
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

12-15-2006

Expressions as Data in Relational Data Base Management Expressions as Data in Relational Data Base Management

Systems Systems

Mahesh Saravanan
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Saravanan, Mahesh, "Expressions as Data in Relational Data Base Management Systems" (2006).
University of New Orleans Theses and Dissertations. 500.
https://scholarworks.uno.edu/td/500

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of New Orleans

https://core.ac.uk/display/216836043?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F500&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/500?utm_source=scholarworks.uno.edu%2Ftd%2F500&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Expressions as Data in Relational Data Base Management Systems

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Master of Science
In

The Department of Computer Science

By

Mahesh Saravanan

B.E., Madurai Kamaraj University, India, 2003

December 2006

 ii

Copyright 2006, Mahesh Saravanan

 iii

ACKNOWLEDGEMENT

I wish to express my gratitude to a number of people who became involved with this

thesis, one way or another.

I am deeply indebted to my Thesis Advisor, Dr. Nauman Chaudhry for the advice, help

and encouragement at the time of research and writing of this thesis. This work was

accomplished after one year of research and hard fought times of Hurricane Katrina.

In addition, I would like to thank Dr. Shengru Tu and Dr. Adlai DePano on

my thesis defense committee.

Finally, I would like to thank my family and friends for the continuous support and help

they provided to me. I would like to dedicate this thesis to my mother.

iv

TABLE OF CONTENTS

Abstract .. vii
1. Introduction ..1

1.1 Terminology Used ...4
2. Related Work...7

2.1 Expression Filter In Oracle 10 G..7
2.1.1 Elements ...9
2.1.2 Expression Filter Usage Scenarios...9
2.1.4 Sample Queries ...10
2.1.5 Support By Other Vendors ..11

2.2 Differences Between Oracle�s And Our Approach ...13
3. The Expression Datatype And Expression Evaluation..15

3.1 Expression Grammar..15
3.2 Semantics Of Evaluation..16
3.3 Evaluation Cases..17

3.3.1 Predicate Level..17
3.3.2 Expression Level...18

3.4 Algorithm ..19
4. Implementation Of Expression Datatype..21

4.1 Data Structure..21
4.2 Mini Dbms - Features ..21
4.3 Storing Expressions: Predicate And Expression Tables ..24
4.2 Parsing The Expressions - LEX Parser ...26
4.3 Entering Sample Data - The Script File ..28
4.4 Execution Of Evaluation ..31

5. Sample Application: E-News ...39
5.1 E-News Architecture..40
5.2 Simulation Of E-News WITH And WITHOUT Expression Datatype...................41

5.2.1 Before Approach � Without Using Expression Datatype42
5.2.1.1 Data Model...44

5.2.2 After Approach � With Expression Datatype ...51
5.2.2.1 Data Model...51

5.3 Comparison Between The Two Approaches...56
5.3.1 Expressivity ..56
5.3.2 Performance ..57

6. Future Development ..63
6.1 Indexing Expressions ...63
6.2 Supporting Expression As A Native Data Type ..63
6.3 Supporting EVALAUTE As A Native SQL Operator...64

7. Conclusion...65
References...66
Vita ...68

v

LIST OF TABLES

Table 1 Consumer Table..8
Table 2 Car Table ..13
Table 3 Dealer Table ...13
Table 4 Evaluation Possibilities ...19
Table 5 Predicate Table ...25
Table 6 Expression Table...26
Table 7 Sample Link Table..43
Table 9 Performance Comparison � Before and After Case..58

vi

LIST OF FIGURES

Figure 1 Data model � Expression datatype ...24
Figure 2 Script File ..29
Figure 3 Predicate Table Screenshot ..30
Figure 4 Expression Table Screenshot ...30
Figure 5 Compiling the Programs ..31
Figure 6 Executing db.c ...32
Figure 7 Directories and Files ..33
Figure 8 Tables Contents after the run ...33
Figure 9 Select statement ...34
Figure 10 Creating Expressions ...35
Figure 11 Table entrees after insertions..36
Figure 12 Evaluation 1...37
Figure 13 Evaluation 2...38
Figure 14 Mobile e-News - Architecture...40
Figure 15 e-News Architecture � Before Case ...44
Figure 16 Table contents � Before Case...48
Figure 17 Prepping and executing � Before Case ...49
Figure 18 Compiling � Before Case ...50
Figure 19 Architecture � After Case...51
Figure 20 Table creation � After Case..52
Figure 21 Expression Insertions � After Case...53
Figure 22 Profile Insertions � After Case ...54
Figure 23 Predicate Table Contents � After Case ...54
Figure 24 Expression Table Contents � After Case ..55
Figure 25 User Table Contents � After Case ..55
Figure 26 User Interests Table Contents � After Case ..55
Figure 27 Results � After Case ...56
Figure 28 Performance Comparisons � Before and After Case59
Figure 29 Script File ..60

vii

ABSTRACT

 Numerous applications, such as publish/subscribe, website personalization,

applications involving continuous queries, etc., require that user�s interest be persistently

maintained and matched with the expected data. Conditional Expressions can be used to

maintain user interests. This thesis focuses on the support for expression data type in

relational database system, allowing storing of conditional expressions as �data� in

columns of database tables and evaluating those expressions using an EVALUATE

operator. With this context, expressions can be interpreted as descriptions, queries, and

filters, and this significantly broadens the use of a relational database system to support

new types of applications. The thesis presents an overview of the expression data type,

storing the expressions, evaluating the stored expressions and shows how these

applications can be easily supported with improved functionality. A sample application is

also explained in order to show the importance of expressions in application context, with

a comparison of the application with and without expressions.

 1

1. INTRODUCTION

A wide-range of applications, including Publish/Subscribe [8], Workflow, and Web-

site Personalization [5], require maintaining user�s interest in expected data as conditional

expressions. The following example [8] shows a simple publish/subscribe application that

requires maintaining user�s interest in expected data.

Example:

Let us consider a transport system where an operator has many things going on at once.

• There may be buses following different routes with passengers who want to know the

status of their bus and when it will arrive at their stop.

• There may also be operators who need to know the status of the bus fleet from time to

time.

• More specifically the passengers would probably be interested in the current status of

their bus, when it will arrive at their stop, and what buses do and will stop at their

station. Most of what they will be interested in will be short-lived information. That is

information that is transient and has little or no value to them once the moment has

passed, since there will be more up-to-date information available or about to become

available.

 The operators, on the other hand, would possibly be interested in where all the buses are at a

given time, whether they are on schedule or experiencing any delays, which buses have

problems, and whether there are any breakdowns within the fleet. Some of this information is

transient, but if it is retained it provides an historical picture of events that may be useful input

to other processes.

 2

 The transport provider would like to have all the information available to the different

consumers via Web pages where they can select what information they need. In another context,

the users could register their email addresses in web pages and select the information they need

at the time of registration. User�s email addresses and the user�s interests can be stored in terms

of conditional expressions. The information will arrive periodically in their inbox.

 As the buses travel around their routes they need to log their position each time they stop,

get delayed, or breaks down. This information can then be made available to all consumers on

demand, or for subscribed users as alerts on delays, late schedules, etc.

 Applications requiring continuous queries provide another motivation for use of

conditional expressions. According to [3], continuous queries [4] [9] [10] [11] allow users to

obtain new results from a database without having to issue the same query repeatedly.

Continuous queries are especially useful in an environment like the Internet that comprises of

large amounts of frequently changing information. A set of continuous queries can be modeled

as a collection of expressions that can be stored for later querying usage. This is done to avoid

redundant retrieval of results by consolidating a large set of queries to a smaller set of common

expressions thereby saving a lot of time in data retrieval.

 The following is an example of how and why we use expressions.

