
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

5-18-2007

Evaluation of Expressions with Uncertainty in Databases Evaluation of Expressions with Uncertainty in Databases

Moginraj Mohandas
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Mohandas, Moginraj, "Evaluation of Expressions with Uncertainty in Databases" (2007). University of New
Orleans Theses and Dissertations. 535.
https://scholarworks.uno.edu/td/535

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of New Orleans

https://core.ac.uk/display/216836113?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F535&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/535?utm_source=scholarworks.uno.edu%2Ftd%2F535&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

 Evaluation of Expressions with Uncertainty in Databases

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Masters of Science
in

The Department of Computer Science

by

Moginraj Mohandas

B.Tech, Lal Bahadur Shastri College of Engineering, India, 2003

May, 2007

ii

Copyright 2006, Moginraj Mohandas

iii

Acknowledgement

I wish to express my gratitude to a number of people who became involved with this

thesis, one way or another.

I am deeply indebted to my supervisor, Dr. Nauman Chaudhry whose help, stimulating

discussions; suggestions and encouragement helped me in all the time of research and for

writing of this thesis. In addition, I would like to thank Dr. Mahdi Abdelguerfi and Dr.

Golden Richard III for being on my thesis defense committee.

Finally, I would like to thank my family and friends for the continuous support and help

they provided to me. I would like to dedicate this thesis to my parents.

iv

Table of Contents

List of Tables ...v
List of Figures…………………………………………………………………………….vi
Abstract…………………………………………………………………………………..vii
1 Introduction………………………………………………………………………..1
2 Expression Syntax and Terminology……………………………………………...5

2.1 Syntax of Crisp Expressions……...…………………………….....5
2.2 Syntax for Modeling Uncertainty in Expressions and Data

Items……………………..9
3 Related Work…………………………………………………………………….14

3.1 Previous Work on Expressions: The Oracle Method…………….14
3.1.1 How Oracle stores Expressions………………….14
3.1.2 Evaluation of Expressions(EVALUATE

operator)………………………………………….15
3.1.3 Expression Data Type and Handling: Oracle

Approach………………………………………...16
3.2 Uncertainty Handling by different Systems……………………..17

3.2.1 Automated Ranking……………………………...17
3.2.2 Uncertainty in Publish/Subscribe Systems………21
3.2.3 Trio(ULDB)……………………………………..23

4 Semantics of Matching Uncertain Expressions and Uncertain
Data………………………...………………………………………………….....25

4.1 Evaluating Crisp Expressions against Crisp Data Items…………25
4.1.1 Semantics of Matching at the Predicate

Level……………………………….…………….25
4.1.2 Formal Model for Evaluating Crisp Expressions

against Crisp Data Items…………………………27
4.1.2.1 Variable to describe Evaluation

cases……………………………...27
4.1.2.2 Categorizing Cases of Crisp

Expression-Data Item Evaluation..28
4.2 Semantics of Matching Uncertain Predicates Against Uncertain

Data Terms……………………………………………………….29
4.3 Evaluation Semantics for Expressions and Data Items with

Approximate Matching and Uncertainty………………….……..38
4.3.1 Crisp Data Items, Crisp Expressions……..……...38
4.3.2 Uncertain Data Items, Uncertain Expressions…...42

5 Supporting Uncertain Expressions in a DBMS………………………………….46
5.1 Expression Data Type……………………………………………46
5.2 Details of Implementation……………………………………….46

6 Conclusion and Future Work………………………………………………….....51
References………………………………………………………………………………..53
Appendix.………………………………………………………………………………...55
Vita……………………………………………………………………………………….58

v

List of Tables

Table 2.1 Example of an Expression Table…………………………………………….7, 8

Table 2.2 Example of a Conceptual Table with Data Items as column values……………9

Table 2.3 Example of Table with Expressions(with Uncertainty)…………………...11, 12

Table 3.1 Consumer Table…………………………………………………………...14, 15

Table 3.2 Example Table for ULDB……………………………………………………..24

Table 3.3 Example Table for ULDB……………………………………………………..24

Table 4.1 Example Table to show the various categorizing cases…………………...28, 29

Table 4.2 Comparison Table for Evaluation(without Uncertainty)………………….38, 39

Table 4.3 Comparison Table for Evaluation(with Uncertainty)……………………..42, 43

vi

List of Figures

Figure 5.1 Screenshot of Insert and Select in Postgresql……………………………….48

Figure 5.2 Screenshot of Evaluation of Expressions against Data Items using Evaluate

operator…………………………………………………………………………………50

vii

Abstract

Expressions are used in a range of applications like Publish/Subscribe, Ecommerce, etc.

Integrating support for expressions in a database management system (DBMS) provides

an efficient and scalable platform for applications that use Expressions. Support from

uncertain data and expressions can be beneficial but not currently provided for.

In this thesis, we investigate how expressions with uncertainty can be integrated in a

DBMS like other data. We describe the underlying theory and implementation of UNXS

(UNcertain eXpression System), a system that we have developed to handle uncertainty

in expressions and data. We develop a theoretical model to compare and contrast

different previous work in supporting uncertainty in DBMS and Publish/Subscribe

systems. We extend the existing approaches to propose new techniques for matching

uncertain expressions to uncertain data in UNXS. We then describe an implementation

that integrates this support in Postgresql DBMS, which to our knowledge is the first such

implementation.

.

1

Chapter 1 Introduction

Expressions are a good way to model the interests of a user in expected data. Expressions

have been used in various application domains, such as, Publish/Subscribe [2, 13],

Ecommerce [11], Website Personalization [12], etc. In such application domains, users

want to specify their interest in expected data in terms of expressions defined on this data.

The application needs to persistently maintain these expressions and match data with

these expressions to inform users of items of their interest. For example, in a

Publish/Subscribe system [13, 2] for a “Real Estate” application, subscriptions

correspond to the interests of the user defined over various attributes of houses. These

subscriptions are matched against publications of houses being sold that are published by

an information provider.

Example:

Subscription: Notify me of houses with price less than forty thousand that have a garage

and have more than two bedrooms.

This subscription can formally be modeled as the following Expression:

price<40000 AND garage=yes AND bedrooms>2

This expression, as well as expressions defined by other users, would be matched with

Publications that are given by the Real Estate Agents, who are the information providers.

Many times users find it easier to express their interest in uncertain or vague terms, rather

than in precise terms [2], [9]. The need to process uncertain data [7] has also become very

prominent in database management system research, especially in recent years because of

the wide varieties of sources that data come from [13]. However, currently most database

management systems as well as publish/subscribe systems do not support uncertain data.

Such data models, that do not support uncertain data, are called crisp data models. But,

lets look at an example from the application “Real Estate”. A user may be certain that he

2

can pay up to $40,000 for a house and the house must have more than 3 bedrooms.

Additionally, even though he would like to have the house to have a garden, but he is

willing to consider houses without a garden. Likewise, he would like the house to have a

garage, but gives greater priority to a garage than a garden. In case of publications too, a

Real Estate Agent might not be absolutely certain as to whether a particular house has a

garden. Such Uncertainties may occur because the information may not be available in its

entirety at a given point of time. This can happen in a variety of application domains as

the information may be gathered from multiple sources, some of which may have more

complete information than others. We can modify the previous example to illustrate the

need for modeling uncertainty.

Example:

Subscription : Notify me of houses with price less than forty thousand that have two

bedrooms. In addition, it would be good if these houses had a garage, even though it is

not a required criterion.

This subscription can be formally modeled via the following Expression that supports

Uncertainty:

price<40000 1.0 AND garage=yes 0.3 AND bedrooms>2 1.0

Notice that we have attached Confidence values with individual conditions in the

expression. The conditions on price and bedrooms have a Confidence value of 1.0 that

expresses the user’s requirement that any house of interest to them must meet these

conditions. The condition on garage has a Confidence of 0.3 and this means that meeting

this condition has less priority than the other conditions. Therefore, even if an Agent is

not completely certain whether a particular house has a garage, that house should be

considered for this subscription. However, matching Uncertain data with Uncertain

expressions requires that we have an appropriate theoretical model for determining the

match. We will develop such a theoretical model in this thesis.

3

It has been noted that the ability to manage Expressions in a database management

system (DBMS) would be very useful [1]. Management of Expressions in a DBMS

would facilitate efficient handling of Expressions by using techniques such as query

optimization and indexing to efficiently handle large number of Expressions. A notable

work in this area is [1], where ability to store Expressions as data in tables in Oracle 10g

is described. Ability to store Expressions under a column of a table is provided by

extending an existing data type to support Expressions. To evaluate these Expressions

over data, a new EVALUATE operator is introduced. For efficient handling of

expressions, special indexing structures are proposed. With these extensions, the DBMS

can handle such Expressions, which denote user interests, in addition to all the other data

related to a user. Incorporation of support for Expression data type in the DBMS

facilitates the management of large number of Expressions in an efficient and scalable

manner. Oracle though does not support Uncertainty in either Expressions or data.

