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ABSTRACT 

This dissertation empirically and theoretically investigates three interrelated issues of 

market anomalies in interest rates derivatives and foreign exchange rates. The first essay 

models the spot exchange rate as a decomposition of permanent and transitory 

components. Unlike extant analysis, the transitory component could be stationary or 

explosive.  The second essay examines the market efficiency hypothesis in the foreign 

exchange markets and relates the rejection of forward rate unbiasedness hypothesis to the 

existence of risk premium not to the failure of rational expectation. The third essay 

examines the behavior of short-term riskless rate and models the risk free rate as a 

nonlinear trend stationary process.  

 

While addressing these issues, these essays account for: (1) finite sample bias; (2) Unit 

root and other nonstationary behaviors; (3) the role of nonlinear trend; and (4) the 

interrelations between different behaviors. 

 

Several new results have been gleaned from our analysis; we find that: (1) the spot 

exchange rates display a very slow mean aversion behavior, which implies the failure of 

the purchasing power parity;  (2) there are positive autocorrelations across the long 

horizons overlapping returns increases overtime and then begin to decline at a very long 

horizon period;  (3) the short-term riskless rate displays a nonlinear trend stationary 

 x



 xi

process which is closer to driftless random walk behavior; (4) modifying the mean 

reverting short-term interest rates models to a nonlinear trend stationary shows an 

extreme improvement and outperforms all suggested models; (5)  the traditional tests for 

rational expectations and market efficiency in the foreign exchange markets are subject to 

size distortions; (6) we relate the rejection of market efficiency in the foreign exchange 

markets documented across most currencies to the existence of risk premium not to the 

rejection of rational expectation hypothesis.  
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INTRODUCTION 

Over the last two decades, a large body of progress has been made in modeling the 

behavior of financial time series such as the spot foreign exchange rates and the short-

term riskless rates. According to standard finance theory, both the spot exchange rates 

and the interest rates should be stationary processes.  However, the main line of empirical 

research in the foreign exchange market continues to find evidence that the exchange 

rates display a unit root behavior, which is well known in the literature as the purchasing 

power parity puzzle. In the corresponding literature in interest rates derivatives, the 

stationary riskless rate models, whether they are arbitrage or general equilibrium, like 

Vasicek (1977) and Cox, Ingresoll and Ross (1985), still cannot fit the data generating 

process of the short-term interest rate. However, the random walk models like Cox and 

Ingresoll (1975) and Cox, Ingresoll and Ross (1980) outperform the mean reverting 

models especially if they have high volatility elasticity (a puzzle).   

 

This dissertation contains three interrelated essays. The first develops a myopic fads 

model of prices that can explain the econometric behavior of the exchange rates spot 

exchange rates. Unlike extant analysis, the transitory component could be stationary or 

explosive. The existence of the transitory component of exchange rates implies that the 

holding periods returns are predictable. We find that the long horizon overlapping 

exchange rates returns display positive autocorrelations with a humped shaped pattern, 
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which implies that the exchange rates display a very slow explosive process. Consistent 

with the fads model, the predictability cannot be captured across short period horizons. 

However, the results are inconsistent with the fads model in the since that the exchange 

rates display large swings about fundamentals. Instead, our results imply that the 

exchange rates display long swings i.e. the purchasing power parity does not hold. 

 

The second essay examines the role of finite sample bias in tests for rational expectation 

and market efficiency in the foreign exchange market. In rationality and market 

efficiency hypotheses testing, the parameter estimates of regression equations are biased 

since the true mean of the predictors are unknown. A joint test of rationality and zero risk 

premia are conducted based on bootstrapping OLS and LAD estimators using data of six 

major currencies. After controlling for autocorrelation and heteroskedasticity, the results 

show that the bias is large enough to affect the statistical inference in empirical studies, 

and should be accounted for when testing for market efficiency. The rational expectation 

hypothesis cannot be rejected across all currencies. We relate the rejection of market 

efficiency in the foreign exchange market to the existence of foreign exchange risk 

premium.   

 

The third paper examines a set of continuous short-term interest rate models and finds 

that previous work overstates the evidence of the level effect. The overstatement is 

mainly due to the stationarity assumption about the stochastic behavior of interest rates.  

Comprehensive diagnostic tests suggest that the short-term interest rate is nonlinear trend 

stationary. Based on this finding, I employ the Hodric-Prescot filter to locate the 
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stationary component of the interest rate and compare the continuous time models based 

on this component. We document a substantial improvement across all mean reverting 

models and a substantial worsening across most of the heteroscedastic models. Finally, 

we modify the CIR SR model by replacing the drift term with the long-term nonlinear 

trend. We find that the modified model outperforms all competing models. 
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 ESSAY I 

Mean Aversion Down the Foreign Exchange Market 

 

I.  Introduction 

Over the last twenty years and more, a large body of progress has been made in the 

empirical studies of both the nominal and real exchange rates. However, the main line of 

empirical research continues to model the exchange rates as a unit root processes after the 

findings of Roll (1979), Frankel (1981), Alder and Lehman (1983), Hakkio (1984) and 

others. One implication of the unit root hypothesis is that a shock to real exchange rates 

induces a persistent movement and cannot revert as time passes. However, the traditional 

disequilibrium theory of exchange rate predicts that commodities prices adjust gradually 

and the nominal exchange rate adjusts eventually to a monetary shock; as a result, the real 

exchange rates are mean reverting  (a Puzzle). 

 

On the other hand, Hakkio (1986), who cannot reject the hypothesis of random walk, 

argues that the conventional unit root tests have a deviating local power against the 

alternative depending on the size of the autocorrelation. In a more elegant way, Sims 

(1988) argues that the use of the conventional unit root tests in the foreign exchange data 

are biased toward the acceptance of the random walk hypothesis if the size of the 

autocorrelation is large. As an alternative, he introduces a test that can discriminate 
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between the random walk and the slowly mean reverting behavior in the data generating 

process.   

 

In the last decade there was a considerable amount of literature, which provide evidence 

that the foreign exchange spot rates do not have a unit root but a stationary behavior (see 

Huizinga (1987), Rogoff (1996), Wu and Chen (1998), and Papell and Theodoridis 

(1998), for example). Engle (2000) strongly contradicts this view; he argues that the 

power of the unit root tests used in such studies is very low and subject to large size 

biases. However, we should mention that the unit root tests would also be biased toward 

the acceptance of random walk if the exchange rates display a crashed or stochastic 

bubble behavior, since such behaviors are not included in the alternative hypothesis (see 

Evans (1991) and Charemza and Deadman (1995), for example). 

 

In the corresponding literature in asset pricing, the long-horizon predictability conditional 

on past returns has been the focus of many studies of stock market efficiency. Following 

Summers (1986) it is well known that market efficiency tests have low power against the 

alternative where the fad behavior is difficult to be detected by examining the short 

horizons autocorrelations. Based on the variance ratio test of Cochrane (1988), Poterba 

and Summers (1988) and Lo and Mackinly (1988) find that the variance of returns 

increases at a rate which is less than proportional to the holding period.  This implies that 

a substantial part of the variance in monthly returns is due to a predictable component. 

Fama and French (1988), using a univariate autoregression of multiyear stock returns, 

also present evidence of mean reverting behavior and conclude that about 35% of stock 
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variation is predictable from past returns. Further, Kim, Nelson, and Startz (1991), use 

stratified randomization to account for non-normality in the data, find that mean 

reversion is only a pre-war phenomenon. The autoregression parameter flips to be 

positive for the post-war period (mean aversion).  

 

In this work, we first modify Fama and French (1988), hereafter F&F, model to allow for 

mean averting behavior in the exchange rates. Then, we implement the long horizon 

autoregression of F&F to examine the issue of predictability in the foreign exchange 

market in the sense of the fads model and test whether the long-horizon “buy low sell 

high” strategy can provide an abnormal return. Also, we perform a spectral-based test for 

each holding period return and test the hypothesis that the long horizon return is a 

sequence of serially independent process. However, we should mention that unlike the 

stock market, the existence of an abnormal return in the foreign exchange market does 

not necessarily imply that the market is irrational unless the exchange rate is an explosive 

process. For example, the traditional disequilibrium model of Dornbush (1976) implies 

that an unanticipated monetary shock causes the exchange rate to overshoot its long run 

equilibrium if the goods market prices are sticky, and as time elapses, the process returns 

back to its fundamentals.  As a result, the participants in the foreign exchange market 

would still be rational. Conversely, another point of view is that the real exchange rate 

sometimes tends to deviate so far from its mean that the macroeconomic measurable 

fundamentals (like foreign demands on domestic goods) seem insufficient to derive the 

real exchange rates to its mean. Thus, we expect a speculative bubble or irrational 
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behavior in the foreign exchange market (see Frankel and Froot (1990), and Engel and 

Hamitlton (1990), for example). 

 

To the best of our knowledge, this is the first paper that examines the long horizon 

predictability of returns in the foreign exchange market, which helps to fill in the gap in 

the empirical work. The fads model of Summers (1986) and Frankel and Froot (1990) 

suggests that the foreign exchange rates display large swings away from their long-run 

equilibrium (like the purchasing parity); as a result, even if the stationary component 

exists, it could be difficult to be detected by examining the short horizon periods as in 

previous studies. However, notice that the assumption of the fads model developed by 

Summers (1986) and Frankel and Froot (1990), sets a restriction that the transitory 

component of the spot exchange rate is stationary, therefore, it cannot explain the long 

swings in the exchange rate suggested by Engel and Hamilton (1990). 

 

We use the Moving Blocks Bootstrap (MBB) suggested by Fitzenberg (1998). With 

minimal requirements on the data-generating process allowing for non-normality, which 

is evident of foreign exchange rates (see, Clark (1973), Tauchen and Pitts (1983), and 

Phillips (1996, 1997), for example). The new approach is robust to both the clustering 

heteroscedasticity and autocorrelations that result from the overlapping of returns 

(Hansen and Hodrick (1980), Kim, Nelson and Startz (1988), McQueen (1992), Frankel 

and Froot (1994), Daniel (2001), and Hansen (2002)). Second, it is robust to small sample 

bias that become more severe as the horizon of returns becomes longer since the number 

of the nonoverlapping returns observations are monotonically decreasing with the return 
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horizon (see, Fama and French (1988), Poterba and Summers (1988), Kriby (1997), Ang 

and Bekaert (2001), and Campbell (2001), for example). The use of the MBB technique 

is critical since the literature is thrust to such an estimator that is simultaneously robust to 

non-normality, finite sample bias, autocorrelation and heteroscedasticity.   

 

Fitzenberger (1998) established the ability of the MBB to provide asymptotic refinements 

when the errors are both heteroskedastic and autocorrelated. It is shown that the MBB 

heteroscedastic and autocorrelated consistent covariance matrix, hereafter HAC, is 

equivalent to the Barlett kernel suggested by Newey and West (1987) and performs better 

when the samples exhibit temporal dependence1. 

 The remainder of the paper is constructed as follows: Section II develops a simple model 

of exchange rates returns that allow for a stationary or an explosive component in the 

spot exchange rates and sheds light on the complications of testing mean reversion. 

Section III develops the moving blocks bootstrap, Section IV outlines the data used. In 

section V, we test the hypothesis of mean reversion and explain the results. Section VI 

Concludes. 

 
II.  A simple model of exchange rates returns 

 
In this section we develop a simple model of exchange rate returns that allow the 

transitory component to be either stationary or explosive.  We interpret the implications 

of each case to the autoregression suggested by Fama and French (1988).  It is important 

to note that if the foreign exchange rates have an explosive component as well as a 

                                                 
1 Andrews (1991) shows that Barlett kernel HAC matrix of Newey and West behaves poorly when the data 
exhibits temporal dependence. This problem is more critical when the least square is used. 
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random walk component, then the holding period returns can still be predicted even 

though the exchange rates are persistent to shocks. We also review the econometric 

complications related to the long horizon regression and the commonly employed 

estimation procedures. 

 
II.A.  The model 
  
Consider the F&F model of decomposing the time series and let the log of the exchange 

rate at time t, , be the sum of a permanent component, , and a transitory component, 

, where , follows a first order autoregression process (AR1) with drift µ, 

tp tq

tz tq

                                                         ttt zqp +=                                                                (1) 

                                                     ttt qq ηµ ++= −1                                                           (2) 

Where ηt is a time series of serially uncorrelated shocks. 

Let zt be a slowly decaying (Summers 1986) or averting transitory component with a 

driftless first order autoregression , 

                                                         ttt zz εθ += −1                                                            (3)                         

where εt is a sequence of i.i.d random variables with zero mean and positive variance, , 

and θ is some parameter below but close to 1 if the transitory component displays a 

slowly mean reverting behavior. However, if we allow the transitory component to be an 

explosive process, then the absolute value of θ is some parameter above but close to 1. 

Equation (3) implies that the transitory component is created by adding 

2
εσ

tε  to 1−tzθ . With 

repeated substitution, it is strait-forward to show that 

                                                                                                                   (4a) ∑
−

=
−=

1

0

t

j
it

j
tz εθ
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and 

                                                                                                           (4b) ∑
=

−++ =
K

j
jkt

j
Ktz

0
εθ

The variance and the autocovariance of the transitory component, , are tz

                                                       ( )
( )

2
2

2
2

1
1

εσθ
θσ

−
−

=
t

z                                                       (5a) 

                                                     ( ) 2,cov z
K

Ktt zz σθ=+                                                   (5b) 

Notice that if the transitory component is stationary, then expressions 4a (4b) 

demonstrate that the weight applied to the first observation declines to zero as t increases. 

Likewise, the variance of the transitory component increases as t gets large and converges 

to 

                                                            ( )
2

2
2

1
1

εσθ
σ

−
=z                                                   (5c) 

 and the autocovariances converge to zero as K increases. 

 

However, if the transitory component is explosive, then we can infer from 4a (4b) that the 

weight applied to the first observation increases exponentially as t (K) increases. Hence, 

the first observation has a variance contribution of order  ) . This implies that 

the transitory component becomes more volatile with longer horizon K and the 

autocovariances grow exponentially as K increases. 

t2θ ( )(2 Kt+θ

The slope of the autoregression of the actual change in the transitory component, denoted 

by )(Kρ , is 

                                              
( )

][
,

2
,

Ktt

KtttKtt

zz
zzzzCov

−

−+

−
−−

σ
                                           (6)                             
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and the covariance of the actual change in the transitory component in the numerator of 

(6) is 

    ( ) ( ) ( ) ( KtKtKtttKtzKtttkt zzCovzzCovzzCovzzzz −+−+−+ +++−=−− ,,,, 2σ )Cov        (7a) 

                         ( ) ( ) ( ) 2221,
Ktt z

KK
z

K
Ktttkt zzzzCov

−
++−=−− −+ σθθσθ                           (7b) 

Using the variance expression in (5a) we can write, 

                    ( ) ( )
( )

2
2

222

1
12, εσθ

θθθθ








−

+−−+
=−−

−+

−+

KKKtKt

Ktttkt zzzzCov                    (7c) 

Observe that if the transitory component is stationary then is approximately equal 

and the model predicts positive covariances for short horizons’ overlapping returns. 

However, for longer horizons’ returns, the covariances that appear in the last terms of 

(7a) will converge to zero and the covariance in the numerator of (6) will converge to 

(i.e. the overlapping returns display negative covariances).  

2
tzσ

2
Ktz −

σ

2
tzσ−

On the other hand, if the transitory component is explosive, the slope of the 

autoregression in (6) is no longer the autocorrelation of the actual change since  

> . It can also be implied from (7b) that the numerator of (6) is always positive and 

grows exponentially with K. 

2
tzσ

2
Ktz −

σ

The variance of the actual change in the transitory component is 

                                   ( ) ( )KttzzKtt zzCovzz
Ktt −− −+=−

−
,2222 σσσ                                  (8a) 

Using the variance expression in  (5a), we can express the variance of the actual change 

in the transitory component in terms of the residuals variance: 

                       ( ) 2
2

2222
2

1
222

εσθ
θθθθσ 








−

−+−+
=−

−−

−

KKttKt

Ktt zz                              (8b) 
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and the regression slope in (6) can be expressed as 

                                       ( )
( )222

12)( 2222

222

−+−+
+−−+

= −−

−+

KKttKt

KKKtKt

K
θθθθ
θθθθρ                                   (9) 

Equation (7a) shows that if θ is positive and close to but less than 1 (Summers 1986) then 

the variance of the actual change in the transitory component in (7a) will slowly approach 

 as the return horizon K increases and 22 zσ )(Kρ in (9) converges to -0.5.  Conversely, if 

θ is close to but larger than 1 then the variance expression in (8b) will be an increasing 

function in the return horizon K as is the covariance of the actual change. The behavior of 

the slope with respect to the return horizon depends on the growth rate of either the 

numerator or the denominator as K increases.    

 

In order to gain insight into the behaviors of the autocorrelation, covariance and variance 

of the actual change in the transitory component, we simulate the model based on 

different values of θ. Figure 1 plots the simulated values of the variance, covariance, and 

autocorrelation when θ=0.99 against the return horizons based on the econometric 

specifications of (7c), (8b) and (9). As shown, the variance of the actual change in the 

stationary component is increasing at a decreasing rate until it reaches its maximum at the 

point where converges to zero. Moreover, the covariance is decreasing at decreasing 

rate and the sign of the covariance changes from positive to negative as the horizon K 

increases.  

Kθ

 

Figure 2 illustrates the simulated autocorrelation for several different values of θ under 

the assumption that the bubble component is stationary. As the figure shows, the value of  
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Figure 2. 
Simulated Autocorrelations 

Figure 1. 
Simulated Variance, Covariance, and Autocorrelation 

Θ=0.99 

 



 14

the autocorrelations converge to –0.5 as K increases. The value of θ controls the degree 

of persistence; a smaller value of θ implies faster convergence to -0.5.  

