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ABSTRACT 

 

Over the last several years, the Web Services model of Geographic Information 

Systems has been rapidly evolved and materialized.  In this thesis project, I have 

reviewed the current status of integrating the general Web Services technology (SOAP, 

WSDL, and UDDI) and OpenGIS Consortium (OGC) Web services standards in 

developing distributed GIS computing. 

 

The overlap of the web service model and the technology stack between the 

SOAP-based Web Services and OGC Web Services indicates the feasibility of 

integration.  OGC has named all core general Web Services Technologies (SOAP, 

WSDL, UDDI) in its envisioned OWS architecture.  OGC has also started putting efforts 

for the integration by conducting experiments, which include a SOAP experiment and an 

UDDI experiment.  However, these experiments only identified some very specific issues 

based on small number of testing interfaces and scenarios.  

 

There are leading GIS software vendors who have adopted both areas in their 

implementation.  The ESRI ArcWeb Services is a good example, which implements OGC 

Web Services Interfaces using SOAP, WSDL, and UDDI. 

 

 ix



In my implementation experiment, Java Web Services Developer Pack is used to 

build a client of Microsoft TerraService.  SOAP messages are constructed to retrieve 

DOQ images from the TerraService as the background to display ArcSDE feature data.  

Query functionalities on the feature data are implemented. 

 x
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CHAPTER 1 INTRODUCTION 

 

Over the past several years, the Web Services model of Geographic Information 

Systems (GIS) has been rapidly evolved and materialized [1, 12, 20].  This distributed 

GIS model is based on independently provided, specialized, interoperable GIS Web 

Services.  The rapid development of GIS Web Services model owes in part to the 

advancements in general Web Service technologies (the SOAP-based Web Services), and 

in part to the focused efforts by the OpenGIS Consortium (OGC; www.opengis.org) to 

initiate and develop interoperable GIS Web Service interfaces [1].  The beautify of the 

Web Services Model is that GIS users can use the services and data provided by the Web 

Services to meet their purpose, without having to install, learn, or pay for any unused 

functionalities.  In the rest of this thesis, I will use ‘general Web Services’ and ‘the 

SOAP-based Web Services’ interchangeably to refer to general IT Web Services. 

 

Web Services have emerged and developed to provide a systematic and extensible 

framework for application-to-application interaction, which are built on top of existing 

Web protocols and based on open XML standards.  Industry specifications were 

submitted to the W3C (e.g. SOAP [21, 22, 23] and WSDL [32]).  The industry Universal 

Description, Discovery and Integration (UDDI) project immerged [26], and recently the 

Web Services Interoperability Organization (WS-I) was founded [33].   

 

http://www.opengis.org/
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Meanwhile, the OpenGIS Consortium (OGC), representing the GIS industry, has 

been focusing on Internet GIS by developing specifications like the Web Mapping Server 

(WMS) and the Web Feature Server (WFS) and by setting up GIS interoperability 

initiatives [18].  OGC is an international industry consortium of more than 250 

companies, government agencies and universities participating in a consensus process to 

develop publicly available interface specifications.  OGC Web Services are a subset of 

OpenGIS Specifications which support interoperable solutions that “geo-enable” the 

Web, wireless and location-based services, and mainstream IT [15].  

 

OGC Web Services allow distributed geoprocessing systems to communicate with 

each other using technologies such as XML and HTTP.  This capability is possible 

because OGC open standards have established rules for these services to advertise the 

functionality they provide and how to send service requests.  In this manner, OGC Web 

Services provide a vendor-neutral interoperable framework for web-based discovery, 

access, integration, analysis, exploitation and visualization of multiple online geodata 

sources, sensor-derived information, and geoprocessing capabilities.  Many software 

vendors have implemented OGC Web Services Specifications, which include leading 

GIS software vendors, such as Authodesk, ESRI, MapInfo, Intergraph [18]. 

 

In my thesis, the development of GIS Web Services based on both general Web 

Services technology and OpenGIS Web Services standards is reviewed.  The current 

status of integration of the two areas is reviewed and analyzed.  In the progress, common 

misunderstandings of the overlapping concepts and definitions in the two areas are 
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clarified.  To my knowledge, there is no comprehensive peer-reviewed source of GIS 

Web Services by closely comparing and analyzing general Web Services and OGC Web 

Services.  These two areas have been developing in parallel in terms of time and 

separately in terms of technology.  I believe that the integration of these two areas will 

bring the greatest benefits to the development of GIS Web services. 

 

My implementation experiment is to demonstrate the beauty and power of Web 

Services in GIS applications.  Namely, without storing any unused data or installing 

unused functionalities on the local disks, the user can dynamically obtain the desired up-

to-date data and functionalities.  I have used Java Web Service Developer Pack (JWSDP 

1.2) to construct SOAP messages to communicate with Microsoft TerraService 

(http://terraserver-usa.com/) Web Service.  DOQ (Digital Orthophoto Quadrangles) 

images are retrieved from Microsoft TerraService Web Service as the background to 

display the feature data managed by a local ArcSDE server.  The user can perform 

queries on the feature data. 

 

 

 

 

 

 

 

 



 4

 

 

CHAPTER 2 BACKGROUND 

 

2.1 General Web Services 

 

 In this chapter, I review the SOAP-based Web Services technologies and the 

OpenGIS Web Services. 

 

2.1.1 What is a Web Service? 

 

Despite the fact that the term Web Services has rapidly gained a lot of 

momentum, there is no single, universally adopted definition of what is meant by the 

term Web Services.  Several major Web services infrastructure providers have published 

their definitions for a Web Service.  Here are three most widely used definitions in the 

Web Services area. 

 

The World Wide Web Consortium (W3C) defines a Web Service as the following 

[31]. 

 

“A Web service is a software system designed to support interoperable machine-

to-machine interaction over a network. It has an interface described in a machine-

processable format (specifically WSDL). Other systems interact with the Web 
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service in a manner prescribed by its description using SOAP-messages, typically 

conveyed using HTTP with an XML serialization in conjunction with other Web-

related standards.” 

 

IBM has two widely cited definitions of a Web Service.  One of the definition 

describes a Web Service with a certain degree of technical details [14]. 

 

“A Web service is an interface that describes a collection of operations that are 

network-accessible through standardized XML messaging. A Web service is 

described using a standard, formal XML notion, called its service description. It 

covers all the details necessary to interact with the service, including message 

formats (that detail the operations), transport protocols and location. The interface 

hides the implementation details of the service, allowing it to be used 

independently of the hardware or software platform on which it is implemented 

and also independently of the programming language in which it is written. This 

allows and encourages Web Services-based applications to be loosely coupled, 

component-oriented, cross-technology implementations. Web Services fulfill a 

specific task or a set of tasks. They can be used alone or with other Web Services 

to carry out a complex aggregation or a business transaction.” 

 

IBM’s tutorial defines a Web Service in a much more succinct manner [8].  
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“Web services are a new breed of Web application. They are self-contained, self-

describing, modular applications that can be published, located, and invoked 

across the Web. Web services perform functions, which can be anything from 

simple requests to complicated business processes...Once a Web service is 

deployed, other applications (and other Web services) can discover and invoke the 

deployed service.” 

 

This definition is widely cited by research literature on both general Web Service and 

OGC Web Services [1, 8]. 

 

Several important points about general Web Services are worth to be emphasized: 

• A Web Service is a programmable application, accessible as a 

component via standard Web protocols like HTTP, XML and 

SOAP;  

• A Web Service is published, located, and invoked across the Web; 

• A Web Service is XML-based standards which enables simplicity, 

extensibility, and interoperability, programming language and 

platform independency; 

• A Web Service works through existing proxies and firewalls; 

• A Web Service has performance problems due to XML overload 

[6]. 
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2.1.2 The Web Services Architecture 

 

The Service-Oriented architecture (SOA) has been formalized to represent the 

roles and operations of Web Services [10, 11].  Figure 2-1 illustrates the roles and 

interactions between the roles of the Web Services architecture. 

 

 

SOAP

WSDL, UDDI 
Find 

Bind 

Publish
WSDL, UDDI 

Service 
Requestor 

Service 
Provider 

Service 
Registry  

 

 

 

 

 

 

 

Figure 2-1.  The Web Services Architecture. 

 

In this architecture, a service is the implementation of a Web service, which is an 

interface described by a service description.  The service description contains the details 

of the interface and implementation of the service, which includes its data types, 

operations, binding information and network location, and so on.  
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The Web Services architecture contains three roles:  service provider, service 

registry and service requestor.  The interactions between the three roles involve three 

operations:  publish, find, and bind. 

 

Service Provider.  The service provider is responsible for describing and publishing a 

service to the service registry.  From a business point of view, this is the owner of the 

service.  A service provider typically can be any company that hosts a Web service, 

which is accessible on some network.   

 

Service Requestor.  The service requestor uses a find operation to find a service 

description locally or published to the service registry, and uses service descriptions to 

bind with the service provider to interact with the Web service implementation.  Any 

consumer of a Web service, either a browser or a program is a service requestor. 

 

Service Registry.  Service registry is the place where service providers publish service 

descriptions, and it allows service requestors to search for the published service 

descriptions. It acts as a match-maker between service requestor and service provider. 

Worth of mentioning, service requestors can obtain service descriptions from sources 

other than service registry, such as a local file, Web site, FTP site, Discovery of Web 

Services (DISCO), or Advertisement and Discovery of Services (ADS). 

