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ABSTRACT 
 
 
 Numerous applications, such as publish/subscribe, website personalization, 

applications involving continuous queries, etc., require that user�s interest be persistently 

maintained and matched with the expected data. Conditional Expressions can be used to 

maintain user interests. This thesis focuses on the support for expression data type in 

relational database system, allowing storing of conditional expressions as �data� in 

columns of database tables and evaluating those expressions using an EVALUATE 

operator. With this context, expressions can be interpreted as descriptions, queries, and 

filters, and this significantly broadens the use of a relational database system to support 

new types of applications. The thesis presents an overview of the expression data type, 

storing the expressions, evaluating the stored expressions and shows how these 

applications can be easily supported with improved functionality. A sample application is 

also explained in order to show the importance of expressions in application context, with 

a comparison of the application with and without expressions. 
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1. INTRODUCTION 
 

 

A wide-range of applications, including Publish/Subscribe [8], Workflow, and Web-

site Personalization [5], require maintaining user�s interest in expected data as conditional 

expressions. The following example [8] shows a simple publish/subscribe application that 

requires maintaining user�s interest in expected data. 

Example: 

Let us consider a transport system where an operator has many things going on at once.  

• There may be buses following different routes with passengers who want to know the 

status of their bus and when it will arrive at their stop.  

• There may also be operators who need to know the status of the bus fleet from time to 

time.  

• More specifically the passengers would probably be interested in the current status of 

their bus, when it will arrive at their stop, and what buses do and will stop at their 

station. Most of what they will be interested in will be short-lived information. That is 

information that is transient and has little or no value to them once the moment has 

passed, since there will be more up-to-date information available or about to become 

available. 

 The operators, on the other hand, would possibly be interested in where all the buses are at a 

given time, whether they are on schedule or experiencing any delays, which buses have 

problems, and whether there are any breakdowns within the fleet. Some of this information is 

transient, but if it is retained it provides an historical picture of events that may be useful input 

to other processes. 
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 The transport provider would like to have all the information available to the different 

consumers via Web pages where they can select what information they need. In another context, 

the users could register their email addresses in web pages and select the information they need 

at the time of registration. User�s email addresses and the user�s interests can be stored in terms 

of conditional expressions. The information will arrive periodically in their inbox.  

 As the buses travel around their routes they need to log their position each time they stop, 

get delayed, or breaks down. This information can then be made available to all consumers on 

demand, or for subscribed users as alerts on delays, late schedules, etc. 

 

 Applications requiring continuous queries provide another motivation for use of 

conditional expressions. According to [3], continuous queries [4] [9] [10] [11] allow users to 

obtain new results from a database without having to issue the same query repeatedly. 

Continuous queries are especially useful in an environment like the Internet that comprises of 

large amounts of frequently changing information. A set of continuous queries can be modeled 

as a collection of expressions that can be stored for later querying usage. This is done to avoid 

redundant retrieval of results by consolidating a large set of queries to a smaller set of common 

expressions thereby saving a lot of time in data retrieval. 

 

 The following is an example of how and why we use expressions. 
 
Example: 

Let us consider a Car Buy/Sell business. There may be many forms of user�s interests, 

some of these modeling interests of sellers and others modeling interests of buyers. Some of them 

may be   
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• A buyer may be interested in one or more cars that match specific criteria, such as 

price, model, etc. 

• A car may be of interest to one or more buyers with matching criteria. 

• A seller may be interested in buyers in particular income brackets. 

 To match incoming data about cars to relevant buyers, and to match new buyers and 

sellers to each other, user interest may be modeled as conditional expressions that allow later 

manipulations and easier information retrieval. 

 

The information that are hence retrieved, may answer one of the following questions.  

• What cars are of interest to each consumer? 

• What sort of buyers are of interest to each seller? 

• What kind of demand exists for each car? This can help to determine optimal pricing. 

• Is there any unsatisfied demand? This can help to determine inventory requirements. 

 
This thesis proposes to manage such expressions as data in Relational Database 

Systems (RDBMS). This is accomplished 1) by allowing expressions to be stored in a column of 

a database table and 2) by introducing a SQL EVALUATE operator to evaluate expressions for 

given data. Expressions when combined with predicates on other forms of data in a database are 

a flexible and powerful way of expressing interest in a data item. The ability to evaluate 

expressions (via EVALUATE operator) in SQL, enables applications to take advantage of the 

expressive power of SQL to support complex subscription models.  

 

The terminology used in this thesis is explained in the rest of this chapter. In chapter 2 

this thesis explains the related work and points out the difference between the related work and 
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the approach taken in this thesis. Chapter 3 describes the expression datatype used in this thesis. 

In the following chapter implementation of the expression datatype in a simulated mini Data 

Base Management Systems (DBMS) is explained. Chapter 5 explains a sample application and 

describes the data management aspect of the application both with and without the use of 

expression data type. Chapter 6 outlines future enhancements and chapter 7 concludes the thesis. 

 

1.1 TERMINOLOGY USED: 
 

EXPRESSION: 

 An expression is a combination of identifiers, values, and operators that can be evaluated 

to obtain a result. Expressions can be used, for example, as a search condition when looking for 

data that meets a set of criteria. Expressions are a useful way to describe interests in expected 

data. 

 Expressions are nothing but conditions. They evaluate to true or false depending on the 

incoming data and the user�s interest.  

Example: 

  Let us consider a table, Car, which has details about various cars such as model, price 

year, color, mileage etc. A select statement against the table to select all cars less than 20000 

dollars and manufactured in or after 2000 can be represented as follows. 

Select * from Cars where Car.Price < 20000 and Car.Year >= 2000 

 Here, �Car.Price < 20000 and Car.Year >= 2000� is the expression. 
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PREDICATE: 

 Subparts of an expression are called predicates. A valid expression consists of one or 

more simple conditions called predicates. The predicates in the expression are linked by the 

logical operators AND and OR. In this thesis, however, only the AND operator is supported. 

Example:  

 Let us consider the same example as in expression of a table, Car, and let us consider the 

same expression. �Car.Price < 20000 and Car.Year >= 2000�. Here the predicates are  

Predicate 1 - �Car.Price < 20000� 

Predicate 2 - �Car.Year >= 2000� 

 Combining Predicates on other forms of data, like functions, in a database is just a 

powerful way of expressing interest.  

 

EVALUATE 

 The EVALUATE operator is used to compare stored expressions to incoming data items.  

The EVALUATE operator returns a 1 for an expression that matches the data item, and returns a 

0 for an expression that does not match the data item. For a given input data item, EVALUATE 

operator checks if any Expressions evaluates to True. EVALUATE operator returns 1 if an 

Expression is evaluated to True for a given input data-item. It will be discussed further in the 

coming sections of this document.  

 

DATA ITEM: 

 As described above, expressions model the condition part of queries in relational 

databases. Expressions are evaluated against data items. For expressions, data items can thus be 
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considered analogous to tables against which queries are evaluated.  An Expression evaluates to 

True if the incoming data-item meets the user�s interest, and if the incoming data-item does not 

meet the user�s interest then the Expression evaluates to False. 