 

Unlike the stationary case, if the bubble is explosive then the slope of the autoregression 

is no longer the autocorrelation of the actual change in the transitory component. In order 

to see this, remember that the autocorrelation of the actual change is 

                                               
( )

][][

,
22

,

KtttKt

KtttKtt

zzzz

zzzzCov

−+

−+

−−

−−

σσ
                                          (10) 

Thus, it is straightforward to show that the denominator in (10) is greater than 

denominator of the autoregression in (6) since  > > .   2
Ktz+

σ 2
tσ

2
Ktz −

σ

 

Figure 3 illustrates the simulated slope, autocorrelation, covariance and variance for 

θ=1.001 based on equations (9), (10), (7c) and (8b), respectively. As illustrated by the 

figure, we can see that the slope of the autoregression forms a humped-shaped pattern 

with respect to the horizon K in the first quadrant. Also, the autocorrelation forms a 

down-ward sloping curve and converges to zero as K increases. Moreover, we simulate 

the model with higher aversion parameter to see if the slope shape would be affected by 

the degree of aversion. Figure 4 plots the same econometric specifications where θ=1.01. 

As shown, the slope of the actual change in the transitory component displays a J-shaped 

pattern where the slope becomes an increasing function of K.  Unlike the autocorrelation, 

the value of the slope can now be any positive number without a bound; which is 

unrealistic Thus, we expect that the slope will lie between zero and one in the case of  
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Figure 4. 
Simulated Slope, Correlation, Variance, and Covariance 

Θ=1.01

Figure 3. 
Simulated Slope, Correlation, Variance, and Covariance 

Θ=1.001
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mean averting behavior in the spot exchange rate, i.e., if the exchange rates are explosive 

processes, then the degree of aversion should be very slow.      

 

We now use the model to characterize the overlapping returns in this subsection. Define 

the continually holding period return from t to t+K as the sum of the actual change of the 

random walk component and the transitory component from t+K to t, that is 

                                                 ][][, tKttKtKtt zzqqR −+−= +++                                       (11) 

As in F&F, we can infer the existence of the transitory component from the behavior of 

the holding period return by testing the slope coefficient of the autoregression 

                                                    KttKtKKtt RR +−+ ++= εβα ,,                                          (12) 

where, 

                                                   ( ) ( )
( )Kt

KttKt

R
RRCov

K
−

−+= 2

,
σ

β                                             (13a) 

  

since the transitory and the permanent components are linearly independent it is straight 

forward to show that  

                                          ( ) ( )
[ ] [ ]KttKtt

KtttKt

qqzz
zzzzCovK

−−

−+

−+−
−−

= 22

,
σσ

β                                    (13b) 

 

The proposed model has several interesting implications about the behavior of the spot 

exchange rate.  First, if the spot rate is a random walk and does not have a transitory 

component, then the slope of the autoregression ( )Kβ  will be zero. Second, if the 

exchange rate does not have a permanent component and the transitory component is 
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stationary, then converges to zero as K increases (i.e., Kθ ( )Kβ converges to –0.5). Third, 

if the exchange rate has both permanent and stationary components, the autocorrelation 

of the holding period return will eventually converge to -0.5 and then gradually return to 

zero; the variance of the actual change in the random walk component will continuously 

grow like K, while the variance of the change in the stationary component converges to 

its maximum, . This implies that the autocorrelations at long horizons will disappear 

gradually and 

2
zσ

(

2

)Kβ  will have a typical U-shaped pattern, which has also been 

documented by F&F. Fourth, if the transitory component is mean averting and the 

random walk component does not exist, then the slope of the autoregression in (9) is 

always positive; this is because the covariance in (7b) is positive. The model implies that 

the theoretical upper bound of ( )Kβ  will slowly converge to infinity as K increases, 

which is improbable unless the degree of aversion is small, as shown above.  Finally, if 

the exchange rate is the sum of an explosive bubble and a random walk, then we expect 

that the variance of the white noise component, [ ]tq−Ktq +
2σ , will grow at a lower rate 

than the variance of the actual change in the transitory component, , at any 

value of K since the former grows exponentially and the latter grows like K. The variance 

of the white noise will eventually dominate the variance of the actual change in the 

transitory component since it continuously grows like K. This steers us to two possible 

implications about the behavior of the slope, 

[ tKt zz −+
2σ ]

( )Kβ . First, if the parameter θ is large 

enough, then (K )β will increase with K; this is due to the covariance in the numerator 

growing faster than the variance of the holding period returns. Second, if θ is close 

enough to 1, then initially the variance of the return will grow at a lower rate than the 
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covariance, but will eventually grow larger than the covariance because of the random 

walk effect at some large value of K. Thus, we expect a hump-shaped pattern for the 

slope (K )β  in the first quadrant at higher degree of aversion.  

                              

 
II.B. Econometric issues 
 
Four issues relating to the autoregression test are now in order. First, the small sample 

bias of the OLS estimate of ( )Kβ  since the true mean of the predictor is unknown in the 

finite sample. Kendall (1954) showed that the bias in the OLS estimate of ( )Kβ  is 

decreasing with the sample size and increasing with the value of the point estimate, in 

particular  

                                          )(/)31()( 2−++−=− nOnE KKK βββ
)

                                   (14) 

F&F correct for the bias in the least square estimate using Monte Carlo simulations; their 

results show that the bias is not large enough to affect the results. Using randomization 

simulation of Noreen (1989), Kim, Nelson, and Startz (1991) get the same results since 

the distribution does not affect the parameter estimate.2 Campbell (2001) argues that the 

asymptotic critical values of the parameter estimates of the long horizon regression have 

significant size distortions and should be corrected.  

 

 Another issue concerns the methods used to correct for hetroscedasticity and 

autocorrelation in overlapping multiperiod returns. The problem of autocorrelation and 

heteroscedasticity leads to an inefficient least squares estimate since the standard error is 

                   
2 One of the differences between Monte Carlo simulation and randomization simulation is that the former 
assumes normality in random variables. The advantage of randomization over Monte Carlo is clear in the 
hypothesis testing if the return is not normally distributed. 
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biased and inconsistent3. F&F use the method of Hansen and Hodrick (1980), hereafter 

HH, which adjusts the autocorrelated standard error with a MA(K-1) error structure where 

K is the return horizon. In the case of multiperiod returns, this method may be 

inappropriate since positive definiteness of the covariance matrix may not exist. Also, 

they combine White’s (1980) hetroscedastic consistence variance estimator with that of 

HH to solve for both problems. They find that the t-ratios are more dispersed than those 

of HH; thus, they report the t’s based on HH alone. Richardson and Stock (1989) assume 

that the stock returns variance is stationary. Based on this assumption, they adjust the 

standard error for a form of stationary conditional heteroscedasticity. The resulting 

standard errors are so large as to provide a test statistic close to zero regardless of the 

point estimates4. However, Turner, Startz, and Nelson (1989) provide evidence that the 

variance of the long-horizon return is nonstationary. McQueen (1992) explicitly solves 

for the clustering heteroscedasticity results from overlapping returns using the GLS 

randomization test. According to his results, he cannot reject the random walk 

hypothesis. However, there are three problems with McQueen’s method used to solve the 

problem of heteroscedasticity in the overlapping returns. First, the historical GLS results 

are inefficient since the first observation in the estimation is dropped and the problem 

becomes more severe as the return horizon increases. For example, in estimating the 10-

year horizon returns, the GLS drops the first 120 observations from the monthly returns.  

Second, the use of the Depression/World War II period as a weight in the GLS 

randomization test is adopted without a formal test of structural change in the returns 

                                                 
3 Standard error of the regression is downward biased if errors are correlated and upward biased if they are 
heteroscedastic. 
4 Rechardson  (1993) argues that properly adjusting for finite sample bias, hetroscedasticity, and 
autocorrelation in univariate autoregression may reverse many of the inferences of F&F (1988).  
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variance, which may underestimate the result of no mean reversion. Third, and most 

importantly, the GLS is inconsistent in the case of overlapping returns because of the lack 

of exogeneity; this is due to the fact that the multi-period nature induces high temporal 

dependence in the error term (See, Hansen and Hodrick (1980), Hansen (1982) and 

Hansen (2002), for further discussion). 

 
III.    Methodology 
 
This section describes the moving blocks bootstrap (MBB) of Fitzenberger (1998) 

adopted in our paper for testing the long-horizon predictability in the holding periods 

returns. This methodology has several advantages; it is shown to adjust simultaneously 

for finite sample bias, autocorrelation, heteroscedasticity and non-normality in the foreign 

exchange returns. 

 

Efron (1979) established the theory of Bootstrap to reduce the finite-sample bias and 

yield an approximation to the distribution of an estimator or test statistic that is at least as 

accurate as the approximation obtained from first-order asymptotic theory. Efron 

suggests two basic approaches to bootstrap the linear regression. One is to first fit the 

model and apply the bootstrap to the residuals. The resulting covariance estimate for this 

case is similar to that of the point estimate in the case of no finite sample bias, except for 

the degrees of freedom adjustment, (see Efron (1982), for further disussion). A second 

approach, with more general applicability is the Design-Matrix-Bootstrap, hereafter 

DMB. Under this approach, the entire vector of the dependent variable and the regressors 

are bootstrapped. So DMB provides a heteroscedastic consistent covariance matrix, 
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hereafter HC, since the errors are not resampled5 (See, Horowitz (1995), for further 

discussion). Singh (1981) contradicts the asymptotic validity of the bootstrap covariance 

estimator in the case of autocorrelation. He notes that both approaches cannot provide an 

autocorrelated consistent estimate, hereafter AC, in the linear regression case.  Wu (1986) 

claims that the Jackknife approach performs better than the bootstrap particularly in the 

case of heteroscedastic residuals.  Lui (1988) introduce the wild bootstrap to solve the 

bias of the autoregression parameter. Mammen (1993) establishes the ability of the wild 

bootstrap to provide asymptotic refinements when the errors are heteroskedastic. Using 

Monte Carlo experimentation, Horowitz (1995) shows that wild bootstrap perform better 

than any version of HC estimator6. 

 

The MBB approach adopted in our analysis is a general case of the block bootstrap 

introduced independently by the work of Kucsh (1989) and Liu and Singh (1992) to 

provide a HAC standard errors equivalent to the NW estimator. The MBB can be 

implemented by dividing the data into blocks and the bootstrap sample is obtained by 

sampling the overlapping blocks randomly with replacement. To describe the method of 

blocking the data, let the sample consist of observations {yi,xi : i=1, …,T}. With 

overlapping blocks of size b and length L = i+b-1, block Bi is the entire vector of blocks 

(Bi
y , Bi

x) with Bj
y = (yi , … , yI+b-1), b X 1 vector, and Bi

x, a b X k matrix of regressors. 

The bootstrap resample {( yi
*,xi

*), …, ( yl
*,xl

*)} of size l = bm is generated by drawing m 

                                                 
5  Efron and Tabshirani (1986) claims that both approaches are asymptotically equivalent presumably when 
the covariance is assumed to be chosen from a probability distribution. 
6 Horowitz (1995) compare the wild bootstrap with the jackknife approximation of the heteroskedasticity-
consistent covariance matrix estimator of Mackinnon and White (1985) and the bootstrap method of 
resampling the dependent and the independent variables. The results show that the wild bootstrap provides 
a t-statistic with the lowest distortions.  
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iid (b X [k+1] ) blocks , call them {Z1, …, Zm}, from q = T - b + 1 blocks Bi . The MBB 

resample is formed by laying {Z1, …, Zm}end-to-end in the order sample. The resulting 

vector, {Zτv =  ( yi
*,xi

*)}, is the MBB sample, where τ = [(i-1)/b]+1 and v = I -b τ. 

 

Fitzenberger (1998) compares the performance of MBB with Barlett kernel suggested by 

Newey and West (1987) and quadratic spectral kernel (QS) suggested by Andrews (1991) 

7. The Monte Carlo simulation shows that the MBB dominates both estimators in terms of 

variance bias and coverage properties especially when the data exhibit heteroskedasticity 

with increasing dependence i.e., the autocorrlealtion is rising8. The results show that the 

improvement in variance bias and undercoverege is monotically increasing with the block 

size. However, the improvement of the root mean square error (RMSE) is not monotonic 

with increasing b. Consistent with Hall et al. (1995), the results show that the block size 

has to grow at the rate T1/3 to minimize the RMSE of the variance estimate. This is 

identical to Andrews’ (1991) optimal bandwidth.  

  
IV.      The Data 
 
The raw data for nominal spot exchange rates consist of end-of-month observation 

(against U.S. Dollar) of the Pound Sterling, the Japanese Yen, the Swiss Franc, and the 

Canadian Dollar as given by the Data Resources Incorporated (DRI) database.  The data 

are monthly and cover the period from January 1973 to May 2003. Following F&F, we 

transform the one-month returns into continuously compounded form. The resulting 

                                                 
7 Andrews (1991) discusses different Kernel HAC estimators used in the literature. He shows that quadratic 
spectral kernel covariance estimator (QS) dominates Barlett kernel suggested by Newey and West (1987) in 
terms of both RMSE and the true confidence interval performance. 
8 Fitzenberger (1998) shows that the result is hold whether the MBB is centering around sample estimate or 
resample mean. 
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nominal returns are then adjusted for the inflation rate using the Consumer Price Index 

(CPI) to get the real returns. The overlapping monthly returns for each horizon are then 

calculated by summing up the monthly real returns. 

 

Table 1 shows the means, median standard deviations, minimums, and maximums of the 

foreign exchange rates. The maximum levels of the exchange rates are about three times 

higher than their minimums. The measures of central tendency set approximately in the 

middle of the minimums and the maximums, this provides some evidence that these 

maximums and minimums are not outliers. The standard deviation of the Pound sterling 

is 0.295 that is the highest across all currencies.  Although the standard deviation is a 

biased estimate to compare the fluctuations of the spot exchange rates since it is sensitive 

to the value of the currency, it offers some intuition about the behavior of the data. 

 
V.       Empirical Results 

In this section we first introduce the classical periodogram as a valid test of long horizon 

predictability in the foreign exchange returns.  We then estimate and interpret the results 

based on the spectral analysis.  Finally, we estimate the autoregression using the 

methodology described in section III and interpret the results. 

 
V.A.       Spectral density analysis of the exchange rates returns 

Since the spectral density of a time series is the Fourier transform of the covariance 

function, one could think of the periodogram to search for hidden periodicities in the 

overlapping returns. Our idea behind using the periodogram in examining the 

predictability of returns is based on the simple fact implied from the model that the  
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Table 1. 

Summary statistics 

Currency Mean Median Standard deviation Minimum Maximum 

Canadian Dollar 0.8031 0.8050 0.1064 0.6232 1.0410 

Japanese yen 0.0064 0.0069 0.0022 0.0032 0.0118 

Swiss Franc 0.5897 0.6081 0.1381 0.3050 0.8888 

Pound Sterling 1.7307 1.6458 0.2950 1.0823 2.5855 
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demeaned expected returns equals the expected change in the transitory component. That 

is,  

                                                  ( ) ( ) t
kt

Kttt zKRE 1, −=− +
+ θµ                                          (15) 

To set the ball rolling, if the exchange rate displays a random walk process, then the 

demeaned of the expected returns, ( )µKRE Ktt −+, , must display a white noise process, 

which can simply be examined by looking at the sample spectrum of each return horizon. 

 

The classical periodogram of the overlapping returns , t=1, …, T is given by KttR +,
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 Since the periodogram can also be expressed as a multiple of the time series 

spectral density, if , we can write 0≠s
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 As in Fuller (1996), the periodogram in (17a) can be expressed as  
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and the sth periodogram ordinate is given by, 
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Due to the fact that periodogram ordinates are multiples of chi-square random variables, 

we can perform a robust test of the AR(1) fads model  by examining each holding period 

return by  standardizing the periodogram. Where under the null model: 

                                     ( ) ktKttkttKtt REKR ++++ +=+= εεµ ,,,                                        (19a) 

against the alternative fads model, 

                               ,                        (19b) ( ) ktKttKtt wtBwtBRER +++ +++= εsincos 21,,

where B1 and B2 are constants, and the standardized periodogram is given by, 

                                                 
)()(

)()1()(

1

*

s

m

j
j

s
j

wIwI

wImwI
−

−
=

∑
=

                                            (20) 

where  has  for . )(*
jwI 22,2 −mF 0fs

 

We search for the largest periodogram ordinate  across each return horizon and test 

the hypothesis that this ordinate is reasonably the largest in a random sample of size m 

selected from a multiple of chi-square distribution function with two degrees of freedom 

using the following statistic suggested by Davis (1941)     

)( sLI
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Also, we employ the normalized cumulative periodogram suggested by Barlett (1966) to 

test the null model in (19a). This testing procedure takes the form 
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which has a uniform (0,1) distribution function of an order sample size m-1. Hence, we 

apply the Kolmogorov-Smirnov test as suggested by Durbin (1967, 1969).  

 

Intuitively, asymptotically, if the long horizon return is a white noise process, then the 

sth’s periodogram ordinates have the same first moment. On the other hand, if it has a 

nonzero autocorrelation structure then the ordinates display different first moments. 

 

Table 2 reports the suggested spectral based tests for the Canadian Dollar, the Japanese 

Yen, the Swiss Franc, and the Pound Sterling holding returns for 12-, 24-, 36-, 48-, 60-, 

72-, 96- and 120- month holding periods. The main empirical results are as follows: i) the 

spectral estimates provide strong evidence against the white noise null for every holding 

period across all currencies, the one exception is the Kolomogrov-Smernov statistic at 

one year holding period return for the Swiss franc. ii) The significant values of the 

standardized periodogram are focused in the low frequency components of the holding  
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Table 2. 