 

In the Web service architecture, three operations must take place to realize 

interactions between the three roles: publish, find, and bind. 
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Publish.  Publishing a service description to a service registry makes a service description 

accessible, so that the service requestor can find it.  The complexity of actual details of 

publish API varies greatly.  It can be simply an act of moving the service description into 

a Web application server’s directory structure if the network itself acts as the Service 

registry.  On the other hand, some service registry implementations, such as UDDI, 

makes a very sophisticated publish operation. 

 

Find.  The find operation allows the service requestor to retrieve a service description 

directly from the service registry, or to query the service registry for the desired type of 

service.  The service requestor can use find operation at design time to retrieve the 

service’s interface description for program development, or at runtime to get the service’s 

binding and location description for invocation. 

 

Bind.  The bind operation takes place when a service needs to be invoked.  The bind 

operation allows the service requestor to use the binding details in the service description 

to locate, contact and invoke the service. 

 

2.1.3 The Web Services Technology Stack 

 

Although theoretically the Web services architecture is independent of any 

particular standards, interoperability is still a key requirement for large-scale adoption of 

the architecture.  Several key industry leaders (e.g. Microsoft, IBM, and others) have 
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been making efforts to develop a set of XML-based open standards (SOAP, WSDL, 

UDDI, WSFL) that enable the Web services architecture to be implemented.  Here I 

introduce a conceptual Web Services stack proposed by IBM and Microsoft (Figure 2-2) 

[11, 14].    

 

 

 

 

 

 

 

 

 

 

Wire Layer 

Description Layer 

Discovery 
Layer 

 HTTP, FTP, email,
MQ, IIOP, etc. 

SOAP 

WSDL

Direct →  UDDI

Static  →  UDDI

WSFL 

Q
uality O

f Service 

M
anagem

ent 

Security 

Network 

XML-Based Messaging 

Service Description 

Service Publication 

Service Discovery 

Service Flow 

 

Figure 2-2.  The Web Services Technology Stack [14]. 

 

This model groups various Web services technologies into three layers: the wire 

layer, the description layer, and the discovery layer.  The upper layers build upon the 

capabilities provided by the lower layers.  The vertical towers represent requirements that 

must be addressed at every level of the stack.  The text on the left represents standard 

technologies that apply at that layer of the stack.  XML is the key technology.  Apart 

from the network protocol everything rests on it. 
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Wire Layer.  The wire layer defines the messaging format and components between the 

service requestor and the service provider.  The base of the wire layer is the network, 

which makes Web services accessible to a service requestor.  Internet-available Web 

Services use commonly deployed network protocols.  HTTP is the de facto standard 

network protocol for Internet-available Web Services.  Other Internet protocols, such as 

SMTP and FTP, are also supported.  Reliable messaging and call infrastructures, such as 

MQSeries, IIOP, and so on, are supported for Intranet Web Services.  SOAP is chosen as 

the de facto XML messaging protocol for general IT Web services.  

 

Description Layer.  The Description layer consists of Web Services description 

documents.  XML is not only the basis of the Wire layer, it is also the basis of service 

description.  Web Services Description Language (WSDL) is the de facto standard for 

Web Services description in the IT Industry.  WSDL defines the interface of a Web 

service and mechanisms of service interaction, which specifically include the operations 

supported by the Web service, the input and output of the service, the bindings to 

concrete network, and data encoding schemes.  It is the minimum standard service 

description necessary to support interoperable Web Services.  Additional description is 

needed to specify other properties of Web services, such as quality of service, service-to-

service relationships, and so on.  Web Services Flow Language (WSFL) is used to 

describe Service composition and flow. 
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Discovery Layer.  A Web service needs to be discovered in the first place before it can be 

invoked.  Service discovery closely depends on service publication since a service cannot 

be discovered if it has not been published.   

 

The simplest and most static service publication is direct publication [14], in 

which the service provider sending a service description directly to the service requestor.  

On the other hand, in a complex service publication, a service provider publishes the 

service description to a local service registry or UDDI service registry.  

 

In parallel to service publication, service discovery can also be either simple and 

static or complex and dynamic.  In a static discovery, the service requestor retrieves a 

service description from a local file.  On the other hand, a service can be discovered at 

design time or runtime dynamically from a local registry or a UDDI registry. 

 

2.1.4 SOAP, WSDL, and UDDI 

 

The core industry technologies for the general IT industry Web Services for each 

layer currently are: Simple Object Access Protocol (SOAP) for messaging, WSDL (Web 

Services Description Language) for description, and UDDI (Universal Description, 

Discovery and Integration) for publication and discovery. 
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2.1.4.1 SOAP 

 

Since its introduction in late 1999, SOAP has become the de facto standard for 

Web services messaging and remote procedure calls (RPCs) [11].  SOAP is a simple, 

flexible, and highly extensible XML-based messaging protocol [21, 22].  It is 

programming language, platform, hardware neutral.  Rather than defining a new transport 

protocol, SOAP works on exitsing network protocols, such as HTTP, SMTP, FTP, and so 

on.  Another advantage of SOAP is the ability to pass firewalls, which is essential for a 

wide area network. 

 

A SOAP message consists of three parts (Figure 2-3).  

• An envelope, which provides the framework for packaging message information.  

It describes what is contained in a SOAP message and how to process it. 

• Encoding rules for serializing data. 

• An RPC representation that defines how to represent remote procedure calls and 

responses.   
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SOAP Fault 

Body Parts 

SOAP body 

Header Parts 

SOAP Header 

SOAP Envelope 

 

 

 

 

 

 

 
 
 

Figure 2-3. SOAP Message Structure. 
 
 
2.1.4.1.1 SOAP Envelope Framework 

 

The envelope framework is the basic core structure of a SOAP message (Figure 2-

3).  The root element of the SOAP message is the Envelope element.  It defines the 

various XML namespaces that are used by the rest of the SOAP message.  These 

represent the SOAP specification namespaces for SOAP and schemas for instances, data 

types, and encoding [21, 22]. 

 

The SOAP Envelope element can contain an optional Header element and a 

mandatory Body element. 
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Headers are the primary extensibility mechanism in SOAP.  The usual 

information Header element defines includes authentication and authorization, 

transaction management, routings, and payment processing.  The actors attribute 

specified in the Header element indicate who should which parts of the message, which 

enables SOAP intermediaries mechanism. 

 

The SOAP body element contains the core information intended for the final 

message receiver.  The Body of the SOAP response can contain a single Fault element as 

the only child element of the SOAP body to carry SOAP error information.  When SOAP 

is used to perform an RPC, the body contains a single element that contains the method 

name to be invoked and it's arguments.  The namespace of the method name is specified 

by the web service followed by the type of the target web service.  The type of each 

argument can be optionally supplied using the xsi:type attribute.  

 

2.1.4.1.2 Messaging Using SOAP 

There are two types of messaging pattern using SOAP: the Conversational 

Message Exchanges and the Remote Procedure Calls. 

The Conversational Message Exchange is a request-response pattern, in which 

XML-based content conforming to some application-defined schema are exchanged via 

SOAP messages.  In the simplest case, the user can only send the SOAP request to the 

service for processing.  For example, an airline traveler can send a SOAP request to do an 
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electronic checkin, provided with name of the checkin method and the fromat for 

encoding the ticket.  

Remote Procedure Calls (RPCs) with SOAP is used when there is a need to model 

a certain programmatic behavior, with the exchanged messages conforming to a pre-

defined description of the remote call and its return.  To use SOAP for RPCs, you must 

define an RPC protocol, including [7]: 

• how typed values can be transported back and forth between the SOAP 

representation (XML) and the application’s representation (such as a Java class 

for a ticket), and 

• where the various RPC parts are carried (object identity, operation name, and 

parameters). 

 

The W3C’s XML schema specification (www. w3.org/XML/Schema) provides a 

standard language for defining the document structure and the XML structures’ data 

types.  For the typed values, SOAP assumes a type system based on the one in XML 

schema and defines its canonical encoding in XML.  Using this encoding style, the user 

can produce an XML encoding for any type of structured data.  RPC arguments and 

responses are also represented using this encoding. 

 

SOAP implementations exist for several programming languages, including C, 

Java, and Perl, which automatically generate and process the SOAP messages.  Assuming 

the messages conform to SOAP specifications, they can thus be exchanged by services 

implemented in different languages. 
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2.1.4.2 WSDL 

 

The Web Services Definition Language (WSDL) is an XML-based standard to 

describe the technical invocation syntax of a Web service.  A complete WSDL service 

description provides two pieces of information: an application-level service description, 

or abstract interface, and the specific protocol-dependent details that users must follow to 

access the service at concrete service end points.  This separation accounts for the fact 

that similar application-level service functionality is often deployed at different end 

points with slightly different access protocol details.  Separating the description of these 

two aspects helps WSDL represent common functionality between seemingly different 

end points. 

 

An abstract interface can support any number of operations.  An operation is 

defined by the set of messages that define its interaction pattern.  For the abstract 

concepts of message and operation, concrete counterparts are specified in the binding 

element. 

 

The WSDL schema defines several high level or major elements in the language, 

which are introduced in the following [11].  

 

PortType – A Web service’s abstract interface definition where each child 

operation elemHoent defines an abstract method signature. 
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Message – Defines a set of parameters referred to by the method signatures or 

operations.  A message can be further decomposed into parts. 

Types – Defines the collection of all the data types used in the Web service as 

referenced by various message part elements. 

Binding – Contains details of how the elements in an abstract interface (portType) 

are converted into a concrete representation in a particular combination of data formats 

and protocols. 

Port – Expresses how a binding is deployed at a particular network endpoint. 

Service – A collection of ports. 

