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ABSTRACT 
 

 Biostratigraphic techniques are commonly used in shallow environments of the Gulf of 

Mexico basin for depositional history modeling in petroleum exploration applications.  

Extending these interpretations to deep-water settings, where the structural and depositional 

history is more complex, is problematic.  A localized study area was used for a case-analysis of a 

typically complex deep-water study area.   A dataset of seismic, well-log, and biostratigraphic 

information was used to: (a) assess accuracy of the biostratigraphic interpretations produced by 

Fillon (2005), (b) determine specific pitfalls of micropaleontology as a tool in this environment, 

and (c) provide guidelines for the application of biostratigraphic data in the deep-water.  Results 

indicate that the previous depo-history modeling did not account for local complexity, thus 

lessening utility at the petroleum exploration scale.  Future studies in this environment should 

account for sections transported down-dip, isolation of depocenters, autocyclic variability, and 

reduce reliance on the condensed section as a chronostratigraphic tool.

 ix



CHAPTER I 
 

INTRODUCTION 

 Biostratigraphy is an essential tool in deciphering depositional history in the Gulf of 

Mexico basin.  Many studies have appropriately applied biostratigraphy to the shallow neritic 

environments of the basin using techniques developed primarily for use in this setting.  Applying 

the same biostratigraphic techniques and approaches to deeper-water (bathyal and abyssal) 

environments, with their complex depositional processes and convoluted structural history, is 

problematic.  Variable sedimentation rates occur between intraslope minibasins, which are 

isolated by nature and have unique stratigraphic and structural characteristics.  Allochthonous 

salt canopies further add to the structural complexity through stratal deformation and downslope 

displacement. These are two features (among others) of the deep-water bathyal and abyssal 

environments that do not exist on the shelf, and may significantly alter the applicability of 

biostratigraphic techniques that have been used previously in studies of shallower marine 

environments.  This thesis will analyze a previous basin-wide biostratigraphic study for the 

accuracy and applicability of its results within the deep-water environment at the petroleum 

exploration scale.  Exploration activity has been underway in the deep-water Gulf of Mexico for 

more than 15 years, and regional studies in the deep-water can benefit from a reexamination of 

the application of current shallow-water biostratigraphic approaches—within strata deposited 

beyond the shelf edge.       

Study Area 

The area of study is intended to provide a case analysis of two intra-slope minibasin 

fields and the biostratigraphic interpretations that can be made between them as an example of a 

complex deep-water setting.  This deep-water study area contains the subsalt K-2 field and the 

 1



neighboring suprasalt Marco Polo field and minibasin (Figure 1).  These fields are located in the 

southeast portion of the Green Canyon federal leasing area, and are active hydrocarbon 

producers.  These fields were chosen for study because of their stratigraphic and structural 

complexity, relevancy to petroleum exploration, and availability of publishable data.  The fields 

are separated by a distance of approximately 9 km.  The deep-water Gulf of Mexico is an ideal 

location for this study because: 1) intense exploration is currently underway in the basin, 2) 

exploration is consistently being pushed basinward, and 3) its complex geology (e.g. Cenozoic 

sea-level fluctuations, salt migration) makes it a good example of how multiple deep-water 

processes can impact exploration studies. 

 
Figure 1—The study area includes the federal leasing blocks (GC562, GC608) where the K-2 and Marco Polo 
fields are located.   Irregular sea-floor relief is a manifestation of salt-related features such as ponded 
minibasins.  The Mississippi Fan fold belt province is shown in the hatched area on the large-scale map. 
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Depositional Systems 

The geology of the study area is typical of the deep water environments of the Gulf of 

Mexico, inasmuch as the Cenozoic history of the study area dominantly reflects the interactions 

between halokinetics and cyclic turbidite deposition.  On the basis of  regional geology 

overviews, (e.g., Weimer, 1998; Slatt, 2006) facies tracts within the study area should contain all 

major architectural elements of turbidite systems, including: (a) erosional and leveed channels, 

(b) overbank deposits, (c) channel/fan transition zones, and (d) fan lobes (Figure 2).  Chaotically 

stratified mass transport deposits (e.g. slump blocks), which may contain allochthonous shelf-

edge facies associations, are potentially present in the study area.   In this study, a turbidite 

system is defined as a body of genetically related mass-flow and turbidity current facies and 

facies associations that were deposited in virtual stratigraphic continuity (Weimer et al., 1998).  

Turbidite systems are responsible for the transport of reservoir quality sands to the deep basin in 

the northern Gulf of Mexico (Reading and Richards, 1994).  In fine-grained turbidite sytems, 

coarser fractions can be efficiently transported (up to several hundred kilometers or more) from 

the source (Mutti and Normark, 1991, Bouma, 2000).  Source areas for turbidite flows vary with 

sea-level changes.  During sea level high-stands, sediments sources can consist of prodelta and 

neritic deposits found near erosional turbiditic feeder channels.  During sea-level lowstands the 

sediments from shallow marine and fluvial sources are immediately available from incised 

fluvial systems extending onto the shelf.  The greatest contributions of sediment to turbidite 

systems during lowstands are from massive gravity failures of recently deposited shelf-edge 

deltas.  The massive failures of these sediments are initiated by changes in intergranular pore 

pressures due to rapidly falling sea-level (Slatt, 2006).  The three sand-rich architectural 

elements of turbidite systems that provide the greatest potential for hydrocarbon production are 
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channel deposits, proximal thinly bedded channel-levee overbank deposits, and basin floor sheet 

fans.  Basin floor fans typically provide the highest reservoir quality strata (Chapin et al., 1994).  

 
Figure 2—Depositional model of a typical fine-grained turbidite system such as in the Gulf of Mexico.  Shelf-
edge deltas during sea level lowstands are a significant source for sediments to the deep basin.  It has been 
theorized that changes in pore pressures during rapid sea level fall can cause massive failures of young deltaic 
deposits perched at the shelf/slope transition (Slatt, 2006).  Figure modified from Reading and Richards 
(1994). 
  

