after 

reproduction, especially in females that deplete their resources during seed formation 

(Clark and Clark 1988). This pattern of reserves accumulation and depletion before and 

after reproduction has been observed in other species of the understory of rainforests, 

and it has been associated with light availability (Cunningham 1997; Marquis et al. 

1997). With higher light availability, and higher growth and investment in reproduction, 

Z. fairchildiana plants in the disturbed habitat may be able to reproduce more often. 

However, plants do not invest in producing more or larger cones in this habitat, but in a 

higher frequency of reproduction. Higher frequency of reproduction will result in a higher 

proportion of reproducing males and females in a given reproductive season, as 

observed in disturbed-habitat populations. Nevertheless, other factors besides 

irradiance levels, like soil water and nutrient availability, may influence the variation in 

growth and fecundity rates in populations of tropical trees (Baker et al. 2003), and the 

relative role of different environmental factors remains to be evaluated. 

 

An important consequence of the higher investment in reproduction and 

frequency of reproduction in the disturbed habitat is that the ratio of male/female cones 

in a given reproductive season is larger. Male-biased sex ratios within reproductive 

seasons are common in dioecious tropical species, because of the higher cost of 

reproduction for females (Espirito-Santo et al. 2003; Nicotra 1998; Wheelwright and 
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Bruneau 1992). In arborescent cycads, males usually reproduce every two or three 

years, but the period between reproducing events is larger for females (Ornduff 1991; 

Ornduff 1996; Tang 1990). Higher light availability may reduce the period between 

reproducing events, particularly for males of Z. fairchildiana in disturbed habitats. This 

will result in a higher male/female ratio in disturbed-habitat populations, as observed. 

Reproduction is highly synchronous in cycads, and females are receptive for pollen only 

for a couple of days (Norstog and Nicholls 1997). Males usually produce more than one 

cone, that mature sequentially, to maximize the time during which pollen is released 

(Clark and Clark 1987). With more males releasing pollen within the population, females 

may have a larger number of potential pollen donors. Below we explore how differences 

in life history and particularly higher reproduction and mate availability could have 

implications for the levels of SGS and inbreeding in populations of Z. fairchildiana. 

 

  Differences in the levels of SGS and inbreeding between habitats 
 

Populations of Z. fairchildiana in the study area had low genetic differentiation at 

the neutral molecular level (i.e. a low RST or FST). Low genetic differentiation implies that 

the populations studied in the area (even if separated by more than 20 kilometers in a 

region with very roughed topography) behave effectively as one large population, and 

represent subpopulations. These subpopulations are likely descendant from a single 

ancestral population and/or have some gene flow between them. However, some 

subpopulations in the study region are currently being exposed to novel habitat 

conditions, particularly with respect to canopy openness. Subpopulations in the novel 

habitat show clear differences in life-history in comparison to subpopulations in the 

original or native habitat. These differences in life-history and other ecological factors 

may be affecting the strength of SGS and the levels of inbreeding within 

subpopulations, which could important consequences for the distribution of genetic 

variation in this population. 

 

The strength of SGS within a population depends directly on the patterns of 

pollen and seed dispersal, and indirectly on ecological factors affecting the distribution 
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of pollen, seeds, and recruits within the population. SGS is present in most plant 

species where gene dispersal has been studied, and only species with light seeds and 

pollen that are dispersed by wind show a random distribution of genotypes within 

populations (Vekemans and Hardy 2004). Trees usually show weak SGS, given their 

great longevity and high pollen/seed dispersal. However, some tree species with large 

seeds that are gravity dispersed show stronger SGS within populations (e.g. Quercus 

species, Berg and Hamrick 1995). Zamia fairchildiana has large seeds dispersed by 

gravity. However, seeds may germinate away from the mother plant because 

populations are located in steep slopes, and seeds may move down the slope, 

especially during the heavy rains that are common during the time seeds are dispersed. 

In addition, rare events of long dispersal may occur by ingestion of seeds by birds 

(Gomez 1993), although cycad seeds are highly toxic for most vertebrates. Long seed 

dispersal distances, and the fact that cycads are dioecious, and consequently obligate 

outcrossers, will result in weak SGS within populations, as observed in this study. The 

degree of SGS of the native habitat populations of Z. fairchildiana is comparable to 

other tropical tree species, with animal-dispersed pollen and large seeds that are 

gravity- or animal-dispersed (Hardy et al. 2006). 

 

The presence of SGS suggests that seed dispersal distances are still restricted 

when compared to the area occupied by the whole populations, and perhaps more 

importantly, that pollen movement is also restricted within populations. Pollen 

movement usually has a major effect on gene dispersal and may have a stronger 

impact on SGS than seed dispersal (Hardy et al. 2006). Pollination in Z. fairchildiana 

populations is carried out by weevils (personal observation). Pollinators carry out their 

whole life cycle within male cones, and feed mostly on the sporophyll tissue of the male 

cones. Pollinators move between male cones, looking for feeding and mating places, 

and sometimes visit female cones, probably attracted by sugar and amino acid-rich 

micropyle droplets and to use them as refuges (Norstog and Fawcett 1989; Tang 1987). 

There is limited information on the flight ability of the weevils that pollinate cycad cones, 

but differences in female cone rewards and the availability of food/mating places could 

affect the patterns of pollinators movement within a cycad population. The spatial scale 
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of genetic structure within subpopulations of Z. fairchildiana is similar to gene dispersal 

distances estimated for other Neotropical rainforest trees with limited pollen and seed 

dispersal, i.e. pairwise relatedness is extremely low at distances greater than 150 m 

(e.g. Degen et al. 2004; Hardesty et al. 2005; Latouche-Halle et al. 2003) 

 

Another notable fact is that SGS in Z. fairchildiana subpopulations in disturbed 

habitats is weaker in comparison to the subpopulations in their original native habitat. 

Few studies have analyzed the SGS of populations of the same species under different 

environments (but see Dutech et al. 2002; Vekemans and Hardy 2004), but differences 

in pollen or seed dispersal distances resulting from differing ecological conditions may 

affect the strength of SGS within populations. Seed dispersal is passive, mostly carried 

out by gravity, and the topography is similar between the subpopulations compared in 

this study, therefore seed dispersal distances probably have little effect on differing 

levels of SGS in the populations. Weaker SGS in the disturbed-habitat subpopulation 

might be explained by increased pollen movement between plants, and/or by indirect 

effects of higher reproduction on gene dispersal distances. A higher proportion of 

reproducing adults in a given year in the disturbed habitat may enhance pollinator 

movement, as weevils forage for food and nesting resources among reproducing plants. 

Pollinator behavior and the patterns of pollen movement can be affected by the density 

of reproductive plants in rainforest trees (e.g. Ghazoul and McLeish 2001; e.g. House 

1992). In addition, overall adult density is higher in the disturbed-habitat subpopulation, 

and density is an important determinant of the SGS across species (Hamrick et al. 

1993), through its indirect effects on gene dispersal and the magnitude of genetic drift. 

SGS is generally stronger in low density populations (Vekemans and Hardy 2004), as 

observed in this study. Detailed studies of pollinator behavior and direct estimates of 

pollen flow are required to explore the role of density and male/female reproductive 

ratios on the SGS on subpopulations of Z. fairchildiana. 

 

Patterns of reproductive output may also affect the degree of gene dispersal 

limitation indirectly. For example, spatial and temporal variation in seed production 

increases dispersal limitation (Nathan and Muller-Landau 2000). Therefore, a higher 
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investment in reproduction in the disturbed habitat may result in a more homogenous 

production of seeds across space, which will in turn increase the overlap between seed 

shadows, and thus decrease the SGS within the subpopulation. A higher probability of 

flowering and higher seed production in canopy-gaps sites resulted in weaker SGS 

within a populations of a subcanopy tree (Ueno et al. 2006). A higher density or more 

homogeneous distribution of flowering individuals can also result in a larger number of 

pollen donors for females (Murawski and Hamrick 1991; Stacy et al. 1996). In 

subpopulations of Z. fairchildiana a higher number of males available for mating may 

increase the proportion of half-sibs within a female cone (if more males pollinate the 

cone) and that would decrease the degree of relatedness among seed families and 

neighbor plants. Finally, environmental conditions in the disturbed habitat are less 

heterogeneous than in the native habitat, as evidenced by a lower variation in values for 

canopy openness. Lower heterogeneity in light levels has been found in other disturbed 

habitats of tropical rainforests (e.g. Montgomery and Chazdon 2001). Weaker micro-

environmental selection could also result in a more random mortality of seedlings and a 

decrease in SGS. Higher seed shadow overlap resulting from higher reproduction, or 

correlated effects like higher pollinators movement and lower relatedness within families 

might explain the decreasing magnitude of SGS in disturbed-habitat subpopulations of 

Z. fairchildiana, but additional information is necessary to assess the relative role of 

each of these factors. In particular, comparisons of the degree of SGS between early 

and late stages in the life cycle could discriminate between hypothesis dealing with 

limited pollen dispersal versus selective thinning after seed dispersal. 

 

Finally, an important consequence of strong SGS is that related individuals are 

close in space, and if they are more likely to mate, then biparental inbreeding levels 

could increase in the population (e.g. Degen et al. 2004; e.g. Gapare and Aitken 2005; 

van Rossum et al. 2002). However, inbreeding levels are higher in the disturbed habitat, 

where SGS is weaker. The higher levels of biparental inbreeding observed in the 

disturbed habitat may result from large variation in the reproductive success of 

individuals. Large variance in individual fecundity has been shown for other tropical 

trees (Meagher and Thompson 1987; Schnabel et al. 1998). In addition, some 
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populations show few successful cohorts (Jones and Hubbell 2006), where a few 

families (i.e. related individuals) have the highest fitness. A few individuals belonging to 

successful families that contribute disproportionably to recruitment could explain the 

higher levels of inbreeding in the disturbed habitat. This will result in lower levels of 

genetic diversity in the disturbed habitat subpopulations, i.e. lower heterozygozity and 

allele richness, as observed in this study. The levels of SGS and inbreeding observed in 

subpopulations of Z. fairchildiana depend not only on gene dispersal and ecological 

features of the population, but also on the strength of genetic drift and stochastic factors 

affecting the effective population size, that may not be at equilibrium shortly after habitat 

degradation. Nevertheless, the observed significant differences in life history, and the 

magnitude of SGS and inbreeding can have important consequences for the distribution 

of genetic variation in subpopulations of Z. fairchildiana. 

 

  Implications for conservation 
 

This study suggests that environmental differences as a result of anthropogenic 

disturbance in forest habitats of Z. fairchildiana can affect the life-history strategies of 

populations and the distribution of genetic variability within populations. Before the 

significant alterations of the landscape resulting from recent human settlements, the 

environmental conditions in the forest habitat where these populations are found were 

likely very similar. Accordingly, the low RST value indicates that these two populations of 

Z. fairchildiana are not significantly differentiated, at least at the neutral molecular level. 

However, environmental modifications in disturbed forests are drastic, and many 

aspects of forest structure and composition in disturbed habitat are likely to become 

permanently differentiated when compared to the native habitat (Tabarelli et al. 2004). 

Subpopulations in the disturbed habitat are smaller, but similar levels of genetic 

variation (number of alleles and heterozygozity) suggest that genetic drift is not affecting 

the population significantly in the recent past. Effects of habitat disturbance on the 

levels of genetic variation may take several generations to be detected, but other 

genetic effects influencing population viability, like inbreeding depression, can affect 

populations rapidly (Lowe et al. 2005).  
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Changes in the distribution of genetic variation within populations that will affect 

their response to environmental heterogeneity in space and time will have important 

consequences for population viability in dynamic ecosystems like tropical rainforests. 

Processes affecting the clustering of related individuals will affect patterns of viability 

selection through enemy-mediated effects or survival/competition among offspring, and 

the effectiveness of selection for adaptation to microenvironmental variation within 

populations (Schnabel et al. 1998). Herbivory can have a strong impact on individual 

growth and survival in populations of Zamia species (Clark and Clark 1991; Negron-

Ortiz and Gorchov 2000), and other factors affecting seedling survival may be 

influenced by the differences in SGS between populations of Z. fairchildiana. Higher 

homozygozity may also affect the fitness of individuals in the disturbed habitat, 

particularly if there is significant inbreeding depression (Hedrick and Kalinowski 2000). 