Example:

Let us consider a Car Buy/Sell business. There may be many forms of user�s interests,

some of these modeling interests of sellers and others modeling interests of buyers. Some of them

may be

 3

• A buyer may be interested in one or more cars that match specific criteria, such as

price, model, etc.

• A car may be of interest to one or more buyers with matching criteria.

• A seller may be interested in buyers in particular income brackets.

 To match incoming data about cars to relevant buyers, and to match new buyers and

sellers to each other, user interest may be modeled as conditional expressions that allow later

manipulations and easier information retrieval.

The information that are hence retrieved, may answer one of the following questions.

• What cars are of interest to each consumer?

• What sort of buyers are of interest to each seller?

• What kind of demand exists for each car? This can help to determine optimal pricing.

• Is there any unsatisfied demand? This can help to determine inventory requirements.

This thesis proposes to manage such expressions as data in Relational Database

Systems (RDBMS). This is accomplished 1) by allowing expressions to be stored in a column of

a database table and 2) by introducing a SQL EVALUATE operator to evaluate expressions for

given data. Expressions when combined with predicates on other forms of data in a database are

a flexible and powerful way of expressing interest in a data item. The ability to evaluate

expressions (via EVALUATE operator) in SQL, enables applications to take advantage of the

expressive power of SQL to support complex subscription models.

The terminology used in this thesis is explained in the rest of this chapter. In chapter 2

this thesis explains the related work and points out the difference between the related work and

 4

the approach taken in this thesis. Chapter 3 describes the expression datatype used in this thesis.

In the following chapter implementation of the expression datatype in a simulated mini Data

Base Management Systems (DBMS) is explained. Chapter 5 explains a sample application and

describes the data management aspect of the application both with and without the use of

expression data type. Chapter 6 outlines future enhancements and chapter 7 concludes the thesis.

1.1 TERMINOLOGY USED:

EXPRESSION:

 An expression is a combination of identifiers, values, and operators that can be evaluated

to obtain a result. Expressions can be used, for example, as a search condition when looking for

data that meets a set of criteria. Expressions are a useful way to describe interests in expected

data.

 Expressions are nothing but conditions. They evaluate to true or false depending on the

incoming data and the user�s interest.

Example:

 Let us consider a table, Car, which has details about various cars such as model, price

year, color, mileage etc. A select statement against the table to select all cars less than 20000

dollars and manufactured in or after 2000 can be represented as follows.

Select * from Cars where Car.Price < 20000 and Car.Year >= 2000

 Here, �Car.Price < 20000 and Car.Year >= 2000� is the expression.

 5

PREDICATE:

 Subparts of an expression are called predicates. A valid expression consists of one or

more simple conditions called predicates. The predicates in the expression are linked by the

logical operators AND and OR. In this thesis, however, only the AND operator is supported.

Example:

 Let us consider the same example as in expression of a table, Car, and let us consider the

same expression. �Car.Price < 20000 and Car.Year >= 2000�. Here the predicates are

Predicate 1 - �Car.Price < 20000�

Predicate 2 - �Car.Year >= 2000�

 Combining Predicates on other forms of data, like functions, in a database is just a

powerful way of expressing interest.

EVALUATE

 The EVALUATE operator is used to compare stored expressions to incoming data items.

The EVALUATE operator returns a 1 for an expression that matches the data item, and returns a

0 for an expression that does not match the data item. For a given input data item, EVALUATE

operator checks if any Expressions evaluates to True. EVALUATE operator returns 1 if an

Expression is evaluated to True for a given input data-item. It will be discussed further in the

coming sections of this document.

DATA ITEM:

 As described above, expressions model the condition part of queries in relational

databases. Expressions are evaluated against data items. For expressions, data items can thus be

 6

considered analogous to tables against which queries are evaluated. An Expression evaluates to

True if the incoming data-item meets the user�s interest, and if the incoming data-item does not

meet the user�s interest then the Expression evaluates to False.

DATA ITEM CONSTITUENT:

 The data item constituents are the sub parts of a data item. The relationship of data item

constituents to a data item is similar to the relationship of predicates to an expression.

Example:

 Let us consider a data item for the expression example that is given under �expression�. A

data item may be of the form

�Car.Price = 15000 and Car.Mileage = 25000

The data item constituents for the above mentioned data item are

Data item constituent 1: Car.Price = 15000

Data item constituent 2: Car.Mileage = 25000

 7

2. RELATED WORK

Major software vendors, such as Oracle, IBM, Microsoft, provide support for

conditional expressions. The approach taken by Oracle, described in [1], is most relevant to this

thesis and is discussed next. A description of the functionality provided by IBM and Microsoft is

given later in this chapter. The chapter concludes with a discussion, highlighting the differences

in the approach used in this thesis and the existing approaches.

2.1 EXPRESSION FILTER IN ORACLE 10 G

Conditional expressions can be used to describe interest in information. One could

consider expressions in isolation, as publish/subscribe systems generally do, or as part of a more

general description of message consumers. Expression Filter is a feature of the Oracle Database

10g that allows application developers to store, index, and evaluate conditional expressions in

one or more columns of a relational table. Expressions are a useful way to describe interest in

some expected data. Applications involving information distribution, demand analysis, and task

assignment can benefit from Expression Filter.

Oracle 10G Expression Filter matches expressions in a column with a data item passed

by a SQL statement or with data stored in one or more tables, and evaluates each expression to

be true or false.

Example:

Consider an application that matches buyers and sellers of cars. A table called

Consumer describes the buyers. This table consists of multiple columns, such as Name,

Identification, address of consumer, and their interest in a column called INTERESTS that has

an Expression datatype. The INTERESTS column stores an expression for each consumer that

 8

describes the kind of car the consumer wants to purchase, including make, model, year, mileage,

color, options, and price. A sample table is shown below.

Name ID Address Interests
John U2001 1, A Car.Model = Taurus and Car.Year = 2000
Ben U2003 2, B Car.Model = Toyota and Car.Price < 20000
Anna U2004 3, C Car.Model = Taurus and Car.Year > 2002

Table 1 Consumer Table

Expression Filter can match incoming data with conditional expressions stored in the

database to identify rows of interest. Specifically, a new SQL EVALUATE operator is provided

that matches the incoming data items with the expressions to find prospective buyers.

SELECT * FROM Consumers WHERE

EVALUATE (Consumer.Interest) �, <DATA ITEM>) = 1

This statement returns those rows for which the expressions match the values of the

data item. Data about cars for sale is included with the EVALUATE operator in the SQL

WHERE clause.

The previous example showed how incoming data is filtered based on subscriber

interest. With the addition of the expression data type in the relational database management

system, it also becomes easy for a publisher to filter recipients of information as the following

examples shows.

A publisher could issue a query to find rows that satisfy certain criteria, for example,

find every Customer who is located in a particular locality. The result set could be used to define

the consumers of particular data item. In this case the publisher determines the recipients with a

SELECT on the table.

 9

The SQL EVALUATE operator also enables batch processing of incoming data.

Data can be stored in a table called CARS and matched with expressions stored in the

CONSUMER table using a join between the two tables.