Structural Features and Halokinetics 

The study area lies within the Mississippi Fan fold belt province—a series of NE trending 

folds near the toe of the continental slope.  Deformation that created the fold belt was primarily 

active from the Middle Miocene through Early Pliocene, and was caused by the basinward 

sliding of rapidly deposited Cenozoic clastic sediments upon more unstable Mesozoic evaporites 

(Morris and Weimer, 2004).  Allochthonous salt bodies are extensive and well-developed within 

the study area; where an apparently contiguous salt canopy is present throughout the study area. 

Structure related to the fold belt occurs beneath the salt canopy, and as a consequence, is poorly 

imaged in seismic surveys.     
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Figure 3—A sheet sand deposit within a ponded minibasin, offshore West Africa.  Minibasin architecture is 
analogous to those located in the Gulf of Mexico.  Hotter colors show areas of higher sand content,  (Pirmez, 
2000). 

 

The interaction between salt movement and depositional processes is an important characteristic 

of turbidite systems within the Gulf of Mexico basin.  The locations of deposits that are 

generated by turbiditic flows are controlled by bathymetric relief (Figure 3).  Salt tectonics can 

have important effects on bathymetry in several ways:  1) Salt structures may create positive 

bathymetric relief due to diapir growth, or can create localized sinks (minibasins) as salt is 

evacuated and moves into diapers; 2) Downslope displacement of sediment by sliding on salt 

horizons creates extensional faults that may offset the sea floor, and create offsets which will 

serve to accelerate turbidite flows (Figure 4);  3) Counter regional faults (down thrown in the 

opposite direction to the regional bathymetric slope) often exist where thick salt is present, and 

can create obstacles to turbidite flows (Waltham and Davison, 2001).  Minibasins are the primary 
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salt-created depocenters in the northern Gulf of Mexico slope, where sedimentation and 

halokinesis are contemporaneous processes that are continually interacting. 

 
Figure 4—Role of allochthonous salt in accommodating gravitational failure of passive margins (reprinted 
from Rowan et al., 2001).  (A) deep-water diapirs growing prior to contractional event; (B) lateral squeezing 
of diapirs during shortening, driving extrusion of salt tongues and canopy formation; (C) linked extension 
and contraction above the allochthonous detachment level. 
 
Database 

Paleontological reports containing micofossil event data were available for both the K-2 

and Marco Polo fields from their respective operators—Ente Nazionale Idrocarburi (ENI) and 

Anadarko.  Microfossil samples for wells within the fields were collected from rotary drill 

cuttings.  The paleontological analysis for the K-2 field was performed by Applied 

Biostratigraphix of Houston, Texas, in October 1999.  Paleontological analysis of the Marco 

Polo field was performed by Paleo-Data, Inc. of New Orleans, Louisiana, in July 2000.  Detailed 

nannofossil reports, containing abundance and diversity curves, as well as sample-by-sample 

descriptions, were available for both fields.  In addition, a detailed foraminiferal report with 

biofacies classifications was available for the Marco Polo field.  A depth-migrated 3-D seismic 

volume was used to aid in stratigraphic correlations within the study area.  The seismic volume 

was collected and processed for depth migration by WesternGeco.  Due to the proprietary nature 
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of the seismic data, shot points and seismic traces could not be shown on any images.  All 

images have been approved for publication by the seismic vendor.  One well from each field was 

used in this study for reasons of simplicity of presentation and analysis.  These wells—Conoco 

(CON) 562 #1 and Anadarko (ANA) 608 #1ST have very similar biostratigraphy with other 

wells drilled in their respective fields.  Publicly available resistivity well logs for these wells 

were used to supplement the analysis.     

The proprietary study Gulf of Mexico Deposystems – 2005: Comprehensive Well 

Geohistory Datasets, Chronostratigraphy, and Maps produced by Richard H. Fillon is a basin-

wide biostratigraphic study that is available in its entirety.  Fillon’s study will be analyzed to 

fulfill the goals of this study—as it is an example of a study containing regional correlations that 

applies the same biostratigraphic techniques to both shallow and deep environments of the basin.   

Objectives 

Several recent studies of Gulf of Mexico depositional history have heavily incorporated 

biostratigraphy of deep water environments of the basin into their interpretations (Villamil, 1998; 

Fillon, 2005).  Based on the uniqueness and complexity of the deep Gulf of Mexico basin, these 

studies may not have employed biostratigraphic techniques that are appropriate to the deep-water 

environment.  There have been no previously published studies that specifically address the 

proper uses and limitations of biostratigraphic techniques in the deep-water Gulf of Mexico.   

This study provides: 

1) An analysis of two deep-water fields utilizing multiple datasets that enables the 

opportunity to assess the accuracy of previous deep-water biostratigraphic depo-history 

models within this area.  This analysis is focused on the study performed by Fillon 

(2005).  An assessment of his regional-scale approach will be made from the knowledge 

 7



gained from the localized deep-water study area, as it is an example of the typical 

geologic complexity found on the continental slope.  

2) A qualitative assessment of specific pitfalls of micropaleontology as a 

chronostratigraphic tool when used in the deep-water environment—focusing on the 

nature of deep-water deposition and retransportation, halokinetics, and the microfossil 

data collection process. 

3) A general approach to a practical assessment of the potential reliability of biostratigraphic 

data that is obtained in various deep-water structural and stratigraphic settings.  The 

intent is that these approaches and this information can be used by seismic stratigraphic 

interpreters.
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CHAPTER II 

BACKGROUND 

Micropaleontology is a highly valuable resource for modeling the depositional history of 

Cenozoic clastic sedimentary basins.  Coupled with stratigraphic models, micropaleontology can 

help to resolve the timing of glacio-eustatically controlled pulses of sedimentation and the 

identification of key depositional surfaces in the intensely studied Gulf of Mexico basin.  

Biostratigraphy enables major interpretive tools such as seismic data and well logs to be placed 

in a chronologic context.  Seismic stratigraphic analysis requires the interpreter to have a basis 

for making chronostratigraphic correlations of reflector sets.  In the Gulf of Mexico, 

biostratigraphy is the most practical and widely used method to place sediments in a near-

absolute age context.  Oxygen isotope analysis and radiometric dating of volcanic ash beds are 

two lesser utilized age dating techniques that have utility in specific instances.  