In this thesis, we look at how Expressions with Uncertainty can be incorporated in to a

Database so that they can be processed like other data. We describe the underlying theory

and implementation of UNXS (UNcertain eXpression System), a system that we have

developed to handle Uncertainty in Expressions and data. We first develop a theoretical

model to compare and contrast support for Uncertainty that has previously been

developed by different researchers. We extend the existing approaches to propose new

techniques for matching Uncertain Expressions to Uncertain data in UNXS. We then

describe an implementation that integrates this support in a Database via a new data type

called Expression and its associated operator called EVALUATE. The Database that we

have used is Postgresql 8.0.7. Postgres (as it is widely called) is an open-source database

which provides support for Extendibility as explained in [8]. This means that it is

possible for developers to extend the database functionality by adding new functions,

user-defined data types, new operators to support such data types etc. To the best of our

knowledge, this is the first integration of Uncertain data support within a DBMS as

opposed to adding a layer outside the DBMS to translate to and from a crisp DBMS.

4

The rest of the thesis is organized as follows. Chapter 2 gives an overview of the

terminology used in the thesis and the formal syntax for modeling Expressions as well as

for Uncertainty in Expressions. Chapter 3 discusses related work. Chapter 4 introduces a

theoretical model for describing the semantics of matching Uncertain Expressions and

Uncertain data. We use this theoretical model to compare various existing techniques to

handle Uncertainty and to explain how we have handled Uncertainty in Expressions in

UNXS. Chapter 5 describes the implementation carried out in this thesis. Chapter 6 gives

conclusion and future work.

5

Chapter 2 Expression Syntax and Terminology

In this chapter, we give an overview of terminology used to describe Expressions as well

as the formal syntax used to model Expressions, both crisp (i.e., without Uncertainty) and

Uncertain. In Section 2.1, we describe the syntax of crisp Expressions as given in [1]. In

Section 2.2, we give the extended formal syntax we have developed to model Uncertainty

in Expressions and data.

2.1 Syntax of Crisp Expressions

To describe crisp Expressions, we use the syntax developed in [1]. An Expression is

defined as a group of predicates that are typically joined by an AND or OR. In this work,

we consider only those Expressions that have their Predicates joined with AND. A

predicate contains a left hand side (a column name), an operator and a right hand side

(value of the column).

The formal syntax of an Expression in BNF notation is given below:

Expression ::= Predicate | Predicate AND Expression

Predicate ::= Identifier Operator Constant

Operator ::= < | > | = | <= | >=

Example:

Here are some example predicates :

Pred1: price > 40000

Pred2: bedrooms = 3

An example expression is:

Exp1: price>40000 AND bedrooms=3

6

We introduce ‘Data Item’ which corresponds to a Publication and can be thought of as a

row in a Database where the column names are given along with the values. Each subpart

of a Data Item is called a Data Term and each Data Term corresponds to an attribute and

its value. Expressions are evaluated against Data Items, which corresponds to

Subscriptions being evaluated against Publications.

The formal syntax of a Data Item in BNF notation is given below:

Data Item ::= Data Term | Data Term AND Data Item

Data Term ::= Identifier Operator Constant

Operator ::= =

Note: The only operator allowed in a Data Item is the assignment operator since a Data

Item represents actual information.

Example:

An example Data Item is:

price=50000 AND bedrooms=4

An Expression evaluates to True if the incoming data-item meets the user’s interest, and

if the incoming data-item doesn’t meet the user’s interest then the Expression evaluates to

False. We will discuss the semantics of such evaluation in Chapter 4 of this thesis.

The example application that we work with is called the ‘Real Estate’ application. In a

typical Real Estate scenario, there are many users or buyers interested in different types

of houses. These buyers have their own specifications on what type of House they want.

This is modeled by a Subscription in the case of a Publish/Subscribe. The Real Estate

agents have information about the different houses that are put for sale. This information

is modeled as the Publications in the Publish/Subscribe system. In our case, each

7

Expression can be thought of as similar to a Subscription, and each Data Item as similar

to a Publication.

Let us look at a sample table called House and an Expression column stored in that table:

HOUSE

Table 2.1 Example of an Expression Table

User

ID

Name Street

Name

Interest

1 John Travolta 1st street price>40000 AND bedrooms=4 AND

outpaint=red

2 Denzel

Washington

2nd street price<50000 AND bedrooms>=2 AND

restrooms=2 AND outpaint=blue

3 Adam Sandler 3rd street price=50000 AND garage=yes AND bedrooms=3

AND outpaint=green

4 Jack Nicholson 4th street garage=yes AND bedrooms=3 AND

outpaint=green

5 Russell Crowe 5th street price<30000 AND garage=yes AND bedrooms=3

AND restrooms>1

6 Bruce Willis 6th street garage=yes AND bedrooms=3 AND

outpaint=green AND floors=2

7 Tom Hanks 7th street floors=2 AND garage=yes AND bedrooms=3

AND outpaint=yellow

8 Tom Cruise 8th street price<60000 AND garage=no AND bedrooms=3

AND area=1500

8

Table 2.1, continued

9 Nicholas

Cage

9th

street

bedrooms>=2 AND outpaint=blue AND floors=1 AND

area=1200

10 Will Smith 10th

street

price=50000 AND garage=no AND bedrooms=3 AND

floors=2 AND area=2400 AND garden=yes

Example:

Some examples Data Items that can be evaluated against the Expressions in the Interest

column of the above table are given below:

Data Item1: price=42000 AND bedrooms=3 AND outpaint=blue

Data Item2: price=40000 AND bedrooms=2 AND floors=1 AND garage=yes

Data Item3: bedrooms=3 AND garage=no AND price=48000 AND floors=1

The below given SQL query evaluates the Expressions in the table against Data Item1:

Select * from House where (EVALUATE(price=42000 AND bedrooms=3 AND

outpaint=blue))=1;

With the user subscriptions modeled as expressions, each new data item, i.e., a new

publication, is matched against all the expressions to find expressions which evaluate to

true. Note that this model of matching one data item against many expressions inverts the

traditional DBMS model in which one query gets evaluated against many rows. When

using the expression data type, each data item (which corresponds to a row in traditional

DBMS applications) is evaluated against many expressions (each of which corresponds

to a query in traditional DBMS applications). We refer to this as inverted data-query

paradigm. We explain this concept with the following example.

For the Data Items mentioned in the query above, a conceptual table is given below. Each

Expression can be thought of as a query against this table

9

Table 2.2 Example of a Conceptual Table with Data Items as column values

price bedrooms Outpaint garage floors

42000 3 Blue NULL NULL

40000 2 NULL yes 1

48000 3 NULL no 1

2.2 Syntax for Modeling Uncertainty in Expressions and Data Items

As explained in the Introduction, there is a need to model Uncertainty in Expressions

whenever the user wishes to express interest in data via conditions that have different

priorities. Similarly, if the data provider is uncertain about some attributes of the data,

there is a need to model Uncertainty in Data Items. In UNXS, uncertainty in Expressions

and Data Items is syntactically modeled via Confidence values for each predicate of an

Expression, and each Data Term of a Data Item.

We extend the BNF notation for Expressions and Data Items to incorporate the

Uncertainty model of UNXS :

Predicate ::= Identifier Operator Constant : Confidence

Operator ::= < | > | = | <= | >=

Data Term ::= Identifier Operator Constant : Confidence

Operator ::= =

Here, Confidence values are in the interval (0,1] including 1 but excluding 0. A 1

corresponds to a value about which the user is absolutely certain. The default Confidence

is always 1. Note that crisp Expressions correspond to the case where all Predicates have

a Confidence value of 1. Similarly, crisp Data Items correspond to a Data Item where all

Data Terms have Confidence value of 1.

10

We also note here that the Confidence values attached to Expressions and Data Items

need not be given explicitly by users or agents respectively. An application may provide

a Graphical User Interface (GUI) to users to specify their interests and relative priority

for the conditions in those interests. E.g., a user may specify that he would like a garage

and a garden, but considers a garage to be more important. Similarly a GUI may be

available for information providers to specify data in vague terms. E.g., a provider may

specify that the price is low or high. The GUI can then convert this vague information

into actual Confidences for the Expressions and Data Items that are used in the DBMS.

The focus of our thesis is in the processing of Uncertainty where the DBMS is already

provided the Confidences. The development of an appropriate GUI and API is thus

outside the scope of this thesis.

Now let us go back to the “Real Estate” application and try to understand what

Confidences could mean in that scenario. The application “Real Estate” has customers

who want a particular type of house. The Customers express their preferences using

Expressions with each predicate denoting a property of the house desired by a user. The

user or customer may also give “Confidences” to the predicates that he specifies. This

could mean that the user is unsure about whether he wants some of these properties, so he

specifies a priority for them. So, if a user specifies that he wants a garage with

Confidence 0.5, it means he is looking for houses that have a 50% chance of having a

garage. The Real Estate agent will give the details of a house with its properties and this

is denoted by the Data Item. Now, the Uncertainty that could occur is a situation where

the Agent is not 100% sure whether the properties of a house are true or not. He is only

partially sure about some of the information, which could happen because the

information provided to him was partial at the particular point of time. In this case, he

gives each of the properties of the House a “Confidence”, which denotes the confidence

with which he is sure about the information. The exact semantics of how an Expression

with Uncertainty should be matched against a Data Item with Uncertainty is an issue that

we discuss in Chapter 4, Section 4.2.

Example:

11

An example of Predicate and Data Term with Confidence:

Predicate : bedrooms>4 : 0.5

Data Term : bedrooms=6 : 0.1

Example:

Let us also look at a complete example of an Expression and a Data Item with

Confidences.