Spectral Analysis Tests 

Return Horizon (k) 
 12        24 36 48 60 72 96 120
 

Canadian Dollar 
 

F-Stat 57.781**        
      

        
        

101.317** 130.446** 166.361**
 

203.187**
 

218.311** 252.392** 16.206**
Ordinate 1 1 1 1 1 1 1 1
Σ 9.443** 13.671** 15.587** 18.739** 21.356** 22.571** 24.971** 27.934**
KS 0.291** 0.443** 0.513** 0.619** 0.708** 0.754** 0.828** 0.928**
 

Japanese Yen 
 

F-Stat 57.517**        
      

        
        

77.626** 57.884** 91.547**
 

97.195**
 

212.212** 11.405** 191.694**
Ordinate 4 4 3 3 1 1 1 1
Σ 9.437** 11.892** 9.108** 13.794** 13.568** 23.367** 28.430** 23.631**
KS 0.453** 0.682** 0.524** 0.212* 0.448** 0.774** 0.945** 0.784**
 

Swiss Franc 
 

F-Stat 70.188**        
      

        
        

80.826** 161.996** 211.244**
 

125.641**
 

54.683** 193.673** 160.950**
Ordinate 7 3 3 3 3 3 1 1
Σ 11.414** 11.896** 19.835** 22.323** 17.369** 9.220** 23.277** 22.649**
KS 0.245 0.526** 0.831** 0.951** 0.890** 0.780** 0.766** 0.748**
 

Pound Sterling 
 

F-Stat 33.564**        
      

        
        

81.869** 96.999** 69.936**
 

85.787**
 

123.768** 219.918** 222.890**
Ordinate 4 4 4 4 1 1 1 1
Σ 5.914 12.541** 14.184** 10.866** 13.095** 17.087** 21.624** 19.962**
KS 0.294** 0.600** 0.737** 0.801** 0.429** 0.563** 0.592** 0.484**
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periods returns, particularly, for S between 1 and 7. iii) As the holding period increases 

the three spectral statistics becomes higher and more focused in the low frequencies, 

particularly at S equal one. This suggests more evidence of autocorrelations as the 

holding periods incease.  iv) Comparing the last two columns of table 1 we find that 

value of the statistics begin to decline when the holding period is 120- month. The one 

exception is that of the Japanese yen when the statistics sharply decline at 96-month 

holding period. This behavior of periodograms statistics is consistent with the model 

implication that the absolute value of the holding returns autocorrelations begins to 

decline at a very large value of K as a result of the random walk variance effect.    

 

To get better insight about the behavior of periodograms with the horizon K. Figures 5 

through 12 plot the normalized periodogram of each holding period return over the first 

fifty ordinates. For testing purposes, each of these figures also graphs the corresponding 

five and ten percent critical values of the F-statistic. As shown, the deviations of the 

periodogram above the five and ten percent critical values occur at a low frequency 

where the periodogram ordinates are between one and seven.  Also, as the holding period 

of returns increases the periodogram becomes more flat at higher frequencies with higher 

value at low frequency. This provides evidence that holding returns are more predictable 

at longer horizons and these features stand out clearly with the fads model of Summers 

(1986). 
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Figure 5 
12- Month  (Canadian Dollar)

Figure 6 
24- Month  (Canadian Dollar)

Figure 7 
36- Month  (Canadian Dollar)

Figure 9 
60- Month  (Canadian Dollar)

Figure 8 
48- Month  (Canadian Dollar)

Figure 10 
72- Month  (Canadian Dollar)

 Figure 11 
96- Month  (Canadian Dollar)

Figure 12 
120- Month  (Canadian Dollar)
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V.B.   Regression analysis of the exchange rates returns  
 
The holding period return and the error term implied by equation 12, Kt+ε , show excess 

kurtosis and fat-tail distribution. Figure 13 and 14 graph the standard normal kernel 

densities of 12-month holding period return and the error term for the Canadian Dollar 

compared to the density of the standard normal distribution N(M,S2) where M is the 

sample mean and S is the sample standard error. Following Silverman (1986) we use the 

data based optimal bandwidth to estimate the normal kernel of the distribution.  

 

As shown, the excess kurtosis and fat-tailed facial appearance are obvious from the 

estimation for both the holding period return and the error term implied from OLS. This 

confirms the suitability of robust estimator in the present context. To save space, we only 

report the graphs for the Canadian Dollar, but parallel prototypes were observed for the 

other holding period returns and the other error terms across all currencies, which are 

available upon request.  

 

We estimate the slopes of the autoregression in equation 12 for each return horizon from 

3 to 120 months using both OLS and MBB for the Pound Sterling, the Japanese Yen, the 

Swiss Franc, and the Canadian Dollar. The OLS standard errors, labeled OLS-QS, are 

corrected for both autocorrelation and hetroscedasticity using the quadratic spectral 

kernel HAC estimator suggested by Andrews (1991). This test does not adjust for finite 

sample bias in the autoregression and the non-normality in the distribution of the holding 

periods returns.  The robust MBB test described in section III.B. is estimated by setting  
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Figure 13. 
12-Month holding period return of the Canadian Dollar 

 

 

Figure 14. 
12-Month error term residuals 
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an arbitrary numbers of blocks from 1 to 159. The optimal number of blocks for each 

return horizon is selected by choosing the block size that minimizes the RMSE of the test 

variance based on 1000 resamples for each sample. Consistent with Hall and Horowitz 

(1995) the optimal number of blocks sets around 7, which is the inverse of the number of 

observations cube root. 

 

Tables 3a and 3b report the results of random walk test for the period 1973 through 2003 

using the tests described above. As shown, MBB reports slightly lower slopes and higher 

p-values than OLS-QS especially when the return horizons are small (3- and 6- month 

horizons). 

 

The first three columns of each table examine the hypothesis of random walk for 3- 6- 

and 12-month return horizons. If the foreign exchange rates display a unit root then, the 

model predicts that the value of ( )Kβ  is zero. For all currencies, OLS-QS reports 

statistically significant positive autocorrelations for those holding periods; an exception is 

the 3-month holding period returns of the Canadian dollar where the autocorrelation is 

insignificantly different from zero. This implies that foreign exchange rates display what 

is called in the literature as a bandwagon effect, i.e., the propensity of the exchange rates 

to continue to change in a path once taken. The most critical finding in studying these 

short horizons is that after adjusting for finite sample bias and fat tail distribution of 

returns the evidence against random walk behavior disappears. For example, the OLS-QS 

reports statistically significant positive autocorrelations for the Japanese Yen across 3- 
                                                 

9  When the number of blocks is set to one, i.e. the block size is 100% of the effective sample, the 
MBB becomes identical to DMB since DMB is a special case of MBB.  
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and 6- month holding period returns where the p-values are 0.009 and 0.005 respectively, 

which implies the rejection of the null hypothesis of random walk. However, after 

correcting for finite sample bias and the fat tail structure in the distribution of return, one 

cannot reject the hypothesis of random walk in favor to mean averting behavior where the 

MBB reports 0.054 and 0.105 p-values for the same return horizons, respectively. We 

conclude that momentum traders cannot outperform the market by considering 3-, 6-, and 

12- month months holding period strategies. Thus, the foreign exchange market appears 

to be efficient in the short run and the bandwagon pattern of the exchange rates is just a 

methodological elusion. 

 

Now we consider the slopes of the long horizon autoregresion across 24-, 36-, 48-, 60-, 

72-, 96-, and 120- month return horizons. As shown in the last seven columns of Tables’ 

2a and 2b, the slopes of the autoregressions are well above zero across all currencies and 

the evidence against the predictability of returns is disappeared. Three aspects of the 

results stand out. First, both OLS-QS and MBB report statistically significant positive 

autocorrelations. Second, both the slope and the R2 increase with the length of the holding 

period up to 96 months, then decrease. To illustrate, there is a peak at K=96 when B= 

0.885 for the Canadian dollar, indicating that a 10 percent positive return over eight years 

is, on average, followed by a 8.85 percent positive return over the next eight years. The 

R2 in the regression is approximately 0.887. So the positive autocorrelation in the returns 

is consistent with that from the anomalies literature where a long-term “momentum” 

strategy earns persistent positive profits. Third, if investors perform the “buy low, sell 

high” strategy they would experience persistent negative profits since the spot exchange 
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Table 3A. 
OLS Quadratic Spectral Kernel (OLS-QS) and Moving Blocks Bootstrap (MBB) of the 

first order autoregression slope BK ; Equally and Value weighted real returns 
The tests are based on the following specification 

ttKtKKtt RR εβα ++= −+ ,,  
 

Return Horizon (k) 
 3 6 12 24 36 48 60 72 96 120 

 
Canadian Dollar 
OLS-QS: 
BK 0.076 0.217 0.349 0.727 0.851 0.891 0.894 0.891 0.885 0.856
P-value 0.173 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
R-Square 0.000 .0441 0.119 0.539 0.725 0.806 0.849 0.862 0.902 0.886
MBB 
BK .073 .215 0.337 0.723 0.850 0.897 0.898 0.723 0.890 0.884
P-Value .329 .055 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
R-Square 0.010 0.065 0.253 0.674 0.814 0.847 0.859 0.674 0.877 0.920
Optimal 
Number of 
Blocs 
 

6 9 9 7 6 7 7 7 7 7 

Japanese Yen 
OLS-QS: 
BK 0.123 0.138 0.082 0.485 0.586 0.631 0.775 0.748 0.835 0.689
P-value 0.009 0.005 0.112 0.000 0.000 0.000 0.000 0.000 0.000 0.000
R-Square 0.012 0.016 0.004 0.240 0.352 0.405 0.598 0.566 0.697 0.573
MBB 
BK 0.123 0.135 0.078 0.481 0.588 0.637 0.776 0.755 0.840 0.691
P-value 0.054 0.105 0.514 0.000 0.000 0.000 0.000 0.000 0.000 0.000
R-Square 0.002 0.064 0.020 0.400 0.203 0.543 0.737 0.646 0.706 0.392
Optimal 
Number of 
Blocs 

6 7 7 8 6 5 7 5 5 7 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 



 36

Table 3B. 
OLS Quadratic Spectral Kernel (OLS-QS) and Moving Blocks Bootstrap (MBB) of the 

first order autoregression slope BK ; Equally and Value weighted real returns 
The tests are based on the following specification 

ttKtKKtt RR εβα ++= −+ ,,  
 

Return Horizon (k) 
 3 6 12 24 36 48 60 72 96 120 

 
Swiss Franc 
OLS-QS: 
BK 0.049   0.089   .0500 0.436 0.605 0.716 0.681 0.654 0.763 0.634 
P-value 0.363 0.101 0.359 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
R-
Square 

0.002 0.008 0.003 0.185 0.363 0.522 0.490 0.433 0.566 0.408 

MBB 
BK 0.056   0.081 0.034 0.432 0.608 0.712 .683 0.659 0.775 0.643 
P-Value 0.496 0.202 0.780 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
R-
Square 

0.000 0.006 0.016 0.1406 0.2919 0.3959 0.649 0.658 0.601 0.602 

Optimal 
Number 
of Blocs 

7 7 7 6 6 6 7 7 7 5 

 
Pound Sterling 
OLS-QS: 
BK 0.073   0.063   0.113 0.568 0.641 0.680 0.764 0.792 0.849 0.782 
P-value 0.180 0.249 0.039 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
R-
Square 

0.002 0.003 0.000 0.332 0.464 0.505 0.617 0.6407 0.762 0.775 

MBB 
BK 0.078 0.061 0.102 0.566 0.640 0.680 0.766 0.793 0.853 0.787 
P-value 0.309 0.474 0.398 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
R-
Square 

0.001 0.017 0.116 0.387 0.482 0.505 0.748 0.605 0.846 0.829 

Optimal 
Number 
of Blocs 

6 7 7 6 6 6 4 6 7 6 
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rates does not display mean reversion, that is, the purchasing power parity does not hold. 

Finally, the predictable component of the exchange rate cannot be captured by studying 

short-term horizons, i.e., the exchange rates display long swings about its long term 

mean. 

 

Three possible explanations of the results are now in order.  First, it could be related to 

the “peso problem” of Krasker (1980), where there are a sustained excess forward premia 

for long period of time resulting from investors’ belief of low likelihood of large 

depreciation. Second, it could be related to investors’ underreaction to monetary shocks. 

For example, Shiller (1985) suggest a market model where agents underreact to monetary 

policy. Third, it could be related to market participants’ assumption that the central banks 

will reverse the error after large unanticipated monetary changes, not it has changed its 

money growth target. According to this view, there is a positive correlation between the 

growth of money supply and real interest rate because a large monetary expansion breeds 

the expectation of future contraction in credit and interest rate witch may take several 

years. 

 
V.I. Conclusion 
 
This paper proposes a more general and realistic parametric model that makes substantial 

progress in studying the behavior of the exchange rates. A model that allows the spot 

exchange rates to behave like stationary, explosive, or random walk is capable to explain 

the behavior of the long horizons returns in the foreign exchange markets.   Using new 

functional techniques, we provide further evidence that long horizon returns display 

significant positive autocorrelations over restricted horizons between 24- and 120-month. 
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This suggests that the spot exchange rates display an explosive behavior.   As of shorter 

period horizons, namely 3-,6-,and 12 month, we conclude that the holding period returns 

are conditionally unpredictable. The result support the idea of fads model that the 

predictability of exchange rates returns cannot be deducted by examining short horizons. 

 

Some practical implications concerning trading strategies can be gleaned from our 

results. First, the “buy low sell high” strategy that supports the disequilibrium model of 

exchange rates determination provides negative abnormal returns. This suggests the 

failure of the purchasing power parity.  Second, unlike the stock exchange, momentum 

traders cannot beat the market by considering short horizons forming periods of their 

currency portfolios. The results of MBB suggest insignificant autocorrelations in the 

holding period returns across all currencies under the study. We relate the findings of 

positive autocorrelations found in the previous studies to the finite sample bias and non 

Gaussian distribution of exchange rates returns. Finally, the long horizon returns display 

significant positive autocorrelations and a momentum strategy of forming periods 24-, 

36-, 48-, 60-, 72-, 96-, and 120- month can provides positive abnormal returns. This 

particularly provides evidence that the spot exchange rates behave like an explosive 

process.  

 

A few possible directions for future research are immediately suggested. It would be 

worthwhile to examine the forward premium unbiasedness hypothesis by modeling the 

spot exchange rate as an explosive process.  Hasza (1977) set an error correction for the 

least squares estimator when the data generating process displays an explosive behavior. 
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There are many issues unresolved in pricing foreign exchange options. It would be 

interesting to develop an options model where the underlying assets display an explosive 

stochastic bubble. 
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Essay II 

Rational Expectations and Market Efficiency in Foreign Exchange 

Markets: the Role of Finite Sample Bias 

 

I. Introduction 

The concept of market efficiency plays a prominent role in many theoretical models of 

exchange rate determination. A number of studies relate the rejection of the market 

efficiency hypothesis, hereafter MEH, in the foreign exchange market to rational 

expectation errors in which the expected foreign exchange rate is a biased estimator for 

the future spot rate, or to the existence of a risk premium. For example, Domingues 

(1986), Ito (1993), Cavaglia, Verschoor, and Wolf (1993), and Beng and Siong (1993) 

test the “unbiasedness” hypothesis in the sense that survey measures are unbiased 

forecast of actual future outcomes. Their results strongly reject the unbiasedness 

hypothesis for monthly data. On the other hand, Liu and Maddala (1992), using a direct 

cointegration method, cannot reject the rational expectations hypothesis, hereafter REH, 

for weakly and monthly data. They also test for market efficiency using survey data and 

relate the rejection of market efficiency to the existence of a risk premium in the foreign 

exchange market. Lewis (1994) and Evans (1995) relate the rejection of REH and MEH 
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to the peso problem10. Engel (1996) argues that the peso problem will be eliminated if the 

sample is large and the rational expectations hypothesis holds. Cornell (1989) argues that 

the rejection of the market efficiency hypothesis is related to a measurement error 

because researchers do not fully account for transaction costs when they test for these 

hypotheses11.  

 

Consider the traditional test of market efficiency in which investors are risk neutral and 

the forward rate is an unbiased estimator of the expected future spot rate E(St+1). If we 

incorporate an additive risk premium, Rpt, and invoke rational expectations then, 

                                                       ( ) ttt RpSEF += +1                                                       (1)                 

                                                      .                                                   (2a) 111 )( +++ += ttt uSES

Risk neutrality implies that Rpt = 0. The risk premium is the speculators expected profit 

margin, which may also capture any transaction costs related to the forward contract. 

Rational expectations implies: 

                                                            ( ) 0/1 =Ω+ ttuE                                                     (2b) 

where Ωt is the information set at period t. This representation includes the assumption 

that ut are serially uncorrelated. Assuming that the risk premium is a positive constant 

plus a white noise element vector vt: 

                                                          tt vRp +=α .                                                            (3) 

Combining (1), (2) and (3) we obtain 

                                                 
10 The Peso problem poses additional difficulty when testing for bubbles in the foreign exchange market. 
Market participants are likely to form expectations about central bank intervention in mitigating large 
swings in (real) and nominal exchange rates and these expectations are unlikely to be measured correctly 
by an econometrician. 
11 Cornell (1989) use the lagged forward discount in the right -hand side of equation (5) to mitigate the 
effect of measurement error; he cannot reject the hypothesis that β =1.  
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11 ++ ++=

ttt FS εβα .                                                (4) 

This equation represents one of the traditional tests of the MEH shown in Longworth 

(1981). However, if Ft and St are unit root processes as documented in previous literature, 

there is no guarantee that εt is a white noise random element unless St and Ft are 

cointegrated. 