Biostratigraphic events are routinely placed on well logs for correlation, and some log 

signatures can be directly correlated to biostratigraphic events (e.g. “hot shales” can support 

condensed section identification) (Crews et al., 1998).  In the exploration industry the most 

commonly used bioevents are the last appearance datum (LAD) of individual taxa, with other 

lesser used zonations such as coiling changes in foraminifera and abundance peaks.  The first 

appearance datum is usually only used when core data is available, because the rotary drilling 

process can mask the last downhole occurrence of a fossil by borehole sloughing.  Because 

benthic foraminifera often inhabit discrete shelf and slope subenvironments—biofacies analysis 

can provide interpretations of paleo-water depth and environment.  Detailed reservoir studies 

often incorporate high-resolution paleontology from conventional and side-wall cores to enhance 

stratigraphic and paleo-environmental modeling.   
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Biostratigraphic Techniques 

Graphic Correlation 

Biostratigraphers have developed sophisticated computer-based methods to bring full 

value to microfossil data.  Foremost among these is the graphic correlation technique (Figure 5), 

which was first described by Shaw (1964), and has undergone multiple stages of refinement 

through time.  Graphic correlation involves comparing a subject section containing paleontologic 

marker data with a complete reference section (or database of composite marker ages) containing 

the highest age resolution possible.  By projecting the appearance of taxa from the reference 

section onto the subject section in an X-Y plot, a prediction can be made as to where those taxa 

should lie in the subject section, had they been present.  Graphic correlation can also be used to 

find the locations of faults, condensed and expanded sections, and gaps in the subject section 

(Mann and Lane, 1995).  In a related technique, sediment accumulation plots (also termed 

geohistory curves) are constructed for individual wells by placing borehole depth (preferably in 

true vertical depth-TVD) on the horizontal axis of an X-Y plot and absolute age of events from a 

composite standard reference section on the vertical axis (Figure 6).  Biostratigraphic events are 

then plotted at their depth and age, and a line is drawn connecting them, tracing back to the 

origin.  Accumulation rates (without any decompaction) can be interpreted from the slope of the 

connecting line. This technique assumes an accurate biostratigraphic interpretation and low 

structural dip.  Where the slope of the line of correlation is near vertical, a condensed section is 

likely to be present (Villamil, 1998).  
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Figure 5—Example of graphic correlation.  The diagram on the left compares two separate sections, whereas 
the right diagram compares a section to a composite fossil range database (reprinted from Mann and Lane, 
1995). 
  

 
Figure 6—Example of sediment accumulation plots for multiple wells.  The vertical axis shows ages of 
biostratigraphic events from a composite standard.  The horizontal axis shows measured depth in feet 
(reprinted from Villamil et al, 1988).
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Condensed Sections 

When fossil data are used in a sequence stratigraphic framework their main utility lies in 

the recognition of condensed sections and maximum flooding surfaces (Emery and Myers, 

1996).  As defined by Loutit et al. (1988), a condensed interval is a thin marine stratigraphic unit 

consisting of pelagic and hemipelagic sediments characterized by very low sedimentation rates.  

Because they represent very long time intervals with low sedimentation rates, condensed sections 

are usually recognized by their abundant and diverse benthic and planktonic microfossil 

assemblages and authigenic mineralization.  They can be recognized on well logs as “hot 

shales”—shales that have elevated gamma ray signatures due to the radioactivity present in 

minerals that can be deposited in the deep sea.  Most “tops” or more correctly—highest 

occurrences—are picked within condensed intervals.  This is due to the long periods of time 

elapsed within them and the assumption that fossils found within sandy facies are less reliable.  

Highest occurrences are most sharply defined with nannofossils because of environmental 

variability in the production of planktonic foraminifera (Shaffer, 1990).  Along continental 

margins, transgressions in sea-level will cause sediment starved environments to shift up-slope 

as the primary depocenters are translated landward.  Thus condensed sections can be correlated 

with maximum flooding surfaces (MFS) in paleo-shelf environments in a traditional sequence 

stratigraphic framework (Shaffer, 1990).  In this context the condensed section can be interpreted 

as a chronostratigraphic event if the event is correlateable to a local or regional relative sea-level 

curve. 

Biofacies Analysis 

Biofacies analysis, which links the assemblages of benthic taxa to environmentally 

controlled factors, is primarily used as an indicator of paleobathymetry.  It has also been 
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recognized that biofacies in the lower slope and abyssal settings are controlled by composition of 

bottom sediments, and thus can be termed litho-biofacies (Fillon, 2003).  It has been noted that 

biofacies analysis is difficult, if not impossible, within turbidite deposits because of the potential 

for retransportation of benthic faunas from shallower environments.  Because benthic biofacies 

are environmentally controlled, the highest occurrences of benthic faunas are difficult to 

establish as LADs in depositional settings that are not highly aggradational. 

Previous Work 
 

Fillon (2005) has produced a basin-wide study of the regional depositional history of the 

Gulf of Mexico for the Jurassic to latest Cenozoic.  This study provides broad geological 

interpretations made solely from microfossil data, and thus was appropriate for review in this 

study.  By utilizing a large database of well bore paleontology, he constructed sediment 

accumulation rate maps in 61 distinct biostratigraphically correlated sequences.  These sequences 

were derived from a global sea-level cycle chart (Lawless et al., 1997).  A proprietary computer-

based statistical deconvolution method called Stratrate was used to resolve out-of-sequence tops 

and conflicting paleontological reports in each well (Fillon, personal comm.).  Stratrate utilized 

graphic correlation to interpolate and insert the biostratigraphic sequence events that were not 

seen within wells.  The true vertical thicknesses between events were then divided by the 

corresponding geologic time in each well, giving an accumulation rate in ft/Ma.  A grid was 

created from approximately 12,000 offshore well control points using a kriging geostatistical 

method, and when contoured these data provided accumulation rate maps for each individual 

sequence.  The microfossil data used in the Fillon (2005) study is publicly available and was 

obtained through the Minerals Management Service (MMS), and Paleo-Data, Inc.  The K-2 and 

Marco Polo wells were not included in the Fillon (2005) database.  The biostratigraphic 
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interpretations in the Fillon (2005) study were intended to be useful in exploration applications.  