The consequences of habitat fragmentation and local extinction of some species will 

persist for a long time, and in some places forest will not be able to regenerate even if 

human disappear from the landscape (Chazdon 2003). Therefore, even if anthropogenic 

disturbances are transient, long-term environmental changes in degraded forests might 

affect significantly the life-history and the genetic composition of populations. The 

potential effects of habitat modifications on the life history and the fine-scale spatial 

distribution of genetic variation within populations should be of concern in conservation.  
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CHAPTER 2 
 

“The potential for genetic differentiation in response to selection between 
populations from native and disturbed habitats in a rainforest cycad” 

 
ABSTRACT 
 

Rapid evolution may be common in human-dominated landscapes, where 

environmental changes are severe. Predicting evolutionary changes in populations 

requires information on the patterns of directional selection and genetic variances and 

covariances of traits that may affect fitness under the novel environmental conditions. 

Here, we used phenotypic selection analyses and a marker-based method to estimate 

heritabilities and genetic correlations to predict the potential response to selection in 

populations of the long-lived cycad Zamia fairchildiana exposed to habitat degradation. 

Patterns of selection in adult fecundity showed that different traits were under strong 

directional selection in subpopulations from native habitats and degraded forests. In the 

native-habitat subpopulations, plants maximize fitness by enhancing photosynthetic 

ability through larger leaf surface area or smaller SLA, and these traits showed a 

combination of directional and quadratic selection. In contrast, larger leaf production 

increased fitness in the disturbed-habitat subpopulations, and light availability appears 

to be a major agent of selection for this trait. Stabilizing selection was unimportant in the 

disturbed habitat, where light availability is less heterogeneous. Leaf production and 

SLA showed positive additive genetic variance, and no genetic trade-offs with other 

traits, suggesting that this traits can respond to selection in each habitat. Nevertheless, 

genetic correlations between SLA and the number of leaves could result in indirect 

changes in these traits, and weaken the magnitude of genetic differentiation between 

environments in these traits. Directional selection coefficients were large, and if 

combined with moderate levels of heritability could result in significant phenotypic 

changes between habitats in few generations. Comparisons of phenotypic means 

between subpopulations showed significant differences in leaf production in the 

direction predicted by the selection analyses. Other traits showed less phenotypic 
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differentiation between habitats, as predicted by the genetic analyses. These results 

suggest that recent environmental change results in strong directional selection in 

subpopulations of Z. fairchildiana, and that the subpopulations have the potential to 

diverge at the genetic level in traits like leaf production. Anthropogenic habitat changes 

can result in major selection events, and if persistent for several generations, may 

promote rapid evolution of populations. 

 

INTRODUCTION 

 

Many studies suggest that significant phenotypic changes in populations can 

happen very fast, i.e. within a few generations, especially when environmental changes 

are drastic (Hendry and Kinnison 1999; Reznick and Ghalambor 2001). Strong 

directional selection after environmental changes can cause rapid evolution in traits that 

may increase fitness under the novel environmental conditions and that have genetic 

variation to respond to selection (Kinnison and Hendry 2001). Drastic environmental 

changes are commonplace in human-dominated landscapes, where anthropogenic 

activities can result in rapid and severe modifications in the habitat of plant populations. 

The accelerated rate of change in ecosystems caused by humans promotes population 

extinctions in many cases, but it could also promote rapid evolution of populations if 

they can persist in the disturbed habitats and respond to selection (Palumbi 2001; 

Stockwell et al. 2003; Zimmer 2003). Studies of the potential for rapid evolution of 

populations in human-dominated landscapes are therefore relevant for conservation, 

but they also are important to understand the circumstances that can promote adaptive 

evolution and the rate of phenotypic change that is possible in natural populations. 

 

To predict whether phenotypic means of populations will change over time as the 

result of selection, information on the magnitude and direction of selection and genetic 

variance (and covariances) of the traits is required. This information is rare for long-lived 

organisms, because patterns of selection may vary over time and estimation of 

heritabilities and genetic correlations are difficult to obtain (Grant and Grant 1995). 

However, many species of conservation interest are long-lived, and information on 
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potential phenotypic changes as result of habitat modifications may be relevant for 

population persistence and for conservation. In particular, significant phenotypic 

changes and potentially rapid evolution will alter the genetic structure of populations (as 

population become differentiated at the genetic level), and will impact the evolutionary 

potential of populations to respond to future environmental changes (as genetic 

variation is eroded by strong selection). Furthermore, the rate of evolutionary change 

may be important in the success of invasive species, or population viability of managed 

species (Stockwell et al. 2003).  

 

Although rapid evolution is difficult to document in long-lived species, selection 

analyses in combination with information on genetic variance and covariances can be 

used to predict the response to selection to particular episodes of environmental 

change. Directional selection is usually strong immediately after environmental 

perturbations and it usually remains strong for a few generations (Hendry and Kinnison 

1999; Hoekstra et al. 2001). Therefore, detecting selection may be feasible in 

populations that are currently being affected by drastic habitat perturbation. Phenotypic 

selection analyses provide straightforward methods to identify targets of selection in 

natural populations during such events (Lande and Arnold 1983; Phillips and Arnold 

1989; Scheiner et al. 2000). Furthermore, even if habitat modifications are transient, 

severe environmental changes spanning a few generations and the resulting strong 

selective pressures might have considerable effects on the genetic composition of 

populations. To predict the potential response to selection, marker-based methods can 

be used to estimate genetic variance and covariance of traits in long-lived species, 

because they do not require genetic crosses (Ritland 2000; Thomas et al. 2000). 

Marker-based methods have not been widely applied to estimating heritabilities in 

natural populations of plants, because the method requires substantial variation in the 

relatedness coefficients within populations (Andrew et al. 2005). Only three studies 

have demonstrated the presence of heritable variation of quantitative traits in long-lived 

plants (Andrew et al. 2005; Klaper et al. 2001; Ritland and Ritland 1996), but the 

method is promising if used in species that fit the requirement of strong spatial genetic 

structure, which is widespread in plant species (Vekemans and Hardy 2004). Finally, 
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phenotypic and genetic differentiation between cohorts of individuals within a population 

that developed in different environmental conditions across time can provide evidence 

of potential genetic changes in populations in the long term (Linhart and Grant 1996). 

 

Zamia fairchildiana, similar to many other cycads (Gymnospermae) in the 

Neotropics, is typical of the understory of lowland rainforests (hereafter referred as the 

native habitat). The understory of lowland rainforests is a highly heterogeneous habitat, 

where light availability varies considerably in space and over time (Montgomery and 

Chazdon 2001). In these habitats, light is the most limiting resource for understory 

plants like Z. fairchildiana (Chazdon et al. 1996; Clark et al. 1992). Consequently, 

changes in light availability can greatly affect growth rates and survival of understory 

plants (Brienen and Zuidema 2006; Clark and Clark 1992). Z. fairchildiana can also be 

found in highly modified or disturbed forest habitats. Forest fragmentation and 

exploitation practices by humans (e.g. logging, hunting) result in disturbed forests that 

differ significantly in the physical structure and species composition when compared to 

native habitats (Noble and Dirzo 1997; Tabarelli et al. 2004). In particular, disturbed-

forest habitats for Z. fairchildiana have lower average canopy cover (see Chapter 1). 

Canopy cover influences the levels and spatial distribution of light in the understory of 

tropical rainforests (Montgomery and Chazdon 2001; Nicotra et al. 1999). Therefore, 

native and disturbed forests may represent distinct habitats for populations of Z. 

fairchildiana, at least in terms of the magnitude and heterogeneity of light availability. 

 

In the study site (Osa Peninsula in southwestern Costa Rica), colonies or 

patches of Z. fairchildiana individuals show low genetic differentiation at the neutral 

molecular level (i.e. low FST values, see Chapter 1) between them. Consequently, the 

colonies represent subpopulations of a large regional population at the genetic level. 

However, subpopulations exposed to the novel environmental conditions in disturbed 

forests exhibit some phenotypic divergence in life-history traits (see Chapter 1). Genetic 

divergence in ecologically-relevant traits between subpopulations Z. fairchildiana from 

native and disturbed habitats could arise if environmental differences result in differing 

patterns of directional selection (so that different genotypes have the highest fitness in 
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each habitat) and the genetic variance/covariance structure of the subpopulations 

allows a response to selection in the traits. Particularly, differences in light availability 

(or other environmental factors) between habitats could affect the ability of plants to 

grow, reproduce and/or the number of offspring they can produce (selection via 

fecundity), or the ability of seedlings to survive to the juvenile/adult stage (selection via 

mortality). Selection through other fitness components is possible, but likely to be weak, 

as juvenile and adult survival are extremely high in Zamia populations (Negron-Ortiz 

and Gorchov 2000; Negron-Ortiz et al. 1996). 

 

In this paper, we test the hypothesis that differences in light levels between the 

native and disturbed habitats of Z. fairchildiana result in differing patterns of directional 

selection in each habitat, i.e. differences in the strength and/or magnitude of selection 

on phenotypic traits related to growth and response to light availability. Furthermore, we 

estimate heritabilities and genetic correlations for the phenotypic traits to determine 

whether traits can respond to selection, and we compare phenotypic means between 

habitats to explore the magnitude of phenotypic divergence in traits than can respond to 

selection. We show that different traits are under directional selection in each habitat, 

and that some of these traits that can respond to selection and show significant 

differences in the phenotypic mean across habitats. These results suggest that rapid 

adaptive divergence is occurring in response to environmental change, particularly light 

availability, in populations of Z. fairchildiana. 

 

METHODS 

 

  Estimation of selection coefficients 
 

For selection analyses, we sampled all reproductive individuals in three 

subpopulations per habitat during the reproductive seasons of 2004 and 2005. Selection 

via fecundity was estimated for five phenotypic traits: 1) stem length: related to growth 

rate and the ability of plants to accumulate resources for further growth and 

reproduction; 2) leaf production: number of new leaves produced in the growing season 
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of 2004; 3) number of leaves: number of old leaves, which results from a combination of 

leaf production and leaf longevity; 4) leaflet area: average leaflet area calculated with an 

imaging software using digital photos of four leaflets chosen at random from the middle 

part of a leaf; 5) specific leaf area (SLA): leaflet area per gram of dry weight, obtained 

after drying four leaflets until constant weight. We used adult fecundity as a measure of 

fitness. Fecundity was calculated as the total number of sporophylls (cone parts with 

seeds or pollen sacs) in all cones (only one in females) in an individual. Selection 

coefficients were similar in magnitude and sign for females and males and across 

subpopulations, thus data were pooled together for both sexes. Final sample size for 

selection analyses was 131 individuals in the disturbed habitat, and 134 individuals in 

the native habitat.  

 

Coefficients of linear (or directional) selection were estimated for each trait using 

path analysis. In the path analysis a measure of the overall ‘condition’ of plants was 

included to reduce potential biases due to environmental correlations with traits and 

fitness. In this analysis condition is used to account for environmental effects that could 

act both on fitness and the phenotypic traits of interest (Scheiner et al. 2002). We used 

the maximum number of leaflets (parts of each compund leaf) as a measure of 

condition, because this variable increases with plant age and has proven to be a good 

indicator of the developmental stage of the plant in Zamia species (Clark and Clark 

1987; Negron-Ortiz and Breckon 1989). The path model included direct effects of 

condition on all phenotypic traits, and of traits on fecundity. Additionally, there were 

paths linking physiological leaf traits (i.e. leaflet area and SLA) with leaf production, and 

leaf production with the total number of leaves (Figure 2.1). In a path analysis 

framework, direct effects of trait on fitness are estimated from direct connections 

between them, while indirect effects go through connections between traits and fitness 

that include intermediate traits (Scheiner et al. 2000). Therefore, leaflet area, SLA, and 

leaf production can have both direct and indirect effect on fecundity in the model. The 

sum of direct and indirect effects is an estimation of the total effect of a trait on fitness, 

i.e. the selection coefficient for the trait. 
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Small sample size (lower than 150 individuals) precluded the use of path analysis 

to estimate selection coefficients for quadratic and correlational selection. Coefficients 

for quadratic and correlational selection were estimated as the partial regression 

coefficient in a multiple linear regression analysis using squared traits and cross-product 

values for the phenotypic traits, respectively (Lande and Arnold 1983; Phillips and 

Arnold 1989). Linear selection coefficients are also presented, and should be equivalent 

to the selection coefficients from the path analysis, except that they do not include any 

correction for potential environmental biases. Furthermore, in the multiple regression 

analysis, all selection coefficients represent direct effects of traits on fitness, and there 

are no indirect effects on fecundity through causal relationships between traits, as in the 

path analysis.  

 

Finally, to explore the effect of light availability on the relationship between 

phenotypic traits and fitness, we estimated light availability for each individual by 

measuring the percentage of canopy openness above the leaf crown of the plant, using 

a spherical densitometer. To test the hypothesis that light availability is an agent of 

selection in subpopulations of Z. fairchildiana, we regressed selection coefficients for 

traits in each subpopulation on the average canopy openness for that subpopulation 

(thus N=6). If a significant covariance exists between selection coefficients and an 

environmental variable across subpopulations, then it is possible to hypothesize that the 

environmental variable is a causal agent of selection (Wade and Kalisz 1990). Path 

analyses were performed using the SEM package in R. Linear regression and logistic 

regression analyses were performed in SPSS (SPSS 2003). 