 

So the portType (with details from the message and type elements) describes the what of 

the Web service.  The binding element describes the how, and the port and service 

elements describe the where of the Web service. 

 

Many developers split their WSDL designs into two parts, each placed in a 

separate document.  The service interface definition, containing the types, message, 

portType, and binding elements, appears in one file.  You can then place this file, for 

example, on a well-known Web site (on an e-marketplace, for example) for everyone to 

view.  Each organization that wants to implement a Web service conformant to that well-

known service interface definition would describe a service implementation definition, 

containing the port and service elements, describing how that common, reusable, service 

interface definition was, in fact, implemented at the network endpoint hosted by that 

organization.   
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Figure 2-4 outlines how the major elements in WSDL are divided between the 

service interface definition and the service implementation definition. 

 

service 

port 

types 

message

binding 

portType 

Service Implementation Description

Service Interface Description  

 

 

 

 

  

 

 

 

Figure 2-4.  The Key Elements of a WSDL file. 

 

2.1.4.3 UDDI 

 

UDDI is an XML-based registry for Web Services.  It defines a way to publish 

and discover information about services on the Web.  The main purpose is to support 

business to business (B2B) activities.  UDDI can be compared to telephone books: it 

consists of white pages (locate service by name), yellow pages (locate service by type of 

offering or topic, and green pages (locate service by its characteristics).  Every project or 

company can put its services to the registry by giving information about the product, 

pricing, etc.  No special form for the description of services is required.  Though based on 
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XML, the registry can also describe services implemented in HTML, CORBA, or any 

other type of programming model or language. 

 

UDDI provides two basic specifications that define a service registry’s structure 

and operation [27, 7]:  

• A definition of the information to provide about each service, and how to 

encode it; and  

• A query and update API for the registry that describes how this 

information can be accessed and updated. 

 

Registry access is accomplished using a standard SOAP API for both querying 

and updating.  Unique keys identify each data entry - businesses, services, and so on - 

that might be cross-referenced.  Theses assigned keys are long hexadecimal strings 

generated when the entity (in this case, a business) is registered.  The keys are guaranteed 

to be universally unique identifiers (UUIDs).  

 

2.2 OGC Web Services 

 

2.2.1 Overview of OGC Web Services 

 

Within the broader context of Web Services, OGC Web Services (OWS) 

represent an evolutionary, standards-based framework that enable seamless integration of 

a variety of online geoprocessing and location services [8].   Even though the most 
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popular definition of OWS is “self-contained, self-describing, modular applications that 

can be published, located, and invoked across the Web”, OGC Web Services only 

provide implementation specifications for GIS Web Services applications.  Attention 

must be paid to terminology: when OGC speaks of Web Services, they mean their 

specifications, which are not equivalent to the general SOAP-based Web Services.  This 

is reasonable, because OGC does not intend to specify general issues that are not specific 

to Geographic Information. 

 

OWS is one of OGC’s many initiatives for addressing the lack of interoperability 

among systems that process georeferenced data.  In the past several years, OGC has 

successfully executed several phases of the OWS initiative, including Web Mapping 

Testbed I (WMT-I) in 1999, WMT II in 2000, OGC Web Service Initiative 1.1 (OWS 

1.1) in 2001, and OWS 1.2 in 2002, and produced a set of web-based data interoperability 

specifications.  These specifications include, but are not limited to: Web Map Server 

(WMS), Web Feature Server (WFS), and Web Coverage Server (WCS). 

 

Each of these specifications defines a number of services.  Together these services 

are referred to as OGC Web Services (OWS).  OGC Web Services allow geospatial 

information to be accessed and processed over the Internet.  Geospatial information is 

generally represented using XML that complies with the appropriate XML Schemas. 
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2.2.2 OGC Web Services Specifications 

 

Here I will describe three major OGC Web Services implementation 

specifications, WMS, WFS, and WCS.  These documents specify details for the OGC 

Web Services interfaces.  Any software which implements one or more of these 

specifications should then be able to communicate with any other software that 

implements the same specification(s). 

 

2.2.2.1 Web Map Service 

 

The Web Map Service (WMS) specification [30] standardizes the way in which 

clients request maps.  Clients requests maps from a WMS instance in terms of named 

layers and provide parameters such as the size of the returned map as well as the spatial 

reference system to be used in drawing the map. 

 

The specification defines three WMS operations:  GetCapabilities returns service-

level metadata, which is a description of the service’s information content and acceptable 

request parameters; GetMap returns a map image whose geospatial and dimensional 

papameters are well-defined; GetFeatureInfo (optional) returns information about 

particular features shown on a map. 

 

When requesting a map, a client may specify the information to be shown on the 

map (one or more “Layers”), possibly the “Styles” of those Layers, what portion of the 
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Earth is to be mapped (a “Bounding Box”), the projected or geographic coordinate 

reference system to be used (the “Spatial Reference System”, or SRS), the desired output 

format, the output size (Width and Height), and background transparency and color. 

 

The OGC Web Map Service (WMS) implementation specification version 1.1.0 

defines keyword/value encodings for operation requests using HTTP GET and POST.   

 

2.2.2.2 Web Feature Service 

 

The Web Feature Service (WFS) [29] supports operations such as INSERT, 

UPDATE, DELETE, QUERY, and DISCOVERY of geographic features.  WFS delivers 

GML representations of simple geospatial features in response to queries from HTTP 

clients.  Clients access geographic feature data through WFS by submitting a request for 

just those features that are needed for an application.  A WFS can either be a basic WFS 

(a READ-ONLY WFS), which implements the GetCapabilities, DescribeFeatureType 

and GetFeature interfaces, or a transaction WFS, which, in addition to supporting all the 

interfaces of a basic WFS, implements the Transaction interface (and optionally the 

LockFeature interface). 

 

To support transaction and query processing, the following WFS interfaces are 

defined: 
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- GetCapabilities: A web feature server must be able to describe its capabilities.  

Specifically, it must indicate which feature types it can service and what 

operations are supported on each feature type. 

- DescribeFeatureType: A web feature server must be able, upon request, to 

describe the structure of any feature type it can service. 

- GetFeature: A web feature server must be able to service a request to retrieve 

feature instances.  In addition, the client should be able to specify which feature 

properties to fetch and should be able to constraint the query spatially and non-

spatially. 

- Transaction: A feature server may be able to service transaction request.  A 

transaction request is composed of operations that modify features; that is create, 

update, and delete operations on geopraphic features. 

- LockFeature: A web feature server may be able to process a lock request on one 

or more instances of a feature type for the duration of a transaction. This ensures 

that serializable transactions are supported. 

 

WFS requests, encoded in XML or keyword-value pairs, may be transmitted to a 

web feature server using either the POST or GET methods.  However, the XML encoding 

is most suitable for packaging as an HTTP POST request and the keyword-value pair 

encoding is more suitable for packaging as an HTTP GET request.  

 

 

 



 25

2.2.2.3 Web Coverage Service 

 

The Web Coverage Service (WCS) [28] supports the networked interchange of 

geospatial data as “coverages” containing values or properties of geographic locations.  

Unlike the Web Map Service, which returns static maps (server-rendered as pictures), the 

Web Coverage Service provides access to intact (unrendered) geospatial information, as 

needed for client-side rendering, multi-valued coverages, and input into scientific models 

and other clients beyond simple viewers.   

 

The Web Coverage Service consists of three operations: 

- GetCapabilities: required operation which returns a description of the service 

with elements to describe multidimensional data collections from which a coverage may 

be requested. 

- GetCoverage: required operation returns values or properties of geographic 

locations, bundled in a well-known coverage format. Its syntax and semantics are similar 

to the WMS GetMap request, but several extensions support the retrieval of coverages 

rather than static maps. 

- DescribeCoverageType: optional operation returns a description of the structure 

of the coverages which the WCS returns. 
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2.3 Microsoft TerraService 

 

The Microsoft TerraServer (http://terraserver.net) web site has been optional since 

1998.  It stores aerial, satellite, and topographic images of the earth in an SQL database 

available via the Internet.  It is the world’s largest online atlas, combining fifteen 

terabytes of aerial imagery data and 1.5 terabytes of topographic maps from the United 

States Geological Survey (USGS).  The TerraService web service provides a 

programmatic interface to the TerraServer database.  The TerraService web methods are 

designed to support an OpenGIS compatible Web Map Server application.  Microsoft, the 

USGS, and USDA are members of the OpenGIS. 

 

Briefly, TerraServer is a database repository of high resolution, ortho-rectified 

imagery that is logically represented as a “seamless mosaic of earth” at several scales 

(meters per pixel).  The TerraService also provides a landmark service that returns place 

names and a list of all the places within a specified area. 

 

The mosaic is stored as sets of uniformly sized, JPEG or GIF compressed images 

called tiles.  Each tile has a predictable resolution and location on the earth.  The 

TerraService is a “tile service”.  TerraService methods enable consuming applications to 

query the TerraServer database of tiles by a number of different methods to determine the 

existence of tile data over some expanse of geographic territory.  Data returned by tile 

query methods enable a calling application to determine the set of tiles required to build a 

complete image that covers the queried geographic area.  The consuming application can 

http://terraserver.net/
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iteratively call TerraService’s GetTile() method to actually retrieve the individual tiles, 

construct a new, larger image, and then crop, re-size, and/or layer other graphic data on-

top of the image. 

 

As the way the TerraService is used in this implementation case study, 

applications typically access it to build an image from multiple TerraServer tiles to use as 

a background image for some geo-spatial display. 