For the purposes of this study it was therefore necessary to select a study area mapped in Fillon 

(2005), between control points, and of exploration significance.  The methodologies used in 

Fillon’s (2005) study are presented in Fillon and Lawless (1999) and Fillon and Lawless (2000). 

To this author’s knowledge, no complete studies have been published which specifically 

address the concerns of this thesis—namely, the concerns that exist in using common 

biostratigraphic techniques in the deep-water environment.  Joyce et al. (1992) and Emery and 

Myers (1996) provide limited discussions of some of the specific uses of paleontology in the 

deep-water.  Blake and Gary (1994) analyzes the use of biostratigraphy in an unrelated complex 

setting, the deep-water off of Trinidad.
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CHAPTER III 

METHODS 

General Approach 

Seismic imaging is valuable for structural imaging, reflector continuity correlations, 

direct hydrocarbon detection, and seismic facies interpretation among other uses.  Well logs can 

provide hydrocarbon detection, lithology, pore pressures, petrophysical properties, and facies 

interpretations.  When correctly applied, microfossils can provide the near-absolute age context 

essential to the previous two tools, as well as litho- and biofacies interpretations.  Combining the 

assets of these three tools is common practice in the exploration industry, and is a practical way 

of assessing the reliability of the data contained in each individual method.  This study utilized 

this integrated approach, as the modern seismic computing environment enables these datasets to 

be combined seamlessly.   In addition to the following analytical techniques, a review of deep-

water depositional process models and models of salt-sediment interaction was conducted for an 

in-depth discussion of the biostratigraphic implications of complex geological history of deep-

water environments.   

 The analysis was conducted in three phases: 

1. Seismic analysis, including—mapping relevant structural features, seismic facies and 

attributes. 

2. Well log analysis—sand annotation, construction of structural cross-section, and 

turbidite facies classification from gamma ray patterns. 

3. Biostratigraphic analysis and integration:  Constructed series of maps that superimpose 

local geology (from phase 1) onto accumulation rate maps produced by Fillon (2005) in 
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order to compare with data obtained from the Marco Polo and K-2 wellbores.  Sediment 

accumulation rates were calculated for both the Marco Polo and K-2 fields. 

Software Tools 

The seismic interpretation suite used in the geologic analysis was Landmark Graphics 

Corporation’s OpenWorks.  The seismic interpretation was performed in the SeisWorks 3D 

module, and 3D visualization was performed with the EarthCube module.  Well logs were 

obtained through Lexco Data Sytems Offshore Well and Lease Databases (OWL).  These logs 

were digitized using NeuraLog, Inc.’s NeuraLog well log digitizing software and saved in the 

Log ASCII Standard (LAS) format.  The log curves were then imported into OpenWorks in order 

to display them on seismic panels.  A structural cross section was created in NeuraSection with 

the digital well logs and biostratigraphic data.  ArcView was used to view and edit accumulation 

rate maps supplied in Fillon’s (2005) dataset. 

The nannofossil abundance data provided by the separate paleontological consultant 

firms were supplied in different formats.  Because of the importance of this data to condensed 

section identification, it was important to convert the data into abundance logs of similar scales.  

The K-2 report from Applied Biostratigraphix was supplied with total counts of faunal tests, and 

the Marco Polo report from Paleo-Data, Inc. was supplied with an abundance histogram that was 

normalized to a scale of 0 to 150.  After consulting with A. Waterman (Paleo-Data), it was 

determined that data from the K-2 report could be normalized to a similar scale as the Marco 

Polo graph, because fossil abundance is a relative measurement.  The resulting abundance log 

curves were digitized and imported to OpenWorks. 
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3D Seismic Analysis 

Seismic stratigraphy and seismic facies analysis was performed using the techniques 

outlined by Brown (2004), Prather et al. (1998) and to lesser extent Mitchum et al. (1977).   

Brown (2004) provides guidelines for analyzing seismic attributes such as RMS amplitude that 

can be used to interpret paleo-depositional systems through visual identification.  Prather et al. 

(1998) provide a system (summarized in Table 3) that can relate seismic patterns and 

characteristics (e.g., undulation, mode of reflector termination) to broad classes of typical Gulf of 

Mexico depositional environments.  An effort was made to identify any possible stratigraphic 

heterogeneity between the respective fields, and to make chronostratigraphic correlations of 

seismic reflector sets, because seismic reflectors can be interpreted as isochronous surfaces (Vail, 

1977).  Seismic facies analysis was necessary to support the goal of assessing the lithologic and 

stratigraphic continuity of the study area.  The process involved the following tasks: 

- Mapping of salt top and base throughout the study area.  

- 3D visualization in EarthCube for broad structural perspectives. 

- Establishing a well to seismic tie—No check shot surveys were available for either well, 

and no bulk density and sonic logs were available to construct synthetic seismograms.  

However, the salt canopy served as a datum to the nearby relevant biostratigraphic 

markers. Combined with the depth migration processing, this gave a reasonably accurate 

well to seismic tie to suit the purposes of this study. 

- Horizon slice mapping—Reflectors with the potential to show depositional features 

within the Marco Polo minibasin were mapped for attribute extraction.  K-2 was not 

mapped for this purpose because this approach is not applicable to subsalt imaging.  This 

is due to dramatically reduced resolution and seimic energy beneath the salt.  The 
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attribute that was extracted was RMS amplitude, which is the root mean square of 

amplitudes within the windowed extraction interval.  RMS amplitude is generally a good 

method for identifying changes in lithology or hydrocarbons (Chen and Sidney, 1997).  It 

is often used to map depositional facies in the Gulf of Mexico, but must be performed at 

relatively short two-way travel times (i.e. higher energy, higher resolution reflectors) that 

are usually less than 2000 ms below the sea floor for any possible pattern recognition. 

- Seismic facies from reflector characteristics—In deeper zones where resolution was 

lower, classifications of reflector styles were made to interpret potential depositional 

environments. 