2.1.1 Elements

Expression Filter includes the following elements

• Expression datatype - a virtual datatype created through a constraint placed on a

VARCHAR column in a user table that stores expressions

• EVALUATE operator - an operator that evaluates expressions for each data item

• Administrative utilities - set of utilities that validate expressions and suggest optimal

index structure

• Expression indexing - enhances performance of the EVALUATE operator for large

expression sets. Expression indexing is available in Oracle Database Enterprise Edition

2.1.2 Expression Filter Usage Scenarios

1. To screen incoming data

• Find matches with expressed interests or conditions

o We have found an item that may be exactly what you�re looking for (based on

your personal preferences)

o A suspect has just entered the country (given the terrorist screening guidelines

provided by the authorities)

• Find non-matches

o This new piece of data does not meet one of (y)our standards

o This record does not adhere to this business rule

 10

2. To screen existing data for new interests, conditions, standards or rules

• Because of this new EU regulation, we have to redesign these products

3. To dynamically bundle up multiple queries

2.1.3 Application Characteristics

Expression Filter is a good fit for applications where the data has the following

characteristics:

• A large number of data items exists to be evaluated

• Each data item has structured data attributes, for example VARCHAR, NUMBER, DATE,

XMLTYPE

• Incoming data is evaluated by a significant number of unique and persistent queries

containing expressions

• The expression (in SQL WHERE clause format) describes an interest in incoming data

items

• The expressions compare attributes to values using relational operators (=, !=, < , >, and

so on)

2.1.4 Sample Queries

Let us consider a situation where a user (in this case a car dealer) is interested in all consumers

interested in a Mustang car which was made in the year 2000 and which costs 18000 dollars and

has run 22000 miles. Assume that the consumer information is stored in the Consumer table

introduced in Section 2.1 where the Interest column stores their interests in the form of

 11

expressions. A query to cater such a dealer�s need in terms of Oracle�s expression filter would be

as follows:

SELECT * FROM Consumer WHERE

EVALUATE (Consumer.Interest, 'Model=>'Mustang'', Year=>2000, Price=>18000,

Mileage=>22000�) = 1;

2.1.5 Support by other vendors

 Apart from Oracle, other vendors such as IBM, Microsoft etc have also contributed to

support this functionality. For example IBM developed GRYPHON, IBM: Gryphon [13] AND

Microsoft developed SCRIBE [2].

 Gryphon was designed and implemented to provide content-based publish/subscribe

functionality using the fast, scalable routing algorithms. Clients access the system through

implementation of the Java Message Service (JMS) API.

 Microsoft also supported a similar thing in SQL Server called SCRIBE (Notification

Services). Scribe is a topic-based system. Scribe is the premier platform for developing and

deploying highly scalable notification applications. Capitalizing on the Microsoft .NET

Framework and SQL Server, Notification Services provides an easy-to-use programming model

for generating and formatting notifications based on personal subscriptions. This device-

independent architecture can accept event data from any source and securely deliver it to a

variety of mobile devices, including personal digital assistants (PDAs), cellular telephones, and

more.

 12

 Even though other vendors have support for publish/subscribe technology through

specific systems such as Gryphon and Scribe, the main difference between Oracle expression

data type is that, in Oracle, the functionality is built and implemented within the database. In

other words, the expressions are stored in a column of a table so that no extra resource / utility

needs to be installed separately.

 Another advantage by using Oracle�s approach for publish/subscribe is that, by using

Oracle�s approach, both publish and subscribe can be implemented with the same methodology,

which means, it doesn�t have to be two different implementation approaches, one for publish and

the other for subscription.

 One other important feature of the Oracle�s expression data type is the EVALUATE

operator which is not present in both Gryphon and the Scribe. The SQL EVALUATE operator

saves time by matching a set of expressions with incoming data. This saves labor by allowing

expressions to be inserted, updated, and deleted without changing the application and providing a

results set that can be manipulated in the same SQL statement, for instance to order or group

results. Storage of expressions as data also enables large expression sets to be indexed for

performance. In contrast, a procedural approach stores results in a temporary table that must be

queried for further processing, and those expressions cannot be indexed. As both Gryphon and

Scribe are not database oriented approaches, indexing is not possible as in expressions.

 13

2.2 DIFFERENCES BETWEEN ORACLE�S AND OUR APPROACH

Though the expression filter from Oracle 10G is similar to the expression concept in

terms of evaluation from our approach, there is one main difference in terms of complexity.

Oracle 10G�s expression filter is applied over a single table, whereas, our approach of Evaluate

operator can be applied over multiple tables as shown by the following example.

Example:

Let us assume a web application where there are two tables Car and Dealer. One

table contains information about cars, including car price, car model, car year etc. (An example

is shown in table 2). Another table contains information about car dealers, including dealer

name, address, rating etc. (An example is shown in table 3). If a user is interested in buying a

car which is around $10000 but he wants to buy from a good dealer, an expression to cater such

a user�s interest would involve predicates that access data in both the tables car and dealer , and

later on when we apply the EVALUATE operator, it would be across both the tables. For

example in that case the expression would look something like this

 Car.Price = 10000 AND Dealer.Rating = 10

Model Year Price Color Mileage
1 Taurus 1999 10000 Blue 40000
2 Toyota 2000 13000 Black 20000
3 BMW 2001 20000 Silver 23000

Table 2 Car Table

Name Address Zip Rating Cars
1 Toyota 1, A 10172 7 400
2 Auto Zeal 2, B 10183 5 200
3 Car Zone 3, C 11289 10 125

Table 3 Dealer Table

 14

 The above expression is with the assumption that a rating of 10 is the maximum rating

that can be assigned to a dealer.

 One other difference between Oracle�s expression filter and this approach of expression

datatype lies in terms of implementation. In our approach, the expressions are stored in separate

tables as opposed to storing them in a column of the same table. This might be thought of as a

downside, because by storing expressions in a separate expression table, additional join can be

required between the expression table and the table with the user/customer info, but, having the

expressions in separate table will be a more Normalized form of representation because different

users might be interested in the same data item that might repeat many times in the user interests

table in Oracle�s approach.

 15

3. THE EXPRESSION DATATYPE AND EXPRESSION
EVALUATION

 This chapter describes the structure and semantics of expression datatype. The chapter

begins by providing the grammar for an expression in the BNF form. Evaluation semantics are

explained next which is followed by explaining how expressions are evaluated to true with an

algorithm.

3.1 EXPRESSION GRAMMAR

Any expression can be said to be composed of one or many atomic expressions which

are called Predicates. The BNF representation of the expression datatype is shown below.

 Expression ::= Predicate | Predicate AND Expression

 Predicate ::= Identifier Operator Constant | Constant Operator Identifier

 Operator ::= < | > | = | <= | >=

 Identifier ::= Table.Column

Example:

Let us consider the following expression

 Car.Year = 2000 AND Car.Price < 20000

The above expression can be represented in the BNF form as follows. For ease of understanding

the grammar representation of the expression is shown from the identifier level.

Identifier1: Car.Year

Identifier2: Car.Price

Operator1: =

 16

Operator2: <

Constant1: 2000

Constant2: 20000

As per the grammar, Predicate1: Identifier1 Operator1 Constant1

Representing the our example in predicate form we have

Predicate1: Car.Year = 2000

Similarly we have Predicate 2 as

Predicate2: Car.Price < 20000

Also as per grammar, Expression: Predicate1 AND Expression

And bringing in the Predicate 2 gives, Expression = Predicate1 AND Predicate2 which is

simplified as Expression: Car.Year = 2000 AND Car.Price < 20000

Hence we have represented our sample expression in BNF form.

3.2 SEMANTICS OF EVALUATION

The EVALUATE operator is used to evaluate a data item against the stored

expressions. The EVALUATE operator accepts a set of data item constituents in a data item, and

those data item constituents are evaluated on all the stored expressions and in turn predicates.

This operator returns a list of stored expressions that were evaluated to true against the provided

data item.

If there are more than one predicates in an expression, all predicates have to be

evaluated to true for the expression to be evaluated to true.

 17

Example:

Consider the expression

 Car.Year > 1995 AND Car .Year < 2000

 In this expression, there are two predicates.

 Consider this expression is evaluated against the following data item Car.Year = 1998

In this case the expression would be evaluated to true because both the predicates are

evaluated to true.

Let us consider evaluation of one more data item

 EVALUATE Car.Year = 2005

Now, even though the first predicate is evaluated to true, the second predicate is false

and hence the expression as a whole would be evaluated to false.