 

DATA ITEM CONSTITUENT: 

 The data item constituents are the sub parts of a data item. The relationship of data item 

constituents to a data item is similar to the relationship of predicates to an expression.  

Example: 

 Let us consider a data item for the expression example that is given under �expression�. A 

data item may be of the form 

�Car.Price = 15000 and Car.Mileage = 25000 

The data item constituents for the above mentioned data item are 

Data item constituent 1: Car.Price = 15000 

Data item constituent 2: Car.Mileage = 25000 
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2. RELATED WORK 
 

Major software vendors, such as Oracle, IBM, Microsoft, provide support for 

conditional expressions. The approach taken by Oracle, described in [1], is most relevant to this 

thesis and is discussed next. A description of the functionality provided by IBM and Microsoft is 

given later in this chapter. The chapter concludes with a discussion, highlighting the differences 

in the approach used in this thesis and the existing approaches. 

 

2.1 EXPRESSION FILTER IN ORACLE 10 G 
 

Conditional expressions can be used to describe interest in information. One could 

consider expressions in isolation, as publish/subscribe systems generally do, or as part of a more 

general description of message consumers. Expression Filter is a feature of the Oracle Database 

10g that allows application developers to store, index, and evaluate conditional expressions in 

one or more columns of a relational table. Expressions are a useful way to describe interest in 

some expected data. Applications involving information distribution, demand analysis, and task 

assignment can benefit from Expression Filter.  

Oracle 10G Expression Filter matches expressions in a column with a data item passed 

by a SQL statement or with data stored in one or more tables, and evaluates each expression to 

be true or false. 

Example: 

Consider an application that matches buyers and sellers of cars. A table called 

Consumer describes the buyers. This table consists of multiple columns, such as Name, 

Identification, address of consumer, and their interest in a column called INTERESTS that has 

an Expression datatype. The INTERESTS column stores an expression for each consumer that 
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describes the kind of car the consumer wants to purchase, including make, model, year, mileage, 

color, options, and price. A sample table is shown below. 

 

Name ID Address Interests 
John U2001 1, A Car.Model = Taurus and Car.Year = 2000 
Ben U2003 2, B Car.Model = Toyota and Car.Price < 20000 
Anna U2004 3, C Car.Model = Taurus and Car.Year > 2002 

Table 1 Consumer Table 

 

Expression Filter can match incoming data with conditional expressions stored in the 

database to identify rows of interest. Specifically, a new SQL EVALUATE operator is provided 

that matches the incoming data items with the expressions to find prospective buyers. 

SELECT * FROM Consumers WHERE 

EVALUATE (Consumer.Interest) �, <DATA ITEM>) = 1 

This statement returns those rows for which the expressions match the values of the 

data item. Data about cars for sale is included with the EVALUATE operator in the SQL 

WHERE clause. 

The previous example showed how incoming data is filtered based on subscriber 

interest. With the addition of the expression data type in the relational database management 

system, it also becomes easy for a publisher to filter recipients of information as the following 

examples shows. 

A publisher could issue a query to find rows that satisfy certain criteria, for example, 

find every Customer who is located in a particular locality. The result set could be used to define 

the consumers of particular data item. In this case the publisher determines the recipients with a 

SELECT on the table.  
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The SQL EVALUATE operator also enables batch processing of incoming data. 

Data can be stored in a table called CARS and matched with expressions stored in the 

CONSUMER table using a join between the two tables.  

 

2.1.1 Elements 

Expression Filter includes the following elements 

• Expression datatype -  a virtual datatype created through a constraint placed on a 

VARCHAR column in a user table that stores expressions 

• EVALUATE operator - an operator that evaluates expressions for each data item 

• Administrative utilities - set of utilities that validate expressions and suggest optimal 

index structure 

• Expression indexing - enhances performance of the EVALUATE operator for large 

expression sets. Expression indexing is available in Oracle Database Enterprise Edition 

2.1.2 Expression Filter Usage Scenarios 

1. To screen incoming data  

• Find matches with expressed interests or conditions  

o We have found an item that may be exactly what you�re looking for (based on 

your personal preferences) 

o A suspect has just entered the country (given the terrorist screening guidelines 

provided by the authorities) 

• Find non-matches  

o This new piece of data does not meet one of (y)our standards 

o This record does not adhere to this business rule 
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2.   To screen existing data for new interests, conditions, standards or rules  

• Because of this new EU regulation, we have to redesign these products 

3.   To dynamically bundle up multiple queries 

 

2.1.3 Application Characteristics  

Expression Filter is a good fit for applications where the data has the following 

characteristics: 

• A large number of data items exists to be evaluated 

• Each data item has structured data attributes, for example VARCHAR, NUMBER, DATE, 

XMLTYPE 

• Incoming data is evaluated by a significant number of unique and persistent queries 

containing expressions 

• The expression (in SQL WHERE clause format) describes an interest in incoming data 

items 

• The expressions compare attributes to values using relational operators (=, !=, < , >, and 

so on) 

 

2.1.4 Sample Queries 

Let us consider a situation where a user (in this case a car dealer) is interested in all consumers 

interested in a Mustang car which was made in the year 2000 and which costs 18000 dollars and 

has run 22000 miles. Assume that the consumer information is stored in the Consumer table 

introduced in Section 2.1 where the Interest column stores their interests in the form of 
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expressions. A query to cater such a dealer�s need in terms of Oracle�s expression filter would be 

as follows: 

SELECT * FROM Consumer WHERE 

EVALUATE (Consumer.Interest, 'Model=>'Mustang'', Year=>2000, Price=>18000, 

Mileage=>22000�) = 1; 

 

2.1.5 Support by other vendors  

 Apart from Oracle, other vendors such as IBM, Microsoft etc have also contributed to 

support this functionality. For example IBM developed GRYPHON, IBM: Gryphon [13] AND 

Microsoft developed SCRIBE [2].  

 Gryphon was designed and implemented to provide content-based publish/subscribe 

functionality using the fast, scalable routing algorithms. Clients access the system through 

implementation of the Java Message Service (JMS) API.  

 Microsoft also supported a similar thing in SQL Server called SCRIBE (Notification 

Services). Scribe is a topic-based system. Scribe is the premier platform for developing and 

deploying highly scalable notification applications. Capitalizing on the Microsoft .NET 

Framework and SQL Server, Notification Services provides an easy-to-use programming model 

for generating and formatting notifications based on personal subscriptions. This device-

independent architecture can accept event data from any source and securely deliver it to a 

variety of mobile devices, including personal digital assistants (PDAs), cellular telephones, and 

more.  
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 Even though other vendors have support for publish/subscribe technology through 

specific systems such as Gryphon and Scribe, the main difference between Oracle expression 

data type is that, in Oracle, the functionality is built and implemented within the database. In 

other words, the expressions are stored in a column of a table so that no extra resource / utility 

needs to be installed separately.  

  

 Another advantage by using Oracle�s approach for publish/subscribe is that, by using 

Oracle�s approach, both publish and subscribe can be implemented with the same methodology, 

which means, it doesn�t have to be two different implementation approaches, one for publish and 

the other for subscription. 