Data Item: price=50000 : 0.6 AND bedrooms=3 : 0.4 AND outpaint=red : 0.4 AND

garage=yes : 0.8

Expression: price>40000 : 0.5 AND bedrooms=2 : 0.6 AND outpaint=red 0.3 AND

garage=no : 0.6

Here for the first predicate of the Expression, the user is saying he wants a House which

costs more than 40000 and that he wants only matches that have at least a 50% surety that

the price is greater than 40000. The Data Term corresponding to price has price = 50000,

and the Agent (information provider) is 60% sure that this is true.

Now, lets look at the table HOUSE again with the interest column now containing

Expressions with Confidences attached to them.

HOUSE

Table 2.3 Example of Table with Expressions(with Uncertainty)
User

ID

Name Street

Name

Interest

1 John Travolta 1st street price>40000 : 0.4 AND bedrooms=4 : 0.5 AND

outpaint=red : 0.7

2 Denzel

Washington

2nd street price<50000 : 0.5 AND bedrooms>=2 : 0.3 AND

restrooms=2 : 0.8 AND outpaint=blue : 0.6

12

Table 2.3, continued

3 Adam

Sandler

3rd

 street

price=50000 : 0.6 AND garage=yes : 1.0 AND

 bedrooms=3 : 1.0 AND outpaint=green : 0.8

4 Jack

Nicholson

4th

street

garage=yes : 1.0 AND bedrooms=3 : 0.6 AND

outpaint=green : 0.7

5 Russell

Crowe

5th

street

price<30000 : 0.5 AND garage=yes : 0.6 AND bedrooms=3

: 1.0 AND restrooms>1 : 1.0

6 Bruce

Willis

6th

street

garage=yes : 1.0 AND bedrooms=3 : 0.8 AND

outpaint=green : 0.5 AND floors=2 : 0.3

7 Tom Hanks 7th

street

floors=2 : 0.7 AND garage=yes : 1.0 AND bedrooms=3 : 1.0

AND outpaint=yellow : 1.0

8 Tom Cruise 8th

street

price<60000 : 0.6 AND garage=no : 0.2 AND bedrooms=3 :

0.5 AND area=1500 : 1.0

9 Nicholas

Cage

9th

street

bedrooms>=2 : 1.0 AND outpaint=blue : 1.0 AND floors=1 :

0.9 AND area=1200 : 0.8

10 Will Smith 10th

street

price=50000 : 1.0 AND garage=no : 0.7 AND bedrooms=3 :

1.0 AND floors=2 : 1.0 AND area=2400 : 0.8 AND

garden=yes : 0.5

Example:

Here are a few example Data Items with Confidences that can be evaluated against the

Expressions in the interest column of HOUSE :

Data Item1: price=42000 : 0.4 AND bedrooms=3 : 0.6 AND outpaint=blue : 0.7

13

Data Item2: price=40000 : 0.6 AND bedrooms=2 : 1.0 AND floors=1 : 1.0 AND

garage=yes : 1.0

Data Item3: bedrooms=3 : 1.0 AND garage=no : 1.0 AND price=48000 : 0.6 AND

floors=1 : 0.7

The following query shows how the Expressions in the table are evaluated against Data

Item1.

Select * from House where (EVALUATE(price=42000 : 0.4 AND bedrooms=3 : 0.6

AND outpaint=blue : 0.7))=1;

Execution of this query should return those Expressions that satisfy the evaluation against

the given Data Item.

14

Chapter 3 Related Work

In this chapter, we initially look at the work done by the Oracle team [1] on Expressions

and its handling inside a Database. In the later subsections we look at some of the

significant methods employed in handling Uncertainty in Databases.

3.1 Previous work on Expressions: The Oracle Method

This section describes one of the most significant work done on Expressions in the recent

past. The work [1] was done by a team from Oracle and it mainly involved the

incorporation of Expressions in the Oracle Database framework. The work focused on

storing an Expression in a column of a table. The work also involved the creation of an

EVALUATE operator to Evaluate Expressions given a Data Item.

3.1.1 How Oracle stores Expressions

The Oracle approach enables capability to store Expressions in a column of a Database

table. Let us look at an example table from [1] which would store Expressions.

CONSUMER Table

Table 3.1 Consumer Table

CID Zip Code Price Interest(Expression Column)

1 70122 2000 Model = ‘Taurus’ and Price <15000 and Mileage

< 2500

2 70123 3000 Model = ‘Mustang’ and Year >

1999 and Price < 20000

15

Table 3.1, continued

3 70144 5000 Price < 20000 and Color = ‘Red’

4 70323 17000 Price > 15000 and Model =Toyota

All the Expressions related to the Consumer table are stored in the Interest column of the

table. The individual attributes in the Expressions may or may not be column attributes of

the table.

3.1.2 Evaluation of Expressions (EVALUATE Operator):

In order to evaluate an Expression against a Data Item an EVALUATE Operator is used.

The EVALUATE operator would be evaluating to 1 if an Expression is evaluated to

True, 0 if it is Evaluated to False. An EVALUATE operator takes two arguments: the

column of the conditional Expression and the data items for the Expression. Lets look at

an example.

Example:

Select CID From Consumer WHERE EVALUATE (consumer. interest,

‘ Model => ‘ ‘ Mustang ‘ ‘, Price => 22000,

Mileage => 1800,Year => 2000 ‘) = 1;

This query should return the CIDs of those rows whose Interest column satisfies the

given Data Item in the query.

16

3.1.3 Expression Data Type and Handling : Oracle Approach

Each Expression is evaluated using an EVALUATE operator against incoming Data

Items which are specified in SQL WHERE clauses. The Data Items are Expression like

structures which are specified by the user. For an incoming Data Item, every Expression

is evaluated to either True or False. If the Expression and the Data Item have predicates

on the same attributes and if the Predicates lie in the same data ranges, then the

Expression evaluates to True, else False. Expressions that evaluate to True return 1 and

the rest return 0.

As the Expressions are stored as a regular column in the user table they can be also

inserted, updated or deleted with the help of standard SQL statements. All the

Expressions stored in a user table share a common set of attributes. All the Expressions

under one user table, that share a common set of attributes form an Expression set. This

set of attributes plus any functions that are used in the Expressions comprise the

metadata for all the Expressions in a particular user table. This metadata is referred to as

the Expression Set Metadata. This consists of the elementary attribute names and their

data types and any functions used in the Expressions. In order to insert a new Expression

or to modify an existing Expression validation is required. Validation would be

crosschecking if the new Expression or the modifications to the existing Expression

comply with the Expression metadata. So all the Expressions present under an Expression

set are bound to use the attributes and functions defined under the attribute set.

Oracle has created an Expression data type which is essentially a CLOB or VARCHAR

data type used to hold the conditional Expression. A native Expression data type was not

built, so the data type is just like any other CLOB or VARCHAR value. The association

of the corresponding Expression Set Metadata is achieved by defining a special

Expression constraint on the column storing expressions. This constraint enforces the

validity of the expressions stored in the column as well as provides the necessary

metadata for expression evaluation.

17

3.2 Uncertainty Handling by different Systems

Uncertainty in DBMS is a topic that has long been of interest. There has been lots of

research done in this area for example [2], [3], [4], [6], [9] etc. In this subsection, we

discuss some of the research that has looked at the different types of Uncertainties in

DBMS and how they have come up with solutions to support Uncertainty. In Chapter 4,

we present a framework to compare and contrast these methods with each other and with

the UNXS system developed by us.

3.2.1 Automated Ranking

Ranking in Databases is a widely researched area and it is used mainly to prioritize

results. Ranking can be very useful in two situations. The first situation occurs when a

query is too selective and returns no answers. This is termed the “Empty Answers”

problem. Ranking techniques can be employed for the “Empty Answers” problem to

return a ranked list of tuples that approximately match the conditions specified in the

query. The second situation in which result ranking is useful is when a query is very

unselective. In this situation the query returns too many results, most of which may not

be of interest to the user. This is termed the “Many Answers” problem. In such cases a

ranking of results assigns some priority to tuples and the best matching tuples are

returned. Since result ranking is done using approximate matching between data and

queries, these techniques are worth investigating in the context of Uncertainty.

Research undertaken at Microsoft Research for Automated Ranking of query results in a

database is described in [4] The paper deals mainly with the “Empty Answers” problem

although it also discusses the “Many Answers” problem. The paper takes motivation

from Information Retrieval (IR) solutions to rank results. Two ranking or similarity

functions are proposed in the paper. These two functions are the IDF (Inverse Document

Frequency) similarity function and the QF (Query Frequency) similarity function. Based

on the results from these functions, the ranking of results of a query is done.

18

IDF has been used in IR to suggest that commonly occurring words convey less

information about user’s need than rarely occurring words. So, for every value t in the

domain of an attribute Ak the definition of IDFk(t) is log(n/Fk(t)), where n is the number

of tuples in the database and Fk(t) is the frequency of tuples in the database where Ak=t.

For any pair of values u and v in Ak’s domain, Sk(u,v) is defined as the IDFk(u) if u=v,

and 0 otherwise. The sum of the IDF values over each of the attributes is used to calculate

the similarity between sets of tuples and queries. Lets look at an example in terms of

Predicates and Data Terms. Note here that Predicates would conceptually refer to the

predicates in a Query, and Data Term would refer to a column name and its value in a

table.

Example:

Consider a Database with 1000 tuples. Let us take the following simple example of an

Expression and two Data Items.