Log Analysis 

Gamma ray log patterns were given general facies classifications based on the well log 

patterns described by Mitchum et al. (1993), and Prather et al. (1998).  In the depth ranges that 

these wells penetrate, low gamma ray counts were interpreted as sandy zones, and were filled in 

with yellow annotation behind the curve.  Blocky “box car” type sand patterns were easily 

identifiable as amalgamated sheet sands, although there exists some ambiguity in the 

interpretation of log response patterns for distal sheet sands and proximal channel/levee facies. 

Biostratigraphic Analysis 

Because this study deals with correlations between the respective fields, only 

biostratigraphic events that share a common time interval in both wells were involved in 

correlation analysis.  There were six correlatable biostratigraphic events that were common to 

both wells.  The LADs of the observed biostratigraphic markers were obtained from the widely 

used Paleo-Data, Inc. Biostratigraphic Chart for the Neogene.  Five of these events correspond to 

either defined sequence events or are age-equivalent to sequence events used in Fillon’s (2005) 
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study, from sequences 16 through 21 (Lawless et al., 1997).  Two complete sequences (16 and 

17) and one composite interval (18 to 20) were present in the wells. The stratigraphic thicknesses 

of these sequence intervals and their accumulation rates were calculated for both wells.  True 

stratigraphic thickness of each interval was calculated because significantly dipping reflectors 

were observed in seismic views.  This was performed by constructing a dip amplitude map of a 

horizon near the relevant picks and estimating an average dip near the well bore, then 

multiplying the cosine of the dip by the true vertical depth of the interval.  The interval 

thicknesses used in calculating accumulation rate were not corrected for compaction, so the 

calculated value was taken as a minimum accumulation rate (Tables 1 and 2). 

Fillon’s (2005) accumulation rate maps were imported into ArcView, and polygons of 

approximate suprasalt minibasin extents (with likely older Miocene sections) within the study 

area were superimposed onto sequences 16, 17, 18, and 19.  The minibasin polygons were 

created from top of salt structure maps.     
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EVENT NAME 

Fillon (2005) 
Seq. No.or 
Equivalency  

Measured 
Depth (ft) 

TVD 
(ft) 

LAD 
(Ma) 

Seq. Interval 
thickness (ft) 

Apparent 
Dip (deg) 

Seq. 
TST (ft) 

Seq. Accum. 
Rate (ft/Ma) 

Discoaster bollii 16 21120 21080 9.1 100 25 91 303
Discoaster hamatus 17 21220 21180 9.4 578 25 526 1052
Catinaster coalitus na 21800 21758 9.9 na 25 na na
Coccolithus 
miopelagicus* 18* 22480 22436 11 1258 25 1140 712
Discoaster 
sanmiguelensis ~20 22720 22674 12.82 na 25 na na
Cyclicargolithus 
floridanus na 22960 22913 13.45 na na na na

Table 1—Correlatable biostratigraphic events of CON 562 #1, and accumulation rate calculations. TVD=true vertical depth, LAD=last appearance 
datum, TST=true stratigraphic thickness.  *Because a sequence 19 event was not available and sequence 20 was, a composite accumulation rate was 
calculated for sequences 18 and 19. 
 

 

EVENT NAME 

Fillon (2005) 
Seq. No. or 
Equivalency  

Measured 
Depth (ft) 

TVD 
(ft) 

LAD 
(Ma) 

Seq. Interval 
Thickness (ft) 

Apparent 
Dip (deg) 

Seq. 
TST (ft) 

Seq. Accum. 
Rate (ft/Ma) 

Discoaster bollii 16 16030 14785 9.1 251 20 236 787
Discoaster hamatus 17 16330 15036 9.4 210 20 197 394
Catinater coalitus na 16580 15246 9.9 na 20 na na
Coccolithus 
miopelagicus* 18* 17780 16291 11 1341 20 1260 787
Discoaster 
sanmiguelensis ~20 18110 16587 12.82 na 20 na na
Cyclicargolithus 
floridanus na 18320 16777 13.45 na na na na

Table 2—Correlatable biostratigraphic events of ANA 608 #1ST, and accumulation rate calculations. *Because a sequence 19 event was not available 
and sequence 20 was, a composite accumulation rate was calculated for sequences 18 and 19. 



CHAPTER IV 

RESULTS 

Relevant Structure 

The 3-D visualization and mapping of the study area revealed a contiguous salt canopy 

within the study area.  No evidence of rooting to the source (Jurassic Louann salt) was visible 

within the study area or data, and therefore no salt welds were apparent.  Figures 7 through 10 

provide 3D overview perspectives of the study area.   

K-2 Field 

CON 562 #1 enters the salt canopy at 11,800 ft and exits at 21,100 ft.  This well targeted 

dipping high amplitude reflections against a subsalt trap present as a locally enclosed high in the 

salt canopy (see Figures 7, 10, and 11).  The apparent structural deformation observed below the 

salt is likely related to contractional folding within the Mississippi Fan fold belt province.   

Marco Polo Field 

The extents of the Marco Polo minibasin are visible in Figure 13.  ANA 608 #1ST was 

drilled on the southern end of the Marco Polo minibasin, and the final depth of the well lies just 

above the salt canopy.  This well was drilled through a synformal structural trap caused by failed 

diapiric growth of salt beneath (Figures 12 and 14).   The failed diapir was recognized from a 

local salt high below the synform, and an erosional unconformity between stratigraphic packages 

A and C (Figure 17).  Reflectors within the Marco Polo minibasin dip to the northwest.  Seismic 

facies analysis revealed that sediment influx into the minibasin may have come from the 

northwest (Figure 18).  Therefore, the observed structural dip is in the opposite direction of 

expected depositional dip, and post-depositional rotation was caused by either of the following:  

 21



 22

(a) inflation of the underlying failed salt diaper, (b) differential inflation of the surrounding 

massive salt body on the southern boundary of the minibasin.