 

2.4 ArcSDE 

 

ESRI enterprise GIS solution is based on a centralized geo-spatial database.  To 

facilitate spatial data sharing and management, the solution include SDE (Spatial Data 

Engine) server that acts as an application server.  ESRI ArcSDE is an application server 

that facilitates storing and managing spatial data (raster, vector, and survey) in a DBMS 

and makes the data available to many kinds of applications.  ArcSDE server also 

maintains the data integrity, manage the transaction, and tune the overall performance of 

the spatial data service.  ArcSDE allows user to manage spatial data in one of four 

commercial databases (IBM® DB2InformixMicrosoft® SQL Serverand Oracle®).  Here, 

the feature data are managed by ArcSDE on top of an Oracle database. 

 

The ArcSDE server also provides a set of API for customized application 

development.  ArcSDE contains two main application programmer interfaces for 

developers to build applications that work with and query information contained in multi-
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user geo-databases: ArcSDE Client API for C programmers and ArcSDE Client API for 

Java programmers.  These APIs provide GIS functions for advanced application 

development.  ArcSDE works as an application server, delivering spatial data to many 

kinds of applications or even serving spatial data across the Internet.  

 

 Since our main purpose here is to demonstrate the functionality of the 

TerraService web service, the feature data can be from any other sources (e.g., from local 

disk or from a Web Feature Server).  In fact, the implementation is designed for 

displaying any set of point feature data. 
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CHAPTER 3 GENERAL AND OGC WEB SERVICES INTEGRATION 

 

As the global players of IT like IBM and Microsoft push the development of the 

core standards of Web services (SOAP, WSDL, and UDDI), well-known companies have 

implemented their own Web Services technologies using these standards (e.g., IBM 

WebSphere, Microsoft .NET, and SUN ONE).  The huge impact of these core standards 

on the development of the SOAP-based Web Services should not be ignored as OGC 

engages in their Web Services Initiatives.  In fact, OGC has started putting efforts on 

integrating the SOAP-based Web Services technologies into the OGC Web Services 

framework. 

 

OGC Web Service (OWS) specifications provide standards for implementing 

interoperable, distributed geospatial information processing software systems (e.g. GIS), 

by which a user can easily share geospatial data, information, and services with others. 

However, OGC technology consists mainly of interface specifications and content 

standards.  They do not provide a mechanism for efficiently sharing the distributed 

computational resources.  Meanwhile, the SOAP-based Web Services technology, 

because of its powerful distributed resource sharing capabilities, has earned tremendous 

popularity and market.  Therefore, the integration of general Web services technology 

with OWS will greatly benefit the development of GIS Web Services. 
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In this chapter, I will review the current status of the integration of the SOAP-

based web services technologies into the OGC web services infrastructure.  First, I will 

compare the OGC web services architecture with the SOAP-based Web Services 

architecture.  Then I will examine the OGC Web Services Technology Stack to identify 

the general Web Service technologies already named by OGC in their envisioned 

infrastructure.  After that, I will review the OGC activities of promoting the integration.  

An example of the integration is also provided.  Finally, the system design of my 

implementation case study is introduced.  

 

3.1 OGC Web Services Architecture 

 

The OpenGIS Web Services architecture defines a common set of interfaces that 

can be utilized by any application to provide enterprise-wide interoperabilities [19].  

Figure 3-1 [13] depicts the Computational Viewpoint of the OGC Web Services 

architecture for OWS 1.2.  At the core of the architecture are network-based, distributed, 

modular components that perform specific tasks and conform to specific sets of technical 

specifications that make them interoperable with compatible components.  Here only 

important elements of each component are introduced.  The summary description of each 

element can be found in [19]. 
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Figure 3-1.  OGC Web Services Architecture [13]. 

 

Encodings. The encodings describe specialized vocabularies for the transfer of specific 

kinds of data packaged as messages between application clients and services and between 

services.  Each encoding vocabulary is designed for a specialized use within the 

architecture.  All OWS encoding specifications are application schemas for XML.  The 

most important encoding standard in OGC Web Services is Geography Markup 

Language (GML) [9].  GML is an XML grammar written in XML Schema for the 

modeling, transport, and storage of geographic information.  GML provides a variety of 

kinds of objects for describing geography including features, coordinate reference 

systems, geometry, topology, time, units of measure, and generalized values. 

 

Registry Service. Registry Service provides a common mechanism to classify, register, 

describe, search, maintain, and access information about network resources (data and 
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services).  For OWS1.2, Registry Services include Web Registry Service (WRS), for 

which the OGC discussion paper is available.  Web Registry Server (WRS) interfaces 

support “one stop shopping” for the registration, metadata harvesting and descriptor 

ingest, push and pill update of descriptors, and discovery of OGC web services types and 

instances using HTTP as the distributed computing platform. 

 

Data Services.  Data Services are the foundational service building blocks that serve data, 

specifically geospatial data.  For OWS1.2, Data Services include Web Object Service 

(WOS), Web Feature Service (WFS), Sensor Collection Service (SCS), Image Archive 

Service (IAS) and Web Coverage Service (WCS). 

 

Portrayal Services.  Portrayal Services provide specialized capabilities supporting 

visualization of geospatial information.  Portrayal Services are components that, given 

one or more inputs, produce rendered outputs such as cartographically portrayed maps, 

perspective views of terrain, annotated images, views of dynamically changing features 

in space and time, etc.).  For OWS1.2, Portrayal Services include Web Map Service 

(WMS), Coverage Portrayal Service (CPS) and Style Management Service (SMS). 

  

Processing-Workflow Services.  Processing-Workflow Services are the foundational 

application-building-block services that operate on geospatial data and metadata, 

providing value-add service.  For example, the most common type of geo-coding 

(Geocoder) is converting a street address to a geographic location. 
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Client Services.  Client Services are the client-side components of client applications that 

interact with users, and on the server-side interact with Server-side Client Applications, 

Application Servers and Data Servers.  

 

In this architecture, OGC services are categorized according to similar 

functionalities.  Figure 3-1 indicates two important characteristics of OGC services.  

First, the great complexity of Geographic data determines a relatively large number of 

different service interfaces are defined.  The quality of GIS Web Services depends on an 

easy interaction between and good interoperability of these services determines.  Second, 

Figure 3-1 implicates that OGC Web services has the same Publish-Find-Bind (PFB) 

SOA architecture as general web services.  It is this SOA paradigm that essentially 

underpins the Computational and Information Viewpoints of OGC Web Services.  In 

OGC documents, it is called the Service Trading model and the equivalent PFB 

terminology is broker (service registry), requester, and provider [19].  These two 

characteristics of OGC Web Services from a certain degree have determined the 

dependence of OGC Web Services on the powerful general Web Services technology.  

Thus, integration of these two areas is inevitable. 

  

3.2 OGC Web Services Technology Stack 

 

OGC’s Services Interoperability Stack (Figure 3-2) has already named all the core 

technologies in General IT Web Services [19].  The OGC Services Interoperability Stack 

is a layered architecture of technology and standards on which services can be 
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implemented and deployed.  The lowest levels of the stack enable connectivity of 

software components by enabling them to bind, send and receive messages.  Higher 

levels in the stack enable interoperability and, via publish-find-bind mechanisms, allow 

software components to transparently work together in more integrated and dynamic 

ways. 
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Figure 3-2.  OGC Web Services Interoperability Stack [19]. 

 

This stack overlaps with the general Web Services Stack very well.  The overlap 

of the SOA model and the overlap of the technology stack are strong evidence of the 
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possibility and practicability of porting OGC Web services into General IT Web 

Services. 

 

3.3 Comparison of the Models of General and OGC Web Services 

 

Figure 3-3 maps general Web Services and OGC Web Services according to the 

SOA model.  As depicted in Figure 3-3, architectural similarity exists between the two 

areas.  Both confirms to the SOA model.  Also in terms of technology, as I have 

mentioned before, OGC names all major technologies (UDDI, WSDL, SOAP) in its 

envisioned architecture.  However, OGC defines and adopts different standards other 

than those from general Web Services. 
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Figure 3-3. Architectural Similarity between General and OGC Web Services [19]. 
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For service registry, OGC has its own registry services, Catalog Services.  

Catalog services define the set of service interfaces which support organization, 

discovery, and access of geospatial information.  A Catalog can be thought of as a 

specialized database of information about geospatial resources available to a group or 

community of users. These resources are assumed to have OpenGIS feature, feature 

collection, catalog and metadata interfaces, or they may be geoprocessing services.  

Catalogs have three essential purposes: 

• to assist in the organization and management of diverse geospatial data and 

services for discovery and access, 

•  to discover resource information from diverse sources and gather it into a single, 

searchable location, and 

• to provide a means of locating, retrieving and storing the resources indexed by the 

catalog. 

 

OGC employs ISO 19119 and Capabilites XML for its service description.  ISO 

19119 provides a framework for creating and sharing Geographic Information Services.  

The ISO service and operation metadata are richer than those of WSDL.  Capabilites 

XML is a format defined by OGC itself.  Every OGC Web Service provides an operation 

“getCapabilities”, which returns a “Capabilities XML” document describing the 

operations of the service.  As with ISO 19119, the service metadata are richer than in 

WSDL.  For example, in ISO 19119, geographic information of the data on which the 

service operations operate on is provided, such as Geographic BoundingBox and 
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Geographic Description.  However, the operation metadata basically restrict to the 

signature. 

 

Generally UDDI, WSDL, and Capabilities XML focus on operation signatures; 

descriptions are available only on service level and appear as free text.  ISO 19119 

provides free text descriptions not only on service, but also on operation level, and in 

addition to data types for operation parameters it contains a pointer to permitted values. 