 One other important feature of the Oracle�s expression data type is the EVALUATE 

operator which is not present in both Gryphon and the Scribe. The SQL EVALUATE operator 

saves time by matching a set of expressions with incoming data. This saves labor by allowing 

expressions to be inserted, updated, and deleted without changing the application and providing a 

results set that can be manipulated in the same SQL statement, for instance to order or group 

results. Storage of expressions as data also enables large expression sets to be indexed for 

performance. In contrast, a procedural approach stores results in a temporary table that must be 

queried for further processing, and those expressions cannot be indexed. As both Gryphon and 

Scribe are not database oriented approaches, indexing is not possible as in expressions. 
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2.2 DIFFERENCES BETWEEN ORACLE�S AND OUR APPROACH 
 

Though the expression filter from Oracle 10G is similar to the expression concept in 

terms of evaluation from our approach, there is one main difference in terms of complexity. 

Oracle 10G�s expression filter is applied over a single table, whereas, our approach of Evaluate 

operator can be applied over multiple tables as shown by the following example.  

Example: 

Let us assume a web application where there are two tables Car and Dealer. One 

table contains information about cars, including car price, car model, car year etc. (An example 

is shown in table 2). Another table contains information about car dealers, including dealer 

name, address, rating etc. (An example is shown in table 3). If a user is interested in buying a 

car which is around $10000 but he wants to buy from a good dealer, an expression to cater such 

a user�s interest would involve predicates that access data in both the tables car and dealer , and 

later on when we apply the EVALUATE operator, it would be across both the tables. For 

example in that case the expression would look something like this 

  Car.Price = 10000 AND Dealer.Rating = 10 

# Model Year Price Color Mileage
1 Taurus 1999 10000 Blue 40000 
2 Toyota 2000 13000 Black 20000 
3 BMW 2001 20000 Silver 23000 

Table 2 Car Table 

 

# Name Address Zip Rating Cars
1 Toyota 1, A 10172 7 400 
2 Auto Zeal 2, B 10183 5 200 
3 Car Zone 3, C 11289 10 125 

Table 3 Dealer Table 
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 The above expression is with the assumption that a rating of 10 is the maximum rating 

that can be assigned to a dealer. 

 One other difference between Oracle�s expression filter and this approach of expression 

datatype lies in terms of implementation. In our approach, the expressions are stored in separate 

tables as opposed to storing them in a column of the same table. This might be thought of as a 

downside, because by storing expressions in a separate expression table, additional join can be 

required between the expression table and the table with the user/customer info, but, having the 

expressions in separate table will be a more Normalized form of representation because different 

users might be interested in the same data item that might repeat many times in the user interests 

table in Oracle�s approach. 
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3. THE EXPRESSION DATATYPE AND EXPRESSION 
EVALUATION 

 

 This chapter describes the structure and semantics of expression datatype. The chapter 

begins by providing the grammar for an expression in the BNF form. Evaluation semantics are 

explained next which is followed by explaining how expressions are evaluated to true with an 

algorithm. 

 

3.1 EXPRESSION GRAMMAR 
 

Any expression can be said to be composed of one or many atomic expressions which 

are called Predicates. The BNF representation of the expression datatype is shown below.  

 
 Expression ::= Predicate | Predicate AND Expression 
 
 Predicate ::= Identifier Operator Constant | Constant Operator Identifier 
 
 Operator ::= < | > | = | <= | >= 
 
 Identifier ::= Table.Column 
 

Example: 

Let us consider the following expression 

 Car.Year = 2000 AND Car.Price < 20000 

The above expression can be represented in the BNF form as follows. For ease of understanding 

the grammar representation of the expression is shown from the identifier level. 

Identifier1: Car.Year 

Identifier2:  Car.Price 

Operator1:  = 
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Operator2:  <  

Constant1: 2000 

Constant2:  20000 

As per the grammar, Predicate1:  Identifier1 Operator1 Constant1  

Representing the our example in predicate form we have  

Predicate1: Car.Year = 2000 

Similarly we have Predicate 2 as  

Predicate2:  Car.Price < 20000 

Also as per grammar, Expression: Predicate1 AND Expression 

And bringing in the Predicate 2 gives, Expression = Predicate1 AND Predicate2 which is 

simplified as Expression: Car.Year = 2000 AND Car.Price < 20000 

Hence we have represented our sample expression in BNF form. 

 
3.2 SEMANTICS OF EVALUATION  
 

The EVALUATE operator is used to evaluate a data item against the stored 

expressions. The EVALUATE operator accepts a set of data item constituents in a data item, and 

those data item constituents are evaluated on all the stored expressions and in turn predicates. 

This operator returns a list of stored expressions that were evaluated to true against the provided 

data item. 

If there are more than one predicates in an expression, all predicates have to be 

evaluated to true for the expression to be evaluated to true.  
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Example: 

Consider the expression  

   Car.Year > 1995 AND Car .Year < 2000 

 In this expression, there are two predicates. 

  Consider this expression is evaluated against the following data item Car.Year = 1998 
 

In this case the expression would be evaluated to true because both the predicates are 

evaluated to true. 

Let us consider evaluation of one more data item  

 EVALUATE Car.Year = 2005 
 

Now, even though the first predicate is evaluated to true, the second predicate is false 

and hence the expression as a whole would be evaluated to false.   

 

3.3 EVALUATION CASES 
 

Based on the above discussion, we could frame three possibilities of evaluation at the 

predicate level and at the expression level. They are given as follows. 

 

3.3.1 Predicate Level 

At the predicate level, there are three possible outcomes when each predicate of an 

expression is evaluated for a data item. 

 

• CASE 1 � PREDICATE EVALUATES TO TRUE 

 In this case a) the data item contains a constituent matching the identifier in the predicate, 

and b) the predicate evaluates to true for the value in this data item constituent. 
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Example: 

Predicate: Car.Year > 1995      

Data item constituent:  Car.Year = 1999 

• CASE 2 � PREDICATE EVALUATES TO FALSE 

 In this case a) the data item contains a constituent matching the identifier in the predicate, 

and b) the predicate evaluates to false for the value in this data item constituent. 

Example: 

Predicate: Car.Year > 1995 

Data item constituent: Car.Year = 1992 

• CASE 3 � CANNOT EVALUATE PREDICATE 

 In this case the data item does not contain any constituent that matches the identifier in 

the predicate. 

Example: 

Predicate: Car.Year > 1995 

Data item: Car.Model = �TAURUS� AND Car.Price = 20000. 

3.3.2 Expression Level 

The expression is a combination of one or more predicates. Therefore at the 

expression level, there are three cases also. They are explained as follows. 

1. Expression evaluates to true if ALL the predicates in the expression evaluate to true. 

2. If at least one predicate in an expression evaluates to false, then the expression evaluates 

to false. 

3. If at least one predicate in an expression cannot be evaluated, then the expression 

evaluates to false. 
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If we consider expressions with two predicates, the above can be enumerated as 

follows. Note: �?� refers to predicates that cannot be evaluated. 