 

Instead, Froot and Frankel (1989) suggest the following equation to avoid the non-

stationarity problem: 

                                        ( ) ( ) 11 ++ +−+=− ttttt SFSS εβα .                                              (5) 

Under the null of market efficiency, α = 0 and β = 112. As suggested by many scholars, 

this procedure may be inconsistent. Assume that both St and Ft are unit root processes of 

order 1. Consequently, the left-hand side of the equation is stationary but there is no 

guarantee that the right hand side is stationary. If this is the case, the asymptotic 

distribution of β will always be zero and the MEH will be rejected. On the other hand, if 

(St+1 - St) and (Ft - St) are both stationary variables, then OLS estimation is inconsistent 

since the risk premium Rpt is correlated with the forward rate13. Liu and Maddala (1992) 

suggest the following regression to solve the inconsistency problem in testing market 

efficiency: 

                                                                                                          (6) ttt SF εβα ++′= +1
/

                                                 
12 Based on the econometric specification of equation (5), Froot (1990) notes that about 75 published 
papers document that the estimate of β is less than zero. 
13 Note that Ft = E(St+1) + RPt where RPt is the risk premium. Since St+1 = E(St+1) + εt+1,  plug in the 
forward rate equation we get, St+1 = Ft + (εt+1-RPt). 
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Even if this equation is consistent, we can show that it is not unbiased. Consider a VAR 

representation of equation (4) in which (St+1) can be forecasted by its lag (St). 

 

                                                        ttt SF εβα ++′= +1                                                     (7) 

                                                        ttt SS ηθµ ++=+1                                                      (8) 

Stambaugh (1986, 1999) and Mankiw and Shapiro prove that this type of system is 

biased in finite samples because the exogenous variable is not fixed in repeated samples. 

Following Stambaugh, we suggest that the bias of the least squares estimate of β in (4) is 

proportional to the least squares estimate of θ in (5). This is because the white noise 

random elements tε  and tη are contemporaneously correlated with covariance σuv. In 

particular, 

 

 ( ) )ˆ(ˆ
2 θθ

σ
σββ −=− EE

v

uv                                                                                              (10) 

The intuition is straightforward. If the predictor is St then β and θ will have the same 

estimate and bias. Kendall (1954) suggests the following approximation for the bias of 

the least squares estimate of θ: 

                                                  ( ) ( ) ( )2/31ˆ −++−=− nOnE θθθ                                     (11) 

 

Thus, the market efficiency hypothesis may be rejected as a result of the biased estimate 

er with more contemporaneous covariance between the 

rrors, higher autocorrelation of

of β. This bias will be strong

e  tε , and smaller sample size. 
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Our method is fivefold. First, we run unit root and cointegration tests to determine the 

stochastic process of each series and to examine whether the spot, expected spot, and 

rward rates are cointegrated. Second, we investigate for the stability of individual 

14

 when considering the REH test;  

                                                                                     (13) 

when considering the MEH test; and 

                                                                                             (14) 

                                                

fo

parameters and the entire parameter vector using Andrews (1993) and Andrews and 

Ploberger (1994) structural break tests. Third we test for MEH, REH, and the existence of 

a risk premium using OLS and Least Absolute Deviations (LAD) models. The LAD 

estimator is optimal when the disturbances have the Laplace distribution. The LAD is 

preferred to least squares regression when (i) the data are leptokurtic (fat-tailed) and 

skewed, (ii) the errors are serially correlated (since there are exactly K zero residuals (for 

K right-hand-side variables), this is analogous to the least squares property that there are 

only N-K linearly independent residuals), (iii) the observations include extreme outliers, 

and (iv) when the endogeneity of the regressors exists . The equation to be estimated is 

in the form 

                                     ( ) ( ) 11 loglog ++ ++= t
e
tt SS εβα                                     (12) 

( ) ( ) 11 loglog ++ ++= ttt uFS βα

1)log()log( ++=− t
e
tt vSF λ

 
14 The forward rate is endogenous even if it is predetermined since the true mean of the predictor is 
unknown.   
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when examining the existence of risk premium. For the fourth step, we find the bootstrap 

or OLS and LAD estimato

 rejection of 

ntroduction in 

ction I, Section II describes the data. Section III, develops the methodologies used. In 

II. Data 

We used two separate data sets: the data for actual spot rates and the expected spot 

at consist of end-of-month observations of the exchange rate (against 

vector of the response variable f rs using the Freedman (1981, 

1984) and Hall (1988) resampling method to solve for inconsistency and finite sample 

bias. Finally, we bootstrap the F-statistic conducted in four to jointly test for the MEH, 

REH, and the existence of a risk premium in the foreign exchange market.    

Our contribution is in relating the rejection of the MEH in the foreign exchange market to 

the existence of risk premium not to the rejection of REH. Thus, we relate the

REH commonly found in the literature to small sample bias that prior researchers have 

failed to take into account when conducting their tests of this hypothesis. The results 

show that the deviation of the coefficient estimates is too large, causing the value of the 

F- Statistic to be biased upward and thus explaining the rejection of REH. 

 

The remainder of the paper is constructed as follows. Following the i

se

section IV we test the REH and MEH and explain the results. Section V concludes. 

 

exchange rates th

U.S. Dollar) of the Pound Sterling, the Douche Mark, the Japanese Jen, the Swiss Franc, 

the French Franc, and the Canadian Dollar as given by Financial Times Currency 

Forecaster (FTCF). A team of 30 multinational companies and 15 forecasting service 

providers that comprise the currency–forecasting panel, provides the forecasts. The end-

of-month forward rates for the same currencies are as given by the Data Resources 
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Incorporated (DRI) database. The data are monthly and span from February 1988 to May 

2000.  

 
III. Methodologies 

This section describes Andrews (1993) and Andrews and Ploberger (1994) structural 

 and bootstrap method adopted in our paper for testing for the 

III.A. Structural Change Test 

Recent advances in the econometrics of structural break now allow for robust tests of 

uming exogenous change points. Among the proposed 

                                                

break tests, LAD inference,

REH and MEH. First, I briefly review structural break tests used in our study and then 

LAD is developed. Next, the bootstrap method is introduced. 

 

parameter instability without ass

structural break tests, the ones introduced by Andrews (1993) and Andrews and 

Ploberger (1994) are particularly attractive since they can be used to test for the stability 

of individual parameters or the entire parameter vector where the change points are 

endogenous15. However, Andrews (1993) introduces an elegant way to develop efficient 

asymptotic critical values for the test where the breakdate is unknown a priori. More 

recently, Hansen (1997) develops approximation methods to calculate P-values for the 

Andrews (1993) and Andrews and Ploberger (1994) tests. Moreover, the test has power 

against the alternative where the parameters may change gradually over time. For the 

analysis of this paper, I construct the Andrews (1993) Sup (Supremum) and Andrews and 

Ploberger (1994) Exp (Exponential) and Ave (Average) tests based on F statistic. In 

particular, 

 
15 Andrews and Ploberger (1994) show that Ave (Average) and Exp (Exponential) tests have certain 
optimality relative to the Sup (Supremum) test proposed by Andrews (1993).  
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                                                    ,sup
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FSupF
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=                                                    (14a) 

                                               ,FAve                                             (14b) 
1~

1
~ii

F
i

ii
∑
=+−

=

                                  


= ). iFExpF                                 (14c) 






+− ∑

=

5.0exp(
1~

1log
~

i

iiii

 

where i is some change point in an interval ( i , i )16. Let λ is a prechange parameter 

ector and λ + δ is a post-change parameter vector. The null hypothesis of interest is 

of no structural breaks in the entire parameter vector will be 

III.B.     LAD estimation 

  Least squares estimation gives disproportionate weight to large deviations in the 

 becomes a disadvantage when the disturbances are not 

                                                

v

                                                               H0 : δ = 0                                                        (15a) 

Against the alternative 

                                                               Ha : δ ≠ 0                                                        (15b) 

Where the hypothesis 

rejected if the p-values of those statistics computed by Hansen (1997) are below 5 

percent. 

 

calculation. This property

normally distributed, especially when the sample is small or moderate. Basset and  

Koenker (1978) argue that the LAD estimator can efficiently solve this problem that 

 
16 Andrews (1993) suggests to consider all the breakdates in the interval v% to (1-v)% of the sample, where 
the trimming parameter v is typically between 5% and 15%. For the analysis of this paper, I use 15% 
trimming.  
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becomes severe as a result of outlying observations. Phillips  (1991) argues that the LAD 

estimator makes modifications to the usual regression procedure to deal with the 

overlapping autocorrelations in the errors. This property is useful in testing the MEH 

hypothesis, where the duration of the futures maturity contract exceeds the time interval 

between observations (see, Hansen and Hodrick (1980), for further discussion). Also, 

Knight (1991) shows that the LAD estimator has desirable asymptotic properties when 

the data exhibits an autoregressive unit root, it is shown that the LAD estimator has a 

faster rate of convergence than the OLS. Moreover, Basset and Koenker (1978) 

demonstrate that the LAD has smaller asymptotic confidence ellipsoids than the OLS for 

any error distribution, that is more efficient. Further, the model is robust and consistent 

when the endogeneity of regressors exists, (see Basset and Koenker (1978), for further 

discussion).  

   To fix ideas, consider the VAR system in which Yt and Xt are I(1) processes and can be 

cointegrated 

 

                                                                                                               (16a) 

                                                      

 ttt uXY += /β

where u  and v  are stationary processes. The LAD estimator of B is the extremum  

   ttt vXX += −1

estimator 

                                                      (16b) 

t t
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If the disturbances in the model are of the Laplace distribution, 
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then the LAD estimator is optimal since LAD is identical to the maximum likelihood 

estimator. Even if the distribution of the disturbances is not Laplace, the LAD estimator 

is still consistent since it is a special case of the quintile regression 

                                                     [ ] qXYob ii =≤ β/Pr                                                     (19) 

 at  q = 0.5. Namely, the LAD estimator estimates the median regression. Rogers (1993) 

suggests the following asymptotic covariance matrix of the quintile regression estimator, 

                                         [ ] ( ) ( ) ,1//1/ −−
= XXWXXXXbqVAR                                        (20) 

where W is the diagonal weights matrix 
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and f(0) is the true density of the disturbances evaluated at 0 and is unknown. To get 

robust estimate of the disturbance density, we employ the kernel density estimator with 

standard normal kernel and optimal bandwidth 

                  ( ) ( ) ( 4/1

)4/(12

1 det2 +−

+−

−




































′
= ∫ ∑∑ k

k

k
ndx

xdxd
xdftracekc π )              (22) 

 

This modified LAD estimator is asymptotically consistent and free of all shortcomings of 

the least squares estimation of the foreign exchange data especially the autocorrelation 

that leads to inconsistent estimate in the case of lagged regressors. However, even though 

this methodology provides consistent estimates, since the endogeneity problem no longer 

exists, it is still bias in the finite sample and should be simulated.  

 
III.C. Bootstrap Biased adjustment 

A number of strategies exist for adjusting for bias in the point estimation. Monte Carlo 

techniques usually assume that the distribution function of the random errors is normal. 

In the case of foreign exchange it is known that the sampling distribution is leptokurtic, 

skewed and deviating from normality (see, Clark (1973) and Tauchen and Pitts (1983), 

for example). For our data, the series also exhibits serial correlation and 

heteroskedasticity. We draw residuals with replacement, which is called, bootstrapping 

(see, Efron (1979, 1982, 1987), for further discussion). Bootstrapping differs from 

randomization of Noreen (1989) only in that sampling is with replacement. Under 

random sampling with replacement, the resamples will vary randomly from the original 

sample, and the resulting estimates calculated from these resamples will likewise vary 

randomly from the point estimate. Babu and Singh (1983) show that the sampling 
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distribution of the point estimate will be identical to the population distribution function, 

in this since we expect that the peso problem will be mitigated since the consistency of 

β implies that 

                                       ( ) 0, 11 =−− ++ t
e
ttt SSSfCov                                            (23) 

Freedman (1981, 1984) and Hall (1988) suggest the resampling of residuals to solve for 

the bias in the point estimates when the regressors and the errors are correlated. Singh 

(1981) contradicts the asymptotic validity of the bootstrap covariance estimator in the 

case of autocorrelation. He notes that both approaches suggested by Efron (1979, 1982) 

namely, the classical bootstrap and the Design Matrix Bootstrap (DMB) cannot provide 

autocorrelated consistent estimator, hereafter AC, in the OLS case The LAD estimator is 

appropriate in this case where the errors are uncorrelated and temporarily homogeneous. 

The bootstrap estimate of the LAD parameters and the asymptotic covariance matrix are 

                                                
R

r
R

LAD∑
= 1

)(β
β                                                  (24a) 

                [ ] ( )( /

1
)()(1

LADLAD

R

r
LADLADLAD rr

R
βββββ −−= ∑

=

)Var                           (24b) 

where LADβ  is the LAD estimator and )(rLADβ  is the rth LAD estimate of LADβ drawn 

with replacement, from the original data set. 

 
IV. Empirical Results 
 
In this section, we first report the results of unit root tests for each series. Second, we 

report the stability tests on the basis of individual parameters and full parameter vector 

for tests specification in (12) and (13). Third, we compare the OLS and modified LAD 

performance in testing the MEH and REH. Finally, the bootstrap parameters estimates for 
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the overall sample period and different subperiods selected on the basis of the stability 

tests are reported.   

 
IV.A.  Unit Root and Cointegration 
 
Before we apply our methodology, it is necessary to examine whether the spot rate and its 

expectations are stationary or unit root processes. If they are an I(1) process, as much of 

the literature suggests, they must be cointegrated. This will ensure that suggested 

estimators are not subject to the spurious regression problem suggested by Granger and 

Newbold (1974). For the sake of robustness, we imply two types of unit root tests. The 

first type is the conventional parametric tests, which include the Augmented Dickey-

Fuller (1979) (ADF) test, the Phillips and Peron (1988) (PP) test, and the Augmented 

Weighted Symmetric (WS) tests. The WS test is a weighted, double-length regression. 

Pantula et al. (1994) argue that WS dominates the ADF and PP tests in terms of power. 

Following Campbell and Perron (1991) we include the trend for all the unit root tests. 

The Akaike Information criterion (AIC) is used to determine the optimal number of lags 

for all the tests17. The second type is the nonparametric test suggested by Breitung 

(2002).   Two advantages of Breitung test over ADF, PP, and WS tests. The Monte Carlo 

simulations show that it is robust to structural breaks, and it is robust to model 

misspecifications since the asymptotic property is independent from the stationary 

component of the series. 

 

Panel A of Table 1, 2, and 3 report the results of ADF, PP, and WS tests for the spot, 

expected spot, and forward rates, respectively. As shown across all tests we do not reject 
                                                 
17 The ADF,PP, and WS accurate asymptotic p-values are computed using MacKinnon (1994) 
approximation (robust to finite sample distortion).   
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the null of a unit root process for all of the series. We repeat the test for the first-order 

difference (the results are not reported here) for each series. The entire set of tests reject 

the null of a unit root process.  Panel B of Table 1, 2, and 3 report the Breitung test for 

the two hypotheses. The first hypothesis, the test is denoted by B(n), where under the null 

the exchange rate is driftless unit root against the alternative of stationarity. The second 

hypothesis, the test is denoted TB(n), where under the null the exchange rate is a unit root 

with drift against the alternative of trend stationary. All tests demonstrate that the unit 

root hypothesis cannot be rejected. We conclude that the spot, expected spot and forward 

rates are I(1) processes. 

 

For the purpose of testing the MEH and REH, the Engle-Granger (EG) cointegration test 

has been used to determine if the spot rate and its expectations are cointegrated. Table 4, 

Panel A reports the cointegration vectors and EG tests of the spot and expected spot rates. 

We reject the null hypothesis that the two series cannot be cointegrated. In Panel B, we 

run the test for the spot rate and the forward rate again; the results suggest that these two 

series are cointegrated18.  Panel C suggests that the same results are reported for the 

forward rate and expected spot rate, one exception is Dutch mark. Since each currency 

spot rate is cointegrated with its forward and expected spot rates with cointegration 

vector (1,-1), we conclude that invoking the OLS and LAD regression in (12) and (13) is 

neither subject to the well known spurious regression problem suggested by Granger and 

Newbold (1974) nor to bootstrap inconsistency in the case of unit root variables  

                                                 
18 Hakkio and Rush (1989) using Engle and Granger’s (1987) test, provide evidence that St+1 and Ft are 
cointegrated. 
Horvath and Watson (1995) develop a test for cointegration when the cointegrating vector is known. They 
strongly reject the null that Ft and St are not cointegrated. 
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Table 1. 
Unit root tests on the logarithm of spot exchange rates (St). 