Although this is a richer description of the context in which the service is used, there is 

still semantic information missing.  The semantic description of service content will 

provide more powerful service discoveries and more interoperable service interactions. 

 

As to the communication protocol, OGC specified HTTP as the standard 

communication protocol for OWS, like WMS and WFS.  SOAP is on its way of being 

tested by OGC before it is specified as the standard communication protocol for OWS 

(see section 3.4). 

 

The inherent complexity of Geographic information may require the necessity of 

native OGC standards to complement the insufficiency of general Web Services 

technology to solve GIS problems.  The extension of general Web Services technology 

may also be needed to better satisfy complicated GIS Web Services. 
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3.4 OGC Integration Activities 

 

Efforts have been made by OGC to integrate general Web services technologies 

into OGC Web services framework. 

 

The objectives of OWS-1.2, OGC Web Services Initiative Phase 2, address issues 

involving the adoption and integration of Web Services technology broadly adopted 

within the Information Technology industry by leading organizations such as W3C, 

OASIS, and the open-source community [15].  A major issue is about the question of 

whether and how to adopt the core Web Service technologies (WSDL, SOAP, and 

UDDI).  Specifically, OWS-1.2 has executed two relevant experiments to address these 

issues, which are SOAP experiment and UDDI experiment. 

 

3.4.1 OGC SOAP Experiment  

 

The premise of OGC SOAP experiment (SOAP implementation of OGC) [16] is 

the belief that porting OWS services to Web Services will offer several key benefits, 

including: 

• Distribution -- It will be easier to distribute geospatial data and applications across 

platforms, operating systems, computer languages, etc. 

• Integration -- It will be easier for application developers to integrate geospatial 

functionality and data into their custom applications. 
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• Infrastructure -- The GIS industry could take advantage of the huge amount of 

infrastructure that is being built to enable the Web Services architecture -- 

including development tools, application servers, messaging protocols, security 

infrastructure, workflow definitions, etc. 

 

This experiment discusses how OWS services can be ported to the SOAP-based 

Web Services and highlights various issues/problems that have been discovered.  In this 

experiment, the appropriate XML Schema and Web Service Definition Language 

(WSDL) files were defined, which allow WMS services to be invoked using standard 

protocols such as HTTP GET, HTTP POST and SOAP.  Standard Web Services toolkits, 

such as Visual Studio .NET, Apache Axis, XML Spy, and so on, were used to invoke 

OGC Web Services across the Internet. 

 

 A number of very specific issues on using Web Services standards and Web 

Service toolkits to call a WMS server have been identified.  They are very specific to 

each adopted toolkit.  For example, .NET does not support importing multiple XML 

Schema files that have the same target namespace.  A workaround was found for each of 

the problems. 

 

 In summary, the adopted Web Service toolkits successfully invoked the services 

of a Web Map Server by successfully generating client proxies from a given WSDL.  

However, specific problems exist for different toolkits, and workaround solutions are 

available for most of the issues. 
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3.4.2 OGC UDDI Experiment 

 

The OGC UDDI experiment [17] used UDDI (Universal Discovery, Description, 

and Integration) registries to discover geospatial content in general and OGC services in 

particular.  This work was performed for the OGC’s Interoperability Program OWS1.2 

testbed initiative.  Catalog interfaces and service information models have been 

developed within OGC specifically for geospatial purposes.  This effort has been largely 

self-contained, however, and not particularly accessible from the general Web Services 

world.  UDDI, on the other hand, has made the most progress of any service registry 

towards universal acceptance and accessibility, but has not been specifically adapted for 

geospatial applications.  

 

The premise of the experiment is to determine whether and how the reach of 

UDDI might be combined with the geospatial focus of OGC services development to 

make geospatial content and services more universally discoverable and consumable by 

non-GIS users.  The participants in this experiment will take a variety of approaches to 

coordinating OGC services and UDDI registries, as expressed in the User Scenarios 

below.  The approaches all center around developing a crosswalk between the OGC and 

UDDI service information models.  

 

The goal of the experiment will be to assess the practicality of both the crosswalk 

and the coordination scenarios, as well as to make concrete recommendations for 

improvements to either or both information models to further this purpose.  
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There were four general usage scenarios underlying this experiment.  In Discover 

OGC Registries, user binds to a general purpose UDDI registry to discover specialized 

registries (and clients) for geospatial data and services.  User then switches to Discover 

OGC Services, here user binds to a general-purpose UDDI registry to discover OGC 

services which have been published to it, either manually or automatically.  In Discover 

OGC services with UDDI interface to OGC registry, user makes use of general purpose 

UDDI clients against OGC registries with UDDI interfaces to discover OGC services and 

build clients to them.  In Publish OGC service to UDDI, user employs a general purpose 

UDDI publishing client to publish an OGC service directly to UDDI. The service 

metadata may or may not then be made available through a corresponding OGC registry 

interface or service.  

   

The general design principle is that the OGC Service Information Model and the 

OGC Service Registry Model should be mapped onto the UDDI information model with 

as few changes as possible.  Specifically, the UDDI registries for OGC services should be 

compatible with W3C standards efforts such as HTTP and XML, and compatible with 

other relevant OGC specification and pre-specifications efforts, including Service 

Information Model, General Service Model, Registry Information Model, and Web 

Catalog/Registry Service. 

 

The UDDI experiment produced examples of discovering OGC services through 

UDDI interfaces, as well as means of mapping the UDDI metadata model to the metadata 

models used in OGC services.  Experiments on spatial discovery and content discovery 



 42

through UDDI showed that theses tasks are possible.  However, the “fit” of the OGC 

models with the UDDI model and interfaces is poor.  This is especially true when 

considering the capabilities of available UDDI clients to make full (or extended) use of 

the UDDI service interfaces.  For example, testing with Sun UDDI registry demonstrates 

that this client lacks of resources for making use of the publisher API.  The tentative 

conclusion drawn from this experiment is that UDDI Version 2 is best suited for 

discovering the existence of services based on very general taxonomic or classification 

criteria.  It is not suited for obtaining the information to bind to a specific GIS service, 

and even less well suited to discovering specific contents or capabilities of individual GIS 

service instances.  

 

3.4.3 Using WSDL in OGC Web Services 

 

Even though, OGC does not have experiments to test the use of WSDL in OGC 

Web Services, there are discussions about the advantages and issues of adoption of 

WSDL into OGC Web Services. 

 

An OpenGIS discussion paper has pointed out that OGC can take the following 

advantages of WSDL [19]: 

 

• XML-schema based description provides references to abstract types from which 

service instances can attach instance specific service offer information 

• Option for normative description of well known interfaces 
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• Syntax for instance specific “binding” of access point to “ports”. 

 

On the other hand, the insufficiency of WSDL for GIS Web Services also has 

been recognized.  WSDL was used in OWS 1.1 in the OperationSignatures portion of a 

service XML Capabilities document.  WSDL was designed so that a programmer could 

discover and build an interface to a particular service instance, given an understanding of 

the semantics of a given operation.  WSDL would allow automatic generation of “Stub” 

code for the interface.  Basically a programmer would be required to extend this 

according to an understanding of the semantics of the content and the operations.  Further 

knowledge of the content is required to “bind” to the service with a meaningful query. 

 

The emphasis in WSDL definition is flexibility, inclusiveness, and extensibility.  

However, for the services in the GIS domain, the syntax of the operation is constant, and 

the content of service instances varies.  The WSDL descriptions of “content access” 

services could be too general and abstract for GIS usage.  WSDL does provide a 

syntactical framework for normative descriptions of “well known services” such as 

WMS. 

 

3.5 An Example of Integration – ESRI ArcWeb 

 

Besides the OGC experiments on integrating the general Web services 

technologies, some leading GIS software vendors have integrated the two areas in their 

implementation.  The success of these projects is going to provide good evidence of the 
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practicability of such an integration.  ESRI ArcWeb is a good example of the GIS Web 

services, which integrates both core general technologies and OGC Web Services 

standards. 

 

3.5.1 ArcWeb Overview 

 

ESRI’s ArcWeb Services [2, 3] are a type of Web service that provides spatial 

data and GIS functionality via the Internet to ArcGIS and custom Web applications.  

ArcWeb Services offer a way for developers to include GIS content and capabilities in 

their applications without having to host the data or develop GIS tools themselves, 

resulting in significant savings of development time, expense, and computer resources.  

 

The services provided by ArcWeb are from simple mapping to complex tasks 

such as multipoint routing.  The rich set of services makes creating lightweight, Web-

enabled applications fast and simple.  ArcWeb Services allow developers to use a rich 

offering of up-to-date data content, with more data being added all the time.  The data 

accessible through ArcWeb include GDT United States Streets, USGS National Elevation 

Data, USGS National Land Cover Data, FEMA Q3 Flood Data, Census 2000 Population, 

ESRI Data & Maps, and so on [2].  

 

3.5.2 ArcWeb Architecture 

 

ArcWeb Services use SOAP to communicate so they are compatible with some of 

the latest Web service toolkits.  Web service toolkits such as Microsoft .NET simplifies 
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the implementation of ArcWeb Services because the communication protocol is handled 

automatically.  ArcWeb Services can also communicate directly through SOAP for 

clients not using Web service toolkits.  ArcWeb Services are described in WSDL.  