3.3 EVALUATION CASES

Based on the above discussion, we could frame three possibilities of evaluation at the

predicate level and at the expression level. They are given as follows.

3.3.1 Predicate Level

At the predicate level, there are three possible outcomes when each predicate of an

expression is evaluated for a data item.

• CASE 1 � PREDICATE EVALUATES TO TRUE

 In this case a) the data item contains a constituent matching the identifier in the predicate,

and b) the predicate evaluates to true for the value in this data item constituent.

 18

Example:

Predicate: Car.Year > 1995

Data item constituent: Car.Year = 1999

• CASE 2 � PREDICATE EVALUATES TO FALSE

 In this case a) the data item contains a constituent matching the identifier in the predicate,

and b) the predicate evaluates to false for the value in this data item constituent.

Example:

Predicate: Car.Year > 1995

Data item constituent: Car.Year = 1992

• CASE 3 � CANNOT EVALUATE PREDICATE

 In this case the data item does not contain any constituent that matches the identifier in

the predicate.

Example:

Predicate: Car.Year > 1995

Data item: Car.Model = �TAURUS� AND Car.Price = 20000.

3.3.2 Expression Level

The expression is a combination of one or more predicates. Therefore at the

expression level, there are three cases also. They are explained as follows.

1. Expression evaluates to true if ALL the predicates in the expression evaluate to true.

2. If at least one predicate in an expression evaluates to false, then the expression evaluates

to false.

3. If at least one predicate in an expression cannot be evaluated, then the expression

evaluates to false.

 19

If we consider expressions with two predicates, the above can be enumerated as

follows. Note: �?� refers to predicates that cannot be evaluated.

Predicate 1
Evaluates to

Predicate 2
Evaluates to

Expression
Evaluates to

1 T T T
2 T F F
3 F T F
4 F F F
5 T ? F
6 F ? F
7 ? T F
8 ? F F

Table 4 Evaluation Possibilities

3.4 ALGORITHM

The algorithm developed for evaluation of expressions is as follows. First the given

data item was taken and checked against all the predicates of all the conditional expressions to

get a list of predicates that are evaluated to true. So now, irrespective of the expressions we have

a set of predicates that are evaluated to true. Then, the list of predicates is compared with the

expressions to get the list of expressions that have those predicates evaluated to true. All of the

predicates in an expression have to be present in the list, which contains the list of predicates that

are evaluated to true. So the resultant set is a set of expressions that are evaluated to true. The

evaluation can be expressed in the following sequence of steps.

1. Parse the data item to split them to individual data item constituents

2. For each data item constituent

• find the predicates that evaluate to true and store them in an array called

�predicate out� array

 20

3. Traverse through all expressions

• If all the predicates of an expression are present in the �predicate out� array, that

expression evaluates to true.

• Otherwise, the expression evaluates to false.

 21

4. IMPLEMENTATION OF EXPRESSION DATATYPE

In order to implement the expression data type and to develop the

EVALUATE operator, a mini DBMS was implemented in C. The DBMS supports few features

that are essential for the testing of the expression data type and the EVALUATE operator.

4.1 DATA STRUCTURE

 The data structure as such is simple because only a few features of a real DBMS were

implemented. Provisions are there to create a new database and to work on an existing database.

Tables and schemas are preserved for each database. All the table information is stored in flat

files with tab delimiters. All user table information is stored in a table called sys_tab. This is

again a flat file with the same data structure. The other two tables that are created when a

database is created are the Expression table and the Predicate table. These tables are explained

under section 4.3.

4.2 MINI DBMS - FEATURES

Expressions, or in general data, has to be inserted, deleted or selected into and from

the predicate tables and the expression tables for various purposes of testing and building the

EVALUATE operator. For this purpose some features were implemented. The features that are

implemented are: create a new database, work on an existing database, Create Table, Insert,

Select and Delete. Let�s look into the details of a few.

 22

Create Table:

The create table feature creates a table with an entry in the sys_tab table. This feature

does not allow duplicate tables in a database. So every time a new table is created, the name of

the new table is validated against the entries in the sys_tab table. The code snippet for create

table is shown.

if (strcmp (arr[0],"create")==0) {
 table[0]='\0';
 strcpy(table,arr[2]);
 strcat(table,".txt");
 sys=fopen("sys_tab.txt","a+");
 i=0;
 flag=0;
 while (fscanf(sys,"%s",temp[i]) != EOF) {
 if(strcmp(temp[i],table)==0){
 printf("\n Table already exists. ");
 flag=1;
 }
 i++;
 }
 fflush(sys);
 fclose(sys);
 if(flag==0) {
 sys=fopen("sys_tab.txt","a+");
 fprintf(sys,"%s\t\n",table);
 tb=fopen(table,"a+");
 for(i=4;i<ncmd;i+=3)
 fprintf(tb,"%s\t",arr[i]);
 fprintf(tb,"\n");
 for(i=5;i<ncmd;i+=3)
 fprintf(tb,"%s\t",arr[i]);
 fprintf(tb,"\n");
 fclose(tb);
 printf("table created");
 }
 fflush(sys);
 }

 23

Example:

Let us consider an example where we have to create a table with two columns �id� and �name�. In

the mini DBMS, the creation syntax is the same as any SQL create function. The example is

shown below.

 CREATE TABLE employee (ID INT, NAME VARCHAR);

Select

The �select� feature is a typical select feature with limited options. There are six cases

with which the select statement is built. They are listed below.

• Select *

1. Where clause contains �=�

2. Where clause contains �<� or �<=�

3. Where clause contains �>� or �>=

• Select columns

4. Where clause contains �=�

5. Where clause contains �<� or �<=�

6. Where clause contains �>� or �>=

 Examples of selects from the previously created employee are shown below.

• SELECT * FROM Employee WHERE NAME = �JOHN�

• SELECT * FROM Employee WHERE ID < 1000

• SELECT NAME FROM Employee WHERE ID = 30

 24

4.3 STORING EXPRESSIONS: PREDICATE AND EXPRESSION TABLES

This section describes how expressions are stored as predicates and how they are

referenced in forms of table rows. User�s Interests are considered as sets of expressions.

Expressions are said to be composed of one or more predicates. In this database, the predicates

are stored in a table called the PREDICATE TABLE, and the expressions, which compose the

predicates, are stored in another table called the EXPRESSION TABLE, with references to the

predicates in the predicate table making it a kind of foreign key relationship.

The data model diagram for the expression datatype, which shows the relation

between the Predicate table and the Expression table, is shown below.

Expression

PK Expression ID

Predicate ID

Predicate

PK Predicate ID

Table
Column
Operator
Constant

Figure 1 Data model � Expression datatype

The predicate table contains the following fields.

• Predicate ID

• Table

• Column

 25

• Operator

• Constant

 The expression table contains the following fields.

• Expression ID

• Predicate ID

An expression may consist of more than one predicate which implies that more than

one row in the expression table are part of the same expression.

Example:

For example let us consider the following two expressions with different number of

predicates, one with two and the other three. In this example, there are two tables Car and

Dealer that are involved. Let�s say that Car has columns such as Model, Year, Price, Color etc

and Dealer table has columns such as Name, Address, Rating, etc.

1. Car.Model = �Taurus� AND Car.Year = 1998

2. Car.Model = �Mercedes� AND Car.Year = 1998 AND Dealer.Rating = 10

These two expressions are stored in the predicate table and the expression table as follows.

Predicate ID Table Column Operator Constant
1 Car Model = �Taurus�
2 Car Year = 1998
3 Car Model = �Mercedes�
4 Dealer Rating = 10

Table 5 Predicate Table

 26

Expression ID Predicate ID
1 1
1 2
2 3
2 2
2 4

Table 6 Expression Table

 In the above example, there are two expressions one with two and the second with three

predicates that are stored. Hence there are totally five predicates when we consider both the

expressions. Even though there are totally five predicates in the two expressions, only four

entries are entered in the predicate table. This is because the predicate with predicate id 2 is

repeating in both the predicates and is stored only once. In other words, predicates that are

common among different expressions are stored only once.