 

# Predicate 1 
Evaluates to 

Predicate 2 
Evaluates to 

Expression 
Evaluates to 

1 T T T 
2 T F F 
3 F T F 
4 F F F 
5 T ? F 
6 F ? F 
7 ? T F 
8 ? F F 

Table 4 Evaluation Possibilities 

 

3.4 ALGORITHM 
 

The algorithm developed for evaluation of expressions is as follows. First the given 

data item was taken and checked against all the predicates of all the conditional expressions to 

get a list of predicates that are evaluated to true. So now, irrespective of the expressions we have 

a set of predicates that are evaluated to true. Then, the list of predicates is compared with the 

expressions to get the list of expressions that have those predicates evaluated to true. All of the 

predicates in an expression have to be present in the list, which contains the list of predicates that 

are evaluated to true. So the resultant set is a set of expressions that are evaluated to true. The 

evaluation can be expressed in the following sequence of steps. 

1. Parse the data item to split them to individual data item constituents 

2. For each data item constituent 

• find the predicates that evaluate to true and store them in an array called 

�predicate out� array 
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3. Traverse through all expressions 

• If all the predicates of an expression are present in the �predicate out� array, that 

expression evaluates to true. 

• Otherwise, the expression evaluates to false. 
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4. IMPLEMENTATION OF EXPRESSION DATATYPE 
 

In order to implement the expression data type and to develop the 

EVALUATE operator, a mini DBMS was implemented in C. The DBMS supports few features 

that are essential for the testing of the expression data type and the EVALUATE operator. 

 

4.1 DATA STRUCTURE 
 
 The data structure as such is simple because only a few features of a real DBMS were 

implemented. Provisions are there to create a new database and to work on an existing database. 

Tables and schemas are preserved for each database. All the table information is stored in flat 

files with tab delimiters. All user table information is stored in a table called sys_tab. This is 

again a flat file with the same data structure. The other two tables that are created when a 

database is created are the Expression table and the Predicate table. These tables are explained 

under section 4.3.  

 
4.2 MINI DBMS - FEATURES 

 

Expressions, or in general data, has to be inserted, deleted or selected into and from 

the predicate tables and the expression tables for various purposes of testing and building the 

EVALUATE operator. For this purpose some features were implemented. The features that are 

implemented are: create a new database, work on an existing database, Create Table, Insert, 

Select and Delete. Let�s look into the details of a few.  
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Create Table: 

The create table feature creates a table with an entry in the sys_tab table. This feature 

does not allow duplicate tables in a database. So every time a new table is created, the name of 

the new table is validated against the entries in the sys_tab table. The code snippet for create 

table is shown.   

if (strcmp (arr[0],"create")==0) { 
  table[0]='\0'; 
  strcpy(table,arr[2]); 
  strcat(table,".txt"); 
  sys=fopen("sys_tab.txt","a+"); 
  i=0; 
  flag=0; 
  while (fscanf(sys,"%s",temp[i]) != EOF) { 
   if(strcmp(temp[i],table)==0){ 
    printf("\n Table already exists. "); 
    flag=1; 
   } 
   i++; 
  } 
  fflush(sys); 
  fclose(sys); 
  if(flag==0) { 
   sys=fopen("sys_tab.txt","a+"); 
   fprintf(sys,"%s\t\n",table); 
   tb=fopen(table,"a+"); 
   for(i=4;i<ncmd;i+=3) 
    fprintf(tb,"%s\t",arr[i]); 
   fprintf(tb,"\n"); 
   for(i=5;i<ncmd;i+=3) 
    fprintf(tb,"%s\t",arr[i]); 
   fprintf(tb,"\n"); 
   fclose(tb); 
   printf("table created"); 
  } 
  fflush(sys); 
            } 
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Example: 

Let us consider an example where we have to create a table with two columns �id� and �name�. In 

the mini DBMS, the creation syntax is the same as any SQL create function. The example is 

shown below. 

 CREATE TABLE employee (ID INT, NAME VARCHAR); 

 

Select 

The �select� feature is a typical select feature with limited options. There are six cases 

with which the select statement is built. They are listed below. 

• Select * 

1. Where clause contains �=� 

2. Where clause contains �<� or �<=� 

3. Where clause contains �>� or �>= 

• Select columns 

4. Where clause contains �=� 

5. Where clause contains �<� or �<=� 

6. Where clause contains �>� or �>= 

 

 Examples of selects from the previously created employee are shown below. 

• SELECT * FROM Employee WHERE NAME = �JOHN� 

• SELECT * FROM Employee WHERE ID < 1000 

• SELECT NAME FROM Employee WHERE ID = 30 
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4.3 STORING EXPRESSIONS: PREDICATE AND EXPRESSION TABLES 
 
  

This section describes how expressions are stored as predicates and how they are 

referenced in forms of table rows. User�s Interests are considered as sets of expressions. 

Expressions are said to be composed of one or more predicates. In this database, the predicates 

are stored in a table called the PREDICATE TABLE, and the expressions, which compose the 

predicates, are stored in another table called the EXPRESSION TABLE, with references to the 

predicates in the predicate table making it a kind of foreign key relationship. 

The data model diagram for the expression datatype, which shows the relation 

between the Predicate table and the Expression table, is shown below. 

  

Expression

PK Expression ID

Predicate ID

Predicate

PK Predicate ID

Table
Column
Operator
Constant

 
Figure 1 Data model � Expression datatype 

The predicate table contains the following fields.  

• Predicate ID  

• Table  

• Column  
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• Operator  

• Constant 

 

    The expression table contains the following fields. 

• Expression ID 

• Predicate ID 

 

An expression may consist of more than one predicate which implies that more than 

one row in the expression table are part of the same expression. 

 

Example: 

For example let us consider the following two expressions with different number of 

predicates, one with two and the other three. In this example, there are two tables Car and 

Dealer that are involved. Let�s say that Car has columns such as Model, Year, Price, Color etc 

and Dealer table has columns such as Name, Address, Rating, etc.  

1. Car.Model = �Taurus� AND Car.Year = 1998 

2. Car.Model = �Mercedes� AND Car.Year = 1998 AND Dealer.Rating = 10 

 

These two expressions are stored in the predicate table and the expression table as follows. 

 
Predicate ID Table Column Operator Constant 
1 Car Model = �Taurus� 
2 Car Year = 1998 
3 Car Model = �Mercedes� 
4 Dealer Rating = 10 

Table 5 Predicate Table 
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Expression ID Predicate ID
1 1 
1 2 
2 3 
2 2 
2 4 

Table 6 Expression Table 

 In the above example, there are two expressions one with two and the second with three 

predicates that are stored. Hence there are totally five predicates when we consider both the 

expressions. Even though there are totally five predicates in the two expressions, only four 

entries are entered in the predicate table. This is because the predicate with predicate id 2 is 

repeating in both the predicates and is stored only once. In other words, predicates that are 

common among different expressions are stored only once. 

 As explained before, more than one table can be involved in this approach of expressions. 

In other words, expressions can be specified over multiple tables. 

 

4.2 PARSING THE EXPRESSIONS - LEX PARSER 
 
 

A parser was developed using the LEX tool to parse the expressions and separate the 

tokens to be stored in the predicate table. The tokens were table, column, operator and constant. 