ArcWeb Services are published to a Universal Description, Discovery, and Integration 

(UDDI) registry so developers can easily discover them.  The ArcWeb Architecture 

which integrates both the general Web Service technology and the OGC Web Services 

standards is shown in Figure 3-4 [2, 27]. 
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Figure 3-4. ArcWeb Architecture. 
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The key advantages of using ArcWeb for Developers are the following [2]:  

• Access to vast amounts of current, reliable data and GIS capabilities 

without having to maintain or store the data or develop the GIS 

capabilities yourself;  

• Ability to combine multiple services (such as address matching, routing, 

point of interest [POI] management, and more) and integrate these 

services with your own application environment, leading to limitless 

possibilities for sharing geographic information;  

• No need to purchase hardware or software; 

• No need to obtain updates to data sets because the data accessed via 

ArcWeb for Developers is always current; 

• 24/7 reliability; 

• Standards-based (SOAP/XML interface, Web Services Description 

Language [WSDL] access, published on the Universal Description, 

Discovery, and Integration [UDDI] registry). 
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CHAPTER 4 DESIGN AND IMPLEMENTATION: AN EXPERIMENT ON A SOAP-

BASED GIS WEB APPLICATION 

 

4.1 Overview 

 

In this chapter, I report my experiment on a SOAP-based GIS Web application.  

This is an implementation of a client of Microsoft TerraService, which retrieves DOQ 

map images from the TerraService.  It uses SOAP as the communication protocol.  To 

demonstrate the use of map images, additional feature data from a local ArcSDE server 

are overlapped on the map images.  Some related query functions are also implemented.    

 

The Java Web Services Developer Pack (Java WSDP) 1.2 [25] is used to 

construct SOAP messages to communicate between the client and the TerraService.  The 

TerraService Data Structures, such as AreaBoundingBox, AreaCoordinate, LonLatPt, …, 

are implemented in Java to provide parameters for the TerraService methods.  SOAP 

messages are constructed using Java WSDP to communicate with TerraService methods 

such as GetAreaFromPt and GetTile.   
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4.2 Design Architecture 

 

In this section, I introduce the design architecture of my implementation 

experiment.  This implementation allows the user to provide the center longitude and 

latitude, width and height of the map.  SOAP messages are constructed according the user 

input to retrieve DOQ images.  ArcSDE feature data are then retrieved and displayed on 

the map image.  Without storing any image data on the local disk, the user can get any 

map image area she/he wants from the TerraService.  This again shows the beauty of 

Web Services.  The design architecture of the implementation is depicted in Figure 4-1.   
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Figure 4-1.  Implementation Design Architecture. 

 

4.3 Implementation Workflow 

 

The implementation is carried out according to the workflow shown in Figure 4-2.  

First, the program constructs SOAP request messages to get image tiles from 

TerraService according to the user input, which specifies the position (center longitude 

and latitude) and extent (width and height) of the map.  Meanwhile, the meta data for the 

tiles are available in the SOAP response messages for latter use in creating the cropped 
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map image.  The cropping of the image is done after obtaining the images tiles and their 

meta data.  The tile meta data also provide the input bounding box for the spatial query to 

retrieve ArcSDE feature data.  Once the ArcSDE data are retrieved from the database, 

overlay of feature data and map image is done.  Some query functions are implemented in 

the mean while. 
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Figure 4-2.  Workflow of Implementation Experiment 

 

4.4 TerraServer Image Storage 

 

Here I will provide some basic introduction of the image storage of TerraServer, 

which is necessary for understanding how the implementation works [5].  TerraServer 

supports a powers-of-2 ladder of resolutions - .25, .50, 1, 2, 4, 8, 16, 32, through 16,384 
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meters per pixel.  The 1 meter per pixel resolution is used as the “base resolution” in the 

system.  All other resolutions are a multiple of 2 from 1 meter resolution. 

 

All TerraServer tiles are 200 x 200 pixel images.  A 1 meter resolution tile covers 

a 200 meter by 200 meter area.  A 2 meter tile covers a 400 meter by 400 meter area, and 

so on.  Typically, TerraServer stores a seven-level “image pyramid”.  The actual number 

of resolutions is dependent on the type of imagery being stored.  TerraServer stores 

several mosaic themes.  Currently two themes are accessible from the TerraService -- 

aerial imagery (photograph), and topographic map (scanned from paper maps). 

 

USGS Digital Ortho-Quadrangles (DOQ) images are gray-scale, 1-meter 

resolution aerial photos.  Cars can be seen, but 1-meter resolution is too coarse to show 

people.  Imagery is ortho-rectified to 1-meter square pixels.  Approximately 90% of the 

U.S. has been digitized.  

 

USGS Digital Raster Graphics (DRG) images are 13-color digitized topographic 

maps, with scales varying from 2.4 meter resolution to 25.6 meter resolution.  DRGs are 

the digitized versions of the popular USGS topographic maps.  A sample USGS DOQ 

image and USGS DRG image are shown in Figure 4-3 [5]. 

 

 

 



 52

 

 

Figure 4-3.  A USGS DOQ Image (Left) and A USGS DRG Image (Right) [5]. 

 

The most popular theme is the aerial imagery, which is the only image type used 

in this implementation. 

 

4.5 Implementation Solution 

 

4.5.1 Java Web Services Developer Pack 

 

The Java Web Services Developer Pack (Java WSDP) is used as the 

implementation tool.  Java WSDP is a free integrated toolkit that allows Java developers 

to build and test XML applications, Web services, and Web applications with the latest 

Web service technologies and standards implementations.  Technologies in Java WSDP 

include the Java APIs for XML, Java Architecture for XML Binding (JAXB), JavaServer 

Faces, Web Services Interoperability Sample Application, XML Security, JavaServer 

Pages Standard Tag Library (JSTL), Java WSDP Registry Server, Ant Build Tool, and 

Apache Tomcat container. 
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Perhaps the most important feature of the JWSDP is that they all support industry 

standards, thus ensuring interoperability.  Another feature of the JWSDP is that they 

allow a great deal of  flexibility.  Users have flexibility in how they use the APIs.  

4.5.2 Construct SOAP Messages 

Building an image from TerraServer Tiles involves “stitching together” several 

images tiles from TerraServer image database to create a new image cropped to some end 

user specified dimensions.  The TerraService methods which are used to get map images 

in this project are GetAreaFromPt and GetTile (Table 4-1) [24]. 

 

 

GetAreaFromPt 

 
public AreaBoundingBox GetAreaFromPt(LonLatPt center, Theme theme, 

Scale scale, int displayPixWidth, int displayPixHeight) 

 

GetTile 

public Byte[] GetTile(TileId id) 

 

Table 4-1. TerraService Methods GeAreaFromPt and GetTile. 

 

The GetAreaFromPt method returns the tile meta-data for a Geographic rectangle.  

Use this call to identify the tiles required to construct an image of a specific size and 

resolution with a known center point.  The GetAreaFromPt is typically called in 

http://terraserver-usa.com/About/AboutTerraServiceReturnStructs.htm
http://terraserver-usa.com/About/AboutTerraServiceParamStructs.htm
http://terraserver-usa.com/About/AboutTerraServiceParamStructs.htm
http://terraserver-usa.com/About/AboutTerraServiceParamStructs.htm
http://terraserver-usa.com/About/AboutTerraServiceParamStructs.htm
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applications that want to control the size of the display area.  Using GetAreaFromPt, the 

caller controls the specific Longitude and Latitude point to be displayed in the center. 

The LonLatPt point parameter identifies the Geographic center of the rectangle of 

interest.  The Theme and Scale input parameters identify the type imagery and resolution 

of interest.  The displayPixWidth and displayPixHeight parameters identify the size of 

image the caller intends to create.  The GetAreaFromPt method computes the TerraServer 

tiles that overlap the corners of your image area in the resolution specified in the Scale 

parameter. 

The GetTile method returns a Byte array containing the compressed image data 

for the requested tile.  The TileId input parameter identifies the specific data row in the 

TerraServer database to be returned. 

 The first step is to construct a request SOAP message to call the 

GetAreaFromPt method to identify the TerraServer image tiles that are required to 

contribute to the user required image. 

 

 The request SOAP message is shown in Table 4-2 [24]: 

 

 

 

 

 

 

http://terraserver-usa.com/About/AboutTerraServiceParamStructs.htm
http://terraserver-usa.com/About/AboutTerraServiceParamStructs.htm
http://terraserver-usa.com/About/AboutTerraServiceParamStructs.htm
http://terraserver-usa.com/About/AboutTerraServiceParamStructs.htm
http://terraserver-usa.com/About/AboutTerraServiceParamStructs.htm
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POST /TerraService.asmx HTTP/1.1 
Host: terraserver-usa.com 
Content-Type: text/xml; charset=utf-8 
Content-Length: length 
SOAPAction: "http://terraserver-usa.com/terraserver/GetAreaFromPt" 
 
<?xml version="1.0" encoding="utf-8"?> 
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"> 
  <soap:Body> 
    <GetAreaFromPt xmlns="http://terraserver-usa.com/terraserver/"> 
      <center> 
        <Lon>double</Lon> 
        <Lat>double</Lat> 
      </center> 
      <theme>Photo or Topo or Relief</theme> 
      <scale>Scale1mm or Scale2mm or Scale4mm or Scale8mm or 
Scale16mm or Scale32mm or Scale63mm or Scale125mm or Scale250mm or 
Scale500mm or Scale1m or Scale2m or Scale4m or Scale8m or Scale16m 
or Scale32m or Scale64m or Scale128m or Scale256m or Scale512m or 
Scale1km or Scale2km or Scale4km or Scale8km or Scale16km</scale> 
      <displayPixWidth>int</displayPixWidth> 
      <displayPixHeight>int</displayPixHeight> 
    </GetAreaFromPt> 
  </soap:Body> 

</soap:Envelope> 
 

 

Table 4-2.  GetAreaFromPt SOAP Request Message. 