Expression: bedrooms=3 AND price=40000

Predicate1: bedrooms=3

Predicate2: price=40000

Let the Data Items be:

Data Item1: bedrooms=3

Data Item2: price=40000

Thus,

Data Term1: bedrooms=3

Data Term2: price=40000

For Predicate1 and Data Term1:

u and v are the values of the Predicate and Data Term, respectively(in this case 3). So,

Sk(u,v) is IDF(u) because u=v.

IDF(u) = log(n/F(u)) {Now n, i.e., number of tuples is 1000. Also assume that F(3), i.e.,

the frequency of tuples in the Database with value of bedroom as 3 is 200}

19

Thus, IDF(u) = log(1000/200) = log(5) ~= 0.69.

Thus, for Data Item1 and the Expression, the total of the similarity value is 0.69 since the

IDF for price is 0.

Now, for Data Item2, Predicate2 would be used and IDF for bedroom is 0 since bedroom

is not present in Data Term2.

Let us assume that F(40000) is 500.

Thus, IDF(u) = log(1000/500) = log(2) ~=0.30.

Thus, the similarity value for the combination of Expression and Data Item1 is 0.69, and

for Expression and Data Item2 is 0.30. Data Item1 would be ranked higher. This

technique can also be used for ranking multiple Expressions against one Data Item.

The second type of similarity function used is QF similarity. This similarity function is

used when there is a realization that a data value maybe important for ranking in spite of

its frequency of occurrence in the database. QF similarity uses workload information, i.e.

the occurrence of an attribute value in the workload is considered in this case. It is

calculated as follows. If RQF(q) is the raw frequency of occurrence of value q of attribute

A in the query string and RQFmax is the raw frequency of the most frequently occurring

value in the workload, then the Query Frequency QF(q) is defined as RQF(q)/RQFmax.

The similarity coefficient S(t,q) is QF(q) if q=t, and 0 otherwise. The Similarity for the

whole Expression against the whole Data Item is the sum of the similarities for individual

attributes. An example similar to the one given for IDF similarity is given below.

Example:

Consider a Database with 1000 tuples. Let us take the following simple example of an

Expression and two Data Items.

Expression: bedrooms=3 AND price=40000

Predicate1: bedrooms=3

Predicate2: price=40000

20

Let the Data Items be:

Data Item1: bedrooms=3

Data Item2: price=40000

Thus,

Data Term1: bedrooms=3

Data Term2: price=40000

For Predicate1 and Data Term1:

S(q,t) = QF(t) if q=t. Since q=t, S(q,t) = QF(t) = QF(3) . Let us assume that RQF(3) for

bedrooms is 10 and RQFmax is 100.

So QF(3) = 10/100 = 0.1

Since there is no Data Term corresponding to Predicate2 in Data Item1, QF value is 0.

Thus, Similarity value for combination of Expression and Data Item1 is 0.1

For Predicate2 and Data Term2:

S(q,t) = QF(40000)(since q=t). Let us assume RQF(40000) for price is 30.

So, QF(40000) = 30/100 = 0.3

The total Similarity value here is 0.3, for the combination of Expression and Data Item2.

We see here that Data Item2 would be ranked higher since it has greater similarity.

Both the similarity functions discussed above dealt with the Empty Answers problem. To

deal with the Many Answers problem, the paper proposes to look at attributes in the table

that are not mentioned in the query. Such attributes are called “missing attributes.” The

approach used by the paper first computes the “global” importance of these attributes

using QF similarity function and workload information. The global importance of

missing attribute value tk is taken as QFk(tk). This value is then used to rank different

21

tuples by assigning weights to a tuple in accordance with the global importance of this

tuple’s missing attributes.

Example:

We modify Data Item1 and Data Item2 from the previous example.

Data Item1: bedrooms=3 AND restrooms=2

Data Item2: price=40000 AND area=3000

Consider that the similarity scores for the combinations of Data Item1-Expression and

Data Item2-Expression were the same, for example 0.3. This would create a problem in

Ranking. This is where a “missing attribute” can come in to play. In the case of Data

Item1-Expression, we can consider the extra attribute in the Data Item which is

‘restrooms=2’ as the missing attribute. Lets calculate QF(2) for restrooms.

QF(q) = RQF(q)/RQFmax. Let RQF(2) = 50; and RQFmax for restrooms = 100.

Therefore, QF(2) = 50/100 = 0.5. If there were more “missing attributes”, we sum the

values.

Now, in case of Data Item2-Expression, the “missing attribute” can be taken as

‘area=3000’. Let us calculate QF(3000) for area.

Let RQF(3000) for area = 30. Let RQFmax for area = 45.

Thus, QF(3000) = 30/45 = 0.66. As said before, if more “missing attributes” were

present, a summation of the values would be taken.

We see that the case of Data Item2-Expession combination has a higher value of QF(q)

for the missing attributes. Thus, Data Item2 is ranked higher than Data Item1.

3.2.2 Uncertainty in Publish/Subscribe systems

22

Currently most the Publish/Subscribe systems support the crisp model where the

publications or subscriptions have no kind of Uncertainty in them. A Publish/Subscribe

system that handles Uncertainty is described in [2].

In many cases, exact information on publications may not be available, and also

subscribers may express their subscriptions with vague constraints. Examples for

publication would be the case where, for an apartment, an agent describes age as “old”.

For subscription, a consumer may describe her preference for a courtyard as “long”. In

both these cases, there is uncertainty. The paper [2] uses Fuzzy set theory and possibility

theory to handle this uncertainty.

A Fuzzy set M on a Universal set U is a set that specifies for each element x of U a

degree of membership to the Fuzzy set M. It is defined by a membership function.

 μ(M) : U [0,1]

We can use membership functions to represent predicates in subscriptions that contain

uncertain and vague concepts such as “age is old” etc. Similar to this is the Possibility

theory, where there are possibility measures which express confidence in the possibility

that a particular x is A. These are used by Publications to represent the possibility that the

value of a particular attribute x is A.

In a subscription, each predicate e.g. “x is A” has a Fuzzy set A which represents a Fuzzy

constraint on all possible values of A. Each predicate can be expressed by the

membership function “μ”. Similarly, each attribute of a publication can be expressed

using possibility distribution. We have an attribute, value pair, “(A, ∏(x))”, A is the

attribute and ∏ is the possibility degree that value of A is x.

Example:

Lets take a subscription predicate as “size is medium” for House.

A possible membership function would be :

23

μmedium(x) = { 0 if x<1500; 0.5 if 1500<x<2500; 1 if X>2500}

For a subscription, let us assume one of the predicates is (price, cheap). This is expressed

as a possibility function as (price, ∏cheap).

∏cheap(x) = { 0 if x<30000; 0.3 if 30000<x<50000; 0.7 if 50000<x<100000}

3.2.3 Trio (ULDB)

The TRIO group at Stanford developed the ULDB, the Uncertainty-Lineage Database [3]

that looks at Uncertainty of data among other things. Of interest to this thesis is the

Uncertainty part of the ULDB.

The TRIO system extends the SQL model with Alternatives, Maybe annotations,

numerical confidence values and Lineage. Alternatives represent Uncertainty about the

contents of a tuple. A tuple in a ULDB is called an X-tuple. Each X-tuple consists of one

or more Alternatives, where each tuple is a regular tuple over the schema of the relation.

In ULDB, uncertainty about the existence of a tuple(more generally an X-tuple), is

denoted by a “?” annotation on the X-tuple. This indicates that the entire tuple may or

may not be present. Thus it is called a maybe X-tuple. Numerical Confidences can be

attached to the Alternatives of an X-tuple. This gives the Confidence with which a user

thinks the tuple value is true.

Example:

An example of a couple of tables with some X-tuples:

24

SAW:

Table 3.2 Example Table for ULDB

ID SAW(witness, car)

1 (Cathy, ford) : 0.5 || (Cathy, Honda) :

0.6

OWNS:

Table 3.3 Example Table for ULDB

ID OWNS(owner, car)

1 (frank, ford) : 0.7)

2 (Carmen, jaguar) : 0.9

3 (Joe, Honda) : 0.8

In the first table SAW, the X-tuple signifies that Cathy either saw a Ford or a Honda, and

if she saw a Ford, she was 50% sure it was a Ford; and if she saw a Honda, she was 60%

sure that it was a Honda. The same intuition applies for the OWNS table also. This is an

effective way to represent Uncertainty in the data.

TRIO also has a SQL-like language called TriQL which uses almost the same syntax as

SQL but supports queries with Confidences and Lineage. The current implementation has

ULDBs represented by regular relational tables, and TriQL queries and commands are

rewritten automatically into SQL commands evaluated against the representation. Thus

TRIO implements Uncertainty via a layer outside the DBMS.

An example query in ULDB is:

Select OWNS. owner as person INTO RESULT from SAW, OWNS where SAW. car =

OWNS. car AND conf.Int(SAW)>0.5 AND conf.Int(OWNS)>0.8

25

Chapter 4 Semantics of Matching Uncertain Expressions and
Uncertain Data

In this chapter, we develop a theoretical framework to describe the semantics of

evaluating Uncertain Expressions against Uncertain Data Item. We then use this

framework to describe the uncertainty model used in the different approaches discussed

in Section 3.2 and the uncertainly model provided in UNXS. This framework is

developed by first identifying the different cases for matching a crisp Expression to a

crisp Data Item. We also introduce some variables to formally describe these cases. We

then turn our attention to Uncertain Expressions and Uncertain data. In Section 4.2, we

use this framework to describe the semantics of match between Predicates and Data Term

in each of the approaches discussed in Section 3.2. We also present two new approaches

for such matches developed in UNXS. In Section 4.3, we describe the semantics of match

between Expressions and Data Items in the existing approaches as well as in UNXS.