 
Panel A: Conventional Unit Root Tests 

Currency 
Statistics UK DM  YEN SW FF CAN 
 
WS -2.778 -2.404 -1.590 -2.384 -2.218 -2.563 
P-Value  0.152  0.354  0.862  0.368  0.489  0.331 
Optimal 
Number of 
Lags 

 2  3  6  2  6  3 

ADF -2.789 -1.894 -1.245 -2.251 -2.109 -2.236 
P-Value  0.200  0.657  0.901  0.461  0.540  0.432 
Optimal 
Number of 
Lags 

 2  2  6  2  5  2 

PP -15.978 -9.081 -6.098 -12.970 -11.115 -12.073 
P-Value    0.154  0.500  0.737    0.267   0.365    0.259 
Optimal 
Number of 
Lags 

   2  2  6    2   5    2 

 
Panel B:  Nonparametric tests 

Currency 
Statistics UK DM   YEN SW FF CAN 
 
B(n) 

 
0.024 

 
0.016 

 
0.0373 

 
0.0233 

 
0.0145 

 
0.0852 

TB(n) 0.007 0.010 0.0137 0.0067 0.0089 0.0092 
 
Note: unlike the conventional unit root tests the hypothesis of unit under Bretung (2002) approach is 
rejected if  the test statistic is below the corresponding critical value. 
Notice that Breitung (2002) only reports the critical values for n = 100, n = 250 and n = 500. However, the 
critical values used in this study are 0.01004, 0.00342 for 5% significance level for the alternative of 
stationary and trend stationary, respectively are based on linear interpolation. 
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Table 2. 
Unit root tests on the logarithm of the expected spot exchange rates ( ) e

tS
 
Panel A:  Conventional Unit Root Tests 

Currency 
Statistics UK DM  YEN SW FF CAN 
 
WS -2.922 -2.406 -1.572 -2.884 -2.620 -2.553 
P-Value  0.104  0.353  0.868  0.115  0.224  0.301 
Optimal 
Number of 
Lags 

 2  2  6  3  2  2 

ADF -2.841 -2.178 -.171 -2.643 -2.423 --2.231 
P-Value  0.182  0.502 0.916  0.260  0.367  0.453 
Optimal 
Number of 
Lags 

2 2 6 2 2 2 

PP -16.357 -10.438 -6.13081 -15.027 -13.362 -11.989 
P-Value   0.143   0.407  0.735   0.184    0.250    0.354 
Optimal 
Number of 
Lags 

  2   2  6   2    2    2 

 
Panel B  Nonparametric Tests 

Currency 
Statistics UK DM   YEN SW FF CAN 
 
B(n) 

 
0.02672 

 
0.01446 

 
0.03523 

 
0.02051 

 
0.01452 

 
0.08522       

TB(n) 0.00772 0.01029 0.01373 0.00613 0.00899 0.00925        
 
Note: unlike the conventional unit root tests the hypothesis of unit under Bretung (2002) approach is 
rejected if  the test statistic is below the corresponding critical value. 
Notice that Breitung (2002) only reports the critical values for n = 100, n = 250 and n = 500. However, the 
critical values used in this study are 0.01004, 0.00342 for 5% significance level for the alternative of 
stationary and trend stationary, respectively are based on linear interpolation. 
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Table 3. 
Unit root tests on the logarithm of the forward exchange rates (Ft+1) 

 
Panel A:  Conventional Unit Root Tests 

Currency 
Statistics UK DM  YEN SW FF CAN 

 
WS -1.875 -1.214 -1.011 -1.448 -1.354 -1.306 
P-Value  0.728  0.961  0.972  0.905  0.927  0.935 
Optimal 
Number of 
Lags 

 3  2  2  2  3  2 

ADF -1.696 -1.548 -1.234 -2.093 -1.980 -1.724 
P-Value  0.752  0.793  0.903  0.550  0.611  0.753 
Optimal 
Number of 
Lags 

 3  2  2  2  2  2 

PP -6.68 -6.015 -5.082 -9.535 -9.281 -7.604 
P-Value  0.691  0.780  0.815  0.468  0.486  0.563 
Optimal 
Number of 
Lags 

 3  2  2  2  2  2 

 
Panel B:  Nonparametric tests 

Currency 
Statistics UK DM YEN SW FF CAN 

 
B(n) 0.21351 0.01717 0.01364 0.02405 0.02740 0.08495       
TB(n) 0.00693 0.01717 0.02336 0.00650 0.00548 0.00879 
 
Note: unlike the conventional unit root tests the hypothesis of unit root under Bretung (2002) approach is 
rejected if  the test statistic is below the corresponding critical value. 
Notice that Breitung (2002) only reports the critical values for n = 100, n = 250 and n = 500. However, the 
critical values used in this study are 0.01004, 0.00342 for 5% significance level for the alternative of 
stationary and trend stationary, respectively are based on linear interpolation. 
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Table 4. 
Engle-Granger contegration (EG) tests and Contigration vectors for the logarithm of the 

spot exchange rate, its expectation, and the forward rate (St+1,  and Fe
tS t). 

 
Currencies 

Statistics UK DM Yen SW FF 
      
St+1 & ESt   -6.502 -6.084 -0.388 -5.889 -4.756 
P-Value  0000  0.000  0.386  0.002  0.021 
Optimal 
Number of 
Lags 

2 2 7 2 5 

Cointegration 
vector 
 

1.0 ,-.874 1.0 ,-.944 1.0 ,-.977 1.0 ,-.902 1.0, -.926 

Ft & ESt -7.736 -3.379 -4.238 -5.596 -5.009 
P-Value  0.000  0.129  0.013  0.000  0.000 
Optimal 
Number of 
Lags 

2 2 4 2 3 

Cointegration 
vector 
 

1.0, 0.955 1.0, -0.992 1.0, -0.975 1.0, -0.846 1.0, -0.944 

St+1 & Ft      
P-Value 0.014 0.002 0.004 0.013 0.011 
Optimal 
Number of 
Lags 

3 3 4 3 3 

Cointegration 
vector 

1.0,-0.809 1.0-0.921 1.0,-0.904 1.0,-0.884 1.0,-0.875 
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suggested by Philips (2003) since the errors are stationary.  However, bootstrapping using 

OLS residuals cannot provide HAC variance if the errors are autocorrelated. 

 
IV.B.  Model Stability Test 
 
Table 4 reports the results of the structural break tests for the econometric specification in 

(12) and (13). To allow for sufficient degrees of freedom, the trimming parameters are set 

to 15% and 30% of the effective sample when Andrews (1993) and Andrews and 

Ploberger (1994) are considered, respectively. 

 

The findings in Table 4 provide strong evidence that both MEH and REH tests on the 

Japanese yen displays a structural break at the beginning of 1996. The results are robust 

across the Sup, Ave, and Exp tests and all p-values indicate a rejection of the null 

hypothesis of parameter stability at 5% and 1% significance level. For the Pound 

Sterling, the Deutsche Mark, the Swiss Franc, the French Franc, and the Canadian Dollar, 

we find no evidence of the parameters’ instability; none of the p-values are below the 5% 

significance level.  

 

To gain some insight into the nature of the instability, Figures 1-4 plot the values of the 

Sup F test statistic supported by Andrews’ (1993) 5% critical value for the null 

hypothesis of no structural change in the full parameter vector for the REH tests for the 

Pound Sterling, the Japanese Yen, the French Franc and the Swiss Franc19. For the 

Japanese Yen, the single peak of the Sup F test statistic occurred in March 1996.at the 

height of the depression on March 1933. 
                                                 
19 To save space we do not report the graphs of the Canadian Dollar and the Deutsche mark, we also do not 
report the graphs related to the MEH test.  These are available upon request. 
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The following econometric specifications are used to test for MEH and REH across the 

subsamples, respectively: 

                        ( ) ( ) ( ) 11 logloglog ++ ++++= ttlteLet FLFELES εββαα                   (59a) 

                         ( ) ( ) ( ) 11 logloglog ++ ++++= t
e
tl

e
teLet SLSELES εββαα                   (59b) 

where, E=1 if t is before the break and 0 otherwise, L=1 if t is after the break and zero 

otherwise. The slope coefficients’ subscripts e or l indicates before and after subperiod 

coefficients (i.e., eβ  is the slope of the test before the break). 

 
IV.  Robust Test of MEH and REH 
 
The foreign exchange data show clear auotocorrelation and heteroskedasticity, which 

should be taken into account in standard errors when OLS is used. Newey and West 

(1987), hereafter NW, suggest a consistent variance estimator which is positive  

semidefinite to deal with auotocorerelation. The spectral density kernel is used to ensure 

positive definiteness of the variance matrix when the number of moving averages is 

greater than zero. The process is conducted by weighting the sample autocorrelations 

with weight w(j,m) = 1-[j/m + 1], where j is the lag and m is the maximum lag. Following 

Cochrane (1991), we use 2(K-1) numbers of moving averages, where k is the number of 

each forecast horizon. For heteroscedasticity, we use White’s consistence variance 

estimator with a Jackknife approximation suggested by Mackinnon and White (1985)20. 

In the case of the modified LAD, the normal kernel density is used to provide an efficient 

                                                 
20 Mackinnon and White (1985) provide evidence that the Jackknife approximation provides t-statistics 
with smallest distortions than any version of a heteroscedastic consistent variance covariance matrix. 
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estimator. The autocorrelation also does not exist since there are exactly K zero residuals 

for K right-hand-side variables.  

 

Figure 6 graphs the standard normal kernel densities of the spot exchange rates and the 

error term (u) implied by equation 15 for the Pound Sterling. As shown, the excess 

kurtosis and fat-tailed facial appearance are obvious from the estimation for both the 

exchange rate and the error term implied from the quintile regression for the REH. To 

save space, we only report the graphs for the Pound Sterling, but parallel prototypes were 

observed for the other exchange rates and the other error terms for the MEH, which are 

available upon request.  

 

The rational expectations hypothesis was estimated for each of the six currencies by OLS 

and modified LAD. The results are shown in Table 5. In the case of the LAD estimator, 

the value of β  is much closer to 1. For example, in the case of the one-month Pound 

Sterling β  LAD =0.88 and β  OLS =0.87. (Note, however that both estimators are biased 

since the predictor is not fixed in the repeated sample, and OLS is inconsistent as a result 

of the endogeneity problem and autocorrelation). The F-ratio for testing the joint 

hypothesis, H0: α =0, β  =1, are given in Table 5.  In the case of the Pound Sterling, 

Deutsche Mark, and Swiss Franc, we reject the null hypothesis of rational expectations 

unbiasedness using both OLS and LAD for the one-month forecast horizon.  The t-ratio 

for testing the hypothesis, H0 : b=1, is also rejected across the three currencies  using both 

estimators.  
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Table 5. 
OLS and LAD estimation of the rational expectation hypothesis 

(St+1)= α + β( ) + εe
tS t 

Panel A:  OLS  
Currency 

Statistics UK  DM YEN SW FF CAN 
       
α 0.061 0.024 -0.087  0. 035  0.187 -0.009* 
 t-Stat -2.578*  1.343  0.740  3.052*  2.244* -0.242 
β  0.878  0.950  0 .981  0.900  0. 891  1.008* 
t-Stat -2.377* -1.405 -0.745 -3.046* -2.233*  0.633 
F-Stat  4.810*  1.025  0.292  3.782*  2.550  2.673 
 
 
Panel B:  LAD 

Currency 
Statistics UK  DM YEN SW FF CAN 
 
α -0.060  0.019 -0.034  0.048 0.161 -0.065 
t-Stat -4.418*  1.499 -0.588  5.039* 3.291* -2.366* 
β  0.883  0.962  1.010  0.869 0.910  1.029 
t-Stat -4.317* -1.520  0.601 -5.007* -3.299*  0.007 
F-Stat  6.817*  1.155  0.293  7.781* 2.997  3.870* 

 
 
Note: the number on the parenthesis is t-test for H0 : α=0, H0 : β =1.  F-test for H0 : α=0, H0 : β =1 
* null hypothesis is rejected at 5% significance level.  
The significance level of F(2,137) is  3.0642. 
Newey West consistent estimate is used to adjust for autocorrelation. 
White hetroscedastic consistent estimate with jackknife approximation is used to adjust for 
heteroscedaticity 
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Table 6 Panel A and B report the bias adjusted OLS and LAD estimates using the 

bootstrap method. For all currencies, the value of α is close to zero and the value of β  

converges to 1. For example, in the case of the Pound Sterling αOLS = 0.00018, αLAD = -

0.0051, bOLS =1.0007, and bLAD = 1.00248. Table 9 reports the bootstrapped adjusted 

confidence interval for the hypotheses, H0: α =0 and H0: β  =1. Across all currencies, we 

cannot reject the null that investors in the foreign exchange market are rational. The gains 

in efficiency from the bootstrap confidence interval are evident since we reject the same 

hypothesis for the Pound Sterling, the Deutsche Mark, the Swiss Franc, and the French 

Franc before the finite bias adjustment. The joint hypothesis, H0: α =0, β  =1, also cannot 

be rejected for all the currencies after the bias adjustment.  The empirical levels of the F 

tests based on the asymptotic critical values are smaller than the bootstrap estimates of 

the F-ratio. The critical values of the bootstrap F distribution shift widely to the right 

relative to the asymptotic F distribution. Instead, all of the nominal values of the 

calculated F-ratios using a one-month horizon lie inside the acceptance region of the 

empirical bootstrap confidence interval. We conclude that the REH is strongly accepted 

for a one-month horizon. 

 

Table 7 reports the OLS and LAD estimates of the efficient market hypothesis. In all 

cases the value of β  resulting from LAD estimation is closer to 1. As mentioned above, 

the value of β  has an important interpretation on the statistical property of the risk 

 
 

( ) ( ) ( )kttktkttktkt uEFbSEFRp ++ −−−=−= α,,, 1
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Table 6. 
Bootstrap estimates for OLS and LAD methods of the rational expectation hypothesis 

(St+1)= α + β( ) + εe
tS t 

 

Panel A: Bias adjusted OLS  
Currency 

Statistics UK DM Yen SW    FF  CAN 
 
Boot α 

 
 0.000 

 
-0.000 

 
0.000 

 
-0.000 

 
 -0.001 

 
-0.001  

Bias 
estimate 

-0.059 -0.024 0.086 -0.034  -0.185 -0.008 

Boot β  1.000  1.001  1.000  0.999   1.002  1.011 
Bias 
estimate 

-0.122 -0.059 -0.019 -0.099  -0.1113 -0.000 

Boot F 5.015† 3.386† 3.608† 3.951†   4.306† 2.872† 
 
Panel B:  Bias adjusted LAD  

Currency 
Statistics UK DM YEN SW  FF CAN 
 
Boot α -0.058  0.023 -0.0309  0.041  0.141 -0.007  
Bias 
estimate 

 0.001 -0.005 -0.0266  0.007  0.020 -0.016 

Boot β  1.002  0.988  1.000  1.017  1.012   1.031 
Bias 
estimate 

-0.119 -0.026 -0.007 -0.148 -0.101  0.002 

Boot F  7.190†  8.494†  8.958† 10.078†  7.613†  6.641† 
 

Note: boot F is the bootstrap confidence interval centered at 0 and 1. 
† Indicates that the point estimate lies inside the bootstrap confidence interval. 
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Table 7. 
OLS and LAD estimation of the efficient market hypothesis. 

(St+1)= α + β(Ft) + εt 
 
Panel A:  OLS 

Currency 
Statistics UK DM Yen SW FF CAN 
       
α 0.031 0.041      -0.194 -0.022 -0.084 0.003 
 t-Stat 3.897* 2.148* -3.592* -4.297* -1.555 3.660* 
β        0.934 0.921 0.960 0.953 0.984 1.012 
t-Stat      -3.642* -2.088*  -3.541* -4.103* -1.545 4.258* 
F-Stat     10.081*  6.732*   8.557*  9.259* 4.627* 9.706* 

 
Panel B:  LAD 

Currency 
Statistics UK DM Yen SW FF CAN 
 
α 0.025  0.043  -0.209 -0.013 -.0167 0.007 
t-Stat   8.673*   3.080*    -9.773*  -1.587 -2.077*  4.304* 
β 0.947  0.913  0.957  0.944  0.992 1.022       
t-Stat      -8.760*        -3.120*   -9.548* -2.327* -1.651  6.751* 
F-Stat     18.392*    11.963*   17.168*  11.287*  10.560* 16.635* 
 
Note: the number on the parenthesis is t-test for H0: α=0, H0 : β =1.  F-test for H0 : α=0, H0 : β =1 
* Null hypothesis is rejected at 5% significance level.   
The significance level of F (2,2102) is 3.0642. 
Newey West consistent estimate is used to adjust for autocorrelation. 
White hetroscedastic consistent estimate with jackknife approximation is used to adjust for 
heteroscedaticity 
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The risk premium, Rpt,k, is non-stationary if the null hypothesis, H0: β  = 1 is rejected. 

For all currencies the hypothesis is rejected at the 5% level using OLS. We find little 

evidence of a stationary risk premium when the modified LAD is used; the hypothesis is 

accepted for the French Franc only. For all currencies, both OLS and modified LAD fail 

to reject the hypothesis H0: α = 0. Consistent with Naka and Whitney (1995), Norrbin and 

Refett (1996), and Hai et al. (1998), we also reject the joint hypothesis of market 

efficiency (i.e. H0: α = 0, β  = 1). The F-ratio constructed from both the OLS and LAD 

estimator is too large to be accepted. 

 

Again, we adjust for the small sample bias and reconstruct the test using the bootstrap 

technique. The results show that the value of β  converges substantially to 1, and are 

robust across all currencies, except for the Canadian Dollar. For example, in the case of 

the Pound Sterling, the bootstrap estimates are 0.991 and 0.997 based on OLS and LAD, 

respectively.  The last column of Table 8 reports the bias adjusted parameters values for 

the Canadian Dollar. In this case, the bootstrap shows substantial improvement on the 

basis of OLS. The value of the parameter β  increased from 0.047 to 0.331, although it is 

still small. On the other hand, the opposite finite bias direction is documented in the case 

of LAD, where the value of the parameter β  displays downward divergence from the 

value of 1 toward 0. 
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Table 8. 
Bootstrap estimates for OLS and LAD methods of the market efficiency hypothesis 

(St+1)= α + β(Ft) + εt 
 
Panel A:  Bias adjusted OLS method 

Currency 
Statistics Uk pond DM Yen SW FF CAN 
 
 
 Boot α  0.027  0.032 -0.219 -0.019  0.028  0.000 
 Bias estimate  0.023 -0.015  0.026  0.004 -0.163 -0.003 
 Boot β  0.998  0.923  0.954  0.965  0.984  1.017 
 Bias estimate -0.063  0.001  0.003 -0.024  0.007 -0.005 
 Boot  F  4.446  2.877  3.420  4.561  3.058†  2.959 
 
 
Panel B:  Bias adjusted LAD (on median) method 

Currency 
Statistics Uk pond DM    Yen SW FF CAN 
 
Boot α 

 
0.001 

  
0.049 

 
-0.218 

 
 0.024 

   
  0.002 

 
 0.000      

Bias estimate 0.023 -0.005  0.095 -0.025  -0.025 -0.007 
Boot  β 0.961  0.904  0.954  0.985   1.001  1.034 
Bias estimate 0-.017  0.053  0.002  0.000   0.011  1.012 
Boot F 5.051  8.241  4.650 15.598† 12.460†  8.221 
 
 Note: boot F is the bootstrap confidence interval centered at 0 and 1. 
† Indicates that the point estimate lies inside the bootstrap critical value. 
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Table 9 reports the bootstrap confidence interval for the stationary risk premium 

hypothesis; the hypothesis cannot be rejected using the percentile bootstrap confidence 

interval across all currencies, the Canadian Dollar is an exception. Consistent with Naka 

and Whitney (1995) and Wu and Chen (1998) we conclude that the risk premium is 

stationary. For the hypothesis H0: α = 0, the point estimate of α lies inside the percentile 

bootstrap confidence interval for both OLS and LAD estimators. The results fail to reject 

the forward rate unbiasedness hypothesis across all currencies. We conclude that the 

rejection of the stationary risk premium and forward rate unbiasedness in previous 

literature are mainly subject to the finite sample bias.  