 

  Estimation of heritabilities and genetic correlations 
 

We used the marker-based method proposed by Ritland (Ritland 1996b) to 

estimate heritability and genetic correlations for all traits included in the selection 

analysis. With this method, heritability is estimated with a linear model that takes into 

account the effects of additive genetic variance and the environmental correlation 

(sharing of environments) on phenotypic similarity for a trait (dominance and inbreeding 
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depression effects on phenotypic similarity were not included in the model for 

simplicity). The estimation of the heritability (h2) requires the calculation of the 

covariance between phenotypic similarity and relatedness coefficients for pairs of 

individuals (C(Z,r)) and the actual variance of relatedness (Vr) (Ritland 1996b). Z. 

fairchildiana has weak spatial genetic structure within subpopulations (see Chapter 1), 

but there was enough variation in relatedness as to allow the use of this marker-based 

method for estimating heritabilities and genetic correlations. Similar to the heritability 

estimation, genetic correlations are estimated using the covariance of phenotypic 

similarity between two traits within a pair of individuals and the relatedness between 

them (C(Y12r)). 

 

For heritability analyses, we sampled all individuals present in two 100 x 20 m 

transects in one subpopulation from the native habitat, and two 50 x 10 m transects in 

one subpopulation in the disturbed habitat (where plant density was higher). We 

estimated pairwise relatedness coefficients using six microsatellite loci for all individuals 

within the transects. Polymorphism in the molecular markers used to estimate 

relatedness was large, i.e. n(m-1)~90 (were n is the number of loci, n=6, and m is the 

average number of alleles, m=16), compared to a range of 25-100 as recommended for 

heritability estimation (Ritland 1996b). Details about the development and genotyping of 

microsatellite loci can be found in Chapter 1. Average relatedness, the actual variance 

for relatedness, and heritabilities and genetic correlations were estimated using the 

software Mark (Ritland 2006). The statistical significance of the estimates was obtained 

based on 10000 bootstraps by resampling individuals (comparisons between identical 

individuals were omitted). If more than 95% of the bootstrap values were positive (or 

negative), then heritability parameters were considered significantly greater from zero 

(or significantly lower than zero, in the case of genetic correlations).  

 

  Phenotypic divergence between habitats 

 

If the magnitude and/or direction of selection in a trait differ between 

subpopulations from native and disturbed habitats, and that trait has responded to 
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selection (at least for a few generations), then the phenotypic mean for the trait should 

differ between habitats. However, for subpopulations of Z. fairchildiana in the disturbed 

habitat, the phenotypic mean (and variation) will be influenced by the presence of adults 

that have survived habitat changes, even if they do not contribute offspring to the new 

cohorts (and by phenotypic plasticity). Consequently, potential divergence in the 

phenotypic means across habitats may be better observed at the juvenile stage, that is 

entirely composed of plants that recruited after the environmental change took place.  

 

To test for the phenotypic divergence between habitats, trait means for all traits 

included in the selection analyses were compared between habitats, for juveniles and 

adult individuals. For three subpopulations per habitat, we sampled all individuals 

present in a 100 x 20 m transect in the native habitat, or a 50 x 10 m transect in the 

disturbed habitat (where individual density was higher). Individuals in transects were 

classified as juveniles or adults based on leaflet number. Juveniles were plants with 

more than 10 but less than 26 leaflets (the minimum size of observed reproductive 

individuals) and adults had 26 or more leaflets/leaf. Phenotypic means for all traits were 

compared between habitats and life-cycle stages in a multivariate GLM. The number of 

leaflets was included as a covariate in the analysis, because phenotypic traits like leaf 

production and leaflet area increase as the plant gets larger in size, i.e. as the number 

of leaflets gets larger. 

 

RESULTS 

 

  Phenotypic selection analysis 
 

The path model used for the phenotypic selection analysis included direct effects 

of all phenotypic traits on fecundity and indirect effect of leaflet area, SLA, and leaf 

production on fecundity (Figure 2.1). Using this path model, condition had significant 

direct effects on stem length and number of leaves in both habitats, but no effect on leaf 

production, leaflet area or SLA (Table 2.1). Condition affected fecundity in the disturbed 

habitat (path coefficient β=0.178, P=0.023), but not in the native habitat (path coefficient 
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β=0.041, P=0.633). Therefore, there is evidence of an environmental covariance in the 

relationship between stem length or number of leaves and fecundity, but only in the 

disturbed habitat. Nevertheless, the path analysis was designed to account for this 

environmental bias, and selection coefficients for stem length and the number of leaves 

should not be inflated by this bias. 

 

According to the path analysis, different traits were under directional selection in 

each habitat (Table 2.1). Leaf production and the number of old leaves were under 

strong directional selection in the disturbed habitat, but these traits were not under 

selection in the native habitat. The number of leaves had only direct effects on fitness, 

but leaf production affected fitness both directly and indirectly (through its effect of the 

number of leaves) in the disturbed habitat. Leaflet area and SLA were under directional 

selection in the native habitat, where individuals with larger leaflets but smaller SLA had 

higher fecundity. In the native habitat, leaflet area and SLA had direct effects on fitness, 

and also indirect effects on fecundity (of slightly larger magnitude) because they 

impacted leaf production and the number of leaves as well. 

 
Table 2.1. Standardized selection coefficients for direct and indirect selection in the path analysis for 
subpopulations of disturbed and native habitats in Z. fairchildiana. The effect of condition is the direct 
effect of plant size (number of leaflets) on each phenotypic trait in the path model. For path coefficients: 
**P<0.01, *P<0.05. 
 

disturbed habitat native habitat 
Trait direct 

effects 
indirect 
effects 

effect of 
condition 

direct 
effects 

indirect 
effects 

effect of 
condition 

stem length 0.102 0.102 0.242** 0.045 0.045 0.514** 
leaf prod. 0.346** 0.402** 0.029 0.111 0.125 0.001 
no. leaves 0.451** 0.451** 0.381** 0.094 0.094 0.405** 
leaflet area 0.205 0.304 0.062 0.303* 0.320* -0.036 
SLA -0.207 -0.293 0.003 -0.473** -0.474** -0.072 
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Figure 2.1. Path diagram used in the phenotypic selection analyses for subpopulations of Z. fairchildiana. 
The model includes relationships between condition (leaflet number) and all phenotypic traits and fitness. 
The beta1 to beta5 parameters are the selection coefficients for each trait (due to direct selection). 
 
 
 

The selection analysis using multiple regression showed similar results to the 

path analysis for directional (or linear) selection (Table 2.2). In the multiple regression 

analysis, leaf production and the number of leaves were under directional selection in 

the native habitat. Leaflet area and SLA had marginally significant partial regression 

coefficients in the linear selection analysis. Coefficients for quadratic selection were not 

significant in the disturbed habitat (Table 2.2), therefore no trait is under stabilizing or 

disruptive selection in this habitat. In the native habitat, leaflet area was under disruptive 

selection, as evidence by a negative coefficient in the quadratic selection analysis, and 

the selection coefficient for quadratic selection was greater than the coefficient for 

directional selection (Table 2.2). Similarly, SLA had a marginally significant coefficient 

for stabilizing selection. The model for correlational selection had no significant effects 

in the native habitat, but the combination of higher leaf production and number of leaves 

was significantly related to fecundity in the disturbed habitat (partial regression 

coefficient β=0.440, P<0.001). When condition was included as a covariate in the 

multiple regression analysis, selection coefficients did not change substantially, and 

condition did not have a significant effect on fecundity in any habitat. 
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Table 2.2. Standardized selection coefficients for linear and quadratic selection in the multiple regression 
analysis for Z. fairchildiana subpopulations from disturbed and native habitats. Partial regression 
coefficients: **P<0.01, *P<0.05, §P<0.1. 
 

disturbed habitat native habitat 
Trait linear 

selection 
quadratic 
selection 

linear 
selection 

quadratic 
selection 

stem length 0.127 0.085 0.069 -0.186§

leaf production 0.409** -0.010 0.067 -0.024 
number of leaves 0.421** 0.092 0.165 -0.105 
leaflet area 0.115 -0.049 0.172§ -0.243* 
SLA -0.105 0.085 -0.197§ 0.214§

 
 

In the regression analysis between mean canopy openness and selection 

coefficients across subpopulations, canopy openness explained a large portion of the 

variation (R2>0.5) in the selection coefficients for leaf production (Table 2.3). The 

strength of selection on leaf production increased with increasing average canopy 

openness. Average canopy openness did not explain the variation in the strength of 

selection of any other phenotypic trait. 

 
Table 2.3. Effects of average canopy openness on the directional selection coefficients for each trait 
across subpopulations of Z. fairchildiana.  R2, the slope, and the P values are reported for the linear 
regression analysis done for each trait, where N=6, the number of subpopulations analyzed. 
 

Trait R2 slope P 
stem length 0.018 -0.134 0.755 
leaf production 0.724 0.851 0.015 
number of leaves 0.031 0.176 0.705 
leaflet area 0.048 -0.219 0.637 
SLA 0.485 -0.697 0.082 

 
 

  Heritability estimates 

 

In the heritability estimations, the total number of pairwise comparisons within 

samples was of 14479 for the native habitat subpopulation and 16816 for the disturbed 

habitat subpopulation. Estimated average relatedness was 0.045 in the native habitat 

and 0.052 in the disturbed habitat (close to the relatedness of first-cousins). The actual 

variance for relatedness was low (Vr=0.001) but significantly different from zero in both 

habitats (P=0.0005 in the native-habitat subpopulation, P=0.0001 in the disturbed-
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habitat subpopulation). A large number of pairwise comparisons, high marker 

polymorphism, and the detection of significant actual variance of relatedness allowed 

the estimation of heritability values in both habitats. However, estimates of heritability 

were not significantly different from zero for any trait or any of the two subpopulations 

analyzed. Average values ranged from 0.023 to 0.765, but the 95% confidence intervals 

around the estimates were very large (Table 2.4). Low reliability of the estimates is likely 

the result of very low actual variance in relatedness and not of small sample size, 

inappropriate sampling, or low marker polymorphism. 

 
Table 2.4. Values for heritability (h2) and its 95% CI estimated using a marker-based method. CI are 
based on 10000 bootstraps where individuals were re-sampled. P C(Z,r) are P values for the significance 
of the covariance between phenotypic similarity (Z) and relatedness coefficients (r) for pairs of individuals 
in two subpopulations of Z. fairchildiana from native and disturbed habitats. 
 

Trait h2 h2 [CI] P C(Z,r) 
Disturbed habitat subpopulation    
stem length 0.208 [-0.437,1.025] 0.071 
leaf production 0.605 [-0.140,1.427] 0.001 
number of leaves 0.149 [-0.506,0.925] 0.097 
leaflet area 0.252 [-0.544,1.357] 0.101 
SLA 0.283 [-0.435,1.050] 0.069 
Native habitat subpopulation    
stem length 0.315 [-0.409,1.205] 0.068 
leaf production 0.313 [-0.515,1.295] 0.094 
number of leaves 0.498 [-0.179,1.332] 0.016 
leaflet area 0.023 [-0.823,0.787] 0.278 
SLA 0.765 [-0.013,1.800] 0.005 

 
 

Actual variance of relatedness is necessary for the estimation of heritability, but 

the most informative part of the estimate is the term representing the covariance 

between phenotypic similarity and relatedness between individuals (C(Z,r)). If this 

covariance term is significantly positive, then it is highly probable that heritability is also 

significantly different from zero (Ritland 2000). The number of leaves and SLA in the 

native habitat, and leaf production in the disturbed habitat, had a significant covariance 

term at the α=0.05 level (Table 2.4). In addition, all traits in both habitats had covariance 

terms that were marginally significant (P<0.1 in Table 2), except for leaflet area, 

suggesting that they may have some additive genetic variance (Klaper et al. 2001). 

Finally, if heritability estimates are accurate (even with the lack of precision observed), 
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then levels of additive genetic variance for SLA, leaf number, and leaf production were 

high in subpopulations of Z. fairchildiana, i.e. h2>0.5 (Table 2.4). 