4.1 Evaluating Crisp Expressions against Crisp Data Items

Evaluation is the procedure by which we decide whether an incoming Data Item(e.g., a

Publication) matches an Expression(e.g., a Subscription). Evaluation of an Expression

involves evaluation of each Predicate with the Data Item. This is evaluation at the

Predicate level. We look at the various cases for evaluation of a Predicate with a Data

Item. In the later sections, we extend this to include Uncertainty and come up with our

Expression level evaluation.

4.1.1 Semantics of Matching at the Predicate Level

When a Crisp Expression is being evaluated against a Crisp Data Item, there are four

interesting cases of evaluation of Predicates in the Expression against Data Terms in the

Data Item.

1. Predicate Evaluates to TRUE :

26

In this case, the Data Item includes a Data Term which has the same identifier as

the Predicate, and the Data Term value(RHS) has a matching value for the

Predicate value(RHS).

2. Predicate Evaluates to FALSE :

This is the case where a Predicate’s identifier appears in a Data Term, however

the value of the Data Term(RHS) does not have a matching value with the

Predicate(RHS).

3. Predicate cannot be Evaluated against any Data Term in the given Data Item.

This is the case where the Data Item does not contain any Data Term that matches

the Predicate Identifier(LHS).

4. Data Term does not get evaluated against any Predicate in the Expression.

This is the case where the Expression does not contain any Predicate whose

identifier matches the Data Term Identifier(LHS). In conventional Relational

Theory, this case is not considered important. However, as we will discuss later,

this case is relevant to managing Uncertain data.

Let us take an example which will give us a better idea of all these cases.

Example:

Expression: price>40000 AND garage=yes AND area=3000

Data Item: price=50000 AND garage=no AND bedrooms=3

27

This example of Expression and Data Item covers all the cases explained above. The

price attribute gives an example of case 1. The attribute identifiers are same and the

values(RHS) also matches. The garage attribute gives an example of case 2. The area

attribute is an example of case 3, since it is present in the Expression but not in the Data

Item. Similarly, bedrooms attribute gives an example of case 4.

4.1.2 Formal Model for Evaluating Crisp Expressions against Crisp

Data Items

4.1.2.1 Variables to describe Evaluation cases:

Now that we have considered the different cases when evaluating the Predicates in Crisp

Expressions with Data Terms in Crisp Data Items, we introduce some variables which

will be useful to formally describe these cases.

P : Total number of predicates in the expression

D : Total number of data terms in the data item

Pt : Number of predicates that evaluate to true

Pf : Number of predicates that evaluate to false

Pne : Number of predicates that did not match any data term.

Dnu : Number of Data terms that did not match any Predicate.

Lets look at an example to illustrate some of these terms.

Example:

Data Item: price=50000 AND bedrooms=3 AND outpaint=red AND garage=yes AND

area=300

28

Expression: price>40000 AND bedrooms=2 AND outpaint=red AND garage=no AND

restrooms=2

Here :

P = 5 ; D = 5 ; Pt = 2 ; Pf = 2; Pne = 1 ; Dnu = 1

4.1.2.2 Categorizing cases of Crisp Expression-Data Item Evaluation

We now use the variables we introduced in the previous section to categorize evaluation

of Crisp Expressions against Crisp Data Items into eight interesting categories based on

different combinations of Pne, Pf and Dnu. We have put this into a tabular format for

better understanding.

Table 4.1 Example Table to show the various categorizing cases

Variable

Combination

Data Item Expression

1 Pne=0

Pf=0

Dnu =0

price=50000 AND bedrooms=3

AND outpaint=red

price>40000 AND bedrooms=3

AND outpaint=red

2 Pne=0

Pf=0

Dnu>0

price=50000 AND bedrooms=3

AND outpaint=red

price>40000 AND bedrooms=3

3 Pf=0

Dnu=0

Pne>0

price=50000 AND bedrooms=3 price>40000 AND bedrooms=3

AND outpaint=red

4 Pf=0

Pne>0

Dnu>0

price=50000 AND

bedrooms=3 AND garage=yes

price>40000 AND bedrooms=3

AND outpaint=red

29

Table 4.1, continued

5 Pne=0

Pf>0

Dnu>0

price=50000 AND bedrooms=3

AND outpaint=blue AND

garage=yes

price>40000 AND bedrooms=3

AND outpaint=red

6 Pne>0

 Pf>0

Dnu>0

price=50000 AND bedrooms=3

AND outpaint=blue AND pool=yes

price>40000 AND bedrooms=3

AND outpaint=red AND

garage=yes

7 Pne=0

 Pf>0

Dnu=0

price=50000 AND bedrooms=3

AND outpaint=blue

price>40000 AND bedrooms=3

AND outpaint=red

8 Pf>0

Dnu=0

Pne>0

price=50000 AND bedrooms=3

AND outpaint=blue

price>40000 AND bedrooms=3

AND outpaint=red AND

garage=yes

4.2 Semantics of Matching Uncertain Predicates Against Uncertain Data

Terms

The eight categories that were mentioned in the previous section are important also in the

context of Uncertainty. This is because some of the combinations of Pf, Pne and Dnu

values can be used to solve the “Empty Answers” and “Too many Answers” problems

that we looked at in the AutoRanking scenario.

We had explained Predicate level match for crisp data earlier. The notion of Predicate

level match needs to be explained separately for Uncertain data and alternate semantics

need to be developed. In UNXS, as mentioned earlier, Uncertainty is based on

Confidences for both the Predicate of the Expression and the Data Term of the Data Item.

30

Let us introduce two more variables in addition to the ones we introduced in the last

section. These two variables differentiate between the Confidences of the Data Term and

the Predicate.

Alpha: The Confidence for each Data Term (Alpha1, Alpha2 etc)

Beta: The Confidence for each Predicate (Beta1, Beta2 etc)

Example:

Expression: price>40000 : 0.4 AND bedrooms=4 : 0.5 AND outpaint=red : 0.7

Data Item: price=42000 : 0.4 AND bedrooms=3 : 0.6 AND outpaint=blue : 0.7

Here,

Alpha1=0.4, Alpha2=0.6, Alpha3=0.7

Beta1=0.4, Beta2=0.5, Beta3=0.7

We now look at the Alternate semantics that the different systems have when there is

Uncertainty, and also the one that we developed for UNXS. Each of the various methods

of handling Uncertainty, respectively, TRIO, Automatic Ranking and Pub/Sub

Uncertainty has its own way of handling each combination of Predicate and Data Term.

Here, we describe match semantics for each of these methods within the framework that

we have introduced earlier. We also describe match semantics for the UNXS system that

we have developed.

Lets call the match semantic for Predicate and Data Term evaluation in general as

Matchp. The set {0,1} denotes the set that contains 0 and 1. The interval [0,1] denotes the

set that contains all decimals between 0 and 1 (and also 0 and 1). “exact” refers to an

exact match between the predicate and the data term being the criteria for match.

“inexact” refers to an approximate match between the Predicate and the Data Term.

1. Matchp1

31

Form: exact(pred, data term) {0,1}

Use: Traditional DBMS

In this case, the value of the predicate is compared with that of the data term and

its either a match or a non-match i.e. a 0 or 1. This is the case with Traditional

DBMS.

2. Matchp2

Form: exact(pred, data term) * scaling function [0,1]

Use: Automated Ranking [4]

In this case, the match is exact. But a scaling function such as IDF or QF is used

to scale the result thus producing an output in the interval [0,1].

Example:

Refer to Example in Section 3.2.1, page 25, 26.

3. Matchp3

Form: exact(pred, data term) * Boolean(Alphai>=Betai) {0,1}

Use: TRIO(ULDB) [3]

Here, apart from the exact match between the predicate and the data term, the

Confidences are also checked. If the Confidence of the data term is greater than or

equal to that of the predicate, the result is 1 else 0.

Example:

32

Refer to Example in Section 3.2.3, page 29, 30

4. Matchp4

Form: inexact(pred, data term, Beta) [0,1]

Use: Publish/Subscribe system [2]

Here, the match between the predicate and data term is approximate. In addition,

the degree of match is checked with an additional threshold value (similar to Beta

values) to come up with an answer in the interval [0,1].

Example:

We take the simple example of one Predicate in the Expression and one Data

Term in the Data Item.

Predicate1: price = low

Data Term1: price =20000

Let us assume we have computed the degree of match between the Predicate and

the Data Term and let it be 0.9. For each predicate there is an additional value

against which the degree of match is checked. Let this Beta value be 0.8. Since

the degree of match is greater than this value, the Predicate is said to match the

Data Term.

5. Matchp5

Form: inexact(pred, data term) * scaling function [0,1]

Use: Automated Ranking for Numeric Attributes [4]

Since Numeric Attributes might have approximate matches, inexact match is

used. The distance between the two values is evaluated and the closer the two

values are, the higher the match value give to this Predicate-Data Term

33

combination. Also, a scaling function similar to Matchp2 is used to obtain a value

in the interval [0,1].

Example:

Predicate: price=30000

Data Term1: price=31000

Data Term2: price=36000

In this example, Data Term1 will be ranked higher than Data Term2.