 
Figure 7—3D visualization of study area, perspective view looking due north (see 3D direction indicator in lower left corner, red arrow-north, light blue 
arrow-up).   Base of salt horizon is shown as a semitransparent shaded surface in the foreground.  Vertical seismic panels are normal to each other in 
all subsequent 3D perspective images.   
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Figure 8—3D perspective view looking to the northeast.  Salt is seen in areas bounded by strong reflectors, with chaotic and low amplitude internal 
reflections. 
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Figure 9—3D perspective view looking down and to the north, with the top of salt displayed as the green surface. 
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Figure 10—3D perspective view looking up and to the north from below the salt canopy.  The base of salt and top of salt are visible as the upper and 
lower semitransparent surfaces, respectively. 
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Figure 11—3D perspective view looking to the southwest at the subsalt portion of the K-2 well, showing the dipping structural trap.  High amplitude 
reflections just below the final depth of the wellbore likely indicate the presence of Oligocene chalk. 
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Figure 12—3D perspective view of the lower portion of the well bore in the Marco Polo field.  The well bore disappears behind the vertical seismic panel 
because the well is deviated.  Green and blue horizons indicate the top and base of salt, respectively.
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AANNAA    660088  ##11SSTT  

CCOONN  556622  ##11  

 
Figure 13—Depth structure map showing the top of salt, hotter colors are shallower and cooler colors are deeper.  Sections A-A’ and B-B’ correspond 
to figures 14 and 17. 
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Figure 14—This seismic section is a direct tie from the K-2 field to Marco Polo field.  Top and base of salt are shown as the pink and blue horizons, 
respectively.  Location of section AA’ is shown in map view in figure 13.
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Stratigraphy 

 Six biostratigraphic markers are common to both wells; all markers are calcareous 

nannoplankton LADs.  These nannoplankton markers are listed below: 

- Discoaster bollii-9.1Ma, Late Miocene 

- Discoaster hamatus-9.4 Ma, Late Miocene 

- Catinaster coalitus-9.9 Ma Late Miocene 

- Coccolithus miopelagicus-11.0 Ma Middle Miocene 

- Discoaster sanmiguelensis-12.82 Ma Middle Miocene 

- Cyclicargolithus floridanus-13.45 Ma Middle Miocene 

The nannofossil abundance curves show no correlateable peaks between the two wells 

(Figure 15).  Figure 15 shows a structural cross-section between the fields.  At the K-2 well, 

the base of salt was seen at 21,080 ft TVD, where the highest occurrence of Discoaster bollii 

was picked.  The well terminates in Lower Miocene section.  Discoaster bollii, the highest 

common event in the Marco Polo well, was picked at 14,785 ft TVD.  These age-correlated 

events are separated by 6,295 vertical ft and a horizontal distance of 28,764 ft.  As illustrated 

by the cross-section, all age correlated sections in Marco Polo are structurally high relative to 

those at K-2 (Figure 15).  The sediment accumulation plots (Figure 16) reveal that zones near 

the boreholes show different accumulation rate histories between the fields, however the 

rates for each interval are within one order of magnitude.  A possible condensed interval is 

present between Coccolithus miopelagicus and Discoaster sanmiguelensis in both wells 

(Figure 16).  The calculated accumulation rates for the sequence interval 18-20 were 

approximately the same at both fields, at 712 and 787 ft/Ma for the K-2 and Marco Polo, 

respectively.   
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Figure 15—Structural cross-section with correlations based solely on common microfossils.   Gamma ray 
curve is in the left track, nannoplankton abundance curve is in the right track. 
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Figure 16—Sediment accumulation plots for the respective wells in their age equivalent intervals.  A possible 
condensed interval lies between Coccolithus miopelagicus and Discoaster sanmiguelensis in both wells.  
Biomarker ages are from the Paleo-Data, Inc. biostratigraphic chart. 
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The 3D visualization revealed a salt canopy that was contiguous.  Because the canopy is 

unbroken, and the two fields are separated by it (Figure 14), there were no correlateable 

depositional reflectors between the age-equivalent packages in either well.  The likeliest 

explanation for the presence of this seemingly incongruous time discontinuity is that the 

suprasalt Marco Polo section has been rafted downslope from an up-dip location, through gravity 

sliding of the allochthonous salt canopy as described in halokinetic models by Rowan et al. 

(2001) and others (Figure 4).  Downslope transportation of the entire minibasin may have 

contributed to the stratal rotation that was observed. 

Seismic and Well Log Facies 

 Seismic reflectors within the Marco Polo minibasin were separated into five separate 

packages, based on the reflector characteristics and unconformities.  Table 3 provides a summary 

of the classification criteria.  The stratigraphically lowest package—labeled (A) in Figure 17, 

exhibited high amplitude reflections that converged by baselap at the basin margins, and was 

interpreted as basin floor or slope fan facies assemblages.  Package (B) contained comparatively 

low amplitude reflections that were terminated by thinning.  This is indicative of fine-grained 

assemblages such as overbank deposits, and was not interpreted as hemipelagic drape due to lack 

of reflector continuity.  Package (C) exhibited high amplitude chaotic reflections with erosional 

basal contacts that resulted from turbiditic feeder channel systems and channel sands. Package 

(D) exhibited high amplitude reflections that were terminated by baselap.  The high amplitude 

reflections indicate basin floor or slope fans with possibly thick amalgamated sands.  Package 

(E) exhibited highly chaotic, high amplitude reflections, and was interpreted as turbiditic feeder 

channels and associated sands. 

 34



 35

 Seven RMS amplitude extractions were performed on horizons at different levels within 

the Marco Polo minibasin.  In only the shallowest attempt (approximately 8900 ft) were any 

patterns recognized.  Turbidite feeder channels and proximal fan lobes were observed (Figure 

18), supporting the previous interpretation of package (E).The deepest six attempts were unable 

to achieve any viable imaging presumably due to the many small faults that are present within 

the basin, and the diminished seismic signal with depth.   

 No seismic facies were able to be described at the K-2 field, as seismic energy was 

greatly diminished below the salt.  High amplitude reflections below the final depth of the well 

likely indicate the top the extensive Oligocene chalk that is present in this area of the basin.  

Though seismic facies were not present, well log facies analysis of K-2 (Figure 19) 

revealed blocky gamma ray response patterns in several intervals that are typical of basin floor 

fans (Mitchum et al., 1993, Prather et al., 1998), separated by thick low-resistivity shaly 

intervals.  The gamma log at the Marco Polo well (Figure 20) showed an overall sand poor 

response in the Upper to Middle Miocene sections.  Shales showed sawtooth patterns with 

slightly low gamma counts (sandier) that are typical of slope bypass facies.  Sands had an overall 

high gamma response (shalier) and were relatively thin.  This is consistent with slope fan and 

slope bypass facies, which are the interpreted depositional environments for this interval.