 

Phenotypic and genetic correlations 

 

Since heritability estimates were not significantly different from zero, then genetic 

correlations were not different from zero either. However, the sign of the covariance 

between two traits in a pair of individuals and their relatedness (C(Y12,r)) determines the 

sign of the genetic correlation. Some of the estimates of C(Y12,r) were significantly 

different from zero, and involved traits that may have positive additive genetic variances 

(Table 2.5). Significant values for the (C(Y12,r)) term suggested that there was a 

negative genetic correlation between SLA and the number of leaves, and a positive 

genetic correlation between the number of leaves and stem length in both habitats. Leaf 

production was not genetically correlated with any other trait (Table 2.5). 

 

Phenotypic correlations between SLA-number of leaves and leaf number-stem 

length had the same direction as the genetic correlations for these traits (Table 2.5). 

Additionally, there were significant phenotypic correlations for traits that showed no 

evidence of a genetic correlation, and phenotypic correlations were mostly consistent 

across the two subpopulations (Table 2.5). SLA and leaflet area had a strong positive 

correlation in both habitats. Leaf production was positively correlated to the number of 

leaves in both habitats, and had a weak negative correlation with SLA in the native 

habitat. Finally, plants with a larger stem, also had higher leaf production, leaf number, 

and leaflet area, but these correlations were weak. 

 

  Phenotypic divergence 

 

Average leaf production was significantly higher in the disturbed habitat for all life 

stages (Figure 2.2), as predicted by selection analysis in adults. Leaf production had 

high heritability in the disturbed habitat, and is the trait where the greatest response to 

selection is expected in this habitat. The number of leaves was similar between native 
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and disturbed habitat subpopulations for all life stages (Table 2.6). SLA was significantly 

lower in the native habitat, but only for adult plants. Finally, leaflet area did not differ 

between habitats for juveniles or adults (Figure 2.2). Statistical power was low (i.e. 

power<0.30) for all comparisons that showed no significant effects of habitat on the 

phenotypic traits, especially for juveniles (Table 2.6). Sample size were between 60 and 

110 individuals for juveniles, and between 260 and 360 individuals for adults, but the 

large phenotypic variance in most traits reduced the statistical power of the tests. 

 
Table 2.5. Values for phenotypic and genetic correlations between traits in two subpopulations of Z. 
fairchildiana from native and disturbed habitats. Upper diagonal: native-habitat subpopulation. Lower 
diagonal: disturbed-habitat subpopulation. For phenotypic correlations: **P<0.01; *P<0.05. For genetic 
correlations, P values represent the significance of the covariance term (C(Y12r)) of the genetic 
correlation, i.e. the covariance between values for the two traits within individuals and their relatedness 
coefficient: * P<0.05. 
 

Trait stem length leaf prod. no. of leaves leaflet area SLA 
Phenotypic correlations     
stem length ---- 0.246** 0.563** 0.199** -0.061 
leaf prod. 0.225** ---- 0.345** 0.054 -0.204** 
no. of leaves 0.361** 0.433* ---- 0.199** -0.163* 
leaflet area 0.217** 0.078 0.300** ---- 0.729** 
SLA 0.134* -0.066 -0.125* 0.859** ---- 
Genetic correlations     
stem length ---- -0.397 0.306* 0.806 0.077 
leaf prod. 0.673 ---- -0.396 -0.012 -0.102 
no. of leaves 0.335* -0.359 ---- 0.045 -0.847* 
leaflet area 0.494 0.162 0.095 ---- 0.445 
SLA 0.018 0.880 -0.785** 0.349 ---- 

 
 
Table 2.6. Effect of habitat on the phenotypic mean for traits in juveniles and adults from six 
subpopulations of Z. fairchildiana. Sum of squares (SS), degrees of freedom (d.f.), and F, P, and power 
values are shown from a GLM with habitat as a fixed factor, and the number of leaflets as a covariate. 
 

Source SS d.f. F P Power 
Juveniles      
leaf production 0.972 1 3.76 0.050 0.48 
number of leaves 2.224 1 1.43 0.235 0.22 
leaflet area 17.054 1 0.56 0.456 0.11 
SLA 0.001 1 1.27 0.262 0.20 
Adults      
leaf production 90.355 1 61.61 <0.001 0.99 
number of leaves 0.007 1 0.01 0.944 0.05 
leaflet area 426.544 1 0.96 0.328 0.164 
SLA 0.006 1 7.82 0.005 0.80 
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Figure 2.2. Comparison of four phenotypic traits (mean ± 2SE) in juvenile and adult individuals between 
subpopulations from native and disturbed habitats. Open circles: means for disturbed habitat 
subpopulations; Closed circles: means for native habitat subpopulations. 
 

 
 

DISCUSSION 
 

  Differing patterns of selection across habitats 

 

Patterns of directional selection differed between habitats, as different traits were 

under selection in each habitat. In the native habitat, plants with larger leaflet area and 

smaller SLA had higher fecundity. In the disturbed-habitat subpopulations a larger 

number of leaves and higher leaf production is associated with higher fecundity. Leaf 

traits affecting the photosynthetic ability of plants (like leaf surface area and SLA) and 

traits related to leaf demography (like leaf production and leaf longevity, that will 

determine the number of standing leaves in the plant) are commonly associated with 

growth rates of individuals and can affect fitness directly or indirectly (Ackerly et al. 
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2000; Arntz and Delph 2001; Geber and Griffen 2003). However, it is predicted that 

suits of correlated physiological or leaf traits will change together in response to 

environmental changes like increasing irradiance. Patterns of selection in Z. 

fairchildiana subpopulations suggest that rather than changes in suits of correlated traits 

in response to higher irradiance in the disturbed habitat, the subpopulations have 

different ways of maximizing fitness in each habitat.  

 

This study suggested a direct effect of leaflet area and SLA on fecundity of 

plants. Greater leaflet area enhances the capture of light, while smaller SLA increases 

the photosynthetic ability of plants (although it limits light capture at low irradiance). 

However, leaflet area and SLA have no impact on fitness on the higher irradiance 

conditions of the disturbed habitat. This may be possible because changes in SLA may 

have a greater impact on photosynthetic rate and relative growth rate under low- than 

high-light conditions (Evans and Poorter 2001; Sims et al. 1994). In addition, responses 

to light availability in rain forest plants are not linear, and with high irradiance, water or 

nutrient availability may become more limiting than light and constrain growth 

(Montgomery 2004), so that different traits may become relevant in a higher light 

habitat. In addition, non-linear selection on photosynthetic traits may be more important 

in the native habitat, where light conditions are more variable than in disturbed or 

secondary forests (Montgomery and Chazdon 2001; Nicotra et al. 1999; Numata et al. 

2006). A combination of directional and stabilizing/disruptive selection for leaflet area 

and SLA results in changes in the mean and the variance for those traits that can be 

important for plants to adjust to variable environmental conditions in space and time in 

the understory of the native habitats of Z. fairchildiana. Quadratic selection is difficult to 

detect in natural populations, and most available estimates are of small magnitude, 

most likely because a lack of statistical power in the small samples used for selection 

analyses (Kingsolver et al. 2001). Long-term monitoring of populations is necessary to 

evaluate the constancy of the selective pressures in native and disturbed habitat and to 

improve analyses for other forms of selection in the subpopulations. 
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Light levels are less heterogeneous in the disturbed habitat, and non-linear 

selection in this habitat was not important. In contrast, larger leaf production and leaf 

number had a direct impact on plant fitness. Increases in leaf production and net leaf 

gain (resulting in a larger number of standing leaf number) are common in rain forest 

species when individuals are exposed to higher light availability in forest gaps (Blundell 

and Peart 2001; Osada et al. 2003). In a rainforest cycad like Z. fairchildiana, producing 

more leaves to boost the reserves that can be invested in reproduction may be a viable 

strategy in the disturbed habitat, but not in the native habitat, where leaf production and 

reproduction is highly costly because of limited light availability (Clark and Clark 1988). 

Zamia neurophyllidia, another rainforest cycad, produces very long-lived, well defended 

leaves, with intermediate physical features between sun- and shade-adapted species 

(Clark et al. 1992; Lee et al. 1990). Long-lived rainforest species, in general, produce 

leaves with long life spans, that have low photosynthetic ability but resistant physical 

structure (Reich et al. 1991). It is possible that a release from limited light allows Z. 

fairchildiana plants in the disturbed habitat to produce more leaves at a smaller cost, 

and that this strategy is more efficient to maximize fitness than adjusting leaf area or 

SLA to the new environmental conditions. As mentioned before, responses in leaf 

production and leaf longevity may also be related to other environmental factors besides 

light availability. For example, relationships between leaf life span and other leaf 

functional traits have been observed in response to gradients of water availability in 

tropical rain forests (Santiago et al. 2004).  

 

Analyses of the potential causes of selection in subpopulations of Z. fairchildiana 

suggested that light availability may be a major agent of selection. Even with a restricted 

sample of subpopulations (N=6 for the regression analysis), average canopy openness 

was significantly related to variation in the selection coefficients for leaf production. 

More importantly, this relationships agreed with the trends observed in the phenotypic 

selection analyses (where no information of the environment was included). The 

magnitude of the selection coefficients increases with higher light availability for leaf 

production. That patterns of selection in Z. fairchildiana subpopulations agree with 

functional predictions of the response of plants to light availability, suggest that canopy 
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cover may be a major determinant of fitness in the species. Nevertheless, only 

manipulative experiments can establish the relative role of different environmental 

factors on the relationship between phenotypic traits and fitness (Wade and Kalisz 

1990). In addition, light did not explain all the variation in selection patterns across 

subpopulations, and other agents of selection may be affecting these subpopulations. In 

particular, insect herbivory has been shown to have an important effect on leaf 

demography in rainforest Zamia species (Clark and Clark 1991; Negron-Ortiz and 

Gorchov 2000). 

 

Regardless of the agents of selection, directional selection was relatively strong, 

when compared to average values reported by phenotypic selection studies (Kingsolver 

et al. 2001). This supports the idea that recent environmental changes result in strong 

selective pressures on subpopulations of Z. fairchildiana exposed to a novel 

environment. However, strong directional selection observed in populations of Z. 

fairchildiana could be attributable to environmental biases in the analyses. The 

presence of environmental covariances in the relation between traits and fitness may 

overestimate selection coefficients (Kruuk et al. 2003; Rausher 1992). Path analysis 

was employed here in an attempt to capture indirect effects of traits on fitness, but also 

to control for potential environmental biases (Scheiner et al. 2002). A measure of plant 

size (the condition variable) had an impact of fitness, and on the traits stem length and 

the number of leaves in both habitats. Stem length and the number of leaves (which are 

genetically correlated) increase steadily with plant size, i.e. as the number of 

leaflets/leaf increases. Similarly, fecundity increases with plant size. Increases in 

fecundity with light availability and plant size have been observed in other Zamia 

species (Clark and Clark 1987), and understory rainforest plants (e.g. Cunningham 

1997). Within subpopulations, plants with higher leaf production will have larger stems 

and leaf number, as suggested by phenotypic correlations between these traits. This 

may be a response to resource availability. However, leaf production and leaf number 

are not under selection in the native habitat, suggesting that the potential environmental 

covariance for the relationship between these traits and fitness was eliminated by the 

inclusion of the condition variable in the selection analysis.  
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Finally, patterns of selection within a generation may be modified by phenotypic 

correlations between traits. In the native habitat, leaflet area and SLA are not linked at 

the genetic level, but there is a positive phenotypic correlation between them. Plants 

with larger leaflets have larger SLA, i.e. thinner leaves with more area per unit of 

biomass. This same relationship has been found in other Zamia species exposed to 

variable light environments (Newell 1985; Newell 1989). This may be possible if leaf 

water content is high, allowing plants to have large leaf surface area (to increase light 

capture) with a small investment in leaf biomass (Shipley 1995). Large leaf area may 

increase fitness, by increasing efficiency in light capture. However, smaller SLA 

increases photosynthetic ability, and selection favors leaflets with small SLA as well. At 

the phenotypic level, plants can not have larger leaf surface area and small SLA at the 

same time, thus maximizing fitness can only be attained with alternative trait states. 

There is no genetic constraint on the evolution of these two traits, but simply the 

combination of trait values that will maximize fitness in the native habitat does not exist 

in the natural populations. There is no genetic variation for leaflet area in 

subpopulations of Z. fairchildiana, then genotypes with larger SLA will become less 

common in the subpopulations, even if larger leaflet area increases fitness, because the 

phenotypic mean of SLA will decrease across generations, since this trait can respond 

to selection. Phenotypic correlations between all traits and leaf production should not 

affect the relationship between leaf production and fitness within a generation in the 

disturbed habitat. 