 As explained before, more than one table can be involved in this approach of expressions.

In other words, expressions can be specified over multiple tables.

4.2 PARSING THE EXPRESSIONS - LEX PARSER

A parser was developed using the LEX tool to parse the expressions and separate the

tokens to be stored in the predicate table. The tokens were table, column, operator and constant.

The parser was built in such a way that the expressions can be reversed, i.e. the column name can

come after the constant. For example

Car.Model = �Taurus�

 (or)

�Taurus� = Car.Model

 27

Initial research was done on Lex parser through various books and papers. One such

book is [6]. The parser contains various segments, which check for a particular group of literals.

One such segment checks for alphabetical words and if there are any, stores the words in an

array. The code segment is shown below.

[a-zA-Z]*\.[a-zA-Z]+ {
for (i=0;i<strlen(yytext);i++)
 if (yytext[i]=='.')
 break;
 else
 temptable[i]=yytext[i];
temptable[i]=='\0';
k=0;
for(j=i+1;j<strlen(yytext);j++)
{
 tempcolumn[k]=yytext[j];
 k++;
}
tempcolumn[k]='\0';
strcpy(column[v],tempcolumn);
strcpy(table[u],temptable);
u++;
v++;
}

If there are the words �and� or �AND� then the number of predicates are increased.

"AND" |

"and" {

prid++;}

The operators checked are as follows.

"=" |

"<" |

">" |

"<=" |

 28

">=" {

strcpy(operator[w],yytext);

w++;

}

There are some special words such as EVALUATE, INSERT, EXPRESSION etc, which

are also checked, and corresponding actions are taken. The main token which is checked is the

�;�, which denotes the end of a query or expression. Therefore if a �;� is found then that is where

the actual processing starts to store the expression and predicates.

4.3 ENTERING SAMPLE DATA - THE SCRIPT FILE

In order to populate the expression table and the predicate table with sample values a

script was written. This script generates the given number of predicates and accordingly

expressions with provisions of sample values as input. With the sample values, random

combinations are generated to give a complete test set.

The script file is named as script1.c and the compilation and a sample run is shown in

Fig 2. The predicate table and the expression table generated as a result of the script file are also

shown in Fig 3 and 4 respectively.

The expression file has predicate ids that are generated in the predicate tables. Also

there are different numbers of predicates in an expression; i.e. some expressions have one

predicate, some two, some three and so on.

 29

The options that are present in under the script file are

1. Generate Predicates and Expressions

2. Generate user interests

3. Generate news items.

4. Exit

 Option 1 generates predicates and expressions and populates them to the predicate and

expression tables correspondingly. Options 2 and 3 are used to populate user and user_interests

tables respectively which are explained in the next chapter.

Figure 2 Script File

The following figure shows some inserted values in the predicate table as a result of executing

the script file option 1.

 30

Figure 3 Predicate Table Screenshot

And those predicates are created as part of expressions, which are inserted into the expression

table.

Figure 4 Expression Table Screenshot

 31

4.4 EXECUTION OF EVALUATION

The following screenshots show the compilation and execution of the programs. The

first screen below shows the directory structure before compilation, which has the three program

files script1.c, db.c and the lex parser, parse.l.

First in order to create a new database and start entering our commands, we compile

the db.c program using gcc compiler. Then the lex parser is compiled to form the intermediate

file, which is then compiled using the gcc compiler to get the executable object file �first�.

A list of the files after compilation is shown which includes the executable a.out for

the db.c and the intermediate C file lex.yy.c, which contains embedded lex file and the

executable compiled parser file that we created, first.

Figure 5 Compiling the Programs

 32

 Fig 7 shows the file structures after creating a new database dealer. We can see that by

default three files are created (in this case considered tables).

The three tables are

• Sys_tab

• Exp

• Predicate

The sys_tab table has information about all the tables in that particular database. The

exp table is used to store the expressions and the predicate table is used to store the predicates.

We can also see another table cardetails, which we created. Once we create the table cardetails,

an entry will be populated in sys_tab file with the table name cardetails.

 Fig 8 shows the various contents of the sys_tab, exp, predicate and the cardetails

tables.

Figure 6 Executing db.c

 33

Figure 7 Directories and Files

Files created after creating a new database are shown in the above figure. The files created are
the sys_tab, expression, predicate and car details.

Figure 8 Tables Contents after the run

 34

The following screenshot shows the select statement feature in the mini DBMS. The

various options shown are selecting data using wildcards, using column names and using various

operators in the condition clause.

Figure 9 Select statement

 Some execution examples of the select statements are shown in the figure 9. The

examples cover relational operators, wildcards and individual column selects.

 35

Figure 10 Creating Expressions

 Insert statement, which is also a part of the mini DBMS is shown in figure 10. Insert

statement can also insert expressions. In that case the expression is broken down into individual

predicates and the predicates are inserted into the predicate table and the expressions are inserted

in expression table. The lex parser is used for parsing.

 In Fig 10, the predicate Car.Model = Taurus repeats thrice in expressions 1, 2 and 6. But

still only one is stored as shown in the Fig 11. In the predicate table this is represented as

predicate id 1. In the expression table, Predicate id 1 is present in three places over multiple

expressions.

 36

The expressions and predicates from the back end is shown in the following figure

Figure 11 Table entrees after insertions

 Having shown screenshots of table creation, selection of data, insertions (in Fig 10) etc,

we now move on to expression evaluation. The following two screenshots shows how to evaluate

expressions under various conditions and against different data items.

 37

 The following screenshot (Figure 12) shows an evaluation for the data item Car.Model =

Taurus. The expressions that have predicates that match the data item are 1, 2 and 6. Even

though 2 and 6 have the predicate Car.Model = Taurus, those expressions are not evaluated to

true because as per rule, �all predicates in an expression� have to be evaluated to true for the

expression to be evaluated to true. Hence only expression 1 is evaluated to true.

Figure 12 Evaluation 1

 38

 Similarly, the following screenshots (Figure 13) show some evaluations of additional data

items along with expressions, which evaluate to true for the corresponding data items.

Additionally evaluation times in terms of microseconds are also shown for each evaluation.

Figure 13 Evaluation 2

 39

5. SAMPLE APPLICATION: E-NEWS

Every Internet buff, on a daily basis has to browse quite a few web sites to get

information/news on some of his areas of interest. It could be Sports, Music or even Information

Technology. Time is a constraint that every person in this world has. So, obviously, it would be

very nice to have a single point to get all the news a person needs to know daily, or whenever

possible.

Mobile e-News (hereafter referred as e-News) is a Web Service based application that

was developed for a Palm device. E-News was developed previously as part of a class project

[12] in �Topics in Mobile Computing�. J2ME technology was the backbone of the application.

Mobile e-News is an application that provides news that is updated quite often. The content of

the news displayed depends on the user who is logged in. When users register themselves in the

e-News website, they would provide their interests in different categories. When they login to the

application from the mobile device, they would get updated news according to the registered

categories.

 The categories were

• Music

• Sports

• Education

Some of the interests under each category were Rock, Jazz and Hip Hop under music,

Tennis, Basketball and Football under sports and UNIX, Java and C++ under education.

 40

Notice that e-News application requires storing a user�s interest and periodically

evaluating this interest against news items. This application is thus an excellent candidate for use

of expression data type.

In Section 5.1, the overall architecture of e-News application is described. Section 5.2

compares two approaches of implementing e-News. The first implementation doesn�t use

expression data type, while the second implementation makes use of the expression data type.

Section 5.3 compares the two implementations in terms of expressivity and performance.