 

As a robust check we turn to employ the parametric and the nonparametric unit root tests 

to examine the stationarity of forward premium defined as the error term of equation 13 

that is .  Table 10 reports only the Breitung (2002) nonparametric testttt FSu −= +1
21. 

Consistent with Wu and Chen (1998), who used the mean group approach of Im et. el. 

(1995), we cannot  reject the hypothesis that  is a stationary process.   tu

 

For the joint test of market efficiency, i.e. H0: α = 0, β  = 1, the bootstrap bias adjustment 

fails to accept the null hypothesis for the Pound Sterling, the Deutsche Mark, the 

Japanese Yen and the Canadian Dollar. As shown in Table 9, we observe that the critical 

values of the bootstrap F distribution are shifted to the right relative to the asymptotic F 

distribution, but the F-ratios constructed from the point estimates for those four 

currencies are too high to lie inside the acceptance region. However, for both the Swiss  

                                                 
21 We also employ the ADF, PP, and WS tests.  Consistent with Crowder (1994), the naïve tests fail to 
reject the non-stationary forward premia for most countries. 
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Table 9. 
Bootstrap adjusted confidence interval for OLS and LAD estimates of the REH and MEH 
 
Panel A: REH 

Currencies 
Statistics UK   DM  YEN SW   FF  CAN 
 
OLS confidence interval 
 
 Upper tail α  -0.038 -0.033 -0.240 -0.026 -0.130 -0.006 
 Lower tail α   0.036  0.032  0.218  0.024  0.130  1.027 
 Upper tail β  0.923  0.934  0.953  0.930  0.923  0.975 
 Lower tail β   1.072  1.061  1.049  1.071  1.074  1.008 

       
LAD confidence interval 
 
 Upper tail α -0.035 -0.027 -0.242 -0.040 0.156 -0.008 
 Lower tail α  0.038  1.014  0.318  0.013 0.116  0.009 
 Upper tail β  1.031  0.944  1.007  1.024 0.906  0.970 
 Lower tail β  1.883  0.947  1.050  0.996 1.090  1.029 
 
 
Panel B:  MEH 

Currencies 
Statistics UK DM YEN SW FF CAN 
 
OLS confidence interval 
 
 Upper tail α -0.008 -0.037 -0.057 -0.019 -0.019 -0.001  
 Lower tail α  0.010  0.034  0.060  0.023  0.020  0.001 
 Upper tail β  0.922  0.976  0.942  0.953  0.973  0.992 
 Lower tail β  0.963  0.995  0.967  0.977  0.996  1.007 
 
LAD confidence interval 
 
 Upper tail α -0.008 -0.037 -0.049 -0.007 -0.024 -0.002 
 Lower tail α  0.011  0.047 

 
 0.047  0.005  0.037  0.002      

 Upper tail β 0.938 0.906 0.944 0.949 0.978 0.991 
 Lower tail β 0.982 1.074 0.964 0.985 1.014 1.010 

 
Note: upper tail α is the bootstrap confidence interval at 2.5 percentile where the lower tail is at 97.5 
percentile centered at 0. 
Upper tail β is the bootstrap confidence interval at 2.5 percentile where the lower tail is at 97.5 percentile 
centered at 1. 
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Table 10. 
Bretung nonparametric unit root test for the hypothesis of forward-premia stationary 

hypothesis 
 

Currencies 
Statistic UK DM YEN SW FF CAN 
 
B(n) 0.00096 0.00544 0.00042 0.00040 0.00179 0.00168 
TB(n) 0.00085 0.00358† 0.00042 0.00037 0.00101 0.00038 
Notes:  
*Implies that the unit root hypothesis cannot be rejected at 5% significance level. 
†Implies that the unit root hypothesis is rejected at 5% but accepted at 10% significance level. 
Unlike the conventional unit root tests the hypothesis of the unit root under Bretung (2002) approach is 
rejected if the test statistic is below the corresponding critical value. 
Notice that Breitung (2002) only reports the critical values for n = 100, n = 250 and n = 500. However, the 
critical values used in this study are 0.01004, 0.00342 for 5% significance level for the alternative of 
stationary and trend stationary, respectively are based on linear interpolation. 
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Franc and French Franc, the F-ratio constructed from the LAD estimator lies inside the 

bootstrap critical region. We conclude that the market for both the French Franc and 

Swiss Franc foreign exchanges can be considered as efficient. 

 

Table 11 reports the results of REH and MEH for the Japanese Yen based only on the 

LAD estimator after adjusting for the structural break found in section IV.B. As shown, 

The REH hypothesis is fairly accepted before and after finite bias adjustment. Comparing 

the results of table 6 with the one gleaned after adjusting for the structural break, we can 

conclude that the decision about REH hypothesis could be subject to structural break 

(breaks) since the hypothesis is rejected for whole sample period in the case of the 

Japanese Yen before the finite bias adjustment. Nevertheless, the conclusion is justified 

that the investors in the market of the Japanese Yen are rational.  For the MEH test, we 

still cannot reject the hypotheses of forward rate unbiasedness across the subsamples but 

the joint hypothesis of zero risk premia and forward rates unbiasedness is still rejected 

across the subsamples.  
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Table 11. 
LAD and bootstrap LAD Subsample REH and MEH estimation for the Japanese Yen 

 
Panel A:  REH 

1989 through 1996 1996 through 2000 
Parameters α Β α β 
LAD -.0953† 1.019† -0.078† 1.016† 
t-Stat -1.090 0.280  1.016 0.898 
F- Stat  0.610†  0.404* 
 
Boot. -0.098 1.020 -0.089 1.018 
Upper tail -0.227 0.951 -0.229 0.941 
Lower tail  0.225 1.047  1.047 1.047 
Boot F  9.571†  10.176† 
 
Panel B:  MEH 

1989 through 1996 1996 through 2000 
Parameters α Β α β 
LAD  0.023 0.936 -0.432 0.910 
t-Stat  5.049* -5.983* -7.006* -6.918 
F- Stat 36.632* 35.447* 
 
Boot. -0.014 0.941 -0.301 0.919 
Upper tail -0.017 0.922  0.316 0.903 
Lower tail -0.065 0.945  0.404 0.896 
Boot-F  5.731  3.861 
 
†Implies that the point estimate lies inside the bootstrap confidence interval. 
*Null hypothesis is rejected at 5% significance level 
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The explicit test of the existence of risk premium is conducted based on the econometric 

specification of equation 14. Table 12 reports the result of the test based on both OLS and 

LAD estimators. As shown, both the OLS and LAD estimates of the mean and the 

median, respectively, suggest the existence of exchange risk for the Pound Sterling, the 

Deutsche Mark, the Japanese Yen, and the Canadian Dollar. This suggests that foreign 

exchange market participants in these markets are risk averse. On the other hand, we did 

not document a significant risk premium for both the French franc and Swiss franc, 

where the hypothesis is fairly rejected across using the LAD estimator. The results of 

table 12 are of considerable interest since the MEH is fairly accepted only for the those 

two currencies after biased adjustment.  

 

We also employ Breitung’s (2002) nonparametric test to test for cointegration between 

and  by examining the stationarity of the first log difference of the forward rate and 

the expected spot rate that is, . Table 10 Panel B shows that 

e
tS tF

t
e
tt FS −=ε tε  is a random 

walk stochastic process for the Pound Sterling, the Deutsche Mark, the Japanese Yen and 

the Canadian Dollar. We conclude that the joint test of market efficiency is rejected for 

those four currencies because of the existence of non-stationary risk premia. However, 

the stationarity of risk premia is documented in the case of the French Franc and the 

Swiss Franc, where the unit root hypothesis is fairly rejected. We conclude that the 

foreign exchange market for both the Swiss Franc and the French Franc are efficient 

because the exchange risk display stationary behavior in those markets. 
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Table 12. 
Bretung nonparametric unit root test for the hypothesis of forward-premia stationary and 

the existence of risk premia 
 
Panel A:  Existence of risk premia test 
Statistics UK DM YEN SW FF  CAN 
 
OLS-Intercept 0.002 0.003 0.001 0.002 0.001 -0.048 
P-Value 0.572 0.717 0.372 0.639 0.495  0.264 
LAD-Intercept 0.001 0.001 0.007 0.001 0.001 -0.001 
P-Value 0.001 0.000 0.000 0.653 0.118  0.740 
 
 
Panel B:  Sationarity of risk premia test 
Statistics UK DM YEN SW FF    CAN 
 
B(n) 0.01302 0.01122 0.02611 0.01112* 0.00176* 0.01173 
TB(n) 0.00162 0.00142 0.00082 0.00138 0.00185 0.00040 
 
Notes:  
*Implies that the unit root hypothesis cannot be rejected at 5% significance level. 
†Implies that the unit root hypothesis is rejected at 5% but accepted at 10% significance level. 
Unlike the conventional unit root tests the hypothesis of the unit root under Bretung (2002) approach is 
rejected if the test statistic is below the corresponding critical value. 
Notice that Breitung (2002) only reports the critical values for n = 100, n = 250 and n = 500. However, the 
critical values used in this study are 0.01004, 0.00342 for 5% significance level for the alternative of 
stationary and trend stationary, respectively are based on linear interpolation. 
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V. Conclusion 

This paper employs monthly data over an 11-year period for six major currencies to 

examine the effect of small sample bias in testing for rational expectations and market 

efficiency in the foreign exchange markets. It appears that the F-ratios from traditional 

regressions understate the estimates of REH and MEH due to the biasedness and 

inconsistency in the parameter estimates. We invoke the bootstrap methodology 

suggested by Freedman (1981, 1984) and Hall (1988) to estimate and solve for the finite 

sample bias. The main finding of the paper is that the estimated bias is large enough to 

affect the statistical inference toward the rejection of REH and MEH. 

 

Some practical implications concerning MEH and REH can be gleaned from our results. 

In particular, the REH is accepted for the six major world currencies (the Pound Sterling, 

the Deutsche Mark, the Japanese Yen, the Swiss Franc, the French Franc, and the 

Canadian Dollar) using monthly data. The critical values of the bootstrapped F 

distribution are shifted to the right of the nominal F ratio constructed from the 

regressions. According to the parameter estimates, the value of β  converges to 1 and the 

value of α is close to zero in the case of the REH. For the MEH, the value of β  

converges to 1 and the hypothesis of a stationary risk premium is accepted across most of 

the currencies. The results provide some support to the market efficiency hypothesis even 

though the joint hypothesis was rejected for four out of six currencies. Furthermore, our 

results strongly relate the rejection of the market efficiency hypothesis in some currencies 

to the existence of a risk premium, not to the failure of the rational expectations 

hypothesis. Moreover, our results are robust to the peso problem; the effect of the 
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problem will be mitigated if it still exists since the bootstrap sampling distribution of the 

point estimate is identical to the population distribution function.  
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ESSAY III 

An Empirical Examination of the Short-Term Riskless Rate Models: the 

Role of the Nonlinear Trend Component 

 

I. Introduction 
 
The dynamic behavior of the interest rate has been the focus of many theoretical models 

of term structure.  In most of the interest rate models, the behavior of the interest rate 

 is a diffusion process developed in a continuous time setting, where it is 

determined by the behavior of a set of exogenous variables obeys the following Markov 

stochastic differential equation: 

{ 0, ≥trt

                                     ( ) ( ) tttt dZrdtrdr θσθµ ,, +=                                            (1a) 

where  is a standard Brownian motion, { 0, ≥tZ t } ( )θµ ,tr  is the drift (instantaneous 

mean) function, and ( )θσ ,tr  is the diffusion (instantaneous standard deviation) function.  

 

Since Chan, Karolyi, Longstaf and Sanders (1992), hereafter (CKLS), finding that 

models allow the volatility of interest rate changes to be heteroscedastic and highly 

sensitive to interest rate changes tend to perform superior relative to other models.  

However, several departures from this conclusion have been documented. One category 

of departures is regarding the mean-reverting behavior of the level of the interest rate. 

Based on his nonparametric point estimate that accounts for nonstationary deviations, 
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Bandi (2002) provides evidence that the short-term interest rate displays a martingale 

behavior over a range between 3% and 15%. Thus, the level of the interest rate seems less 

predictable and none of the restricted interest rate models have been accepted. On the 

other hand, based on the Efficient Method of Moments (EMM) and econometric 

specification that are composed of both a level effect and a stochastic volatility factor, 

Andersen and Lund (1997) provide point estimates of γ that are close to 0.5. The 

diagnostic tests result in an interest rate that is mean reverting and therefore supports the 

(modified) Cox, Ingersoll, and Ross (1985), hereafter CIR SR, model (i.e., the CIR SR 

model with stochastic volatility). Colony et al. (1997) argues that high-volatility elasticity 

tends to induce stationarity in the interest rate stochastic process, which may explain the 

out performance of the high volatility elasticity models over the homoscedastic models. 

Also, a substantial reduction in the importance of the level effect is documented by 

Koedjik et al. (1994), and Brenner et al. (1994) who use the (generalized) autoregressive 

conditional heteroscedasticity models introduced by Engle (1982) and Bollerslev (1986) 

to estimate the models considered by CKLS.  On the other hand, Ait-Sahalia (1996a) and 

Jiang (1998) mainly relate the rejection of homoscedastic mean reverting models to the 

linearity of the drift that these models assume.   

 

In this paper, we re-examine a variety of term structure models by analyzing separately 

the level and the stationary component of the short-term interest rate. Applying a variety 

of unit root tests, we strongly conclude that the short-term interest rate is a nonlinear 

trend-stationary stochastic process. Based on this finding, we employ the Hodrick-Prescot 

filter to capture the stationary and the nonlinear trend components. Our analysis based on 
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the stationary component shows that previous work overstates the evidence of the level 

effect. The result shows a substantial improvement for the CIR SR model in capturing the 

stationary component of the interest rate. Given that the interest rate level is nonlinear 

trend stationary, we develop the drift term in the CIR SR model to capture this stochastic 

process. Extensive diagnostic tests show extreme improvement in the CIR SR model to a 

nonlinear trend-stationary process. Moreover, we argue that our model outperforms all 

continuous-time models of short-term interest dynamics. 

 

The remainder of the paper is constructed as follows. Section II reviews the models to be 

considered. Section III outlines the data used. Section IV develops the structural break 

tests of Andrews (1993) and Andrews and Ploberger (1994), and the Generalized Method 

of Moments introduced by Hansen (1982). In Section V, we compare models on the basis 

of the level and the stationary component of interest rate, and examine the stability of the 

generalized CIR SR model. Next, models comparison is performed across subperiods. In 

Section VI, we introduce and estimate our model.  Section VII concludes. 

 
II. The Models 
 
The models to be estimated in this paper are based on the following parameterization of 

(1a)  

                                                                                            (1b) .)( dZrdtrdr γσβα ++=

 The specification of each model can easily be implemented by setting a number of 

restrictions on the parameters (α, β, γ and σ). The first model under consideration has the 

form:  

                                                              dZdtdr σα += )(                                                 (2) 
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when Merton (1973) is considered. Thus, the riskless rate is a Gaussian process. Also, 

The movements of the short-term risk free rates at different maturities are perfectly 

correlated as the difference between any two of them is deterministic. The second model 

is introduced by Vasicek (1977) and the stochastic differential equation (SDE) takes the 

form:   

                                                         dZdtrdr σβα ++= )(                                              (3) 

where α, β and σ are constants. The SDE is an Ornstien-Uhlenbeck process composed of 

Brownian motion and a restoring drift that pushes it downwards when the process is 

above α/β and upwards when it is below. Thus, The distribution of the process is mean 

reverting and converges in equilibrium to a normally distributed mean α/β and variance 

σ2/2β22. As in Merton (1973), the only source of randomness is the Brownian motion, 

which is a process over time not over maturity. Thus, the Merton model can be 

considered as a special case of the Vasicek model when the parameter β is restricted to 

zero.  

 

The third model is the mean reverting process introduced by Cox, Ingresoll and Ross 

(CIR SR) (1985). The instantaneous rate’s stochastic differential equation is  

                                                                                                (4) dZrdtrdr 2/1)( σβα ++=

where α, β, and σ are deterministic functions of time. The process is composed of 

Brownian motion and a restoring force, the drift term, that moves toward the expected 

value of α/β. The volatility term is decreasing with r, so allowing α to prevent r from 

going below zero. This condition holds as long as α ≥ 1/2σ2. The CIR model has been 

                                                 
22 The convergence of the Ornstien-Uhlenbeck distribution to its mean does not imply that the short-term 
riskless rate is a mean reverting process, only that the distribution is. 
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widely used in pricing interest contingent claims, as in Ramaswamy and Sundaresan’s 

(1986) futures pricing model and Longstaff’s (1990) yield option valuation model.  