 

The potential response to selection 
 

Not all the traits that are under directional selection in each habitat can respond 

to selection. SLA in the native habitat and leaf production in the disturbed habitat 

showed evidence of additive genetic variance, and therefore these traits could respond 

to selection. In contrast, leaflet area in the native habitat and the number of leaves in 

the disturbed habitat may have some additive genetic variance (the covariance term in 

the heritability estimation is marginally significant), but the response to selection may be 
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more limited in these traits. Genetic correlations show no evidence of genetic trade-offs 

that could constrain the response to selection of SLA or leaf production in the 

subpopulations. There is a strong genetic trade-off between SLA and the number of 

leaves, but the number of leaves is not under selection in the native habitat, therefore 

genetic changes in the mean or the variance for SLA should be theoretically possible in 

this habitat. In the disturbed habitat, leaf production had no genetic trade-offs. Traits 

that can respond to selection increased fitness through effects on fecundity. 

 

Nevertheless, genetic correlations can cause indirect genetic changes in the 

phenotypic means of traits that are not directly under selection (Roff 1996). The 

presence of a genetic correlation between the number of leaves and other traits 

suggests that this trait has some additive genetic variance, and that it could change at 

the genetic level in the disturbed habitat and promote correlated changes in both 

habitats. For example, SLA and the number of leaves have a negative genetic 

correlation, therefore genetic changes that increase leaf number in the disturbed habitat 

will result in a decrease in SLA. In the native habitat, a response to selection in SLA will 

promote a correlated change in leaf number, interestingly in the same direction as in the 

native habitat. Therefore, correlated responses to selection in traits like SLA and the 

number of leaves could slow down the process of genetic differentiation between 

subpopulations, as their correlated response is in the opposite direction as selection for 

these traits in each habitat. In summary, predictions about the potential response to 

selection in subpopulations of Z. fairchildiana indicate that the phenotypic mean for leaf 

production should increase in the disturbed habitat, and SLA should decrease in the 

native habitat, but SLA and the number of leaves could exhibit other correlated 

responses in each environment.  

 

All these predictions about the potential response to selection rely on the 

accuracy of the estimation of heritabilities and genetic correlations. Estimating additive 

genetic variances/covariances is difficult in natural populations of long-lived plants, and 

only two methods are available for the estimation of heritabilities for species where 

information on pedigrees is impractical to obtain (Thomas et al. 2000). Very few studies 
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have successfully obtained heritability values for populations of long-lived organisms in 

field conditions (Andrew et al. 2005). Furthermore, there are few studies that have 

estimated the amount of genetic variation for physiological traits like SLA in natural 

populations of plants (Ackerly et al. 2000). In this study, SLA, leaf production, and leaf 

number showed evidence for high heritabilities in the subpopulations of Z. fairchildiana. 

Trees usually show high levels of genetic diversity within populations, given their high 

outcrossing rates, extensive gene flow between populations, large effective population 

size, and the fact that they experience large environmental heterogeneity in space and 

time, given their longevity (Petit and Hampe 2006). High levels of genetic variability in 

combination with some spatial genetic structure within subpopulations may have 

allowed the successful estimation of heritability and genetic correlations in 

subpopulations of Z. fairchildiana (Ritland 2000). 

 

Heritability estimations were not precise, but if they are accurate (i.e. the 

estimate is close to the actual value in the population), then high levels of heritability 

(h2~0.6) and large selection coefficients (β~0.3-0.4) could produce changes in the 

phenotypic mean of leaf production of the order of 20% per generation (0.3 

SD/generation) in subpopulations of Z. fairchildiana. Rapid genetic changes like these 

and fine-scale local adaptation are not rare in plant species (Bone and Farres 2001). 

For example, local genetic differentiation is common in trees, even with extensive gene 

flow (Petit and Hampe 2006). In particular, habitat fragmentation and degradation can 

promote genetic changes in populations through increased population isolation and 

inbreeding depression effects (Lowe et al. 2005). More precise estimates of heritability 

values are necessary to make predictions about the possible rate of evolutionary 

change in subpopulations of Z. fairchildiana, as well as potential environmental effects 

on the genetic variation within subpopulations. Nevertheless, heritability analyses are 

powerful enough to determine the presence of additive genetic variance in traits under 

selection like leaf production and SLA, which could therefore diverge at the genetic level 

between subpopulations from native and disturbed habitats. 
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  Adaptive divergence between habitats 

 

Comparisons of phenotypic means between subpopulations mainly agreed with 

the predictions in the response to selection, although they likely include variation in 

phenotypes due to phenotypic plasticity. Phenotypic selection analyses and estimates 

of the variance/covariance of traits predicted that the phenotypic mean for leaf 

production should increase in the disturbed habitat, and that SLA should decrease in 

the native habitat subpopulations. Both predictions were supported by the phenotypic 

data. Nevertheless, SLA was not different between habitats for juvenile plants, only for 

adults. This may be the result of maternal effects (see Chapter 3) that could mask 

genetic variation in this trait in early stages of the life cycle. The phenotypic mean for 

number of leaves showed no phenotypic divergence between habitats. Lack of 

differentiation between subpopulations from the two habitats in SLA (in juveniles) and 

the number of leaves could be the result of a weaker response to selection, but also of 

correlated responses in these traits, because they have a strong genetic correlation. 

These comparisons need further exploration, as the statistical power for them was low. 

Finally, leaflet area showed no differentiation between habitats for juveniles or adults, 

which was expected from the lack of genetic variation in this trait. These phenotypic 

analyses can not determine the relative importance of environmental and genetic 

components on phenotypic variation within and between subpopulations. Nevertheless, 

the presence of additive genetic variance in leaf production suggest that there is the 

potential for genetic differentiation between subpopulations for this trait. 

 

Strong genetic differentiation in response to change in the environment is 

common in plants , even over small spatial and temporal scales (Bone and Farres 2001; 

Linhart and Grant 1996). This study suggests that there is the possibility of genetic 

divergence in leaf traits between subpopulations of Z. fairchildiana from contrasting 

habitats. Phenotypic comparisons suggest that differentiation is currently under way in 

subpopulations, even when populations differentiation at the neutral molecular level is 

extremely low (low FST). Local adaptation to differing habitats in life-history traits despite 

high levels of gene flow has been observed in shrubs and trees (e.g. Aldrich et al. 1998; 

 59



e.g. Kittelson and Maron 2001). This study suggests that the environmental changes 

resulting from anthropogenic activities have the potential to affect the evolutionary 

potential of populations and alter the genetic structure in this species, as subpopulations 

locally adapt to differing habitats. This has implications for the definition of evolutionary 

significant units for conservation, and the extent to which populations can respond to 

further environmental changes (e.g. global warming). Information from the evolutionary 

dynamics of populations in human-dominated landscapes is relevant for conservation 

issues, and it can help understand population responses to rapid and drastic 

environmental changes in general. 
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CHAPTER 3 
 

“Genotype-by-environment interactions in seed germination and seedling 
survival in a rainforest cycad” 

 
ABSTRACT 
 

Genotype-by-environment interactions (GxE) resulting from a ‘home site 

advantage’ will promote genetic differentiation between populations, but environmental 

effects (such as maternal effects) can influence the magnitude and rate of genetic 

differentiation. In this paper, we explore GxE in seed germination and seedling survival 

in subpopulations of a rainforest cycad (Zamia fairchildiana) from their native and 

degraded habitats, and the role of maternal effects, light, and water availability on the 

variation in seed germination between habitats. A reciprocal-transplant experiment in 

natural environments showed crossing reaction norms for seed germination, and a trend 

for GxE in seedling survival. In addition, reaction norms for germination had smaller 

slopes in families originated in the degraded habitat. Germination in a manipulative 

greenhouse experiment mirrored the patterns in natural environments, with GxE in 

response to light and water availability. Overall germination was lower in the disturbed 

habitat, under high light and low water conditions in the greenhouse, that may result in a 

harsh environment for the desiccation-intolerant seeds of this species. Seed size had 

little effect on statistical analyses testing for GxE, and separate analyses also 

suggested that maternal effects of seed size on germination are weak. Seedling size 

was affected by seed size, and larger seedlings had better survival in the disturbed 

habitat, suggesting that maternal effects on early seedling performance may be 

important, but only in one habitat. Seedlings showed the typical shade-avoidance 

response of angiosperms, as well as and great levels of plasticity for leaflet area in 

response to light availability. GxE in germination and seedling survival suggest the 

potential for genetic differentiation between subpopulations of Z. fairchildiana from 

native and disturbed habitats, but the relative role of genetic and environmental effects 
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on GxE, like maternal effects in seedling survival and other maternal effects not related 

to seed size, need further exploration. 

 

INTRODUCTION 

 

Genotype by environment interactions (GxE) occur when genotypes have 

dissimilar responses in phenotype expression across a set of environments. This is 

evidenced by genotypes having different slopes in reaction norms, i.e. a function of the 

phenotypes expressed in different environments. GxE can have important implications 

for the ecological and evolutionary dynamics of populations (reviewed in Agrawal 2001; 

Miner et al. 2005; Pigliucci 2005). Differential responses of genotypes to environmental 

variation can result in comparable overall fitness of genotypes and therefore contribute 

to the maintenance of genetic diversity within populations (Stratton 1994; Sultan and 

Bazzaz 1993). GxE can affect the rate of phenotypic evolution as well, as they cause 

the magnitude of phenotypic variation expressed to vary across environments 

(Bennington and McGraw 1996; Mazer and Schick 1991). Furthermore, if GxE result in 

norms of reaction that cross, then different genotypes have the highest fitness in each 

environment, and directional selection could result in genetic differentiation of 

populations in differing environments. However, if environmental heterogeneity is fine 

grained compared to the distribution of a population, then GxE can result in selection for 

greater phenotypic plasticity, instead of genetic differentiation (Schlichting 1986), but the 

debate about the role of plasticity in promoting or preventing genetic differentiation is 

ongoing (Price et al. 2003). 

 

In tropical rain forests around the world, anthropogenic activities result in forest 

environments that can differ substantially from the original habitats (Noble and Dirzo 

1997; Tabarelli et al. 2004). Strong directional selection in traits related to fitness in 

degraded habitats may promote genetic differentiation between populations from these 

modified habitats and the populations that remain in the native, undisturbed habitats 

(Palumbi 2001; Reznick and Ghalambor 2001; Stockwell et al. 2003). Many studies 

have demonstrated that long-lived plants can exhibit strong genetic differentiation at 
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small spatial and temporal scales (reviewed in Linhart and Grant 1996; Petit and Hampe 

2006). GxE can play a significant role on the ability of populations to colonize or persist 

in degraded habitats, and on the relative role of phenotypic plasticity and genetic 

differentiation in response to novel environmental conditions (Sultan 2004). For 

example, GxE and natural selection on germination can represent a strong filter that 

determines which genotypes can colonize novel environments (Donohue et al. 2005b). 

Reciprocal-transplant and common-garden experiments designed to test for GxE can 

provide information about how genotypes respond to habitat degradation, the role of 

phenotypic plasticity in population responses, and the potential for genetic differentiation 

between contrasting habitat conditions. 

 

Genotype-by-environment interactions can result from differential fitness of 

genotypes across environments, but also from environmental-related differences in 

fitness of individuals. Particularly, maternal effects can greatly affect seed and seedling 

fitness (Kirkpatrick and Lande 1989). Maternal environmental effects, related to size 

reserves or other characteristic affecting germination and seedling performance, can 

result in offspring with higher fitness under the maternal environmental conditions that 

do not reflect a home site advantage like in crossing reaction norms. Therefore, 

potential maternal effects need to be considered when estimating GxE in natural 

populations. These effects are usually removed by rearing mothers in uniform 

conditions or by including traits like seed size in statistical analyses (e.g. Mazer and 

Gorchov 1996; Schmid and Dolt 1994). Nevertheless, maternal effects can enhance 

offspring fitness, and if genetic variation is present in populations, they can evolve as 

adaptive responses to variable environments (reviewed in Galloway 2005). In addition, 

maternal environmental effects can have a major impact on the rate of genetic 

differentiation between populations (Galloway 1995; Schmitt et al. 1992). Consequently, 

instead of ignoring maternal effects, they need to be evaluated when considering the 

magnitude and rate of genetic differentiation in natural environments, and even as 

adaptive responses themselves. Exploring the nature of genotype-by-environment 

interactions across environments, and the relative role of environmental and genetic 

effects on GxE, will provide a more complete picture on the potential for genetic 
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differentiation between populations in differing environments, like undisturbed and 

degraded habitats. 