Facies Reflectivity Reflector Geometry Rock Types Environment Comments 
Chaotic with rotated blocks Low to high Chaotic with rotated 

blocks, faults sole out at 
base 

Variable Slope failures, slumps Lithology dependent on 
precursor material 
incorporated into slump; 
recognition is heavily 
dependent on line 
orientation 

Chaotic, high reflectivitity Variable to high Chaotic or wavy; 
discontinuous; erosional 
basal contact common 

Discontinuous 
channelized sands 
with interchannel 
mudstone 

Turbidite feeder 
channel system, 
amalgamated channel 
sands 

Rapid facies changes; 
subdivision of a and b 
packages is heavily 
dependent on line 
orientation; lithology 
dependent on precursor 
mater incorporated into 
the slide 

Chaotic; low reflectivity Low Transparent, chaotic or 
wavy; locally mounded 
and onlapped; erosional 
basal contact 

Mudstone with 
highly discontinuous 
claystone and 
siltstone beds 

Mass flow units of 
variable lithology 

Convergent by baselap, high 
reflectivity 

Variable to high Convergent by baselap at 
paleobasin margins; 
variable to high reflector 
continuity 

Interbedded sand, 
mudstone, and 
claystone 

Basin-floor and slope 
submarine-fan 
complexes with both 
sand sheets and leveed 
channels 

Convergent by baselap, low 
reflectivity 

Low Convergent by baselap at 
paleobasin margins; 
variable to high reflector 
continuity 

Interbedded sand, 
mudstone, and 
claystone 

Probably ponded mass 
flows or sand-rich 
submarine fans 

Multiple baselapping 
seismic events implies 
bottom-hugging gravity 
flow deposition in confined 
setting usually associated 
with a presence of 
sandstones; differentiation 
based on reflectivity may 
depend on line orientation 
and depth. Low reflectivity 
results from seismic 
packages composed of 
rocks with small 
impedance contrasts, 
which implies uniform 
lithology; shale compaction 
due to burial age, 

Convergent by thinning, 
high reflectivity 

Variable to high Convergent by thinning 
at paleobasin margin; 
variable reflector 
continuity 

Thin bedded sands 
within claystone and 
mudstone 

Leveed-channel, 
overbank, and distal 
thin-bedded turbidites 
with fine-grained 
suspension fallout and 
hemipelagic drape on 
slope 

Convergent by thinning, low 
reflectivity 

Low Convergent by thinning 
at paleobasin margin; 
high reflector continuity 

Few thin-beeded 
sands with 
mudstones and 
claystones 

Fine-grained 
suspension fallout, 
muddy or overbank 
turbidites, and 
hemipelagic drape on 
slope 

or low seismic frequency 
content 

Draping high impedance -- Draping, generally 
continuous, single, high-
acoustic-impedance loop 
or doublet 

Predominantly 
claystone and 
mudstone with some 
marls and foram-
rich claystones 

Muddy turbidites to 
condensed section 

Convergences may occur 
at a scale larger than single 
instraslope basin; 
therefore, it may be closely 
related to convergent 
thinning facies; it also may 
represent  

Draping low impedance -- Very continuous, 
draping, single low-
acoustic impedance loop 
of uniform thickness 

Claystone, forma-
rich claystone, marl, 
or chalk 

Deepest basin, 
condensed section and 
pelagic-hemipelagic 
drape 

condensed zones between 
stacked layers of 
convergent by baselap 

Table 3—Seismic facies classification chart based on reflector characteristics and geometry (from Prather et al., 1998). 
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Figure 17—Strike perspective section showing facies classifications.  Seismic facies were distinguished utilizing the techniques of Prather et al. (1998), 
and five generalized zones were developed.  The upper light blue horizon was extracted for RMS amplitude attributes, shown in figure 18.  
Environmental interpretations—Package A:  Basin floor or slope fan facies assemblages.  Package B: Sand poor fine-grained fan assemblages including 
levee overbank deposits.  Package C:  Turbidite feeder channel system.  Package D:  Ponded mass flows, with possible thick amalgamated sands.  
Package E:  Turbidite feeder channel system.  
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Figure 18—RMS amplitude extraction from the upper light blue horizon in Fig. 17, which is at a depth of approximately 8900 ft.  The left lobe is 
interpreted as a channel/fan transition zone due to the dendritic channel patterns emanating from the channel source.  The sinuous channel on the right 
bifurcates into an area that is possibly a channel/lobe transition zone.  These systems are Pleistocene on the basis of available biostratigraphic data.
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Figure 20—High gamma values indicate possible slope fan and sand- 
poor slope bypass facies.
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Figure 19—Sand zones color-filled yellow.  Thick continuous sands 
with low gamma responses indicate the presence of basin floor fans. 

 



Study Comparison 

 Accumulation rates obtained from the maps constructed by Fillon (2005) (Figures 21 

through 24) were compared with the observed calculated rates at K-2 and Marco Polo:   

Fillon (2005) 
Accum. Rate 

(ft/Ma) 

Sequence 
No. 

Observed 
Accum. (ft/Ma) 

16 1000-1500 ft/Ma 303 

17 1000-1500 ft/Ma 1052 

18-20 1800-2500 ft/Ma 712 
Table 4—Comparison of Fillon’s (2005) predicted accumulation 
rates versus observed at K-2 (CON 562 #1) 
 
 

Fillon (2005) 
Accum. Rate 

(ft/Ma) 

Sequence 
No. 

Observed 
Accum. (ft/Ma) 

16 800-1000 ft/Ma 787 

17 600-800 ft/Ma 394 

18-20 700-850 ft/Ma 787 
Table 5—Comparison of Fillon’s (2005) predicted accumulation rates versus observed at Marco Polo (ANA 
608 #1ST) 
 

Differences in predicted vs. observed values exist at sequences 16 and 18-20 at K-2, and at 

sequence 17 at Marco Polo.  Theses differences are all within one order of magnitude, but are 

significant when applied at the exploration scale, as the differences in thickness would represent 

significant sand thickness changes for a known correlateable reservoir. 