5.1 E-NEWS ARCHITECTURE

The architecture that lay behind developing e-News is shown in the following figure

Figure 14 Mobile e-News - Architecture

 41

 The application was developed on a Web Services Model, using the architecture

suggested by Sun Microsystems in the Java Web Services Developer Pack 1.2. The

Application Server would communicate with a UDDI Registry to find out any relevant

Information Web Service Providers. Once this is ascertained, the Servlets would

communicate with various Web Services using SOAP and retrieve the relevant data before

populating the GUI for the user to view. User information is stored in a simple database

created in ORACLE.

5.2 SIMULATION OF E-NEWS WITH AND WITHOUT EXPRESSION
DATATYPE

This section compares and contrasts two approaches to implement e-News. Both the

approaches are not complete implementations of the e-News application. In both the approaches

only those features of the application are implemented that are necessary to contrast the

modeling of user interest and compare the performance. The first one, referred to as Before

Approach is a simulation of e-News using regular database joins, i.e., without using expression

datatype. The second approach referred to as After Approach is a simulation of e-News with

expression datatype.

In both approaches the interests of users are stored in a table called user_interest. In

the before approach, the user interest is a mapping between the user table which has all personal

information about the user (explained later in detail) to three other tables which store information

about the user interests by the use of regular database joins. In the after approach, the user

interest is a mapping between the same user table, which has personal information about the

user, and expression/predicate tables. Both these approaches are explained in detail in the later

sections of this chapter.

 42

5.2.1 Before Approach � Without Using Expression Datatype

We first describe how user interest is maintained and evaluated against the latest news

without using expression data type. This approach is referred to as Before Approach and is

similar to the database model used for the e-News class project.

In e-News class project, a first time user has to register his interests in the application.

During registration, the user chooses his area of interests from a list of available categories. The

available categories are music, sports, academics, etc. Within each category the user further

specifies characteristics of items that are of interest to him. The user interest is stored in tables

such as table, column, constant, user, user_interests etc. Details about these tables will be

explained in the next section. The user also enters their profile information such as address.

Other tables which were used are the �link� table and the user �authentication� table. Description

of these tables is given below.

Table 7 is a sample �link� table. This table has two columns �metadata� and �URL�.

The e-News application retrieves links to news items from different websites. URLs of these

items are stored in the �URL� column. Metadata about the item pointed to by the URL is stored

in the �metadata� column. This metadata is analogous to the data item which was already

explained before. More than one URL in the �link� table may have the same metadata. E.g., in

the sample �link� table there are two rows with metadata Subject.Sports = �Soccer.� So if a user�s

interest included soccer, then these two URLs will appear in sports section of the screen shown

to him. Note the given URLs are just sample values and may not be up to date.

 43

Metadata URL
Subject.Music = �Rock� http://music.yahoo.com/read/news/35553567
Subject.Sports = �Soccer� http://sports.espn.go.com/sports/soccer/news/story?id=2571758
Subject.Sports = �Soccer� http://sports.espn.go.com/sports/soccer/wc/news/story?id=2569310
Car.Model = �Taurus� http://www.cars.com/go/search/modelid=185/model=Taurus
Car.Year = 2000 http://www.cars.com/go/search/year2000&
�.. ������.

Table 7 Sample Link Table

Table 8 is a sample �authentication� table, which contains all password information for

the users. This table has two columns �user_id� and �password�. The user ids map to the user ids

in the user table.

User_ID Password
1 abc
2 def
4 ghi
�.. ������.

Table 8 Sample Authentication Table

When a user logs on to e-News, first, authentication is performed by verifying the user

id against the password in the authentication table. Next, user�s interests are retrieved from the

database. These interests are matched with the rows in the links table and corresponding news

items are populated on the screen. This may be termed as �first time data retrieval�.

Additionally, periodic requests are sent by the application to the web server to get

more recent news and updated in the links table. Hence, when the user stays logged in the

application for a considerable amount of time say till after the periodic link table refresh is done,

and if the user refreshes his/her browser, he/she would see more updated news on their interest.

This may be termed as �periodic data retrieval�.

 44

The tables links table and authentication table are functionally the same for both the

approaches. Hence, those tables are irrelevant for the comparison and are not implemented in

both the approaches.

The simulation of the before approach is done using DB2 as the database and C as the

interface language with embedded SQL in the program.

5.2.1.1 Data Model

The ER diagram for the before model is shown in the figure.

Table

PK table_id

table_name

Constant

PK Const_id

Const_name

Column1

PK column_id

column_name

User Interests

User_id
table_id
column_id
const_id

User1

PK User_id

name
Address

Figure 15 e-News Architecture � Before Case

Table Creation and Data Insertion

In order to explain a user interest, some sample data is entered and the statements used

to create table and perform inserts are shown in the following paragraphs. The insert statements

are used to create the user interests by making inserts to the following tables: table, col, constant,

users and user_interests.

 45

Table Creation SQLS

create table ls2user.tbl (tbl_id varchar(20), tbl_name varchar(20));

create table ls2user.col (col_id varchar(20), col_name varchar(20));

create table ls2user.const (const_id varchar(20), const_name varchar(20));

create table ls2user.user1 (user_id varchar(20), user_name varchar(20), user_address

varchar(20));

create table ls2user.user_interests (user_id varchar(20), tbl_id varchar(20), col_id varchar(20),

const_id varchar(20));

Table Insert SQLS

The insert statements are used to populate the user�s interests. Various categories,

columns, constants are populated in their respective tables. The unique id is also entered along

with the values. Insertions into the �user� table will have a list of users with their user ids.

Finally, insertions into the table user_interest are done which populates mapping values from all

other tables.

The insert statements create the user�s interest by creating a mapping across the various

tables. For example, the first the first user�s interest is created for the user with user_id �1�

(�john�) who is interested in the news items with table_id as �2� (�subject�), col id as �4� (�music�)

and constant as �1� (�rock�). So in plain words, it means John is interested in rock music and

wants all rock music related news.

 46

The following insert statements populate the various tables that are available into the

table called �table�. Here the available tables are �car� and �subject�.

insert into ls2user.tbl values ('1','car');

insert into ls2user.tbl values ('2','subject');

The following insert statements populate the table called �col�, which literally are the

attributes of the elements in the table �table�. The various attributes in our example are model,

price and year for car, and music, sports and acads for subject.

insert into ls2user.col values ('1','model');

insert into ls2user.col values ('2','price');

insert into ls2user.col values ('3','year');

insert into ls2user.col values ('4','music');

insert into ls2user.col values ('5','sports');

insert into ls2user.col values ('6','acads');

 The following insert statements populate the table called �const� which are the available

values for the elements in the table �col�. The various constants in our example are rock and jazz

for music, soccer and cricket for sports java for acads and 2000 for price or year.

insert into ls2user.const values ('1','rock');

insert into ls2user.const values ('2','soccer');

insert into ls2user.const values ('3','java');

insert into ls2user.const values ('4','jazz');

 47

insert into ls2user.const values ('5','cricket');

insert into ls2user.const values ('6','2000');

 The following insert statements populate the table called �user1� which creates the

information regarding the registered users. For example, the first insert statement below states

that �john� has the user id as �1� and lives in �111,aaa� address.

insert into ls2user.user1 values ('1','john','111,aaa');

insert into ls2user.user1 values ('2','allan','222,bbb');

insert into ls2user.user1 values ('3','tom','333,ccc');

insert into ls2user.user1 values ('4','tim','444,ddd');

insert into ls2user.user1 values ('5','mary','555,eee');

The following insert statements create the actual mapping between the users with their

interests. They populate the table called �user_interests�. Here the third expression means that

Allan is interested in cars that were manufactured in the year 2000.

insert into ls2user.user_interests values ('1','2','4','1');

insert into ls2user.user_interests values ('1','2','5','5');

insert into ls2user.user_interests values ('2','1','2','6');

insert into ls2user.user_interests values ('3','2','4','1');

insert into ls2user.user_interests values ('4','2','5','2');

 48

Screenshot of tables:

This screenshot is taken by issuing a select * from each of the tables as follows

select * from ls2user.tbl;

select * from ls2user.col;

select * from ls2user.const;

select * from ls2user.user1;

select * from ls2user.user_interests;

Figure 16 Table contents � Before Case

 49

Compilation and Program Execution:

• First step 'prep' creates the C file and the bind file. (sqcl part -> bind file, c part -> C file

are contained in the embedded sqc file)

• Second step 'bind' binds the file to the database.