 

Cycads are long-lived tropical and subtropical gymnosperms. Most cycad 

species are threatened by habitat loss and degradation, and many populations persist in 

highly modified habitats (Donaldson 2003). Populations of the cycad Z. fairchildiana are 

typical of old-growth rainforests in Central America (hereafter referred as the native 

habitat). Z. fairchildiana colonies can also persist in forests affected by selective logging 

and other human activities (hereafter referred as the disturbed habitat), where 

environmental conditions in the understory differ substantially from the ones in their 

native habitat. Analyses on the spatial genetic structure of this species in part of its 

distribution range in Costa Rica have revealed that genetic differentiation at the neutral 

molecular level (as estimated by FST values) is extremely low between colonies of 

individuals, thus colonies act as subpopulations (see Chapter 1). Nevertheless, 

subpopulations in disturbed habitats have experienced differing environmental 

conditions for a few generations, which have promoted changes in life-history traits, the 

distribution of genetic variation within subpopulations, and the patterns of directional 

selection for growth traits (see Chapters 1 & 2). Here, we explore the presence of 

genotype by environment interactions in seed germination and seedling survival 

between Z. fairchildiana subpopulations from native and disturbed habitats. 

Furthermore, we examine the role of maternal effects, and light and water availability on 

the variation in seed germination between habitats. To this end, we performed a 

reciprocal-transplant experiment in natural populations and a manipulative greenhouse 

experiment with seed families from four subpopulations of Z. fairchildiana. 

 

METHODS 
 

  Seed families 

 

We chose four subpopulations of Z. fairchildiana to collect seed families for the 

experiments. A seed family consisted of seeds from a single female cone, that usually 
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bears 50-200 seeds. Most seeds within a cone are viable or contain an embryo, and 

inviable seeds, that are easily recognizible by their smaller size and smaller weight, 

were excluded from the experiment. A seed family is a mixture of half- and full-sibs, 

whose proportions correspond to the number of male individuals that pollinated ovules 

in the female cone. Two subpopulations were located in native habitats, that consist of 

old-growth, undisturbed forest within Corcovado National Park (near Sirena Station). 

The other two subpopulations were located in disturbed forests, near El Tigre station 

that lies outside the National park, in an area affected by deforestation, logging, hunting, 

and mining for the last five to six decades.  

 

  GxE in germination and seedling survival in natural environments 
 

To test for genotype-by-environment interactions between subpopulations in 

seed germination and seedling survival, we performed a reciprocal-transplant 

experiment between subpopulations from native and disturbed habitats. We collected 

ten female cones in one subpopulation from the disturbed habitat and nine cones in one 

subpopulation from the native habitat. These cones represented 80 and 100% of the 

total number of female cones in the subpopulations for the reproductive season of 2004. 

Twenty seeds per cone were chosen randomly, and ten seeds were planted in two 

200x60 cm blocks in each of the habitats. Blocks were placed in sites where canopy 

cover was similar to the average value for that habitat, and the two blocks were 

approximately 50 meters apart. Surface litter was removed within the blocks, but the soil 

environment was not manipulated in any other way.  

 

Seeds were not treated (the outer fleshy layer was not removed), and were 

planted in 1 cm deep holes in the soil. These conditions simulated natural conditions for 

germination, as most seeds in the populations remain in the soil surface after dispersal 

and are not consumed by animals. Within each block, seeds were placed in five rows 

separated by 10 cm from each other and at least 1 m away from adult Z. fairchildiana 

individuals, to avoid seedling-seedling and seedling-adult competition effects. After six 

months, germination rates were calculated for each family in each habitat. Zamia seeds 
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have no dormancy, and seeds that did not germinated after six months were considered 

dead or non-viable. Seed predation was minimal, as is common in this species 

(personal observation). One year after germination, we recorded the proportion of 

seedlings that survived. This survival period included one full rainy and one full dry 

season, the last one representing the period where most seedling mortality occurs. 

 

  Light, water, and maternal effects on germination 

 

We explored maternal-environmental effects in natural environments by 

evaluating the effect of the size of the mother, its light environment (estimated by 

canopy openness values), and its average seed weight on seed germination, seedling 

size, and seedling survival. Mother and seedling size were measured as total leaf area. 

Leaf area was estimated using four leaflets randomly chosen per plant, and then 

multiplying average leaflet area by the total number of leaflets in the individual. Leaflet 

area was calculated for each leaflet using a digital picture of it and an imaging software 

(Rasband 2000). Average seed weight for each mother was obtained by weighting to 

the nearest 0.01 g all seeds in the female cone produced by the mother.  

 

We estimated the effect of seedling size on seedling survival in natural 

environments in seedlings from the reciprocal-transplant experiment, that were 1 yr old. 

Additionally, we monitored the survival rate of seedlings >1 yr old for a year in two 

subpopulations per habitat. We marked all the seedlings (individuals with less than 10 

leaflets, excluding germinants from that year) present in a 100 x 20 m transect in the 

native habitat, or a 50 x 10 m transect in the disturbed habitat (where individual density 

was higher). For seedlings within the transects, leaflet area was estimated from a 

measurement of leaflet width of the largest leaflet, using a regression equation of leaflet 

width on leaflet area developed with a preliminary sample of seedlings from both 

habitats (r2=0.91, P<0.001, N=64).  

 

We performed a manipulative greenhouse experiment to test the hypothesis that 

light and water availability affect germination rate. We collected six female cones from 
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each of two subpopulations per habitat in the reproductive season of 2005, for a total of 

12 families per habitat. We randomly chose 40 seeds per cone, or the total number 

seeds in the cone (8 families with 24-36 seeds/cone). Seeds were planted in 40 blocks 

containing one seed/family in a random order, in pots filled with a special soil mix 

developed for cycad germination at the Montgomery Botanical Center (MBC). The 

experiment was carried out in the greenhouse of the MBC in Miami, Florida. Seeds 

were planted approximately one month after they were dispersed in natural 

subpopulations. Seeds were not treated and were placed in the soil with half of the 

volume above the surface, to simulate natural germination conditions in the field. 

 

Seed families were divided between two light treatments, each one applied to a 

bench in the greenhouse. Within each light treatment, half of the blocks received a low-

water and the other half of the blocks a high-water treatment. The high light treatment 

corresponded to 30% neutral shade and the low light treatment to 90% neutral shade. In 

natural environments, the disturbed- and native- habitat subpopulations had an average 

canopy openness of 23% and 16% respectively, thus the high light treatment received a 

substantially larger amount of irradiance compared to natural conditions. Blocks in the 

high water treatment were watered to saturate the soil every week, while seeds in the 

low water treatment were watered every three weeks. Seed germination was monitored 

for six months, to compare germination rates between families and treatments. Direct 

effects of individual seed weight on the probability of germination for that seed were 

considered in this experiment. At the end of six months several measures of seedling 

size were obtained. Zamia species have compound leaves, therefore instead of 

measuring total leaf length, we obtained the length of the petiole and the rachis (part of 

the leaf with leaflets). Seedling leaf area was obtained with digital pictures of four 

leaflets per plant as explained above. 

 

  Statistical analyses 

 

To estimate genotype (i.e. family) by environment (i.e. habitat) interactions in 

seed germination and seedling survival in natural environments we used a linear mixed 
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ANOVA model. This model had habitat and source population as fixed factors, and 

family and block (nested within habitat) as random factors. Significance for the fixed 

factor was evaluated with F-tests, and for the random factors with Wald tests, using 

REML estimation. GxE in the greenhouse experiment were estimated with a similar 

mixed model, except that instead of habitat, light and water treatments were fixed 

factors in the analysis. A model for the estimation of GxE including seed weight as a 

covariate was performed to estimate the relative importance of maternal effects (related 

to seed size) on variation in germination in both experiments. 

 

Maternal effects in natural environments were estimated using an ANCOVA 

model, with habitat where seeds were planted as the main factor, and mother size, 

mother canopy openness and average seed weight as covariates. In such a model the 

variation in seedling size due to the seedling environment is removed, and the direct 

effect of mother traits can be evaluated (Galloway 1995). Maternal effects on seed 

germination and seedling size in the greenhouse experiment were analyzed with a 

similar ANCOVA analysis, with light and water treatments as fixed factors. Direct effects 

of individual seed weight on the probability of germination for that seed were evaluated 

with a logistic regression. Similarly, the effect of seedling size on seedling survival was 

obtained from a logistic regression analysis, using the maximum number of 

leaflets/plant as a covariate (to account for effects of developmental stage). Logistic 

regression is a more appropriate measure of the effect of a trait like size on fitness 

components that have dichotomous values, like germination or survival (Janzen and 

Stern 1998). All statistical analyses were carried out using SPSS (SPSS 2003). 

 

RESULTS 

 

  GxE in germination and seedling survival in natural environments 
 

In the reciprocal-transplant experiment there was a genotype or family effect, but 

not a habitat effect on seed germination (Table 3.1). More importantly, there was a 

significant GxE or family-by-habitat interaction for seed germination (Table 3.1), i.e. 
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families from the native habitat germinate better in this habitat than in the disturbed 

habitat, and vice versa. This can be better visualized in a graph of GxE (Figure 3.1A). 

Almost all families from the native habitat had a germination rate higher than 50% in the 

native habitat and lower than 50% in the disturbed habitat. A few families from the 

disturbed habitat had the same germination rate in both habitats, or even a higher 

germination in the native habitat, and in general the difference in germination rate 

between habitats was smaller for these families (the slope of the lines is smaller in 

Figure 3.1A).  

 

Family and habitat had no effect on seedling survival, but the sample size in this 

test was small (the number of seeds that germinated within a family was between 2 and 

12), and therefore the power of these analyses was low (Table 3.1). The GxE term was 

marginally significant for seedling survival (Table 3.1). Nevertheless, a GxE graph 

shows that almost half of families had seedlings that survived better in the habitat where 

their seeds originated (Figure 3.1B). The rest of the families had few seedlings (and 

survival rates of 1 or 0 in both habitats) or a higher survival in the opposite habitat 

where their seeds came from originally. Most of the seedlings from families originated in 

the native habitat had zero survival in the disturbed habitat, but the opposite was not 

true for families originated in the disturbed habitat. Therefore, even if statistical tests 

were not powerful enough to detect significant GxE effects, there is a trend for GxE in 

seedling survival in these subpopulations of Z. fairchildiana. When seed size was 

included in the GxE analyses, it had no effect on seed germination or seedling survival 

across habitats, and it did not alter the significance of the main effects. 
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Figure 3.1. Germination rate (A) and seedling survival rate (B) for families used in the reciprocal-
transplant experiment. Solid lines: families originated in the native habitat. Dashed lines: families 
originated in the disturbed habitat. See Table 3.1 for statistical analyses. 
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Table 3.1. Genotype, environment, and GxE effects on germination rate and seedling survival in a 
reciprocal-transplant experiment between native and disturbed habitats. A linear mixed-model was used, 
with habitat and source population as fixed factors, and family and block nested within habitat as random 
factors (F and P values from tests are reported).  
 

Source df F P 
Seed germination    
Family 16 2.23 0.004 
Habitat 1 10.95 0.080 
Family x Habitat 18 2.44 0.001 
Source population 1 0.69 0.516 
Block (Habitat) 2 0.87 0.420 
Seedling survival    
Family 16 0.81 0.669 
Habitat 1 2.32 0.267 
Family x Habitat 18 1.51 0.083 
Source population 1 0.51 0.606 
Block (Habitat) 2 0.20 0.790 

 
 

Maternal effects on germination 

 

Maternal effects on germination related to seed reserves were non significant in 

the reciprocal-transplant experiment in natural environments. When including all families 

used in the reciprocal-transplant and the greenhouse experiments, seed weight was not 

associated with mother size or seed number (whole model r2=0.09, P=0.42 for 

disturbed-habitat mothers and r2=0.14, P=0.31 for native-habitat mothers). The 

coefficient of variation (CV) in seed size of mothers within habitats was 14% and 15% 

for the disturbed and native habitat, respectively (Figure 3.2A, 3.2B), while the CV in 

seed number of mothers was 26% and 33%, respectively. Average seed weight of 

mothers was not significantly different across habitats (GLM F=0.74, P=0.399). Mother 

size, light environment, or average seed weight did not affect germination rate (Table 

3.2). Habitat had no effect on seedling size (Table 3.2). The overall CV in seedling size 

was 23% for disturbed-habitat families and 29% for native-habitat families (Figure 3.2C). 

Maternal effects were found in seedling survival, but only in the disturbed habitat. 

Families with larger seeds had larger seedlings within habitats (Table 3.2), and seedling 

size affected seedling survival in 1 yr old seedlings growing in the disturbed habitat 

(Table 3.3).  
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The results from maternal-effects analyses in the manipulative greenhouse 

environment were similar to the results from the experiment in natural environments. 

Seed germination was not affected by mother size, light environment, and seed size 

(Table 3.2). When the size of individual seeds was considered, seed weight had no 

effect on the probability of germination for that seed in any light treatment (logistic 

regression β=0.03, P=0.95 under high light conditions, and β=0.07, P=0.76 under low 

light conditions), reinforcing the result of lack of size-related maternal effects in 

germination. The light treatment had a effect on germination, but not on seedling size. 