The parser was built in such a way that the expressions can be reversed, i.e. the column name can 

come after the constant. For example 

Car.Model = �Taurus� 

 (or) 

�Taurus� = Car.Model 
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Initial research was done on Lex parser through various books and papers. One such 

book is [6]. The parser contains various segments, which check for a particular group of literals. 

One such segment checks for alphabetical words and if there are any, stores the words in an 

array. The code segment is shown below. 

[a-zA-Z]*\.[a-zA-Z]+ { 
for (i=0;i<strlen(yytext);i++) 
 if (yytext[i]=='.') 
  break; 
 else 
  temptable[i]=yytext[i]; 
temptable[i]=='\0'; 
k=0; 
for(j=i+1;j<strlen(yytext);j++) 
{ 
 tempcolumn[k]=yytext[j]; 
 k++; 
} 
tempcolumn[k]='\0'; 
strcpy(column[v],tempcolumn); 
strcpy(table[u],temptable); 
u++; 
v++; 
} 

 

If there are the words �and� or �AND� then the number of predicates are increased. 

"AND" |  

"and" {   

prid++;} 

The operators checked are as follows. 

"=" | 

"<" | 

">" | 

"<=" | 
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">=" {  

strcpy(operator[w],yytext); 

w++; 

} 

 

There are some special words such as EVALUATE, INSERT, EXPRESSION etc, which 

are also checked, and corresponding actions are taken. The main token which is checked is the 

�;�, which denotes the end of a query or expression. Therefore if a �;� is found then that is where 

the actual processing starts to store the expression and predicates. 

 

4.3 ENTERING SAMPLE DATA - THE SCRIPT FILE 
 
 

In order to populate the expression table and the predicate table with sample values a 

script was written. This script generates the given number of predicates and accordingly 

expressions with provisions of sample values as input. With the sample values, random 

combinations are generated to give a complete test set. 

 

The script file is named as script1.c and the compilation and a sample run is shown in 

Fig 2. The predicate table and the expression table generated as a result of the script file are also 

shown in Fig 3 and 4 respectively. 

 

The expression file has predicate ids that are generated in the predicate tables. Also 

there are different numbers of predicates in an expression; i.e. some expressions have one 

predicate, some two, some three and so on. 
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The options that are present in under the script file are  

1. Generate Predicates and Expressions 

2. Generate user interests 

3. Generate news items.  

4. Exit 

 Option 1 generates predicates and expressions and populates them to the predicate and 

expression tables correspondingly. Options 2 and 3 are used to populate user and user_interests 

tables respectively which are explained in the next chapter. 

 

Figure 2 Script File 

The following figure shows some inserted values in the predicate table as a result of executing 

the script file option 1. 
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Figure 3 Predicate Table Screenshot 

And those predicates are created as part of expressions, which are inserted into the expression 

table. 

 

Figure 4 Expression Table Screenshot 
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4.4 EXECUTION OF EVALUATION 
 
 

The following screenshots show the compilation and execution of the programs. The 

first screen below shows the directory structure before compilation, which has the three program 

files script1.c, db.c and the lex parser, parse.l. 

First in order to create a new database and start entering our commands, we compile 

the db.c program using gcc compiler. Then the lex parser is compiled to form the intermediate 

file, which is then compiled using the gcc compiler to get the executable object file �first�.  

A list of the files after compilation is shown which includes the executable a.out for 

the db.c and the intermediate C file lex.yy.c, which contains embedded lex file and the 

executable compiled parser file that we created, first. 

 

 

Figure 5 Compiling the Programs 
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     Fig 7 shows the file structures after creating a new database dealer. We can see that by 

default three files are created (in this case considered tables).  

The three tables are  

• Sys_tab 

• Exp 

• Predicate 

 

The sys_tab table has information about all the tables in that particular database. The 

exp table is used to store the expressions and the predicate table is used to store the predicates. 

We can also see another table cardetails, which we created. Once we create the table cardetails, 

an entry will be populated in sys_tab file with the table name cardetails. 

      Fig 8 shows the various contents of the sys_tab, exp, predicate and the cardetails 

tables. 

 

Figure 6   Executing db.c 
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Figure 7   Directories and Files 

 
Files created after creating a new database are shown in the above figure. The files created are 
the sys_tab, expression, predicate and car details.  
 

 

Figure 8 Tables Contents after the run 
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The following screenshot shows the select statement feature in the mini DBMS. The 

various options shown are selecting data using wildcards, using column names and using various 

operators in the condition clause. 

 

 

Figure 9 Select statement 

 

 Some execution examples of the select statements are shown in the figure 9. The 

examples cover relational operators, wildcards and individual column selects. 
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Figure 10 Creating Expressions 

 

 Insert statement, which is also a part of the mini DBMS is shown in figure 10. Insert 

statement can also insert expressions. In that case the expression is broken down into individual 

predicates and the predicates are inserted into the predicate table and the expressions are inserted 

in expression table. The lex parser is used for parsing. 

 In Fig 10, the predicate Car.Model = Taurus repeats thrice in expressions 1, 2 and 6. But 

still only one is stored as shown in the Fig 11. In the predicate table this is represented as 

predicate id 1. In the expression table, Predicate id 1 is present in three places over multiple 

expressions.  
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The expressions and predicates from the back end is shown in the following figure  

 

Figure 11 Table entrees after insertions 

 

 Having shown screenshots of table creation, selection of data, insertions (in Fig 10) etc, 

we now move on to expression evaluation. The following two screenshots shows how to evaluate 

expressions under various conditions and against different data items. 
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 The following screenshot (Figure 12) shows an evaluation for the data item Car.Model = 

Taurus. The expressions that have predicates that match the data item are 1, 2 and 6. Even 

though 2 and 6 have the predicate Car.Model = Taurus, those expressions are not evaluated to 

true because as per rule, �all predicates in an expression� have to be evaluated to true for the 

expression to be evaluated to true. Hence only expression 1 is evaluated to true. 

 

 

Figure 12 Evaluation 1 
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 Similarly, the following screenshots (Figure 13) show some evaluations of additional data 

items along with expressions, which evaluate to true for the corresponding data items. 

Additionally evaluation times in terms of microseconds are also shown for each evaluation. 

 

 

Figure 13 Evaluation 2 
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5. SAMPLE APPLICATION: E-NEWS 
 

 
Every Internet buff, on a daily basis has to browse quite a few web sites to get 

information/news on some of his areas of interest. It could be Sports, Music or even Information 

Technology. Time is a constraint that every person in this world has. So, obviously, it would be 

very nice to have a single point to get all the news a person needs to know daily, or whenever 

possible.  

Mobile e-News (hereafter referred as e-News) is a Web Service based application that 

was developed for a Palm device. E-News was developed previously as part of a class project 

[12] in �Topics in Mobile Computing�. J2ME technology was the backbone of the application. 

Mobile e-News is an application that provides news that is updated quite often. The content of 

the news displayed depends on the user who is logged in. When users register themselves in the 

e-News website, they would provide their interests in different categories. When they login to the 

application from the mobile device, they would get updated news according to the registered 

categories. 