• The 3rd step is compiling the C program created which is shown in the next screenshot

(VC++ to compile)

• The 'exe' file is created in the Debug directory.

• The fourth step is to run the executable 'before' with the arguments.

Figure 17 Prepping and executing � Before Case

 50

Figure 18 Compiling � Before Case

Output

The output evaluates the data item �subject.music = rock� The output is written to a file

�before_out.txt�. The file gives the list of users interested in rock music. The contents of the file

in this case are as follows.

john 111,aaa

tom 333,ccc

 51

5.2.2 After Approach � With Expression Datatype

After Approach is a simulation of e-News with expression datatype and is

implemented using the mini DBMS. In the after case, the user�s interests are modeled in terms of

expressions rather than a mere mapping between various tables. An expression would contain the

table, column and constant information that was in the before case. Also an operator is present

which provides additional information and provides additional functionality in retrieving the

data. The expressions are stored in two tables the expression and the predicate table. The

user_interests table contains a mapping of expressions with users rather than table, column,

constant with users. The link and authentication table remain the same as the before approach

and are not implemented in the simulation

5.2.2.1 Data Model

The ER diagram for the after model is shown in the figure 19.

Expression

PK Expression ID

Predicate ID

Predicate

PK Predicate ID

Table
Column
Operator
Constant

User Interest

User ID
Expression ID

User Info

PK User ID

Name
Address

Figure 19 Architecture � After Case

 52

Table Creation and Data Insertion

In the After Approach, we have to add only two tables to the mini DBMS, user and

user_interests. The predicate table and the expression table have already been created when a

new database is created as explained in the previous chapters. In order to model a user interest,

some sample data is entered. Here the user interests entered is the same as the user interests

modeled in the before case.

Creating the two tables �user� and �user_interests� using the �Create� statement from

the mini DBMS.

Figure 20 Table creation � After Case

 53

The following screenshot shows inserting data into the tables using Insert function of

mini DBMS. The insert statements are used to populate Expression and Predicate tables by

inserting expressions. It is also used to populate user table as well as user_interest table to create

user�s profiles.

Inserting data into the tables using Insert function of mini DBMS.

Figure 21 Expression Insertions � After Case

 54

Figure 22 Profile Insertions � After Case

Screenshots of tables:

Predicate table:

Figure 23 Predicate Table Contents � After Case

 55

Expression table:

Figure 24 Expression Table Contents � After Case

User table:

Figure 25 User Table Contents � After Case

User_interests table:

Figure 26 User Interests Table Contents � After Case

 56

Execution using EVALUATE operator.

Figure 27 Results � After Case

5.3 COMPARISON BETWEEN THE TWO APPROACHES

A comparison between the before and after approaches is done in this section. The

comparison is done on two concerns, expressivity and performance.

5.3.1 Expressivity

 In terms of expressivity the after approach, which is the approach with Expression

data type has advantages over the approach without the Expression data type.

 57

• Operator

In the before case, there is no operator that is involved in the predicate. However the

only operator that is specified �implicitly� is in the data and that is an �=� operator. In the after

case, the predicates stored can have relational operators. For example let us consider the

following example where the expression is as follows:

Car.Price < 10000

A data item, say Car.Price = 5000 will evaluate to true in the after case. In the before

case we cannot express this predicate in the database as it does not support the operator.

• More than one predicates over one data item

The before approach doesn�t allow creating conjunctions (i.e., ANDing) when

modeling user interest over one data item. E.g., with the before Approach it is possible to express

a profile of say �John� who is interested in cars with �Model� = �Taurus� and also in those cars

for which �Year� = 2000. However, the before approach doesn�t allow specification of user

interest only in those cars for which both �Model� = �Taurus� and �Year� = 2000.

5.3.2 Performance

Different platforms are used for the before and after case. The before case is

implemented using DB2 which is full-fledged DBMS, while the after case is implemented on

Mini-DBMS, a stripped-down DBMS implemented to support expressions. Differences between

these platforms will have a large impact on the performance of the two approaches. Important

differences include the following:

• DB2 has indexing support, while Mini-DBMS doesn�t support indexing.

Ability to create indexes will help DB2 perform better.

 58

• DB2 has all the functionality of a DBMS, including query optimization layer,

buffer cache, transaction layer, etc. Mini-DBMS was implemented mainly to

support expressions and has none of these layers that are needed in a full-fledged

DBMS. Absence of all these layers will significantly boost the performance of

Mini-DBMS.

These platform differences make a fair experimental performance very difficult.

Below we first give experimental results that compare the performance of the two approaches.

We then discuss these results to interpret the experimental results.

Experiments were carried out to compare the performance of the two approaches

based on the speed of evaluation. Sample runs were executed for both before and after cases. The

before case with �n� rows in the �user_interests� table was compared to �n� rows in the

�expression� table and the results are tabulated in micro seconds.

value
of �n�

Before � microseconds

After � microseconds

 Run 1 Run 2 Run 3 Average Run 1 Run 2 Run 3 Average
1 10 0.270 0.254 0.266 0.263333 0.01 0.01 0.01 0.01
2 100 0.288 0.286 0.291 0.288333 0.11 0.11 0.11 0.11
3 1000 0.327 0.373 0.349 0.349667 0.12 0.12 0.12 0.12

Table 9 Performance Comparison � Before and After Case

These statistics can be graphically shown in the following figure.

 59

Performance Comparison

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

10 100 1000

Value of 'n'

Ti
m

e
(m

ic
ro

se
co

nd
s)

Before
After

Figure 28 Performance Comparisons � Before and After Case

In the before case the data was entered manually through �Table Insert SQLS� which

have already been explained in section 5.2, whereas in the after case data was entered using the

script1.c. A sample screenshot is shown for the after case for 100 predicates.

 60

Figure 29 Script File

• We see a considerable increase in performance in the after case. The major cost in

database processing is due to I/O. We compare the amount of I/O in the two approaches

to understand if the cause of performance improvement is due to different amounts of I/O

for the two approaches or due to differences in the underlying platforms.

The SQL used to extract data in the before case is as follows:

 select user_name, user_address

 from ls2user.user_interests i

 inner join ls2user.user1 u

 on u.user_id = i.user_id

 inner join ls2user.tbl t

 61

 on i.tbl_id = t.tbl_id

 inner join ls2user.col c

 on i.col_id = c.col_id

 inner join ls2user.const d

 on i.const_id = d.const_id

 where

 tbl_name = :ltbl

 and col_name = :lcol

 and const_name = :lconst;

Consider the experimental run with n = 100. In this case, there are 100 rows in

�user_interest�, 4 rows in �table�, 4 rows in �column� and 4 rows in �constant.� Each row in

�user_interest� has 4 integers, while each row in �table,� �column� and �constant� has one integer

and one string. So total data volume in the before case is approximately

• 100*4 + 4*1 + 4*1 + 4*1 = 412 integers, and

• 4*1 + 4*1 + 4*1 = 12 strings.