 

The fourth model appears in Brennan and Schwartz (1977) in modeling savings and 

callable bonds and has also been used for discount bond valuation in Dothan (1978). The 

SDE is a driftless Brownian motion that allows the volatility term to be proportional to 

riskless rate. The SDE is  

                                                                 rdZdr σ=                                                         (5) 

The fifth model is used by March and Rosenfeld (1983) in deriving an equilibrium model 

for bond prices. The stochastic process of the riskless rate is simply the geometric 

Brownian motion (GBM) process introduced by Black and Scholes (1973). The SDE of 

the riskless rate takes the form 

                                                                                                            (6) dZrrdtdr σβ +=

where the riskless rate follows an arithmetic random walk with i.i.d. increments. In 

contrast, we expect that the GBM model will perform better when it is estimated using 

the level of interest rates as compared to the stationary component. The idea behind this 

is related Bierens (2000) who argues that a nonlinear stochastic process is likely to act as 

a unit root process.   

 

The sixth model is considered by Brennan and Schwartz (1980) in deriving a model for 

pricing discount bond options. The stochastic differential equation for the model is 

                                                      rdZdtrdr σβα ++= )(                                                (7) 
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As in both the Black and Scholes (1973) and Dothan (1978) models, the volatility term is 

deterministic and proportional to r. Thus, the Brennan and Schwartz, GBM, and Dothan 

models, can be nested within the CIR model by the following parameter restrictions γ = 1, 

α = 0 and γ = 1, and α = 0, β = 0 and γ = 1, respectively. 

 

The seventh model is used by CIR (1980) in analyzing variable rate loan contracts. The 

SDE of the model is a driftless Brownian motion that takes the form 

                                                                                                                     (8) dZrdr 2/3σ=

 The volatility term is set to smaller at a decreasing rate as r approaches zero, thus 

preventing r from going below zero. The model also appears in Costantinides and 

Ingersoll (1984) in pricing taxable bonds. The eighth model is introduced by Cox (1975) 

and Cox and Ross (1976). The SDE of the model is constant elasticity of variance 

diffusion process that takes the form 

                                                                                                            (9) dZrrdtdr γσβ +=

This model can be nested within CIR (1980) by parameters restrictions β = 0 and γ = 3/2. 

 

The ninth model is introduced by Black and Karasinski (1991) in pricing discount bond 

options when the riskless rate is log normally distributed. The stochastic process of the 

natural logarithm of the riskless rate, denoted by X, is   

                                                             dZdtXdX σβα ++= )(                                    (10a) 

Unlike the Vasicek model, the parameters α, β and σ are deterministic functions of time 

and the instantaneous riskless rate is 

                                                                                                                   (10b) Xer =
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The SDE of the model is an Ornstien-Uhlenbeck process and the logarithm of the riskless 

rate is normally distributed and drifts towards the current mean of α/β. Additionally, the 

riskless rate itself is mean reverting and always positive.  

 
III. Methodologies 
 
This section describes the structural break tests of Andrews (1993) and Andrews and 

Ploberger (1994) and the generalized method of moments (GMM) of Hansen (1982) 

adopted in our paper for testing and comparing continuous-time models of the short term 

interest rate.  First, I briefly review the structural break tests introduced by Andrews 

(1993) and Andrews and Ploberger (1994). Next, the GMM is developed. 

 
III.A. Structural Change Tests 
 
Recent advances in the econometrics of structural break now allow for robust tests of 

parameter instability without assuming exogenous change points. Among the proposed 

structural break tests, those introduced by Andrews (1993) and Andrews and Ploberger 

(1994) are particularly attractive for many reasons. First, the tests can be constructed for 

nonlinear methods of estimation, such as GMM.  Second, they can be used to test for the 

stability of individual parameters or the entire parameter vector where the change points 

are endogenous23. Moreover, Andrews (1993) introduces an elegant way to develop 

efficient asymptotic critical values for the test where the breakdate is unknown a priori. 

More recently, Hansen (1997) develops approximation methods to calculate P-values for 

the Andrews (1993) and Andrews and Ploberger (1994) tests. Furthermore, the test has 

power against the alternative where the parameters may change gradually overtime. For 

                                                 
23 Andrews and Ploberger (1994) show that Ave (Average) and Exp (Exponential) tests have certain 
optimality relative to the Sup (Supremum) test proposed by Andrews (1993).  
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the analysis of this paper, we construct the Andrews (1993) Sup (Supremum) and 

Andrews and Ploberger (1994) Exp (Exponential) and Ave (Average) tests based on the 

Wald statistic. In particular, 

                                                       ,sup
~ i
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≤≤
=                                                 (11) 
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where i is some change point in an interval ( i , i )24. Let λ be a prechange parameter 

vector and λ + δ be a post-change parameter vector. The null hypothesis of interest is 

H0 : δ = 0 

Against the alternative 

Ha : δ ≠ 0 

Where the hypothesis of no structural breaks in the entire parameter vector will be 

rejected if the p-values of those statistics computed by Hansen (1997) are below 5 

percent. 

  

                                                

III.B. Generalized Method of Moments 
 
Following Brennan and Schwartz (1982) and Dietrich-Campbell and Schwartz (1986), 

the parameters of the continuous-time stochastic process can be estimated using the 

following discrete-time econometric specification 

 
24 Andrews (1993) suggests to consider all the breakdates in the interval v% to (1-v)% of the sample, where 
the trimming parameter v is typically between 5% and 15%. For the analysis of this paper, we use 15% 
trimming.  
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                                                     11 ++ ++=− tttt rrr εβα                                                (14) 

                                           ,0][ 1 =+tE ε         .                                      (15) γσε 22
1

2 ][ tt rE =+

This requires a nonlinear estimation procedure that can estimate the parameters 

simultaneously. Hansen (1982) has introduced the Generalized Method of Moments 

(GMM) that can handle (14) and (15) as a set of moment equations. The technique has 

relevant characteristics for the case at hand. First, the GMM procedure does not require 

any distribution assumption about the model. This seems attractive in testing term 

structure models since each model assumes a different distribution for the riskless rate. 

Second, the covariance matrix of GMM is heteroscedastic consistent since it includes the 

interaction terms of the residuals and the derivatives with respect to the estimators. This 

is important because the riskless rate seems to be dependent on its conditional volatility25. 

Third, the GMM standard errors are autocorrelated consistent when spectral density is 

used to ensure positive definiteness of the covariance matrix in the case of serially 

correlated residuals. Fourth, the GMM procedure is widely used to test term-structure 

models (see for example, Harvey (1988), Longstaff (1989), Chan, Karolyi, Longstaff, and 

Sanders (1992), and Gibbons and Ramaswamy (1993)). 

 

The econometric specification of (14) and (15) can be fit into a GMM framework as 

follows. Let the noise term εt+1 in (14) be:  

                                                      ][ 11 tttt rrr βαε −−−= ++                                            (16) 

Let λ defined to be the entire parameter vector of α, β, γ and σ. Let the vector ( )λ,1+txh  

be: 
                                                 
25 Engle, Lilien and Robins (1987) argue that the GMM outperforms ARCH-M when the data depends on 
its conditional variance since ARCH models require the variance to be specified a priori.  
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where , 242: RRRh →× [ ]′−= ++ tttt rrrx ,11  is 2-by-1 vector of variables, and 

is a 4-by-1 vector of parameters of the unrestricted model. [ ]′γσβ ,,, 2= αλ

Define Yt to be a K-dimensional vector of instrumental variables with finite variance that 

are included in the information set, and let the function f  be 

                                                  ( ) ( ) tttt YxhYxf ⊗= ++ λλ ,,, 11 ,                                        (18) 

where is the Kronecker product. The minimum distance estimator of ⊗ λ that is defined 

by the unconditional expectation of (18) can be estimated by minimizing the GMM 

criterion of the form, 

                                            ( )[ ] ([ λλ ,,1,,1
11 ttTtt Yxf

T
WYxf

T ++
′ )]                                   (19) 

where WT is a consistent estimate of ( ) ( )( )[ ]( ) 1
1 ,,/1var −
+ ttt YxfT λ . 

 

To test for restrictions validity among the models, the GMM test of overidentifying 

restrictions is used. Let L be the number of moments restrictions that is greater than the 

elements in the parameter vector.  The minimized GMM criterion in (19) can be used to 

test if the remaining, L-K, linearly independent moments conditions are zero. Under the 

null hypothesis that these restrictions are valid, 

                          ( )[ ] ( )[ ] 2
11 ~,,1,,1

kL

a

ttTtt Yxf
T

WYxf
T −++

′ χλλ                              (20) 

We use the chi-square statistic in (20) to test the models’ restrictions validity.   
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IV. The Data 
 
The overlapping raw data for the three month Treasury bill rate consists of end-of-month 

observations from January 1934 until July 2002 and are collected from the Federal 

Reserve Economic Database (FRED) of the Federal Reserve Bank of St. Louis. The data 

is monthly and the total number of observations is 826. Three reasons for using the three 

month Treasury bill rate are now in order. First, it is available and costless. Second, it has 

been used before in previous literature (see for example Anderson and Lund (1997) and 

Santon (1997)). Third, and most importantly, Chapman et. al. (1999) show that the proxy 

problem is trivial in the case of single-factor models for parameter estimates. 

 

Table 1 shows the means, median standard deviations, and first 5 autocorrelation of the 

three-month yield and the three-month changes in the yield.  The mean of the short-term 

riskless rate is 4.01% with a standard deviation of 3.21%.  Although the slow mean 

reverting behavior of the short-term riskless rates is obvious. This offers some evidence 

that process has a stationary behavior. 

 

Since the data are overlapping, the autocorrelation problem may exist26. We invoke the 

Parzen spectral density autocorrelated consistent estimator suggested by Gallant (1987) to 

insure positive definiteness of the covariance matrix in case of autocorrelation27. For  

 

                                                 
26 See Hansen and Hordrick (1980) for further discussion on the autocorrelation problem resulting from 
overlapping data.  
27 Andrews (1991) discusses different types of autocorrelated consistent (AC) estimators. He argues that the 
Parzen kernel outperforms the Barlett kernel as suggested by Newey and West (1987), especially when the 
data exhibits temporal dependence.   
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Table 1 
Summary Statistics 

Variables N Mean Standard Deviation ρ1 ρ2 ρ 3 ρ 4 ρ 5 

rt  0.004        0.032 0.992    -0.633  0.249 -0.038 0.013       

rt  - rt+1  0.000        0.003 0.407    -0.227  0.032       -0.029  0.036       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 88

heteroscedasticity, we use a heteroscedastic consistent covariance matrix (HC) suggested 

by MacKinnon and White (1985) with Jacknife approximation28.  

 

In order to determine whether the interest rate is stationary, trend stationary, nonlinear 

trend stationary, break stationary or a unit root process, we employ several different types 

of unit root tests. The first type, in which the unit root under the null against the 

alternative of stationary and linear trend stationary, includes the traditional Augmented 

Dickey-Fuller (ADF) test, the Phillips an Perron (1988) (PP) test, and the Augmented 

Weighted Symmetric (WS) tests. The WS test is a weighted, double-length regression. 

Pantula et al. (1994) argue that the WS test dominates the ADF and PP tests in terms of 

power. The Akaike Information criterion (AIC) is used to determine the optimal number 

of lags for all the tests29. We also employ the non-parametric test of Breitung (2002) for 

two hypotheses where under the first that the interest rate is a driftless unit root and under 

the second that it is a unit root with drift against the alternatives that the level of the 

interest rate is stationary and linear trend stationary, respectively. There are two 

advantages of the Breitung test over the ADF, PP, and WS tests. The Monte Carlo 

simulations show that it is robust to structural break, and to model misspecifications since 

the asymptotic property is independent from the stationary component of the series. 

Finally, we employ Bierens (1997) test where the unit root with drift hypothesis will be 

tested against the alternative of nonlinear trend stationary.  

 

                                                 
28 MacKinnon and White (1985) argue that HC with jackknife approximation outperforms any type of 
White HC estimators and it is wise to be used  it even if heteroscedasticity does not exist.  
29 The ADF, PP, and WS accurate asymptotic p-values are computed using MacKinnon (1994) 
approximation (robust to size distortion).   
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Table 2, panel A reports the results of the ADF, PP, and WS tests for the riskless rate. 

Across all tests we cannot reject the null of a unit root process30. The P-values of all of 

the tests are so high, which provides evidence that the short-term interest rate is not 

stationary, break stationary or linear trend stationary31. However, the unit root tests have 

low local power against the alternative since the data could also be break stationary or 

nonlinear trend stationary32. To test if the short-term interest rate is nonlinear trend 

stationary, panel B reports the Bierens tests. Regarding the Breituring test, the unit root 

hypothesis cannot be rejected in favor of stationarity or trend stationarity (the result is 

robust to structural breaks). The last two lines of panel B reports both the T(m) and A(m) 

nonparametric tests suggested by Bierens (1997); the value of both statistics ( -3.985 and 

-40.220 respectively) are higher than their corresponding right-hand sided critical values 

(-3.97 and -27.20, respectively).  To take into account any possibility of size destortion 

possible size distortion, we simulate the p-values of the test using the Wild bootstrap, as 

shown in the last two lines of panel B. The p-value of the T(m) statistic is (0.049), and for 

A(m) test is (0.040). Consistent with Bierens (1997, 2000), we conclude that short-term 

interest rate is nonlinear trend-stationary33’34. 

 

 

                                                 
30 Peron (1989) concludes that the nominal interest rate is a unit root process; the same conclusion is also 
documented by Ai-Sahalia (1996b). On the other hand, according to Bierens (1997), this cannot be realistic 
for two reasons. First, if the interest rate is driftless random walk then it must allow for negative values. 
Second, if it is a random walk with positive drift then it would converge to infinity, which is improbable. 
31 See Perron (1989) for further discussion. 
32 Phillips (1998) argues that the lack of consensus in the empirical work regarding the Fisher effect is 
mainly related to the apparent nonlinear trend-stationary behavior in the nominal interest rate. 
33 Bierens (2000) provides evidence that the nominal interest rate and inflation rate are nonlinearly 
cotrended. 
34 Bierens (1997) tests the hypothesis that the interest rate is a unit root process against the alternative of 
nonlinear trend-stationary. The intensive diagnostic tests suggest that the short-term interest rate is 
nonlinear trend-stationary. 
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Table 2 

Unit root tests on the short-term interest rate 
 
Panel A:  Parametric tests 
  

 
 
 

WS ADF PP 
 

 
 

 
-2.4449 
(0.327) 

 

 
-2.2419 
(0.466) 

 
-12.39766 

(0.295) 

 

Panel B:  Nonparametric tests 

   

 Breitung Beirens A(m) 
 

Beirens T(m) 

           0.0104              -40.220               -3.985 
   0.0035* 

 (0.421) † 
  -27.200* 

      (0.049) † 
 -3.971* 

   (0.040) † 
    
    
    
Note: For Beirens A(m) and T(m) tests the actual value of the statistics must lie in the right hand side of the 
distribution to conclude that the riskless rate is nonlinear trend stationary. 
* 5% right-hand sided critical value  
† Simulated P-value based on 1000 replications drown from the normal distribution with zero mean and 
OLS squared residuals variances (the Wild bootstrap). 
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In order to gain insight into the nature of the riskless rate, Figure 1 plots the short-term 

interest rate and the HP-Trend. This provides evidence that the interest rate is stationary 

about the dynamic trend (i.e., the interest rate itself is not stationary).  

 

The fluctuation process of the detrended short-term interest rate can be illustrated using 

Figure 2. As shown, the stationary component is reverting systematically about its zero 

mean except for the period spanning from September 1979 to July 1982, where 

substantial changes occur in the variability of the interest rate around the trend. This may 

suggest a structural break during that period when the Federal Reserve targeted the 

inflation rate after September 1979.  

V. The Empirical Results 
 
In this section, we first estimate and compare the unrestricted and nine restricted models 

of the short-term interest rate process by employing the GMM technique. We compare 

the performance of the restricted models with each other and with the unrestricted model. 

Next, we repeat the estimation and the comparison by employing the detrended short-

term interest rate and comparing the results with those obtained from the non-detrended 

estimation. We also employ the Sup statistic of Andrews (1993) and Ave and Exp 

statistics of Andrews and Ploberger (1994) to test if the unrestricted model displays a 

structural break during the study period. Finally, we reestimate the models after adjusting  

for structural break(s) and compare the results. 
 

V.A. 1934 through 2002 Sample   
 
Table 3 reports the parameter estimates, the asymptotic P-values of the individual 

parameters, and the GMM overidentifying (X2) test, for the unrestricted model and nine  
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Figure 1. 
The Riskless rate and the Stochastic Trend 

 

Figure 2. 
The stationary component of riskless rate 
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Table 3. 
GMM Estimate of Unrestricted and Nine Restricted Models of Short-Term 

Interest Rate Dynamics 
Coefficients, Their Significance Levels, and Overidentifing Test  

for the Period (1934 Through 2002) 
 

Model α 
(p-value) 

β 
(p-value) 

σ 2 
(p-value) 

γ 
(p-value) 

OverIdentifying 
Test 

(p-value) 

Sensitively of 
conditional 
Variance to 

10% increase 
in interest 

rate 
Unrestricted 0.0100 

(0.3185) 
0.0010 

(0.8065) 
0.0018 

(0.2050) 
1.1849 

(0.0000) 
13.2035 
(0.0103) 

0.338 

 
Merton 

 
-0.0077 
0.2277 

 
- 

 
0.02470 
(0.0000) 

 
0.0 

 
115.5494 
(0.0000) 

- 

 
Vsicek 

 
0.0798 

(0.0444) 

 
-0.0245 
(0.0292) 

 
0.0111 

 (0.0189) 

 
0.0 

 
127.8952 
(0.0000) 

- 

 
CIR SR 

 
0.0137 

(0.1579) 

 
-0.0019 
(0.6373) 

 
0.0155 

(0.0000) 

 
0.5 

16.1650 
 

(0.0063) 

0.100 

 
Dothan 

 
0.0 

 
0.0 

 
0.0033 

(0.0000) 
 

 
1.0 

 
20.2098 
(0.0051) 

0.210 

GBM 0.0 0.0028 
(0.28152) 

 

0.0033 
 (0.0000) 

1.0 18.9062 
(0.0043) 

0.210 

Brennan-
Schwrtz 

 

0.01067 
(0.2733) 

-0.0007 
(0.8575) 

0.0033 
(0.0000) 

1.0 17.1727 
(0.0042) 

0.210 

CIR VR 0.0 0.0 0.0075 
(0.0000) 

 

1.5 19.2035 
(0.0076) 

0.331 

CEV 0.0 0.0034 
(0.1918) 

0.0018 
(0.1686) 

 

1.2425 
(0.0000) 

14.9068 
(0.0107) 

0.398 

Black-
Karasinski 

0.0024 
(0.7466) 

-0.0026 
(0.5719) 

0.0054 
(0.0000) 

0.0 17.2788 
(0.0040) 

- 
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restricted models, along with the sensitivity of the conditional variance to the level of 

interest rate implied by each model. As shown, for almost every model, the P-Values of 

the GMM criterion test is below 0.05, which suggests that all models are misspecified. 