 The categories were  

• Music 

• Sports 

• Education 

Some of the interests under each category were Rock, Jazz and Hip Hop under music, 

Tennis, Basketball and Football under sports and UNIX, Java and C++ under education. 
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Notice that e-News application requires storing a user�s interest and periodically 

evaluating this interest against news items. This application is thus an excellent candidate for use 

of expression data type. 

In Section 5.1, the overall architecture of e-News application is described. Section 5.2 

compares two approaches of implementing e-News. The first implementation doesn�t use 

expression data type, while the second implementation makes use of the expression data type. 

Section 5.3 compares the two implementations in terms of expressivity and performance. 

 

5.1 E-NEWS ARCHITECTURE  
 
The architecture that lay behind developing e-News is shown in the following figure 

 

 

Figure 14 Mobile e-News  - Architecture 
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 The application was developed on a Web Services Model, using the architecture 

suggested by Sun Microsystems in the Java Web Services Developer Pack 1.2. The 

Application Server would communicate with a UDDI Registry to find out any relevant 

Information Web Service Providers. Once this is ascertained, the Servlets would 

communicate with various Web Services using SOAP and retrieve the relevant data before 

populating the GUI for the user to view. User information is stored in a simple database 

created in ORACLE.  

 

5.2 SIMULATION OF E-NEWS WITH AND WITHOUT EXPRESSION 
DATATYPE  
 

This section compares and contrasts two approaches to implement e-News. Both the 

approaches are not complete implementations of the e-News application. In both the approaches 

only those features of the application are implemented that are necessary to contrast the 

modeling of user interest and compare the performance. The first one, referred to as Before 

Approach is a simulation of e-News using regular database joins, i.e., without using expression 

datatype. The second approach referred to as After Approach is a simulation of e-News with 

expression datatype.  

In both approaches the interests of users are stored in a table called user_interest. In 

the before approach, the user interest is a mapping between the user table which has all personal 

information about the user (explained later in detail) to three other tables which store information 

about the  user interests by the use of regular database joins. In the after approach, the user 

interest is a mapping between the same user table, which has personal information about the 

user, and expression/predicate tables. Both these approaches are explained in detail in the later 

sections of this chapter. 
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5.2.1 Before Approach � Without Using Expression Datatype 

We first describe how user interest is maintained and evaluated against the latest news 

without using expression data type. This approach is referred to as Before Approach and is 

similar to the database model used for the e-News class project.  

In e-News class project, a first time user has to register his interests in the application. 

During registration, the user chooses his area of interests from a list of available categories. The 

available categories are music, sports, academics, etc. Within each category the user further 

specifies characteristics of items that are of interest to him. The user interest is stored in tables 

such as table, column, constant, user, user_interests etc. Details about these tables will be 

explained in the next section. The user also enters their profile information such as address. 

Other tables which were used are the �link� table and the user �authentication� table. Description 

of these tables is given below. 

Table 7 is a sample �link� table. This table has two columns �metadata� and �URL�.  

The e-News application retrieves links to news items from different websites. URLs of these 

items are stored in the �URL� column. Metadata about the item pointed to by the URL is stored 

in the �metadata� column. This metadata is analogous to the data item which was already 

explained before. More than one URL in the �link� table may have the same metadata. E.g., in 

the sample �link� table there are two rows with metadata Subject.Sports = �Soccer.� So if a user�s 

interest included soccer, then these two URLs will appear in sports section of the screen shown 

to him. Note the given URLs are just sample values and may not be up to date. 
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Metadata URL 
Subject.Music = �Rock� http://music.yahoo.com/read/news/35553567 
Subject.Sports = �Soccer� http://sports.espn.go.com/sports/soccer/news/story?id=2571758 
Subject.Sports = �Soccer� http://sports.espn.go.com/sports/soccer/wc/news/story?id=2569310 
Car.Model = �Taurus� http://www.cars.com/go/search/modelid=185/model=Taurus 
Car.Year = 2000 http://www.cars.com/go/search/year2000& 
�.. ������. 

Table 7 Sample Link Table 

 
 

Table 8 is a sample �authentication� table, which contains all password information for 

the users. This table has two columns �user_id� and �password�.  The user ids map to the user ids 

in the user table.  

 

User_ID Password 
1 abc 
2 def 
4 ghi 
�.. ������. 

Table 8 Sample Authentication Table 

 

When a user logs on to e-News, first, authentication is performed by verifying the user 

id against the password in the authentication table. Next, user�s interests are retrieved from the 

database. These interests are matched with the rows in the links table and corresponding news 

items are populated on the screen. This may be termed as �first time data retrieval�.  

Additionally, periodic requests are sent by the application to the web server to get 

more recent news and updated in the links table. Hence, when the user stays logged in the 

application for a considerable amount of time say till after the periodic link table refresh is done, 

and if the user refreshes his/her browser, he/she would see more updated news on their interest. 

This may be termed as �periodic data retrieval�. 
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The tables links table and authentication table are functionally the same for both the 

approaches. Hence, those tables are irrelevant for the comparison and are not implemented in 

both the approaches. 

The simulation of the before approach is done using DB2 as the database and C as the 

interface language with embedded SQL in the program. 

5.2.1.1 Data Model  

The ER diagram for the before model is shown in the figure.  

Table

PK table_id

table_name

Constant

PK Const_id

Const_name

Column1

PK column_id

column_name

User Interests

User_id
table_id
column_id
const_id

User1

PK User_id

name
Address

 

Figure 15 e-News Architecture � Before Case 

 

Table Creation and Data Insertion 

In order to explain a user interest, some sample data is entered and the statements used 

to create table and perform inserts are shown in the following paragraphs. The insert statements 

are used to create the user interests by making inserts to the following tables: table, col, constant, 

users and user_interests. 
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Table Creation SQLS 

create table ls2user.tbl ( tbl_id varchar(20), tbl_name varchar(20));  

create table ls2user.col ( col_id varchar(20), col_name varchar(20));  

create table ls2user.const (const_id varchar(20), const_name varchar(20));  

create table ls2user.user1 ( user_id varchar(20), user_name varchar(20), user_address 

varchar(20));  

create table ls2user.user_interests ( user_id varchar(20), tbl_id varchar(20), col_id varchar(20), 

const_id varchar(20));  

 

Table Insert SQLS 

The insert statements are used to populate the user�s interests. Various categories, 

columns, constants are populated in their respective tables. The unique id is also entered along 

with the values. Insertions into the �user� table will have a list of users with their user ids. 

Finally, insertions into the table user_interest are done which populates mapping values from all 

other tables. 

 

The insert statements create the user�s interest by creating a mapping across the various 

tables. For example, the first the first user�s interest is created for the user with user_id �1� 

(�john�) who is interested in the news items with table_id as �2� (�subject�), col id as �4� (�music�) 

and constant as �1� (�rock�). So in plain words, it means John is interested in rock music and 

wants all rock music related news. 
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The following insert statements populate the various tables that are available into the 

table called �table�. Here the available tables are �car� and �subject�. 

insert into ls2user.tbl values ('1','car');  

insert into ls2user.tbl values ('2','subject');  

 

The following insert statements populate the table called �col�, which literally are the 

attributes of the elements in the table �table�. The various attributes in our example are model, 

price and year for car, and music, sports and acads for subject. 