Likewise, seed size had an effect on seedling size (Table 3.2). Seedling size was larger 

in the greenhouse when compared to seedlings in natural environments, but the CV 

within light treatments were similar to the ones in the reciprocal-transplant experiment, 

25% for disturbed-habitat families and 19% for native-habitat families (Figure 3.2D). 

 
Figure 3.2. Seed weight and seedling size (mean ± 2SE) for families used in the reciprocal-transplant 
experiment (A, C) and the greenhouse experiment (B, D). For seed weight (A, B) open circles represent 
disturbed-habitat families, and closed circles represent native-habitat families. Seedling size was 
averaged for individuals within a family growing the native habitat (closed circles in C) or the disturbed 
habitat (open circles in C); or growing under low light (closed circles in D) or high light (open circles in D) 
conditions in the greenhouse. 
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Table 3.2. Maternal effects in germination and seedling size related to mother size, mother light 
availability, and seed size in a reciprocal-transplant (RTE) and a manipulative greenhouse experiment 
(MGE). F and P values from F-tests are reported from an ANCOVA with habitat or light treatment as a 
fixed factor, and mother traits as covariates. 
 

RTE MGE 
Source 

F P F P 
Seed germination     
Mother leaf area 0.60 0.444 1.43 0.239 
Mother canopy 1.35 0.254 0.39 0.535 
Seed weight 0.04 0.851 0.18 0.677 
Habitat or Treatment 7.38 0.010 23.66 <0.001 
Seedling size     
Mother leaf area 0.12 0.734 0.04 0.845 
Mother canopy 0.52 0.476 0.55 0.466 
Seed weight 5.41 0.027 4.07 0.054 
Habitat or Treatment 2.22 0.147 0.07 0.794 

 
 
Table 3.3. Effect of seedling leaf area on seedling survival in natural environments. Survival for seedlings 
that were 1 yr old was monitored in the reciprocal-transplant experiment, while survival for seedlings that 
were older than 1 yr was monitored in transects in subpopulations from native and disturbed habitats. 
Logistic-regression values for the slope (β), and Wald tests of significance are reported. 
 

Habitat Age β d.f. Z P 
1 yr 0.001 1 0.01 0.959 Native 

>1 yr 0.016 1 3.01 0.083 
1 yr 0.034 1 4.98 0.026 Disturbed 

> 1 yr 0.003 1 1.78 0.182 
 
 

Effects of light and water availability on germination 
 

In the greenhouse experiment, the light and water treatments had no direct effect 

on germination rate (Table 3.4). However, there was a significant family effect, and 

more importantly a family-by-light and family-by-water treatment interaction term (Table 

3.4). The GxE effects resulted from smaller differences in germination rate between 

treatments for the disturbed-habitat families (their slope was smaller in Figure 3.3). 

Seeds from families that originated in the native habitat germinated better in low light, 

and very poorly under high light conditions (Figure 3.3A). Seeds from families in the 

disturbed habitat had higher germination in the low light as well, but the difference in 

germination rate between the two habitats is smaller for these families (Figure 3.3A). 

Germination under low water availability was low for all families, regardless of the 

habitat in which they originated (Figure 3.3B). Finally, under high water conditions, the 
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average number of days to germination for disturbed-habitat families was smaller under 

high light (85.89 days in high light and 159.61 days in low light), but for native-habitat 

families the number of days to germination was smaller under low light (132.70 days in 

low light and 176.88 days in high light). 

 
Table 3.4. Genotype, environment, and GxE effects on germination rate and seedling traits in a 
greenhouse experiment with light and water treatments using seed families from disturbed and native 
habitats. A linear mixed-model was used, with treatments and source population as fixed factors, and 
family and block as random factors (F and P values from tests are reported). 
 

Source df F P 
Seed germination   
Family 20 2.64 <0.001 
Light treatment 1 0.56 0.455 
Water treatment 1 1.29 0.256 
Family x Light 23 3.09 <0.001 
Family x Water 23 3.32 <0.001 
Light x Water 1 0.43 0.512 
Source population 3 0.53 0.666 
Block 39 0.01 0.998 
Seedling petiole length   
Family 18 0.04 0.999 
Light treatment 1 14.19 <0.001 
Family x Light 21 1.31 0.209 
Source population 3 0.94 0.444 
Block 39 1.58 0.114 
Seedling leaflet area   
Family 18 0.22 0.999 
Light treatment 1 0.05 0.826 
Family x Light 21 0.96 0.529 
Source population 3 0.91 0.457 
Block 39 0.02 0.986 

 
 

As an unexpected result, families compared across light treatments exhibited a 

plastic response corresponding to the shade-avoidance syndrome of flowering plants. 

Specifically, seedling leaf petiole was longer in response to low light (Table 3.4). In 

contrast, seedling leaflet area did not show a plastic response to differing light 

availability in the greenhouse experiment (Table 3.4). The interaction term between 

family and light treatment was not significant for these seedling traits (Table 3.4), 

indicating that there is no genetic variation for these plastic responses in the 

subpopulations used in this study. Similar to the patterns observed in the greenhouse 
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experiment, petioles were longer (GLM F=3.88, P=0.0501) and leaflet area was larger 

(F=6.55, P=0.011) under the low light conditions of the native habitat in seedlings older 

than 1 yr in a random sample of seedlings from natural environments. 

 
Figure 3.3. Germination rate in the light treatments (A) and water treatments (B) for families used in the 
greenhouse experiment. Solid lines: families originated in the native habitat. Dashed lines: families 
originated in the disturbed habitat. See Table 3.4 for statistical analyses. 
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DISCUSSION 

 

  GxE in germination and survival between Z. fairchildiana subpopulations 

 

Genotypes (or families) of Z. fairchildiana subpopulations from native and 

disturbed habitats had different germination responses to contrasting environments, 

explained in part by the different levels of light and water availability. Genotype-by-

environment interactions in the reciprocal-transplant experiment in natural environments 

and in response to light and water treatments in the greenhouse were the result of 

different slopes of reaction norms of families originated in native versus disturbed 

habitats. Furthermore, reaction norms of families crossed in the experiment in natural 

environments, suggesting that genetic differentiation between native and disturbed 

habitat is possible. Genetic differentiation to local environmental conditions is 

widespread in plant populations (Linhart and Grant 1996), therefore GxE are expected 

to be common in reciprocal-transplant experiments. Genotype by environment 

interactions in seed germination may be explained by a ‘home site advantage’, where 

local genotypes have the highest fitness in each habitat because of local adaptation, but 

maternal effects could also have a role in explaining variation in germination across 

environments. The potential for genetic differentiation across habitats will depend on the 

presence of genetic variation in germination responses (e.g. Donohue et al. 2005a), and 

the role of environmental influences in germination. 

 

Differential responses in germination rate of genotypes from native- and 

disturbed-habitat families may be associated with the ability of seeds to tolerate 

desiccation. Seeds from all cycads are recalcitrant, i.e. they have no dormancy and very 

low tolerance to desiccation (Norstog and Nicholls 1997). Germination cues in tropical 

rainforests are complex, and may involve light, moisture, and temperature; however for 

most non-pioneer species water availability has the predominant role in regulating 

germination timing across the wet versus the dry season (Everham et al. 1996; 

Garwood 1983; Vazquez-Yanes and Orozco-Segovia 1993). Recalcitrant seeds of 

rainforest species are usually large, get dispersed during the rainy season, and 
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germinate quickly (Daws et al. 2005; Farnsworth 2000), as shown by Z. fairchildiana 

seeds in their native habitats. Lower overall germination of Z. fairchildiana seeds in the 

disturbed habitat, as well as under the high light and low water treatments in the 

greenhouse, support the idea that sensitivity to desiccation is important. Decreased 

germination under the high-light and low-humidity conditions are common for rainforest 

species under the lower canopy of gaps and disturbed forests in tropical forests (Bruna 

2002; Kyereh et al. 1999). Similarly, seedling survival of rainforest species is usually 

lower under the higher desiccation conditions of gaps or forest fragments (Engelbrecht 

and Kursar 2003; Fisher et al. 1991; Turner 1990). Drought has been shown to affect 

negatively seedling survival in other Zamia species (Tang 1990), and is a strong 

selective agent in early life-cycle stages in tropical rainforests (Engelbrecht and Kursar 

2003; Tobin et al. 1999). Consequently, genetic and environmental effects on 

desiccation tolerance may be important in explaining the GxE in germination and 

seedling survival observed in Z. fairchildiana populations.  

 

Light treatments in the greenhouse can not be decoupled completely from the 

moisture levels experienced by the seeds. Water treatments manipulated soil moisture 

availability, but lower air humidity under high light conditions can also affect seed 

desiccation. Therefore, it is difficult to evaluate the precise role of light availability on 

seed germination in Z. fairchildiana families. Nevertheless, there were strong GxE in 

response to light treatments, and families showed opposing responses in germination 

date, where disturbed-habitat families germinated earlier under high light and native-

habitat families germinated earlier under low light conditions. Light is an important factor 

affecting germination in many plants, but its effects seem to be less important for non-

pioneer tropical tress (Everham et al. 1996; Kyereh et al. 1999; Raich and Khoon 1990). 

Nevertheless, it is possible that besides the effects of increased irradiance on 

desiccation risk for seeds and seedlings, light levels have an impact on germination in 

Z. fairchildiana, as many cycads are adapted to open habitats, where light is generally 

an important regulator of germination (Mathews 2006). Light effects on GxE on 

germination will explain the lower germination rate of disturbed-habitat families in the 

native habitat or low light conditions in the greenhouse, where desiccation risk should 
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not be very high. Alternatively, different sets of genes may regulate germination in 

response to different factors (e.g. Donohue et al. 2005a), like desiccation risk and light 

conditions. The relevance of desiccation tolerance and other mechanisms affecting the 

rate and timing of germination needs to be explored in this species. 

 

Different responses in germination by native- versus disturbed-habitat families 

resulted from a clear trend in which disturbed-habitat families showed a less contrasting 

response across habitats or greenhouse treatments. At the species level, there is a 

similar trend by which generalist species have the ability to maintain relatively high 

fitness in poor environments and maximize fitness under favorable conditions (Sultan 

2001). At the population level, a more generalist genotype, regarding desiccation 

tolerance for example, may be able to exploit better the novel environmental conditions 

in the disturbed habitat, while maintaining a good germination rate in the original 

conditions of the native habitat. Genetic variation for desiccation tolerance has been 

observed in species with recalcitrance seeds (Peroni 1995). Nevertheless, little is know 

about the mechanisms determining variation in desiccation tolerance in recalcitrant 

species (Farnsworth 2000). It is known that increased levels of abscisic acid (ABA) 

inhibit germination in dormant seeds and increase their tolerance to desiccation, a 

behavior that can be artificially induced in recalcitrant seeds (Finch-Savage and Clay 

1994). Increased levels of ABA in disturbed-habitat families may enhance their 

tolerance to desiccation, but reduce their germination rates in both habitats, which will 

explain the lower slopes in their germination reaction norms. Finally, costs of 

desiccation tolerance (and intolerance), e.g. generated by a longer time to germinate 

that will increase the probability of seed mortality (Tweddle et al. 2003), need to be 

explored, as they could help explain crossing reaction norms, and particularly the lower 

germination rate of disturbed-habitat families in the native habitat. 

 

  Maternal effects on seed germination 

 

Genotype by environment interactions in reciprocal-transplant experiments in 

natural environments suggest the potential for genetic differentiation between 
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populations. However, maternal environmental effects could affect germination and 

seedling survival and could mask genetic variation and reduce the rate of genetic 

differentiation between populations (Galloway 1995; Schmitt et al. 1992). In this study, 

size-related maternal environmental effects on germination appeared to be weak and to 

have little influence on the GxE across habitats. In contrast to germination, size-related 

maternal effects were important for seedling survival, but notably, only in the disturbed 

habitat. The effects of seed size on germination and seedling survival are well 

established in long-lived trees (e.g. Bonfil 1998; Campbell 1997; e.g. Castro 1999; Kang 

et al. 1992; Seiwa 2000). However, size-related and other maternal effects on early 

performance are not universal and can not only depend on the species, but also be 

affected by external environmental conditions (Mazer and Schick 1991; Munir et al. 

2001; Paz et al. 1999; Schmitt et al. 1992). Other studies have found that seed size 

effects were more important on seedling performance than on germination in perennial 

plants (Eriksson 1999; Herrera 2000), although the reasons for this are not clear. 