Now, we look at the two matches that are developed in this thesis for handling

Uncertainty in UNXS. In our implementation, we have Expressions stored in the

columns of a Database and Data Items are supplied in queries. So, our Evaluation

context refers to evaluating multiple Expressions against one Data Item.

6. Matchp6

Form: exact(pred, data term) * scaling function(Alphai, Betai, q, t) [0,1]

Use: UNXS

(Here, q refers to the Predicate, t refers to the Data Term)

In UNXS, we have Confidences attached for each Data Term of the Data Item and

each Predicate of the Expression. Our goal was to devise a strategy so that

evaluation uses the Confidences level. The methods used in AutoRanking [4]

provided a good base for exploring options, and we came up with the following

extension.

We extend the QF similarity function to include Alpha, Beta in addition to q and t

to calculate QF similarity. Unlike AutoRanking [4], we also allow inequality

operators in the Predicates, i.e., in q. After q and t are compared, we check if

Alpha>=Beta. Based on both the results, the result maybe QF(q) or 0. This result

again is in the interval [0,1].

34

Example:

Consider a Database with 1000 tuples. Let us take the following simple example

of a Data Item and two Expressions.

Expression1: bedrooms>2 : 0.4 AND price<30000 : 0.5

Expression2: price=40000 : 0.6

Expression1 has two Predicates:

Predicate1: bedrooms>2 : 0.4

Predicate2: price<30000 : 0.5

For Expression2, we have only one Predicate;

Predicate3: price=40000 : 0.6

Let the Data Item be :

Data Item1: bedrooms=3 : 0.6 AND price=40000 : 0.8

We have two Data Terms in the Data Item;

Data Term1: bedrooms=3 : 0.6

Data Term2: price=40000 : 0.8

Similarity measure S(q,t) = QF(t) if q=t in the AutoRanking method.

In our extension, first we check if the values of q and t are satisfied not only for

equality, but also for range clauses. Then we also check whether Alpha>=Beta. If

these conditions are satisfied, then S(q,t) = QF(t).

Note: Here also, q refers to a particular Predicate’s value and t refers to the

corresponding Data Term’s value.

Thus,

S(q,t) = QF(t) if {q matches t, and Alphaq >= Betat }

Expression1 and Data Item1:

35

For Predicate1 and Data Term1:

Here, q matches t since Predicate1 is bedrooms>2, and Data Term1 is

bedrooms=3. Here, Alphaq = 0.6 and Betat = 0.4. Thus, Alphaq >= Betat.

Since both the conditions are satisfied, S(q,t) = QF(t) = QF(3).

Let us assume that RQF(3) for bedrooms is 10 and RQFmax is 100.

So QF(3) = 10/100 = 0.1.

For Predicate2 and Data Term2:

Here, q and t do not match since Predicate2 is price<30000 and Data Term2 is

price=40000. Thus, the S(q,t) = 0.

The net Similarity value for Expression1 and the Data Term is given by taking

the average of the Similarity values for each Predicate-Data Term combination.

Thus, here it is : (0.1+0)/2 = 0.05.

Expression2 and Data Item1:

For Predicate3 and Data Term2:

Here too, q and t match and Alphaq >= Betat. Thus, S(q,t) = QF(40000). Let us

assume RQF(40000) for price is 30.

So, QF(40000) = 30/100 = 0.3

Since there is no Predicate corresponding to Data Term1 in the Expression, the

Similarity value is 0.

The net Similarity value for Expression2 and the Data Item is again given by

taking the average of 0.3 and 0. The value is 0.15.

In terms of a Ranking scenario, Expression2 will have higher priority over

Expression1.

36

7. Matchp7

Form: exact(pred, data term) * scaling function(Alphai, Betai, q, t) [0,1]

Use: UNXS

We have also developed an alternative Match semantic which does not use IDF or

QF. The motivation for this simpler method is that it does not require statistics on

the workload or the data stored in the database.

In this case also, an exact match is done for Predicate – Data Term combination,

i.e. whether q matches t is checked. We also check whether Alpha>=Beta. Apart

from this, we also compute the average of Alpha and Beta values and return this

as the match value. The value returned will be in the interval [0,1].

Example:

Let us consider the same example as in Matchp6.

Expression1: bedrooms>2 : 0.4 AND price<30000 : 0.5

Expression2: price=40000 : 0.6

Predicate1: bedrooms>2 : 0.4

Predicate2: price<30000 : 0.5

Predicate3: price=40000 : 0.6

Data Item1: bedrooms=3 : 0.6 AND price=40000 : 0.8

Data Term1: bedrooms=3 : 0.6

Data Term2: price=40000 : 0.8

Expression1 and Data Item:

37

For Predicate1 and Data Term1:

Here, the Data Term and Predicate values match, i.e., q matches t, since

bedrooms>2 satisfies bedrooms=3. Alphaq >= Betat, since 0.6>=0.4. Now, let us

compute the average of 0.6 and 0.4, which is 0.5.

For Predicate2 and Data Term2:

Here, since q and t do not match. Thus, the Similarity value is 0.

Now, for the combination of Expression1 and the Data Item, the Similarity score

will be the average of the two scores. (0.5+0)/2 = 0.25.

Expression2 and Data Item:

For Predicate3 and Data Term2:

Here, q matches t, and Alphaq >= Betat. So, we take the average of Alphaq(0.8)

and Betat(0.6) is taken, which is 0.7. This is the value that is returned for the

Evaluation.

Since there is no Predicate in the Expression that corresponds to Data Term1 in

the Data Item, the Similarity is taken as 0.

The net Similarity value is the average of both values. (0.7+0)/2 = 0.35.

We see again that Expression2 has a higher Similarity value, which means it will

be ranked higher if there was any kind of Ranking.

38

4.3 Evaluation Semantics for Expressions and Data Items with

Approximate Matching and Uncertainty

In this section, we describe the semantics of matching between Expressions and Data

Items in TRIO, Publish/Subscribe, Automated Ranking and UNXS for the eight

categories of combinations of variables that we listed in Section 4.1. We will describe

these semantics using the semantics of Predicate-Data Term level match semantics

introduced in Section 4.2. In Section 4.3.1, we consider the match between crisp

Expressions and crisp Data Items, but allowing for approximate match at the Predicate-

Data Term level. In Section 4.3.2, we will describe the semantics of match for Uncertain

Expressions and Uncertain Data Items.

4.3.1 Crisp Data Items, Crisp Expressions

The following table gives a comparison of the various techniques for handling

Uncertainty including our technique, UNXS. The values in the table are values of

Expression-Data Item evaluation match.

Table 4.2 Comparison Table for Evaluation(without Uncertainty)

Cat1 Cat2 Cat3 Cat4 Cat5 Cat6 Cat7 Cat8

Pne=0

Pf=0

Dnu=0

Pne=0

Pf=0

Dnu>0

Pne>0

Pf=0

Dnu=0

Pne>0

Pf=0

Dnu>0

Pne=0

Pf>0

Dnu>0

Pne>0

Pf>0

Dnu>0

Pne=0

Pf>0

Dnu=0

Pne>0

Pf>0

Dnu=0

Traditional

DBMS

1 1 0 0 0 0 0 0

Trio

(ULDB)

1 1 0 0 0 0 0 0

39

Table 4.2, continued

Automatic

Ranking

IDF or

QF

Similarity

Σ (QF(tk)=

RQFq/RQFmax)

n/a n/a IDF

similarity

ΣSk(tk, qk)

n/a IDF n/a

Pub/Sub

Uncertainty

n/a n/a n/a n/a n/a n/a n/a n/a

UNXS 1 Σ (QF(tk)=

RQFq/RQFmax)

IDF IDF IDF IDF IDF IDF

Lets analyze each result :

Traditional DBMS :

This is self-explanatory. The match here corresponds to Matchp1 in Section 4.2.1.

Categories 1 and 2 correspond to a Query (or equivalently Expression) being run

on a Table with columns (Data Item). The result is 1 since all predicates match all

the data terms. In the second case, there are extra data terms, but these can be seen

as extra columns in the table that don’t affect the result. For the rest of the cases,

the result will be 0 since they either have Pne>0, which means there are predicates

in the query which have a NULL value in the Table, or Pf>0 which means one of

the predicates did not match.

TRIO(ULDB) :

The results for TRIO default to the results of a Traditional DBMS as there is no

Uncertainty. The match corresponds to Matchp3 in Section 4.2.1. Thus, the results

are the same.

Automated Ranking :

The match here can correspond to both Matchp2 and Matchp5 in Section 4.2.1.

40

Cat1 corresponds to a situation with Many Answers problem.

Example:

Data Item : price=50000 AND Bedrooms=3 AND outpaint=red

Expression : price>40000 AND Bedrooms=3 AND outpaint=red

IDF similarity equation is used to compute the similarity value in this case. This is

done with some assumptions made

1. n-no of tuples in the database

2. Fk(t)-frequency of tuples in the database where the predicate occurs with the

corresponding value.

Let an attribute be Ak.. For any pair of values, u and v in Ak’s domain, let the

quantity Sk(u, v) be IDFk(u) if u = v, and 0 otherwise.

So, the final similarity measure will be = Σ(Sk(tk, qk))

Where t and q are the attributes of the tuple and query respectively.

Here, IDFk(t) = n/Fk(t) as described in a previous section. Note: QF similarity can

also be used in this case.

Category 2 corresponds to the “missing attribute” scenario where the Data term(s)

corresponding to Dnu>0 can be thought of as the missing attributes. This

computation also requires that some assumptions be made about the values of

RQFq and RQFmax.