 It is apparent from the seismic analysis that the minibasin is displaced structurally, and 

that there is no basis for establishing any consanguinity of stratigraphy between the suprasalt 

Marco Polo and subsalt K-2 field. 
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Figure 21—Sequence 16 (9.1-9.4 Ma) accumulation rate map with minibasins shown in cross-hatched areas. 
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Figure 22—Sequence 17 (9.4-11.0 Ma) accumulation rate map with minibasins shown in cross-hatched areas. 
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Figure 23—Sequence 18 (11.0-11.9 Ma) accumulation rate map with minibasins shown in cross-hatched 
areas. 
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Figure 24—Sequence 19 (11.9-12.8 Ma) accumulation rate map with minibasins shown in cross-hatched 
areas.  
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CHAPTER V 

DISCUSSION 

Implications for Previous Interpretations 

The structure and facies analysis presented herein indicates the downslope transport of an 

entire internally consistent sedimentary section.  Rather than this being an isolated exception, 

gravitational displacement of slope minibasins may be typical in this environment (Rowan et al., 

2001).  Facies analyses reveal that Middle to Upper Miocene sections within Marco Polo are 

predominantly slope fan and slope bypass facies.  The coeval sections in K-2 are basin floor 

environments—basin floor fans and pelagic/hemipelagic shales.  There is no evidence of 

continuity between paleo-depositional systems of coeval sections in these fields.  Minibasins 

such as Marco Polo are isolated depo-centers, within which the depositional thicknesses are 

controlled in large degree to the amount of accommodation space created by salt evacuation.  

Salt evacuation rates vary over time in the evolution of a minibasin, and each individual basin 

has a unique tectonic history.  Accumulation rate maps from Fillon (2005) assume environmental 

continuity between control points, which is clearly not the case in the study area due to the 

isolation of minibasin depocenters (Figs. 21 through 24).  This may be an appropriate assumption 

for the shelf environment, where the basin is generally uninterrupted by salt canopies, and 

stratigraphic continuity can be laterally extensive.  However, his methods are not appropriate in 

the deep-water slope environment of the Gulf of Mexico for the following reasons: 

- Construction of a geostatistical grid does not account for discontinuities such as the 

isolation of depocenters, or the downslope movement of stratigraphic sections.  Reviews 

of seismic data show many areas where projected sequence intervals may not exist due to 
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the presence of salt bodies.  Gravity induced transport can theoretically place two 

biostratigraphically equivalent sections directly on top of each other. 

- Autocyclic variability within and between minibasin depocenters yields accumulation 

rates that are not predictable because of the variability of accommodation space induced 

by salt movement.  Accumulation rates may be able to be mapped in a true basin floor 

setting, where basin floor fans are aereally extensive and geometrically predictable (Mutti 

and Normark, 1991).  Autocyclic variability is the likeliest reason for the observed 

differences between the predicted and actual accumulation rates, especially in the Marco 

Polo field. 

Implications for Bio- and Sequence Stratigraphic Models 

  The sediment accumulation plots (Figure 7) revealed one potential correlateable 

condensed section, however, the comparison of nannofossil abundance curves between the 

respective wells revealed no correlateable abundance peaks.  Abundance peaks from microfossil 

data are an important indicator of condensed sections, as they are often below the scale of 

seismic resolution (Armentrout, 1991).  A traditional sequence stratigraphic framework predicts 

that these condensed sections will be time-synchronous, as they are thought to be primarily 

controlled by rising eustatic sea level and reduced sediment input to the deep basin.  The results 

in this study do not support this prediction, and may be explained by variability in deep-water 

deposition.  As shown in figure 25, sediment input into the deep basin can have wide lateral 

variability.  A locus of deposition may exist in relatively close proximity to an area of little 

sediment input.  Stratigraphic condensation can also occur due to autocyclic controls in 

minibasin evolution.  In a study that compared oxygen isotope data to fossil abundance, Joyce et 

al. (1992) found no consistent relationship between fossil abundance and sea level.  The limits of 
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the resolution of microfossil data from mud returns may also limit the utility of condensed 

sections as an exploration tool.  Returns are typically sampled at 30 ft intervals.  A condensed 

interval representing a significant time-span can be much thinner than the sample collection 

interval. 

 

  
Figure 25—Schematic representation of autocyclic controls on spatial variation of condensed sections.  At 
time 1, site A is experiencing rapid sedimentation, whereas site C is sediment starved.  At time 2, the 
depositional system has shifted; the former location of condensation (site C) is now stratigraphically 
expanded. Figure contains elements from Joyce et al. (1992). 
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CHAPTER VI 

CONCLUSIONS 

 The biostratigraphic techniques under review in this study have been widely used on the 

Gulf of Mexico continental shelf for years with exploration success. Extending their use 

downslope is a natural progression, but has not always taken the environmental variability of the 

slope into account.  Though biostratigraphy has proven to be a valuable resource in the deep-

water, there is a perception by some geoscientists that it is an underutilized tool in this 

environment (Villamil, 1998).  This may be due to the uncertainties of data reliability, and 

application to this complex environment.  Care must certainly be used in any exercise when 

making regional interpretations from widely spaced control points. 

The results of this study have shown that in practice, there is a need for guidelines that 

should be followed for the proper application of biostratigraphic techniques in the deep-water 

environment.  A practical assessment of biostratigraphic reliability, when used in slope and deep-

basin environments world-wide, should include the following: 

- Determination of the potential for downslope-rafted allochthonous sections. 

- Assessment of variability of and relative dominance of autocyclic and allocyclic 

controls on basin deposystem activation, especially eustasy and subsidence, when 

making predictions of deposystem history outside of known control. 

- A reduced reliance on the condensed section as a chronostratigraphic surface in the 

slope and deep basin environments.  

Biostratigraphy will likely see increased use, not only as an exploration tool, but also in 

reservoir development as industry strives to maximize production from known producing fields.  
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Advances in high-resolution biostratigraphy at the reservoir scale represent the future of new 

high-impact applications of this discipline (Giwa et al., 2006).
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