In the after case for n = 100, there were 100 rows in the expression table and 34

distinct expressions. However, there were only 43 rows in the predicate table, since a predicate

that appears in multiple expressions is stored only once in the predicate table. Each row in

expression table has 2 integers. Each row in the predicate table has �table,� �column,� �operator�

and �constant� in addition to a predicate id. Assuming that the size of each �operator� equals an

integer, each row in predicate table is composed of 2 integers and 3 strings.

 62

Total data volume in the after case is approximately:

• 100*2 + 43*2 = 286 integers, and

• 43*3 = 129 strings.

Comparing the data volumes, we see that the before case requires less I/O. Hence, the

performance improvement in the after case is explained by the difference in the underlying

platform. Note that the I/O costs for the after case can be improved if appropriate indexes are

developed for expression data type. Research into such indices is a major topic for future work

for support of expressions in DBMS.

We conclude this section with some notes on the performance of the after case for

different values of n, i.e., for different number of rows in the expression table.

• Let p be the number of rows in the predicate table.

• If there are no indexes, n rows in the expression table and p rows in the

predicate table will need to be accessed.

• If in a particular set of expressions there is no sharing of predicates among

expressions, p = n. However, if there is any sharing of predicates, then p <

n. So in any case p <=n. The greater the sharing of predicates, the smaller p

will be relative to n.

• Rows in the predicate table are bigger than rows in the expression table. If

sharing of predicates increases with n, p will increase at a much slower rate

than the increase of n. Therefore, in such a situation the overall I/O costs

will also increase at a much slower than the rate of increase of n.

.

 63

6. FUTURE DEVELOPMENT

6.1 INDEXING EXPRESSIONS

We have seen that in large number of applications numerous expressions are involved.

So providing indexes on the column where the expressions are stored would make the

EVALUATE operator faster. Current implementation calculates the time taken for performing

the evaluation. If indexes were created on the column where expressions are stored it would be

easier to filter the predicates that are evaluated to true and then filter the expressions, which are

evaluated to true.

Some research has already been done on indexing expressions [7], with experimental

comparisons proving that adding indexes to expressions will increase performance.

Indexes should be created on both predicate table and the expression table which

would improve performance of the EVALUATE operator.

6.2 SUPPORTING EXPRESSION AS A NATIVE DATA TYPE

According to [1], in the current work, the column of VARCHAR data type with an

Expression constraint is treated as a column of Expression data type. So, the semantics of an

Expression instance are lost once it is fetched into a programmatic language like JAVA and C. In

order to allow operations on a transient (not stored in a table) version of an expression, native

support for the expression data type is required.

 64

Any expression with an invalid variable reference is automatically rejected by the data

type check. Additional operators such as an EQUAL operator to check for logical equivalence of

two expressions and an IMPLIES operator to determine if one expression implies another

expression can be supported by the Expression data type.

6.3 SUPPORTING EVALAUTE AS A NATIVE SQL OPERATOR

Presently, the EVALUATE operator cannot derive the context from the query in

which it is used. That is, the data item for which a set of expressions is evaluated should be

passed explicitly to the operator as an argument. By supporting EVALUATE operator as a native

SQL operator, its functionality can be enhanced to derive the required data items from the

current query context. This is beneficial when the data items for which a set of expressions is

evaluated are obtained from another table (included in the FROM clause of the same query).

With native SQL support, the EVALUATE operator can also consider alternate

execution plans by exploiting any indexes defined on the table storing the data items.

 65

7. CONCLUSION

Many applications require that user�s interest in expected data be persistently

maintained as conditional expressions and matched against the incoming data. It has been

proposed that an expression datatype can be added to Relational Database Management Systems

(RDBMS) to support this functionality in an efficient and expressive manner [1].

This thesis focused on supporting such a datatype in RDBMS by allowing expressions

to be stored in the database and by implementing a SQL EVALUATE operator to evaluate

expressions for given data. The syntax and semantics of the proposed expression datatype were

described. An implementation of this datatype and an EVALUATE operator on a mini-DBMS

was explained. An important feature of the implementation is that conditions that are common

among different expressions are stored only once. A sample application [12] that needs to

maintain user interest and match it to expected data was introduced. This application was used to

examine how well the needed functionality is supported by the expression datatype. In terms of

expressivity, the expression datatype was found to be much simpler in expressing user interest

than other means of representation.

This thesis thus demonstrated that expressions provide a flexible and powerful

mechanism for applications that match data to users based on user specified interest. Future work

to enhance expression support includes indexing expressions for faster performance, supporting

expressions as a native data type with additional logical operators and supporting EVALUATE

as a native SQL operator.

 66

REFERENCES

[1]. Yalamanchi, A., Srinivasan, J., and Gawlick, D., �Managing Expressions as Data in

Relational Database Systems�, CIDR Conference, Asilomar, 2003

[2] A. Rowstron, A-M. Kermarrec, M. Castro and P. Druschel, "SCRIBE: The design of a large-

scale event notification infrastructure", NGC2001, UCL, London, November 2001.

[3]. Chen, J., DeWitt, D. J., Tian F., and Wang,Y. �NiagaraCQ: A Scalable Continuous Query

System for Internet Databases�, In Proc. of the ACM SIGMOD Conf. on Management of Data,

2000.

[4]. Babu, S. and Widom, J. �Continuous Queries Over Data Streams�, SIGMOD Record, 30(3),

September 2001.

[5]. Ceri, S., Fraternali, P., and Paraboschi, S. �Datadriven one-to-one web site generation for

data- intensive applications�, Proc. on 25th International Conference on Very Large Databases

1999.

[6]. John R Levine, Tony Mason, Doug Brown, �Lex & Yacc� (A Nutshell Handbook)

(Paperback)

[7]. Raj Kiran Jampa, �Storing and Indexing Expressions in database systems�, Masters Thesis,

Department of Computer Science, University of New Orleans, December 2005.

 67

[8] Mark Perry, Christophe Delporte, Federico Demi, Animesh Ghosh, Marc Luong,

�Publish/Subscribe Applications�, MQSeries, September 2001

[9]. D. Terry, D. Goldberg, D. Nichols, and B. Oki. �Continuous Queries over Append-Only

Databases�, Proc of the ACM SIGMOD, June 1992

[10]. L. Liu, C. Pu, R. Barga, T. Zhou. �Differential Evaluation of Continual Queries�. Proc.

16th IEEE International Conference on Distributed Computing Systems, ICDCS 1996.

[11]. L. Liu, C. Pu, W. Tang. �Continual Queries for Internet Scale Event-Driven Information

Delivery�, IEEE Transactions on Knowledge and Data Engineering, July/August 1999.

[12] Mahesh Saravanan, Dr. Ming Hsing Chiu, �Mobile e-News�, Class Project, Department of

Computer Science, University of New Orleans, 2004

[13] http://www.research.ibm.com/distributedmessaging/gryphon.html

 68

VITA

Mahesh Saravanan was born on July 1980 in Tiruchirapalli, India. He completed his high school

from Campion Higher Secondary School, Tiruchirapalli. His high school was majoring

Mathematics, Sciences and Computer Science. Later in April 2002 he received his bachelor�s

degree in Computer Science Engineering from Madurai Kamaraj University, India. His

bachelor�s dissertation was developing a platform independent auto-dialer. He always dreamt to

pursue a master�s degree in Computer Science and if possible, continue his higher education to

pursue a doctoral degree. Later he moved to the United States to pursue his masters. He

graduated from University of New Orleans in May 2006 with a Masters degree in Computer

Science. He will later, in time look to pursue his doctoral studies.

	Expressions as Data in Relational Data Base Management Systems
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1. INTRODUCTION
	2. RELATED WORK
	3. THE EXPRESSION DATATYPE AND EXPRESSIONEVALUATION
	4. IMPLEMENTATION OF EXPRESSION DATATYPE
	5. SAMPLE APPLICATION: E-NEWS
	6. FUTURE DEVELOPMENT
	7. CONCLUSION
	REFERENCES