The categories 5 and 7 correspond to the “Empty Answers” problem. These two

cases have either one predicate not matching the constant of a Data Term, or a

Data Term attribute not having a corresponding Predicate. In both the cases,

approximate matching is done by using QF or IDF for Numeric Attributes

41

(Matchp5). The rest of the categories with Pne>0 are not applicable for the

AutoRanking scenario. Pne>0 typically means that there is a Predicate in the

Expression which does not have any matching Data Term (no column for that

Predicate in the table). This is not handled by the AutoRanking method.

Publish/Subscribe:

The Predicate match here corresponds to Matchp4. In this case, as there is no

uncertainty to work with, the case does not apply.

UNXS :

This corresponds to Matchp2 and Matchp5 in Section 4.2.1. Since we do not have

Confidences to work with, we here use methods from Automated Ranking to

produce results.

The ideal output for the first category would be Pt/P = 1. This is because the “too

many answers” problem does not map to our model. The reason for this is that

Data Items are given one at a time in a query. Thus, there is no chance of too

many Data Items at one point of time. A better way to handle this would be to

make the Expression stricter, i.e., include more predicates in the Expression or

just make each predicate more selective. Category 2 is a case of probable “too

many answers” with “missing attributes” in the query. The result is also 1 for the

same reason as explained above.

The rest of the categories can be computed using either QF or IDF similarity. But

recall that IDF similarity calculations require information about values in the

Database(Data Items in our case), which is not readily available as it is given on

the fly. However, QF similarity requires workload information (Expressions in

our case), and we have this information stored in the Database. We choose to use

QF similarity for this reason.

42

Example:

Data Item : price=50000 AND bedrooms=3

 Expression : price>40000 AND bedrooms=3 AND outpaint=red

The similarity is defined as S(t,k) = QF(q) if q=t , and 0 otherwise

We extend this for predicates with inequality also.

Let us assume RQFmax for the three predicates price, bedrooms and outpaint to be

60, 30 and 20 respectively ; and RQF(q) for the predicate values is 40, 10, 5

respectively.

The final value is Σ(S(t,k)). For the last predicate corresponding to Pne>0, the

corresponding value for Data term is taken as 0.

QF(q) is RQFq/RQFmax .

So, we have 40/60 + 10/30 + 0 = 60/60 = 1 which is the value of the result.

4.3.2 Uncertain Data Items, Uncertain Expressions

Table 4.3 Comparison Table for Evaluation(with Uncertainty)

Cat1 Cat2 Cat3 Cat4 Cat5 Cat6 Cat7 Cat8

Pne=0

Pf=0

Dnu=0

Pne=0

Pf=0

Dnu>0

Pne>0

Pf=0

Dnu=0

Pne>0

Pf=0

Dnu>0

Pne=0

Pf>0

Dnu>0

Pne>0

Pf>0

Dnu>0

Pne=0

Pf>0

Dnu=0

Pne>0

Pf>0

Dnu=0

Traditional

DBMS

n/a n/a n/a n/a n/a n/a n/a n/a

Trio

(ULDB)

{0,1} {0,1} 0 0 0 0 0 0

43

Table 4.3, continued

Automatic

Ranking

n/a n/a n/a n/a n/a n/a n/a n/a

Pub/Sub

Uncertainty

{0,1} {0,1} 0 0 0 0 0 0

UNXS QFnew QF(tk)=

RQFq/RQFmax}

for missing

attributes

QFnew QFnew QFnew QFnew QFnew QFnew

Let us analyze each result for this table :

Traditional DBMS :

Since Confidences are not part of a Traditional DBMS, it is not applicable in this

scenario.

TRIO(ULDB) :

In the TRIO method, Confidence was used for evaluation besides the values of the

predicates and data term. So, for the first two categories, it would be either 1 or 0

depending upon the match of the Confidences for the data terms and predicates.

For the rest of the categories, it would be 0 since these cases will correspond to

Traditional DBMS and the values of the Confidences would not matter.

Automated Ranking:

44

Automated Ranking is not applicable to this scenario since predicates or data

terms having Confidences is not considered by this method.

Publish/Subscribe :

For the first two categories, this result can be either 1 or 0. If the Confidences of

all the Predicates satisfy the Confidences of the corresponding Data Terms, the

value is 1, else it is 0. The values are 0 for the rest of the Categories since these

correspond to either a no match or a case where the query (Expression) has

Predicates that are not present in the column of a table (Data Item).

UNXS :

We can use either Matchp6 or Matchp7 to process all the cases.

The first category should now use QF similarity extended (using Alpha and Beta)

which is explained in Section 4.2.1 for Matchp6. We call it “QFnew” and this is

used to obtain the results.

The second category namely Cat2 uses the same result as “QFnew”, but since there

are extra terms in the Data Item, the result for the “missing attribute” problem’s

solution formula is used, i.e., QF(tk) where tk refers to the “missing attribute” is

also taken in to account in the calculations.

Example:

If we refer back to the example in Section 4.2.1 for Matchp6:

Expression1: bedrooms>2 : 0.4 AND price<30000 : 0.5

Expression2: price=40000 : 0.6

45

Data Item1: bedrooms=3 : 0.6 AND price=40000 : 0.8

In this case, for Expression2-Data Item1 combination, bedrooms=3 will not

have 0 as the similarity value, but will have QF(3) for bedrooms.

Let us assume that RQF(3) for bedrooms = 40; and RQFmax for bedrooms = 100.

Therefore, QF(3) = RQF(3)/ RQFmax = 40/100 = 0.4.

The other similarity value as obtained before is 0.3. Thus, the net similarity value

is (0.3+0.4)/2 = 0.35. This value is larger than the 0.15 that we got earlier in

Matchp6 , when we did not consider “missing attributes”.

46

Chapter 5 Supporting Uncertain Expressions In a DBMS

As discussed in Chapter 1, integrating of Expressions in a DBMS can be very beneficial.

This way, we can process these Expressions more efficiently, and it also allows Indexes

to be built over them for faster access. This is especially useful for large amounts of data,

which is typically what the case would be for most applications. This Chapter describes

the implementation done to manage Uncertain Expressions in the Postgresql Database.

5.1 Expression Data Type

The implementation was done on Postgresql 8.0.1 that was installed on an Ubuntu Linux

machine. The decision to use Postgresql was based on the fact that it is an extendible

database where it is possible to add new User Defined Types (UDTs) and user defined

functions to the DBMS [10]. The source code for adding data types was in C. Once the

file is compiled and linked, all the functions needed for the data type are available in

Postgresql and the data type is also available for use. Once this is done, a table can be

created with some columns of this data type, rows with values for this data type can be

inserted and queries performed on such tables. A subset of UNXS is also supported by

our implementation.

5.2 Details of Implementation

In Postgresql, any data type has an EXTERNAL form and an INTERNAL form. The

External form of a data type defines how the user enters a value and how a value is

displayed to the user. The Internal form defines how a value is represented inside the

DBMS. When we choose the internal form for any data type, we want to choose a

representation that makes it easy to define and implement operations (mathematical,

relational or logical). This also helps in adding the supporting functions if any, because

the actual values that need to be evaluated can be obtained in the Internal form.

With this concept in mind, we decided on the External form that is the same as the BNF

notation introduced in Chapter 2. We repeat it here:

47

Predicate ::= Identifier Operator Constant : Confidence

Operator ::= < | > | = | <= | >=

Data Term ::= Identifier Operator Constant : Confidence

Operator ::= =

Example:

bedrooms=4 : 0.5 AND price>40000 : 1.0

In order to evaluate the Expressions against Data Item, we need to first carry out

evaluation at the level of Predicates and Data Terms. Hence, we need to break down each

Expression into its separate predicates. Each part of a predicate also has to be identified

and stored, so that the match can be carried out. For this, we created an Internal

representation where the whole Expression is stored inside an array. Each element of the

array is a structure with 4 main attributes. The four attributes store the four parts of a

predicate, namely the Identifier, Operator, Constant and Confidence. The size of an array

equals the number of predicates in that particular Expression. This is the Internal

representation of the Expression Data Type.

The definition of a new Data Type in Postgresql requires mechanism to convert the

Internal representation to External and vice-versa. For this, we need two functions: the

Input function and the Output function. The Input function converts from External to

Internal representation; and the Output function converts from the Internal representation

to the External representation. These two functions were added to Postgresql and allow us

to perform basic INSERT and SELECT statements.

Below is a screenshot of a few INSERT statements and an example SELECT statement in

PSQL. PSQL is the name for the SQL syntax supported in Postgresql.

48

Figure 5.1 Screenshot of INSERT and SELECT in Postgresql

To support evaluation of Uncertain Expressions over Uncertain Data Items, we needed to

provide relevant operators or functions. A function was needed which should be able to

evaluate a Data Item, against the Expressions stored in a table. For this an EVALUATE

operator is added. We have implemented a subset of UNXS. But, the existing

implementation can be extended to implement all the theoretical extensions introduced by

us.

We have implemented an Evaluate operator corresponding to Matchp7, where for each

combination of Predicate and Data Term, if the Predicate value was equal to the Data

49

Term value, and the Confidence of the Data Term was greater than or equal to that of the

Predicate, then the average of the Confidences is given as the Similarity value. The

overall match value for the Expression is then computed as the average of each of these

similarity values, where the average is over P, i.e., the number of Predicates.