 

insert into ls2user.col values ('1','model');  

insert into ls2user.col values ('2','price');  

insert into ls2user.col values ('3','year');  

insert into ls2user.col values ('4','music');  

insert into ls2user.col values ('5','sports');  

insert into ls2user.col values ('6','acads');  

 

   The following insert statements populate the table called �const� which are the available 

values for the elements in the table �col�. The various constants in our example are rock and jazz 

for music, soccer and cricket for sports java for acads and 2000 for price or year. 

insert into ls2user.const values ('1','rock');  

insert into ls2user.const values ('2','soccer');  

insert into ls2user.const values ('3','java');  

insert into ls2user.const values ('4','jazz');  
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insert into ls2user.const values ('5','cricket');  

insert into ls2user.const values ('6','2000');  

 

  The following insert statements populate the table called �user1� which creates the 

information regarding the registered users. For example, the first insert statement below states 

that �john� has the user id as �1� and lives in �111,aaa� address. 

insert into ls2user.user1 values ('1','john','111,aaa');  

insert into ls2user.user1 values ('2','allan','222,bbb');  

insert into ls2user.user1 values ('3','tom','333,ccc');  

insert into ls2user.user1 values ('4','tim','444,ddd');  

insert into ls2user.user1 values ('5','mary','555,eee');  

 

The following insert statements create the actual mapping between the users with their 

interests. They populate the table called �user_interests�. Here the third expression means that 

Allan is interested in cars that were manufactured in the year 2000. 

insert into ls2user.user_interests values ('1','2','4','1');  

insert into ls2user.user_interests values ('1','2','5','5');  

insert into ls2user.user_interests values ('2','1','2','6');  

insert into ls2user.user_interests values ('3','2','4','1');  

insert into ls2user.user_interests values ('4','2','5','2'); 
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Screenshot of tables: 

This screenshot is taken by issuing a select * from each of the tables as follows 

select * from ls2user.tbl;  

select * from ls2user.col;  

select * from ls2user.const;  

select * from ls2user.user1;  

select * from ls2user.user_interests; 

 

Figure 16 Table contents � Before Case 
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Compilation and Program Execution:  

• First step 'prep' creates the C file and the bind file. (sqcl part -> bind file, c part -> C file 

are contained in the embedded sqc file)  

• Second step 'bind' binds the file to the database.  

• The 3rd step is compiling the C program created which is shown in the next screenshot 

(VC++ to compile)  

• The 'exe' file is created in the Debug directory.  

• The fourth step is to run the executable 'before' with the arguments. 

 

 
 

Figure 17 Prepping and executing � Before Case 
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Figure 18 Compiling � Before Case 

 

Output  

The output evaluates the data item �subject.music = rock� The output is written to a file 

�before_out.txt�.  The file gives the list of users interested in rock music. The contents of the file 

in this case are as follows. 

john 111,aaa 

tom 333,ccc 
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5.2.2 After Approach � With Expression Datatype 

After Approach is a simulation of e-News with expression datatype and is 

implemented using the mini DBMS. In the after case, the user�s interests are modeled in terms of 

expressions rather than a mere mapping between various tables. An expression would contain the 

table, column and constant information that was in the before case. Also an operator is present 

which provides additional information and provides additional functionality in retrieving the 

data. The expressions are stored in two tables the expression and the predicate table. The 

user_interests table contains a mapping of expressions with users rather than table, column, 

constant with users. The link and authentication table remain the same as the before approach 

and are not implemented in the simulation 

 

5.2.2.1 Data Model  

The ER diagram for the after model is shown in the figure 19.  

Expression

PK Expression ID

Predicate ID

Predicate

PK Predicate ID

Table
Column
Operator
Constant

User Interest

User ID
Expression ID

User Info

PK User ID

Name
Address

 
Figure 19 Architecture � After Case 
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Table Creation and Data Insertion 

In the After Approach, we have to add only two tables to the mini DBMS, user and 

user_interests. The predicate table and the expression table have already been created when a 

new database is created as explained in the previous chapters. In order to model a user interest, 

some sample data is entered. Here the user interests entered is the same as the user interests 

modeled in the before case. 

 

Creating the two tables �user� and �user_interests� using the �Create� statement from 

the mini DBMS. 

 

Figure 20 Table creation � After Case 
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The following screenshot shows inserting data into the tables using Insert function of 

mini DBMS. The insert statements are used to populate Expression and Predicate tables by 

inserting expressions. It is also used to populate user table as well as user_interest table to create 

user�s profiles. 

Inserting data into the tables using Insert function of mini DBMS. 

 

Figure 21 Expression Insertions � After Case 
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Figure 22 Profile Insertions � After Case 

Screenshots of tables: 

Predicate table: 

 

Figure 23 Predicate Table Contents � After Case 
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Expression table: 

 

Figure 24 Expression Table Contents � After Case 

User table: 

 

Figure 25 User Table Contents � After Case 

User_interests table: 

 

Figure 26 User Interests Table Contents � After Case 
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Execution using EVALUATE operator. 

 

Figure 27 Results � After Case  

 

 
5.3 COMPARISON BETWEEN THE TWO APPROACHES  
 
 

A comparison between the before and after approaches is done in this section. The 

comparison is done on two concerns, expressivity and performance. 

 

5.3.1 Expressivity 

 In terms of expressivity the after approach, which is the approach with Expression 

data type has advantages over the approach without the Expression data type. 
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• Operator 

In the before case, there is no operator that is involved in the predicate. However the 

only operator that is specified �implicitly� is in the data and that is an �=� operator.  In the after 

case, the predicates stored can have relational operators. For example let us consider the 

following example where the expression is as follows: 

Car.Price < 10000 

A data item, say Car.Price = 5000 will evaluate to true in the after case. In the before 

case we cannot express this predicate in the database as it does not support the operator.  

• More than one predicates over one data item 

The before approach doesn�t allow creating conjunctions (i.e., ANDing) when 

modeling user interest over one data item. E.g., with the before Approach it is possible to express 

a profile of say �John� who is interested in cars with �Model� = �Taurus� and also in those cars 

for which  �Year� = 2000. However, the before approach doesn�t allow specification of user 

interest only in those cars for which both �Model� = �Taurus� and �Year� = 2000. 

5.3.2 Performance 

Different platforms are used for the before and after case. The before case is 

implemented using DB2 which is full-fledged DBMS, while the after case is implemented on 

Mini-DBMS, a stripped-down DBMS implemented to support expressions. Differences between 

these platforms will have a large impact on the performance of the two approaches. Important 

differences include the following: 

• DB2 has indexing support, while Mini-DBMS doesn�t support indexing. 

Ability to create indexes will help DB2 perform better. 
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• DB2 has all the functionality of a DBMS, including query optimization layer, 

buffer cache, transaction layer, etc. Mini-DBMS was implemented mainly to 

support expressions and has none of these layers that are needed in a full-fledged 

DBMS. Absence of all these layers will significantly boost the performance of 

Mini-DBMS. 

These platform differences make a fair experimental performance very difficult. 

Below we first give experimental results that compare the performance of the two approaches. 

We then discuss these results to interpret the experimental results. 