Maternal effects in Z. fairchildiana populations may become important for young 

seedlings under the harsher environmental conditions of the disturbed habitat, e.g. if 

they allow seedlings to develop larger root systems and decrease water stress (Fisher 

et al. 1991). These maternal effects may be important for population persistence in the 

disturbed habitat, as viability selection through young seedlings is very strong in Zamia 

populations. In addition, maternal effects on seedling survival in the disturbed habitat 

could slow down genetic differentiation between subpopulations, as seedling fitness will 

be affected by environmentally-induced variation in size. 

 

Other maternal environmental effects, not related to seed or seedling size, could 

also affect the patterns of GxE in offspring traits (e.g. see Andalo et al. 1999; Galloway 

2001; Sultan 1996; Wulff et al. 1994). For example, maternal effects related to water 

availability and desiccation tolerance could result in GxE. Mother plants producing high 

levels of ABA in response to desiccation stress in the leaf tissues could produce seeds 

that have high ABA content and are more tolerant to desiccation (Farnsworth 2000). 

This type of maternal effects is prevented in some species with recalcitrant or viviparous 

seeds, like mangroves, by compartmentalizing the production of phytohormones and 
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substances regulating germination and desiccation tolerance (Farnsworth and Farrant 

1998), but these mechanisms may be absent in more ancestral plants like cycads. Few 

studies have focused on maternal environmental effects related to water-availability 

environments (but see Latta et al. 2004; Luzuriaga et al. 2006; Rice et al. 1993). 

Furthermore, seeds that are desiccation intolerant are relatively rare compared to seeds 

that can tolerate some drying during their development and that have dormancy 

(Pammenter and Berjak 2000; Tweddle et al. 2003), and thus there is virtually no 

information on potential genetic or maternal environmental effects of desiccation 

tolerance on germination or seedling performance. In addition, light-related maternal 

effects could result in seeds that germinate better the same light conditions that mothers 

experience. Long-term observational and manipulative experiments will be required to 

fully address the impact of genetic and maternal environmental effects on GxE in 

offspring traits in Z. fairchildiana populations. 

 

  Phenotypic plasticity in seedling leaf traits in response to light 

 

Interestingly, seedlings in the low light treatment in the greenhouse experiment 

and in natural environments showed typical signs of etiolation, i.e. an adaptive plastic 

response under low light in which plants elongate their stem or leaf petioles in an 

attempt to increase the potential for light capture (Schmitt et al. 2002). This etiolation 

behavior is common in angiosperms, and is modulated by phytochromes that can sense 

light quantity and quality levels and induce phenotypic responses. Cycads and other 

gymnosperms show a more limited ability in shade-avoidance and de-etiolation 

responses than angiosperms (Mathews 2005; Mathews 2006). Most cycad species 

inhabit open habitats, however Z. fairchildiana and a few other species of Zamia are 

adapted to survive under the deep shade of the understory of tropical rainforests. 

Tropical light-demanding species usually have large levels of plasticity to the light 

environment (Chazdon et al. 1996), and it is possible that rainforest Zamia species have 

retained high levels of plasticity and a shade-avoidance behavior. There was no GxE in 

this shade-avoidance response in families of Z. fairchildiana, indicating that there is no 

genetic variation for the plastic response in the subpopulations. This lack of genetic 
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variation in the plastic response in families coming from two different habitats may also 

be explained if the shade-avoidance behavior is an ancestral state for all Zamia species 

that has not been lost in rainforest species like Z. fairchildiana.  

 

Leaflet area did not show phenotypic plasticity to light environments in the 

greenhouse experiment. Leaflet area has no genetic variation in Z. fairchildiana 

subpopulations in either habitat (see Chapter 2). Variation in seedling leaflet area is 

therefore mostly environmental, and may be related to variation in light levels. Plastic 

responses in leaflet area may enhance light capture in seedlings, and can affect their 

survival, at least under some circumstances. Variation in leaf surface area in response 

to heterogeneous light environments is common in rainforest plants (e.g. Evans and 

Poorter 2001; Montgomery 2004). Variation in leaflet area also affects the fitness 

(fecundity) of adults (see Chapter 2), and it would be interesting to explore the levels of 

plasticity in this trait at the adult stage. Curiously , environmentally-induced (given no 

genetic variation for this trait) differences in leaflet area were not observed for either 

seedlings or adults (see Chapter 2). Leaves with long life-spans, like leaves of Zamia 

species, usually show low levels of plasticity (Clark et al. 1992; Kursar and Coley 1999). 

Shade avoidance responses and the extent of phenotypic plasticity in seedling and 

adult traits should be further explored in populations of Z. fairchildiana, particularly as 

they may influence the potential for genetic differentiation between native and disturbed 

habitats.  

 

  Adaptive divergence between habitats 

 

The results from the experiments in this study suggest that genetic differentiation 

between Z. fairchildiana subpopulations from native and disturbed habitats is possible, 

given genetically-based differences and GxE in germination and seedling survival. 

Nevertheless, the magnitude and rate of genetic differentiation will depend on the 

strength of maternal effects on fitness of early stages in this population. Maternal-

environmental effects related to seed reserves seem to be weak, but other maternal 

effects could explain GxE in germination or mask the genetic variation in germination 
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responses. Seed germination and seedling survival have an important impact on 

population fitness, as most selection via mortality occurs at these life-cycle stages in 

Zamia populations. Strong selection in early life stages is common in trees, and it can 

result in rapid genetic differentiation among populations (Petit and Hampe 2006). If 

genotypes that are able to perform better under the modified environmental conditions 

(e.g. because higher tolerance to desiccation) of the disturbed habitats produce more 

seeds, or seeds that recruit better, then subpopulations in the disturbed habitat may 

diverge genetically from the subpopulations in the native habitat. Genetic differentiation 

between native- and disturbed-habitat populations has been detected at the seedling 

stage in other rainforest species in fragmented habitats (Aldrich et al. 1998). Long-term 

reciprocal-transplant experiments and detailed evaluations of environmental effects on 

GxE will provide further evidence of the potential for genetic differentiation in Z. 

fairchildiana subpopulations in life-history and adult traits. 
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GENERAL CONCLUSIONS 
 

The results from this study suggest that habitat degradation can have important 

effects on the evolutionary dynamics of Z. fairchildiana populations. Habitat loss and 

fragmentation have not been too severe for this species, but many colonies of 

individuals (subpopulations) persist in forest habitats affected by human activities that 

differ considerably in variables like canopy cover from the native habitat for the species. 

The subpopulations of Z. fairchildiana in degraded habitats do not show the typical 

consequences of habitat fragmentation, like drastic reductions of population size and 

high degree of isolation, at least in the short-term (few generations after habitat 

disturbance). The levels of genetic diversity in molecular markers suggest the lack of 

extreme bottlenecks (that result in loss of rare alleles), or genetic isolation, as 

evidenced by the lack of genetic structure in neutral molecular markers. In addition, 

subpopulations in the disturbed habitat do not show signs of decreased reproductive 

output and recruitment, as usual in tropical trees in fragmented and degraded habitats, 

although seed germination and seedling survival were lower in the disturbed habitat. 

Conversely, individuals in disturbed-habitat subpopulations seem to have a ‘faster’ life-

history with rapid growth and high investment in fecundity, and moderate rates of 

germination and seedling survival. The long-term consequences of these life-history 

changes remain to be evaluated, and whether this life-history results in larger or smaller 

population growth rates will depend on the patterns of adult mortality. Faster life-

histories are usually associated with high adult mortality and lower life-span, and this 

could have negative consequences for population growth rate in subpopulations in the 

degraded habitat. Unless habitat degradation has a major negative impact on adult 

mortality/longevity, it seems that it has not affected severely the demographic viability of 

Z. fairchildiana subpopulations. 

 

In contrast to the lack of severe negative demographic effects (at least in the 

short-term), habitat degradation appears to have significant influences on several 

aspects of the evolutionary dynamics of subpopulations of Z. fairchildiana. Life-history 

differences between native and disturbed-habitat subpopulations seem to result in a 
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weaker spatial genetic structure and higher levels of inbreeding in the disturbed-habitat 

subpopulations. Furthermore, environmental changes in the disturbed habitats, 

particularly higher light availability and increased probability of desiccation, are 

associated with important differences the patterns of selection and genotype-by-

environment interactions (GxE) between subpopulations from native and disturbed 

habitats. Average fecundity in the disturbed-habitat subpopulations may not be 

decreased by habitat degradation, but selection and GxE analyses suggest that not all 

genotypes have the same probability of recruitment. Particularly, differential genotype 

performance in light environments will have important implications for the genetic 

composition within subpopulations, the spatial genetic structure, and the evolutionary 

potential of the whole population. 

 

Furthermore, the results suggest that habitat degradation has the potential to 

promote adaptive genetic differentiation between native and disturbed habitat 

subpopulations of Z. fairchildiana. Habitat degradation generated strong selective 

pressures for this species, and subpopulations can respond to these selective 

pressures. In particular, light seems to be an important agent of selection for the 

evolution of genetic differences in traits like leaf production, but other environmental 

factors affecting desiccation tolerance may be important agents of selection as well. The 

implication of a response to selection in a trait like leaf production may be far reaching, 

if genetic differentiation between subpopulations in this trait is associated with genetic 

divergence in the whole life history strategy. GxE on early performance, and in relation 

to light and water availability, further suggested that different genotypes may have the 

highest fitness in native versus disturbed habitats, which supports that adaptive genetic 

differentiation may take place in response to habitat degradation. Nevertheless, 

environmental effects, and particularly maternal effects, may affect the rate of genetic 

differentiation between subpopulations in the two habitats. Evaluating the relative 

importance of genetic and environmental effects in GxE will likely provide interesting 

information on the interaction between directional selection and maternal effects and 

other forms of phenotypic plasticity on the process of genetic differentiation between 

populations. The strength of spatial genetic structure and inbreeding within 
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subpopulations may also affect the action of selection and the potential for evolutionary 

changes in this species. All these finding suggest that the response to habitat 

degradation in Z. fairchildiana populations involves a complex interaction of ecological, 

genetic, and evolutionary factors. 

 

In addition to differences in adult survival or longevity, and the effects of 

environmental effects and phenotypic plasticity on genetic differentiation, several issues 

emerge as crucial for a wider understanding of population responses to habitat 

degradation in Z. fairchildiana. The actual consequences of differences in the spatial 

genetic structure on effective population sizes or the action of viability selection may 

reveal interesting interactions between patterns of genetic variation and population 

fitness. The causes of higher inbreeding in the disturbed habitat and its consequences, 

like inbreeding depression, could also reveal important aspects of the effect of habitat 

degradation on overall population fitness. Particularly, large variation in fecundity rates 

among individuals and across time (e.g. a few dominant reproducing individuals) and 

the consequent reduction in effective population size, may affect the evolutionary 

potential and potential for genetic differentiation by drift in subpopulations. More 

accurate estimations of the heritability of ecologically-relevant traits will contribute to 

evaluating the effects of habitat degradation, via drift or selection for example, on the 

levels of genetic variation within subpopulations. Genetic differentiation may also be 

affected by maternal environmental effects, but another interesting possibility is that 

genetic maternal effects could evolve in the disturbed habitat, wh ere they seem to 

increase in importance. Long-term experiments will be required to evaluate maternal 

effects and other forms of phenotypic plasticity and their impact on population 

differentiation, but estimating the degree of genetic divergence shown by quantitative 

traits (QST) in adults is also possible using molecular markers. Finally, the extent of gene 

flow in genes underlying ecologically-relevant traits, particularly the ones under 

selection (which may not be equivalent to the extent of gene flow showed by molecular 

markers), will have a major impact on the potential for genetic differentiation between 

subpopulations, and could also have the potential for creating outbreeding depression 

between diverging subpopulations in contrasting habitats.  
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Only long-term studies in a long-lived plant like Z. fairchildiana will determine that 

subpopulations of Z. fairchildiana are in the process of adaptive genetic differentiation in 

response to habitat degradation, but this study shows that habitat changes can have 

major impacts in several aspects of the ecology, genetics, and evolutionary dynamics of 

populations. The study provides information on particular environmental factors, 

phenotypic traits, and aspects of the life history of the species that are relevant in 

population responses to habitat degradation. It demonstrates as well that anthropogenic 

habitat changes can result in major selection events, that can have important short-term 

consequences for several aspects of population structure and dynamics, which should 

be of interest in conservation biology. Adaptive evolution will allow Z. fairchildiana 

populations to persist in degraded habitats, but it will alter the genetic structure of the 

population, and have other consequences for the evolutionary dynamics of the 

populations that need further examination. From a conservation biology perspective 

these are interesting issues to address in a world where most ecosystems are under the 

pressure of human activities and most species of conservation interest are long-lived 

like cycads. 
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