Note: The Evaluate operator comes with an option to give a Threshold value along with a

comparison operator (>, <, =, <=, >=). The Similarity value computed for each

Expression is compared with the Threshold and those rows for which the Expression

satisfies the Threshold value are given in the result.

Lets look at a screenshot of a few SELECT statements using the EVALUATE operator.

The table here is the same table shown in the previous screenshot with the same five

rows.

50

Figure 5.2 Screenshot of Evaluation of Expressions against Data Items using

Evaluate operator

Addition of other match semantics, e.g., Matchp6, can be done by adding a different

Evaluate function that implements those semantics. There is also the option of adding

other Evaluate operators if additional Match semantics are developed in the future.

51

Chapter 6 Conclusions and Future work

Expressions are used in a range of applications like Publish/Subscribe[2, 13], Website

Content Personalization[12], Ecommerce[11], etc. Integrating support for Expressions in

a DBMS provides an efficient and scalable platform for applications that use

Expressions. Such support is being provided by Oracle 10g[1]. Current DBMS though

only support crisp data model and cannot support Uncertainty in Expressions or Data.

In this thesis, we describe how DBMS can be extended to manage Uncertain Expressions

and Data. To achieve this goal, we developed a theoretical framework to compare and

contrast popular schemes to handle Uncertainty in DBMS and Publish/subscribe systems.

We then described UNXS, the system we have developed to manage Uncertain

Expressions and Data in DBMS. In addition to developing the theoretical framework, we

also implemented a subset of UNXS in the Postgresql DBMS by adding a new

Expression Data Type to Postgresql. The Expression Data Type enables Expressions to

be stored in a column of a database table. We also implemented an EVALUATE operator

which evaluates Uncertain Expressions against Uncertain Data Items. To the best of our

knowledge, this is the first integration of Uncertain data support(in terms of Expressions)

within a DBMS as opposed to current efforts where a layer outside the DBMS is used to

translate to and from a crisp DBMS.

The work accomplished in the thesis also highlights many possible future extensions. In

this thesis, Uncertainty occurring in Expressions is modeled in terms of a single value for

each of the Predicates. A possible extension could support a probability distribution,

instead of this single value. Another important assumption that we made was that of

independence of each Predicate. Thus the match for the overall Expression is computed

without considering any effect of the match of a Predicate on the match of other

Predicates in the Expressions. This assumption may not be justified in all cases. Hence, a

more complex formal model that considers statistical dependence should be investigated

in future.

52

The retrieval of Expressions and their processing can be made much faster if Expressions

could be indexed. In [1], the authors have described a special indexing structure for

indexing crisp Expressions. Development of appropriate indexing techniques for UNXS

appears a fruitful research area. The GIST functionality in Postgresql provides extensible

support for adding custom index structures. If new indexing structures are developed for

Uncertain Expressions, the GIST functionality could be used to implement and evaluate

the performance of these indexing structures.

53

References

[1]. Yalamanchi, A., Srinivasan, J., and Gawlick, D., “Managing Expressions as Data in

Relational Database Systems”, CIDR Conference, Asilomar, 2003.

[2]. Liu, H., and Jacobsen, H-A., “Modeling Uncertainties in Publish/Subscribe

Systems”, Proceedings of the 20th International Conference on Data Engineering, 2004.

[3]. Benjelloun, O., Das Sarma, A., Hayworth, C., Widom, J., “An Introduction to

ULDBs and the Trio System”, in IEEE Computer Society Technical Committee on Data

Engineering, March 2006, 5-16.

[4]. Agarwal, S., Chaudhuri, S., Das, G., Gionis, A., “Automated Ranking of Database

Query Results”, Proceedings of the CIDR Conference, 2003.

[5]. Chaudhuri, S., Das, G., Hristidis, V., Weikum, G., “Probablistic Ranking of Database

Query Results”, 30th VLDB Conference, Toronto, Canada, 2004.

[6]. Das Sarma, A., Benjelloun, O., Halevy, A., Widom, J., “Working Models for

Uncertain Data”. 22nd International Conference on Data Engineering (ICDE'06).

[7]. Das Sarma, A., U. Nabar, S., Widom, J., “Representing Uncertain Data: Uniqueness,

Equivalence, Minimization, and Approximation”, http://dbpubs.stanford.edu/pub/2005-

38.

[8]. Stonebraker, M., A.Rowe, L., “The Design of Postgres”, 1986, International

Conference on Management of Data, Proceedings of the 1986 ACM SIGMOD

international conference on Management of data.

54

[9]. H. Liu and H.-A. Jacobsen. A-topss – a publish/subscribe system supporting

approximate matching. In 28 th International Conference on Very Large Data Bases,

Hong Kong, China, 2002.

[10]. Postgresql 8.2 Beta 1 Documentation., http://momjian.us/main/writings/pgsql/sgml/.

[11]. Gero Mühl, Ludger Fiege, and Alejandro P. Buchmann. Evaluation of cooperation

models for electronic business. In Information Systems for E-Commerce, Conference of

German Society for Computer Science / EMISA, Austria, November 2000.

[12]. Ceri, S., Fraternali, P., and Paraboschi, S. “Datadriven one-to-one web site

generation for data- intensive applications”, Proc. 25th International Conference on Very

Large Databases 1999 : 615-626.

[13] Garofalakis, M., Suciu, D (co-editors). Bulletin of IEEE Computer Society

Technical Committee on Data Engineering. Special Issue on Probabilistic Data

Management. March 2006.

55

APPENDIX

The code for the Input function mainly consists of parsing the Expression and storing

each of the predicates one by one in the structure array. The structure also had a fourth

attribute called ‘Done’ which would take a ‘0’ or a ‘1’ depending upon whether we have

reached the end of the Expression or not. This will help in retrieving the complete

Expression later on in the Output function. The Input function is conveniently called

Expression_in1() and the Output function is called Expression_out1(). There is also a

third function called Evaluate() which does the Evaluation of Expression when a Data

Item is used with the Evaluate function in the Query. The Evaluate() function will

basically get each Data Term of a Data Item and compare it with each Predicate of an

Expression for each of the rows in the table. All this code in the C language also used

some Postgresql Macros which basically fetched the input Expressions to be used in the

code and also displayed the required output Expressions on the user screen. The C file

containing all this code was called “Expression.C”.

The “Expression.C” file which is stored in the path /mogin/postgresql/src/tutorial now

needs to be compiled and then stored as a “.so” (shared object) file which is the format

that postgresql understands. The session with the commands is shown below:

root@distil4:/mogin/postgresql-8.0.7/src/tutorial # gcc -

I/mogin/psql/include/postgresql/server -fpic -c

expression.c

root@distil4:/mogin/postgresql-8.0.7/src/tutorial # gcc -

I/mogin/psql/include/postgresql/server -shared -o

expression.so expression.o

56

Once the file is compiled and a shared object corresponding to the C file has been made

successfully as shown above, we start up the Postgresql database and create a new SQL

session. This is shown below:

root@distil4:~ # su postgres

postgres@distil4:/root$ /mogin/psql/bin/postmaster -D

/mogin/psql/data

LOG: database system was shut down at 2006-04-07 12:14:01

CDT

LOG: checkpoint record is at 0/AA4F64

LOG: redo record is at 0/AA4F64; undo record is at 0/0;

shutdown TRUE

LOG: next transaction ID: 575; next OID: 33614

LOG: database system is ready

We start a PSQL session in another terminal:

root@distil4:~ # su postgres

postgres@distil4:/root$ export PATH=$PATH:/mogin/psql/bin

postgres@distil4:/root$ psql testdb

Welcome to psql 8.0.7, the PostgreSQL interactive terminal.

In this session, we register the functions Expression_in1(), Expression_out1() and

Evaluate() in Postgresql. The commands used for this purpose are :

testdb=# create or replace function expression_in1(cstring)

returns expression as '/mogin/postgresql-

8.0.7/src/tutorial/expression' language c immutable strict;

NOTICE: type "expression" is not yet defined

DETAIL: Creating a shell type definition.

CREATE FUNCTION

57

testdb=# create or replace function expression_out1(expression)

returns cstring as '/mogin/postgresql-

8.0.7/src/tutorial/expression' language c immutable strict;

NOTICE: argument type expression is only a shell

CREATE FUNCTION

testdb=# create or replace function evaluate(expression,

expression) returns float as ‘/mogin/postgresql-

8.0.7/src/tutorial/expression' language c immutable strict

CREATE FUNCTION

 ^

Once the functions are registered, we need to specify the command to create a new Data

type called Expression into Postgresql.

testdb=# create type expression(internallength=variable,

input=expression_in1, output=expression_out1, alignment=double);

CREATE TYPE

Now, we can create a table with one of the attributes of Data Type Expression and store

Expressions in the column with that attribute.

58

Vita

Moginraj Mohandas was born in the Kannur District of the Kerala State in India, on May

2, 1981. He completed his Higher Secondary Schooling in 1999 at Ideal Indian School,

Doha, Qatar. Later in June 2003, he received his Bachelors Degree in Computer Science

and Engineering from the Lal Bahadur Shastri College of Engineering, Kasaragod,

Kerala. He completed his Masters Degree in Computer Science from the University of

New Orleans in May 2007. He sees his future in the Software Development Industry.

	Evaluation of Expressions with Uncertainty in Databases
	Recommended Citation

	tmp.1313099648.pdf.1gYeR