Experiments were carried out to compare the performance of the two approaches 

based on the speed of evaluation. Sample runs were executed for both before and after cases. The 

before case with �n� rows in the �user_interests� table was compared to �n� rows in the 

�expression� table and the results are tabulated in micro seconds. 

value 
of �n� 

Before � microseconds 
 

After � microseconds 
# 

 Run 1 Run 2 Run 3 Average Run 1 Run 2 Run 3 Average 
1 10 0.270 0.254 0.266 0.263333 0.01 0.01 0.01 0.01 
2 100 0.288 0.286 0.291 0.288333 0.11 0.11 0.11 0.11 
3 1000 0.327 0.373 0.349 0.349667 0.12 0.12 0.12 0.12 

Table 9 Performance Comparison � Before and After Case 

These statistics can be graphically shown in the following figure. 
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Performance Comparison
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Figure 28 Performance Comparisons � Before and After Case 

 

In the before case the data was entered manually through �Table Insert SQLS� which 

have already been explained in section 5.2, whereas in the after case data was entered using the 

script1.c. A sample screenshot is shown for the after case for 100 predicates. 
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Figure 29 Script File 

 

• We see a considerable increase in performance in the after case. The major cost in 

database processing is due to I/O. We compare the amount of I/O in the two approaches 

to understand if the cause of performance improvement is due to different amounts of I/O 

for the two approaches or due to differences in the underlying platforms. 

The SQL used to extract data in the before case is as follows: 

 select user_name, user_address 

  from ls2user.user_interests i  

      inner join ls2user.user1 u 

   on u.user_id = i.user_id 

      inner join ls2user.tbl t 
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   on i.tbl_id = t.tbl_id 

      inner join ls2user.col c 

   on i.col_id = c.col_id 

      inner join ls2user.const d 

   on i.const_id = d.const_id 

  where 

      tbl_name = :ltbl  

      and col_name = :lcol 

      and const_name = :lconst; 

Consider the experimental run with n = 100. In this case, there are 100 rows in 

�user_interest�, 4 rows in �table�, 4 rows in �column� and 4 rows in �constant.� Each row in 

�user_interest� has 4 integers, while each row in �table,� �column� and �constant� has one integer 

and one string. So total data volume in the before case is approximately 

• 100*4 + 4*1 + 4*1 + 4*1 = 412 integers, and 

• 4*1 + 4*1 + 4*1 = 12 strings. 

In the after case for n = 100, there were 100 rows in the expression table and 34 

distinct expressions. However, there were only 43 rows in the predicate table, since a predicate 

that appears in multiple expressions is stored only once in the predicate table. Each row in 

expression table has 2 integers. Each row in the predicate table has �table,� �column,� �operator� 

and �constant� in addition to a predicate id. Assuming that the size of each �operator� equals an 

integer, each row in predicate table is composed of 2 integers and 3 strings.  
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Total data volume in the after case is approximately: 

• 100*2 + 43*2 = 286 integers, and 

• 43*3 = 129 strings. 

Comparing the data volumes, we see that the before case requires less I/O. Hence, the 

performance improvement in the after case is explained by the difference in the underlying 

platform. Note that the I/O costs for the after case can be improved if appropriate indexes are 

developed for expression data type. Research into such indices is a major topic for future work 

for support of expressions in DBMS. 

We conclude this section with some notes on the performance of the after case for 

different values of n, i.e., for different number of rows in the expression table. 

• Let p be the number of rows in the predicate table. 

• If there are no indexes, n rows in the expression table and p rows in the 

predicate table will need to be accessed. 

• If in a particular set of expressions there is no sharing of predicates among 

expressions, p = n. However, if there is any sharing of predicates, then p < 

n. So in any case p <=n. The greater the sharing of predicates, the smaller p 

will be relative to n. 

• Rows in the predicate table are bigger than rows in the expression table. If 

sharing of predicates increases with n, p will increase at a much slower rate 

than the increase of n. Therefore, in such a situation the overall I/O costs 

will also increase at a much slower than the rate of increase of n. 

. 
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6. FUTURE DEVELOPMENT 

 
 

6.1 INDEXING EXPRESSIONS  
 

We have seen that in large number of applications numerous expressions are involved. 

So providing indexes on the column where the expressions are stored would make the 

EVALUATE operator faster. Current implementation calculates the time taken for performing 

the evaluation. If indexes were created on the column where expressions are stored it would be 

easier to filter the predicates that are evaluated to true and then filter the expressions, which are 

evaluated to true. 

Some research has already been done on indexing expressions [7], with experimental 

comparisons proving that adding indexes to expressions will increase performance. 

Indexes should be created on both predicate table and the expression table which 

would improve performance of the EVALUATE operator.  

 

6.2 SUPPORTING EXPRESSION AS A NATIVE DATA TYPE 
 
 

According to [1], in the current work, the column of VARCHAR data type with an 

Expression constraint is treated as a column of Expression data type. So, the semantics of an 

Expression instance are lost once it is fetched into a programmatic language like JAVA and C. In 

order to allow operations on a transient (not stored in a table) version of an expression, native 

support for the expression data type is required. 
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Any expression with an invalid variable reference is automatically rejected by the data 

type check. Additional operators such as an EQUAL operator to check for logical equivalence of 

two expressions and an IMPLIES operator to determine if one expression implies another 

expression can be supported by the Expression data type. 

 

6.3 SUPPORTING EVALAUTE AS A NATIVE SQL OPERATOR  
 

Presently, the EVALUATE operator cannot derive the context from the query in 

which it is used. That is, the data item for which a set of expressions is evaluated should be 

passed explicitly to the operator as an argument. By supporting EVALUATE operator as a native 

SQL operator, its functionality can be enhanced to derive the required data items from the 

current query context. This is beneficial when the data items for which a set of expressions is 

evaluated are obtained from another table (included in the FROM clause of the same query). 

 

With native SQL support, the EVALUATE operator can also consider alternate 

execution plans by exploiting any indexes defined on the table storing the data items. 
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7. CONCLUSION 
 
 

Many applications require that user�s interest in expected data be persistently 

maintained as conditional expressions and matched against the incoming data. It has been 

proposed that an expression datatype can be added to Relational Database Management Systems 

(RDBMS) to support this functionality in an efficient and expressive manner [1].  

This thesis focused on supporting such a datatype in RDBMS by allowing expressions 

to be stored in the database and by implementing a SQL EVALUATE operator to evaluate 

expressions for given data. The syntax and semantics of the proposed expression datatype were 

described. An implementation of this datatype and an EVALUATE operator on a mini-DBMS 

was explained. An important feature of the implementation is that conditions that are common 

among different expressions are stored only once. A sample application [12] that needs to 

maintain user interest and match it to expected data was introduced. This application was used to 

examine how well the needed functionality is supported by the expression datatype. In terms of 

expressivity, the expression datatype was found to be much simpler in expressing user interest 

than other means of representation. 

This thesis thus demonstrated that expressions provide a flexible and powerful 

mechanism for applications that match data to users based on user specified interest. Future work 

to enhance expression support includes indexing expressions for faster performance, supporting 

expressions as a native data type with additional logical operators and supporting EVALUATE 

as a native SQL operator. 
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