 

Table 4-3 shows the Java code to construct the GetAreaFromPt SOAP request message. 
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            String lon; // center longitude of the requested image 
      String lat; // center latitude of the requested image  
      String them; // theme of the requested image 
      String scal; // scale of the requested image 
      String Width; // width of the requested image 
      String Height; // height of the requested image 
 
      // Create the SOAP message 
      MessageFactory factory =MessageFactory.newInstance(); 
       
      SOAPMessage message = factory.createMessage(); 
      SOAPPart soapPart = message.getSOAPPart(); 
      SOAPEnvelope envelope = soapPart.getEnvelope(); 
      SOAPHeader header = envelope.getHeader(); 
      header.detachNode(); 
     
envelope.addNamespaceDeclaration("xsi","http://www.w3.org/2001/XMLSchema-
instance"); 
envelope.addNamespaceDeclaration("xsd","http://www.w3.org/2001/XMLSchema");
envelope.addNamespaceDeclaration("soap", 
"http://schemas.xmlsoap.org/soap/envelope/"); 
      SOAPBody body = envelope.getBody(); 
      
      SOAPElement getAreaFromPt =body.addChildElement("GetAreaFromPt"); 
      getAreaFromPt.addNamespaceDeclaration("","http://terraserver-
usa.com/terraserver/"); 
      SOAPElement center = getAreaFromPt.addChildElement("center"); 
      SOAPElement Lon = center.addChildElement("Lon"); 
      Lon.addTextNode(lon); 
      SOAPElement Lat = center.addChildElement("Lat"); 
      Lat.addTextNode(lat); 
      SOAPElement theme = getAreaFromPt.addChildElement("theme"); 
      theme.addTextNode(them); 
      SOAPElement scale = getAreaFromPt.addChildElement("scale"); 
      scale.addTextNode(scal); 
      SOAPElement pixWidth =   
getAreaFromPt.addChildElement("displayPixWidth"); 
      pixWidth.addTextNode(Width); 
      SOAPElement pixHeight = 
getAreaFromPt.addChildElement("displayPixHeight"); 
      pixHeight.addTextNode(Height); 
 
 

Table 4-3. Code for Constructing the SOAP Request. 
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After getting connected to TerraService and sending over the request SOAP 

message, the response is sent back from the TerraService, which looks like the SOAP 

message shown in Table 4-4 [24]: 

 

 
HTTP/1.1 200 OK 
Content-Type: text/xml; charset=utf-8 
Content-Length: length 
 
<?xml version="1.0" encoding="utf-8"?> 
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"> 
  <soap:Body> 
    <GetAreaFromPtResponse xmlns="http://terraserver-
usa.com/terraserver/"> 
      <GetAreaFromPtResult> 
        <NorthWest> 
          <TileMeta> 
            <Id xsi:nil="true" /> 
            <TileExists>boolean</TileExists> 
            <NorthWest xsi:nil="true" /> 
            <NorthEast xsi:nil="true" /> 
            <SouthWest xsi:nil="true" /> 
            <SouthEast xsi:nil="true" /> 
            <Center xsi:nil="true" /> 
            <Capture>dateTime</Capture> 
          </TileMeta> 
          <Offset> 
            <Point xsi:nil="true" /> 
            <XOffset>int</XOffset> 
            <YOffset>int</YOffset> 
          </Offset> 
        </NorthWest> 
        <NorthEast> 
            ... 
        </NorthEast> 
        <SouthWest> 
            ... 
        </SouthWest> 
        <SouthEast> 
            ... 
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        </SouthEast> 
        <Center> 
          ... 
        </Center> 
        <NearestPlace>string</NearestPlace> 
        <OverlappingThemeInfos> 
          <OverlappingThemeInfo> 
            <LocalTheme>boolean</LocalTheme> 
            <Theme>Photo or Topo or Relief</Theme> 
            <Point xsi:nil="true" /> 
            <ThemeName>string</ThemeName> 
            <Capture>dateTime</Capture> 
            <ProjectionId>Geographic or UtmNad27 or 
UtmNad83</ProjectionId> 
            <LoScale>Scale1mm or Scale2mm or …… or 
Scale16km</LoScale> 
            <HiScale>Scale1mm or Scale2mm or …… or 
Scale16km</HiScale> 
            <Url>string</Url> 
          </OverlappingThemeInfo> 
          <OverlappingThemeInfo> 
            <LocalTheme>boolean</LocalTheme> 
            <Theme>Photo or Topo or Relief</Theme> 
            <Point xsi:nil="true" /> 
            <ThemeName>string</ThemeName> 
            <Capture>dateTime</Capture> 
            <ProjectionId>Geographic or UtmNad27 or 
UtmNad83</ProjectionId> 
            <LoScale>Scale1mm or Scale2mm or …… or 
Scale16km</LoScale> 
            <HiScale>Scale1mm or Scale2mm or …… or 
Scale16km</HiScale> 
            <Url>string</Url> 
          </OverlappingThemeInfo> 
        </OverlappingThemeInfos> 
      </GetAreaFromPtResult> 
    </GetAreaFromPtResponse> 
  </soap:Body> 
</soap:Envelope> 
 

 

Table 4-4.  GetAreaFromPt SOAP Response Message. 
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The Java code for sending the GetAreaFromPt SOAP request message and 

receiving the GetAreaFromPt SOAP response message is shown in Table 4-5. 

 

 
      byte[] b; // convert the GetAreaFromPt SOAP request message into   
      // byte array 
 
      // Create the connetion 
      URL endpoint = new URL("http://terraserver-
usa.com/terraservice.asmx"); 
      HttpURLConnection connection =(HttpURLConnection) 
endpoint.openConnection(); 
 
      connection.addRequestProperty("Content-Type", "text/xml; 
charset=utf-8"); 
      connection.addRequestProperty("Content-
Length",Integer.toString(b.length)); 
      connection.addRequestProperty("SOAPAction", 
"\"http://terraserver-usa.com/terraserver/GetAreaFromPt\""); 
      connection.setRequestMethod("POST"); 
      connection.setDoOutput(true); 
      connection.setDoInput(true); 
 
      // Send out the request  
      OutputStream out = connection.getOutputStream(); 
      out.write(b); 
      out.flush(); 
      out.close(); 
      System.out.println(connection.getResponseMessage()); 
 
      // Get the response 
      MessageFactory factory = MessageFactory.newInstance(); 
      MimeHeaders mm = new MimeHeaders(); 
      mm.addHeader("Content-Type","text/xml"); 
      SOAPMessage response = 
factory.createMessage(mm,connection.getInputStream()); 
 
      // Get the content of the response 
      SOAPPart sp = response.getSOAPPart(); 
      SOAPEnvelope se = sp.getEnvelope(); 
      SOAPBody sb = se.getBody(); 
      Name bodyName = 
se.createName("GetAreaFromPtResponse","","http://terraserver-
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usa.com/terraserver/"); 
      Name elementName = se.createName("GetAreaFromPtResult"); 
      Iterator it = sb.getChildElements(bodyName); 
      SOAPBodyElement bodyElement =(SOAPBodyElement)it.next(); 
      Iterator it2 = bodyElement.getChildElements(); 
      SOAPElement getAreaResult = (SOAPElement)it2.next(); 
      Iterator it3 = getAreaResult.getChildElements(); 
      SOAPElement nwest = (SOAPElement)it3.next(); 
      SOAPElement neast = (SOAPElement)it3.next(); 
      SOAPElement swest = (SOAPElement)it3.next(); 
      SOAPElement seast = (SOAPElement)it3.next(); 
      SOAPElement center = (SOAPElement)it3.next(); 
               ... 
 

 
 
Table 4-5. Code for Sending the SOAP Request and Receiving the SOAP Response. 

 

The GetAreaFromPt SOAP response message provides all the information needed 

to get the required tiles and the meta data of the tiles to do the image cropping.  Similar 

SOAP messages were constructed to get each image tile.  All the SOAP request and 

response messages, including the two messages shown in Table 4-2 and Table 4-4, for 

using the TerraService are available at TerraService WSDL web page [24]. 

 

4.5.3 Get Terraserver Image Tiles and Create the Cropped Map Image 

 

The response SOAP message also contains the meta-data describing a single 

image tile in the TerraServer database, such as TileId, which identifies a unique image 

tile in the TerraServer database, and the LonLatPtOffset, which describes the pixel 

location of a specific longitude and latitude value within a TerraServer image tile.  Here 

the Offsets identifie the 4 corner points in the NorthWest, NorthEast, SouthWest, 
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SouthEast tiles and the center point in the Center tile.  After obtaining the TileIds, the 

program calls GetTile to get a BufferedImage of each tile.  Then according to the 

Offsets, the image cropping is done following for loop (Table 4-6). 

 

 

int x;  // current Tile row id 

int y;  // current Tile column id 

int xstart; // row id of the NorthWest tile  

int ystart; // column id of the NorthWest tile 

TileId SWId; // TileId of the SouthWest tile 

TileId NEId; // TileId of the NorthEast tile 

GetTile gt;  // GetTile constructs SOAP message to call  

// TerraService GetTile method and build a BufferedImage of that 

// tile 

int imgX; // offset x 

int imgY; // offset y 

TileId tid; // the current tile id 

Vector brv; // a vector stores the cropped map image tiles 

 

// SWId.Y is the column id of SouthWest tile  

for (int y = ystart; y >= SWId.Y; y--) {   

      // NEId.X is the row id of NorthEast tile  

for (int x = xstart; x <= NEId.X; x++) {  

   ... 

BufferedImage imb = gt.getImage(tid.Theme.themebis, 

tid.Scale.scalebis , tid.Scenebis , tid.Xbis , 

tid.Ybis); 

   ... 

imb = imb.getSubimage(imgX, imgY, imgWidth, 

imgHeight); 

   ... 

          brv.add(imb); 

   ... 

} 

} 

 
 

Table 4-6. Code for Image Cropping. 
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The number of rows (R) and number of columns (C) of the cropped tiles need to 

be remembered for the later displaying purpose.  To display the cropped image, the 

program retrieves each tile from the image tile vector in a flow layout order, and displays 

them in an R by C matrix. 

 

Now a cropped image from a set of TerraServer image tiles has been produced.  

Note, when receiving the meta data of the tiles, the NWOffset (Offset of the NorthWest 

tile) and SEOffset (Offset of the SouthEast tile) also need to be remembered to provide 

the bounding box to retrieve the ArcSDE feature data for this map area, and to calculate 

the position of a latitude-longitude point on the map and draw the feature data on the 

map.  

 

4.5.4 Visualizing Map Image Cropping 

 

Figure 4-4 demonstrates how the desired map image is cropped from the 

TerraServer tiles.  The dashed rectangle represents the user requested map image area.  

The point p5 is the center (Offset of the center tile) of the map.  The other four points p1, 

p2, p3, and p4 represents the NortheWest, NorthEast, SouthWest, and SouthEast corners 

(tile Offsets) of the map respectively. 

 

TerraServer image tile T1, T2, T3, ..., T9 are the 9 tiles required to build the 

desired map image.  Among the 9 tiles, the tile-meta information of 5 of them is available 
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for doing the image cropping, and they are: T1 -- NorthWest tile, T3 -- NorthEast tile, T7 

-- SouthWest tile, T9 -- SouthEast tile, T5 -- Center tile. 

 

Provided with the image tiles from TerraServer and the Offsets of the 4 corner 

tiles, you can get the user requested map image. 
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Figure 4-4. Visualizing Map Image Cropping 
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4.5.5 Zoom Out 

 

The map images with higher resolution (higher than 1m, such as 500mm, 250mm, 

and 125mm) are not available from the TerraService.  The program zooms out the map 

image with 1m resolution to get the higher resolutions.  Let scalefactor = 

1000(mm)/current resolution(mm), and draw the corresponding 1m resolution 

BufferedImage in a scalefactor times bigger area (Table 4-7). 

 

 
Graphics g; 

BufferedImage image; 

 ... 

g.drawImage(image, 0, 0, image.getWidth() * scalefactor, 

image.getHeight()*scalefactor, Color.white, null); 
 

Table 4-7.  Code for Zoom Out. 

4.5.6 Retrieve ArcSDE Feature Data 

The GetMoritorData class takes the bounding box as the input parameters, and 

retrieves the ArcSDE feature data (point data here) within this bounding box (Table 4-8).  

 

public GetMoritorData(double minX , double minY , double maxX , 

double maxY ){ 

     SpatialQueryEx sp=new SpatialQueryEx("moritor"); 

Vector vector=sp.queryInBox(minX, minY, maxX, maxY); 

    ... 

} 

 
 

Table 4-8.  Code for Retrieving ArcSDE Feature Data. 
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So provided with the bounding box remembered from GetAreaFromPt SOAP 

response, the ArcSDE feature data from the database for the map area are easily retrieved 

(Table 4-9). 

 

// the following data provides the bounding box information  

// remembered from Step 4. 

LonLatPtOffset nwoffset; // Offset of NorthWest tile 

LonLatPtOffset seoffset;  // Offset of SouthEast tile 

LonLatPt nwpt = nwoffset.Point; // LonLatPt  of nwoffset 

LonLatPt sept = seoffset.Point; // LonLatPt of seoffset 

 

GetMoritorData gmd = new GetMoritorData(nwpt.Lon, sept.Lat, 

sept.Lon, nwpt.Lat); 

 
 

Table 4-9.  Obtain Bounding Box for ArcSDE Feature Data. 

 

Spatial query is performed to retrieve the feature data.  The spatial query is 

executed in the method runSpatialQuery, which is called in queryInBox.  The essential 

code of queryInBox and runSpatialQuery is show in the Table 4-10. 

 

 
 

  public Vector queryInBox(double minX , double minY , double maxX 

  , double maxY ) { 

    Vector vector=new Vector(); 

    // Generate a rectangular shape that will be used as a  

    // filter 

    try{ 

      SeShape shape = new SeShape(layer.getCoordRef()); 

      SeExtent extent = new SeExtent( minX,minY,maxX,maxY); 

      shape.generateRectangle(extent); 

      SeShape[] shapes = new SeShape[1]; 

      shapes[0] = shape; 
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      // Retrieve all the shapes that are contained within the 

      // rectangles envelope. 

          ... 

      vector=runSpatialQuery(shapes, SeFilter.METHOD_ENVP ); 

          ... 

   }catch( SeException e) {} 

     return vector; 

   } // End method queryInBox 

 

   // Runs a spatial query against the layer using the  

   // specified shape and method 

 

  public Vector runSpatialQuery( SeShape[] shape, int method) { 

      Vector vector; 

         ... 

     try { 

         ... 

       SeQuery spatialQuery = null; 

       SeSqlConstruct sqlCons = new SeSqlConstruct(    

       layer.getName() ); 

       // conn is the ArcSDE connection, cols is a String array    

       // containing table column definitions 

       spatialQuery = new SeQuery(conn, cols, sqlCons); 

       spatialQuery.prepareQuery(); 

 

       // Set spatial constraints 

          ... 

       spatialQuery.execute(); 

       SeRow row = spatialQuery.fetch(); 

          ... 

       spatialQuery.close(); 

    } catch ( SeException sexp ) {} 

       return vector; 

    } // End method runSpatialQuery 

 

 
 

Table 4-10.  Spatial Query for Retrieving ArcSDE Feature Data. 
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4.5.7 Overlay Feature Data with Map Image 

Provided with the width and height of the map image and the latitude and 

longitude of the NorthWest and SouthEast corners of the map, the latitude and longitude 

of each pixel of the map can be calculated with great accuracy.  Similarly, each latitude-

longitude point data can be positioned on the map accurately.  The latitude and longitude 

measurement of the NorthWest and SouthEast corners are remembered from the 

GetAreaFroPt SOAP response.  The code in Table 4-11 draws a point data on the map 

image. 

 

 

LonLatPt temp; // the point data 

double lon = temp.Lon; // longitude of the point 

double lat = temp.Lat;  // latitude of the point 

int x; // x position of the point on the map 

int y;  // y position of the point on the map 

Graphics g; 

 

// calculate the x position of the feature point data  

x = (int)(((lon - nwpt.Lon)*10000000)/((sept.Lon - nwpt.Lon) * 

10000000/(this.width * scalefactor))) + xstart;   

 

// calculate the y position of the feature point data  

y = (int)(((lat - nwpt.Lat)*10000000)/((sept.Lat - nwpt.Lat) * 

10000000/(this.height * scalefactor))) + ystart;   

 

// draw the feature point data on the map 

g.fillRect(x - 1, y - 1, 2, 2); 

  
 

Table 4-11.  Code for Overlaying Feature Data and Map Image. 
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In the same manner, once the program draws the point, it can find and highlight it 

on the map provided with its latitude and longitude.  This is how the query feature data 

part is done.  

 

4.5.8 Summary of Implemented Functionality 

 

In summary, a good set of GIS functionalities have been implemented in this case 

study, which includes: 

• Dynamically retrieves the up-to-date image data from the TerraService, provided 

with the center point (longitude-latitude) and width and height of the map; 

• Moving the map image to any of the four directions, East, West, North, and 

South; 

• Retrieves feature data from ArcSDE; 

• Overlay  the point feature data with the map image; 

• Query the feature data, and display the query on the map. 

 

The Java WSDP technology makes the implementation easy, flexible, and extensible. 

A sample run of the implemented program is shown in Figure 4-5. 
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Figure 4-5. A Sample Run of the Implementation. 
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CHAPTER 5 CONCLUSIONS 

 

In this thesis project, I have reviewed the current status of integrating the core 

SOAP-based Web Services technologies and the OGC Web Services standards.  The 

benefits to the distributed GIS computing by bringing these two areas together are 

emphasized.  Basically, the integration will make it easier to distribute geospatial data 

and applications across platforms, operating systems, computer languages, etc; and it will 

make the GIS industry take advantage of the huge amount of powerful technologies that 

are being built to enable the general Web Services architecture. 

 

OGC has started making efforts porting the SOAP-based Web Service 

technologies into their interoperability programs.  However, these completed activities 

only stressed a small range of issues based on some specific specifications.  The current 

integration status is still about whether and how to integrate.  There are no conclusive 

answers to the whether question yet, and even farther from answering the how question.  

Obviously, more experiments are needed to reach a more conclusive answer of the 

integration questions. 

 

The leading GIS software implementation incorporating both areas, like ESRI 

ArcWeb, has provided good evidence of the feasibility of integration.  In my own case 
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study, a good set of GIS functionalities has been implemented using the TerraService, 

which also involves both areas. 

 

Besides the integration issue, the SOAP-based Web Services technology itself is 

still in the development process in many aspects, e.g., security, reliability, service quality, 

and services interactions.  These aspects are also concerns of OGC Web Services.  For a 

better future integration, the early consideration of Geographic computing characteristics 

in developing the general Web Services technology is a not a bad idea.    
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