Our results are consistent with Ait-Sahalia (1996a) and Bandi (2002), which argue that 

none of the models are correctly specified. The unrestricted model and the CEV model 

have the lowest goodness of fit statistic, but are still rejected. Consistent with CKLS, for 

most models except Vasicek, none of the parameters in the drift term is significant. 

However, no robust conclusion can be gleaned about the linear mean reverting behavior 

in this case; this is because the GMM overidentifying test fails to accept the null 

hypothesis, which provides an inconsistent estimate of the parameters (Ait-Sahalia 

1996a). Ignoring the inconsistency in the entire parameter vector, one could reject the 

linearity specification of the drift term35. 

 

We also find that the level of interest rate is an important determinate of the conditional 

volatility; the estimate of the unrestricted parameter γ is 1.1849. Moreover, the CIR VR 

model with γ=1.5 reports a higher unconditional variance (σ2) than those models which 

assume that γ=1 but with a lower unconditional variance (σ2) than that of CIR SR which 

assumes γ=1/236. This could imply that models with higher volatility elasticity report a 

lower unconditional variance. To ensure that the CIR VR model implies higher 

conditional volatility sensitivity to the level of interest rate than other models, the last 

                                                 
35 Inconsistent with CKLS, Bandi (2002) finds that the parameters in the drift term are significant and 
concludes that the drift term has a linear structure.  
36 Note that models that assume a lower parameter γ do not necessarily mean that the conditional variance 
is less sensitive to the level of the interest rate since the value of the unconditional variance could mitigate 
the effect of a higher γ unless those models have a lower unconditional variance. The idea is clear since 
CIR SR model reports a higher σ than the CIR VR model, and the CEV model reports the lowest 
unconditional variance in comparison to the other heteroscedastic models.  
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column in Table 3 reports the effect of 10% increases in short-term interest rate on 

conditional volatility. The results suggest that models with a higher parameter γ imply 

higher conditional variance sensitivity to interest rate changes. However, the estimated 

unconditional volatility for the CEV model is very small, which implies that models with 

a higher parameter γ may display lower conditional volatility. By contrast, volatility as a 

measure of the expected conditional variance displays a very interesting dynamic 

structure.  The CEV model, with highest parameter γ = 1.242, displays a comparable 

implied volatility level to models that report lower sensitivity to interest rate changes. 

The only extreme volatility measure is that of CIR VR, which has a much higher 

volatility than the others models. To gain more insight into the volatility behavior,  figure 

3 plots the short-term interest rate with the implied volatility generated from each model 

in order. 

 

Given the nonlinear trend component in interest rate, we now compare the performance 

of the nine models by considering only the stationary component. Following Granger and 

Newbold (1974) the bias in the t-statistic that appears to be significant can now be 

removed. Notice that we do not try to evaluate the performance of the models in 

capturing the stochastic behavior of the interest rate. We only try to examine the 

performance of the mean reverting models in capturing the behavior of the stationary 

component of the short-term interest rate and how the volatility elasticity will be affected. 

Following Conley et al. (1997), we expect that the volatility elasticity will increase if the 

high volatility elasticity tends to induce stationarity. 
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Figure 3. 
 Conditional Volatility of Interest Rate 

 

 

 

 

 

 

 

 

 

 

 

 



 97

 We invoke the GMM framework on the moments in (17). The minimized values of the 

quadratic form in (20) for the various models are reported in table 4. As expected, all 

mean reverting processes show considerable improvement in capturing the stationary 

component of the short-term interest rate. Consequently, the unrestricted model shows 

considerable improvement but it is still misspecified; the CIR SR model is marginally 

accepted. Comparing the mean reverting processes with each other, we find that the 

Vasicek, Brennan-Schwartz and Black-Karasinski models outperform the unrestricted 

and CIR SR models. Also, the results imply that those models have the same power in 

capturing the stationary component of the interest rate (the GMM goodness of fit 

statistics are about 2.8 across the three models). Conversely, there is a significant increase 

in the volatility elasticity implied by both the unrestricted and the CEV models; the value 

of the parameter γ for the CEV model increased from 1.242 to 5.84797.  This is 

consistent with Conley et. al. (1997) argument that volatility induces stationarity. There is 

considerable worsening in all models, except the GBM, that assume no stationarity in the 

interest rate. For example, the p-value of the goodness-of fit statistic of the CIR VR 

model decreased from 0.0076 to 0.0006, which decreases the probability of accepting the 

model.      

 

As shown in the second column of table 4, the hypothesis that α = 0 is fairly accepted 

across all correctly specified models. Comparing the result with the one gleaned from the 

level of short-term riskless rate, we cannot reject the hypothesis that α = 0 for all mean 

reverting models, which shows considerable improvement in the detrended data. Also, 

there is significant variation in the goodness-of-fit statistic between the unrestricted  
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Table 4. 
GMM Estimate of Unrestricted and Nine Restricted Models of De-Trended Short-

Term Interest Rate 
Dynamics Coefficients, Their Significance Levels, and Overidentifing 

Test for the Period (1934 Through 2002) 
 

Model α 
(p-value) 

β 
(p-value) 

σ 2 
(p-value) 

γ 
(p-

value) 

OverIdentifying 
Test 

(p-value) 
Unrestricted 0.7982 

(0.0000) 
 

-0.1578 
(0.0000) 

0.0006 
(0.6082) 

3.5173 
 (0.0000) 

10.6888 
(0.0302) 

Merton 0.19088 
(0.0515) 

 

- 0.0553 
 (0.6081) 

- 17.9355 
(0.0001) 

Vsicek 0.0517 
 (0.4445) 

 

-0.15723 
 (0.0000) 

0.1132 
 (0.2673) 

- 2.8715 
(0.0901) 

CIR SR 0.0799 
(0.1830) 

 

-0.15956 
(0.00003) 

0.0059 
(0.9299) 

0.5 3.9513 
(0.0468) 

Dothan - - 0.0660 
(0.1061) 

 

1.0 19.0797 
(0.0002) 

GBM - -0.1655 
(0.0000) 

 

0.03720 
 (0.0965) 

1.0 3.2532 
(0.1966) 

Brennan-
Schwrtz 

0.04812 
 (0.4829) 

-0.15866 
 (0.0000) 

0.0284 
 (0.2548) 

1.0 2.8241 
(0.0928) 

CIR VR - - 0.0216 
 

(0.0936) 

1.5 17.08223 
 (0.0006) 

CEV - -0.14724 
(0.7591) 

0.0001 
(0.9998) 

 

5.8479 
(0.9966) 

2.0595 
(0.0000) 

Black-
Karasinski 

0.7531 
(0.0000) 

-0.15120 
(0.0000) 

0.0184 
(0.0000) 

0.0 9.4972 
(0.0908) 
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model and the Vasicek, CIR SR, Brennan-Schwartz, and Black-Karasinski models. The 

unrestricted model reports a much lower P-Value than all of the mean reverting 

processes; the same result holds when comparing the performance of the GBM model 

and the Brennan-Schwartz model. This is considerably important since the CEV model 

and the GBM model are nested within the unrestricted model and the Brennan-Schwartz 

model, respectively, by setting the parameter restriction α = 0. Also, the GBM model 

(which is an arithmetic random walk) tends to outperform all mean reverting processes in 

capturing the stationary component; this is consistent because the stationary component 

has a zero mean and the GBM allows the process to revert about a zero mean. Thus, the 

data appears to support the choice of α = 0. We conclude that the existence of the 

parameter α in any model substantially reduces the model’s power in capturing the 

stationary component.  

 

Also, The Vasicek model substantially outperforms the Merton model; the GBM model is 

correctly specified while the Dothan model is not. The Merton and Dothan models are 

nested within the Vasicek model and the GBM model, respectively, by setting the 

parameter restriction β = 0. The outperformance of the Vasicek and GBM models over 

their nestable models is evident of the valid specification of the parameter β in capturing 

the cyclical component of interest rate.  Also, across all correctly specified models and 

most of incorrectly specified models the parameter β is significant.  

 

The results based on the stationary component of the interest rate provide an interesting 

feature about the volatility implied by the level of interest rates. As mentioned above, we 
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document higher values of γ for both the unrestricted and CEV model, which implies 

higher conditional variance sensitivity to the level of interest rates37.  However, the 

estimated unconditional variance declines substantially across all models that assume 

conditional heteroscedasticity, except for the CIR SR and CEV model, more specifically, 

across all models that assume or imply γ ≥1. The results are robust across all constant and 

deterministic variance models. Taken together, the results suggest that the stationary 

component of the interest rate implies a lower level of instantaneous volatility than that 

implied from the corresponding interest rate level38.  

 

Figure 4 plots the implied volatility generated from each model based on the estimated 

parameters from the stationary component series. As shown, the implied volatility 

deviations among the models are much smaller, especially for the CEV model. For 

example, the CEV implied volatility displays slightly lower implied volatility than the 

CIR SR and Dothan models and very close to the rest when the level of interest rate is 

stable; it displays a slightly higher volatility than all models when the level of interest 

rate fluctuates. Comparing Figure 3 with 4, the implied volatility measure on the basis of 

stationary component seems much more convincing.  

V.B.  Model Stability Test 

Table 5 reports the results of the structural break tests for the unrestricted model of 

interest rate dynamics. Following Andrews (1993) and Andrews and Ploberger (1994), to 

allow for sufficient degrees of freedom, the trimming parameter is set to 15% and 30% of 

the effective sample, respectively. 

                                                 
37 This is consistent since the stationary component is the main source of volatility. 
38 This must hold since the level of interest rate is in the interval [0,1].  
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Figure 4. 
Conditional Volatility of the Detrended Interest Rate 
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Table 5 
Hypothesis of  

No Structural Break in the Entire Parameter Vector of The Unrestricted Model 
 

Period Andrews Sup W 
Test 

(Middle 85%) 

Andrews / 
Ploberger 

Average W Test 
(Middle 80%) 

Andrews / 
Ploberger 

Exponential W Test 

(Middle 80%) 

Max date 

 
1/1934 – 7/2002 

 
28.3689 
(0.0000) 

 
5.7466 

(0.0215) 

 
8.052 

(0.0000) 

 
April, 1981 

 
1/1934 – 4/1981 

 
12.2038 
(0.0262) 

 
5.5669 

(0.0332) 

 
3.9403 

(0.0220) 

 
June, 1973 

 
1/1934 – 6/1973 

 
10.024 

(0.0563) 

 
4.3942 

(0.0792) 

 
3.0539 

(0.0544) 

 
October, 1969 
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The findings in Table 5 provide strong evidence that the unrestricted model displays a 

structural break at the beginning of 1981 when the interest rate begins to decline 

substantially. The results are robust across the Sup, Ave, and Exp tests and all p-values 

indicate a rejection of the null hypothesis of parameter stability at the 5% and 1% 

significance level.  

 

To gain insight into the nature of the instability, Figure 5 graphs Hansen (1997) p-values 

of the Sup W statistic supported by a 5% critical value for the null hypothesis of no 

structural change in the full parameter vector for the unrestricted model. As shown, the 

value of the Sup W statistic suggests three periods that could display structural change. 

The first is at the beginning of 1970, the second is at the mid of 1974 and the third occurs 

when the Sup statistic becomes highly fluctuating during the period between October 

1979 and October 1981, which is commonly known as the   ‘Monetary Experiment’ 

period of the Federal Reserve System. However, the p-value of the Sup W statistic in the 

third period, reaches its single trough on April 1981. Following Andrews (1993), we only 

consider the point where the maximum value of the statistic occurs as a single structural 

break for the model (i.e., April 1981)39.  

 

To test if the model displays another structural break(s), we exclude the period after April 

1981 from the effective sample and run the test again. The result is reported in the third 

column of Table 4. As shown, the test suggest that another structural break occurred in  

                                                 
39 Andrews (1993) and Andrews and Ploberger (1994) tests are designed to test the hypothesis of no 
structural change against the alternative of one structural break. Consequently, it will be more powerful to 
do the test several times by excluding the periods after the breaks. This is appropriate since the critical 
value of the test depends on the sample size and the estimated parameters.  
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Figure 5. 
Andrews Sup W test 

1933-2003 (Middle 70%)

 

 

 

 

 

 

 

 

 

 

 



 105

Figure 6. 
Andrew Sup W test 

1933-1981 (Middle 70%)
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Figure 7. 
Andrew Sup W test 

1933-1973 (Middle 70%)
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June 1973 when the Fed begins to implement the federal-fund operating procedure for the 

period spanning from September 1972 to October 1979. We also follow the same 

procedure to test for the existence of a third break. As shown in graph 7, the Sup statistic 

suggests that the third break is in October 1969. However, both the Ave and Exp statistics 

cannot reject the hypothesis of parameter stability during this subperiod. Following 

w , only the rejected hypotheses by the Ave and Exp statistics 

 

 table 7, the same conclusion can be drawn from 

analyzing the third period from 1981 to 2002 where the interest rate had a negative 

Andre s and Ploberger (1994)

are considered. Thus, we consider the period spanning from January 1934 to June 1973 as 

one subperiod. Taken together, graphs 5 through 7 and Table 4 provide the date and the 

nature of the structural break across the whole sample.   

V.C.  Subperiod analysis   

Table 5 reports the results of the GMM estimation for the considered models for the first 

subperiod from January 1934 to June 1973, or the end of the Britton Woods exchange-

rate system (we choose some period after the end of the system, namely 1973, as 

suggested by the structural break analysis). As shown, none of the term structural models 

have the ability to describe the stochastic behavior of the short-term interest rate during 

this period. Notice, also, that the heteroscedastic models, such as the unrestricted and  

CEV, report low volatility elasticity, 0.600 and 0.616, respectively, between a 0 and 9% 

level of interest rates. As shown in figure 1, we can infer that the level of interest rates 

has a positive growth component and it mean reverts strongly when it is far from its 

growth component. As shown in

growth component. This can be considered as a complement to Bandi (2002) and Ait-
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Sahalia’s (1996b) conclusion that the process tends to revert to its mean only when it 

approaches its upper bound range. 

 

However, as shown in table 6, the performance of the models differs considerably for the 

period of highly fluctuating interest rates, i.e. when the fed begins to implement the 

federal-fund operating procedure from 1973 through 1981. The p-value of the (X2) 

goodness-of fit statistic of each model is above 0.05, which implies that models under 

consideration are correctly specified. Consistent with CKLS, the CEV model outperforms 

the other competing models. On the other hand, the mean reverting models, such as 

Vasicek, CIR SR, and Black-Karasinski, perform poor in comparison to the other models 

even though they are correctly specified. One interpretation of this finding is that models 

of high volatility elasticity tend to outperform mean reverting models during this 

subperiod because the period represents high volatility elasticity. Yet this alone cannot 

explain why an arithmetic random walk process like Merton (1973) outperforms all of the 

mean reverting models including the unrestricted model during this subperiod. This also 

cannot explain why all random walk models with a volatility elasticity parameter 

restricted to 1 (Dothan, GBM, Brennan-Schwartz) tend to outperform the CIR VR model, 

which is a random walk process of higher restricted parameter volatility (γ=1.5). Our firm 

conclusion is that models with higher parameter volatility tend to outperform the mean 

reverting  

and the short-ter tricted 

mean reverting model tends to outperform the Vasicek, CIR SR, and Black-Karasinski 

models because it induces stationarity to the process as a result of high volatility elasticity  

models across this subperiod because those models are random walk processes

m interest rate is not stationary during this period. Also, the unres
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Table 6. 

 Estim  Unre icted and tricted M els of Sh  
Interest Rate Dynamics 

Coeff Thei icance L and Overid ntifing Te
for the Period (1934 Through 1973) 

 

(p-value) 
Ove ng 

(p-value) 

GMM ate of the str  Nine Res od ort-Term

icients, r Signif evels, e st  

Model α 
(p-value) 

β 
(p-value) 

σ 2 
(p-value) 

γ rIdentifyi
Test 

Unrestricted 0.0023 
(0.7421) 

 

0.0106 
(0.0610) 

0.6002 
 (0.0014) 

0.0087 
(0.0536) 

19.07251 
(0.0007) 

Merton 0.0 5 
 (0.0023) 

 (0.1453)  (0.2380)  (0.0000) 
- 40.2910 

(0.0000) 

CIR SR 0.0045 
(0.4735) 

0.0093 
(0.0788) (0.0000) 

0.5 22.1136 
(0.0004) 

Dothan - 
(0.0000) (0.0000) 

(0.0086)  (0.0000) 
1.0 23.3978 

(0.0006) 
Brennan-
Schwrtz 

-0.0014 
 (0.8222) 

0.01216 
 (0.0288) 

0.0026 
 (0.0000) 

 

1.0 20.2354 
(0.0011) 

CIR VR - - 0.0057 
(0.0000) 

 

1.5 29.3079 
 (0.0001) 

CEV - 0.0114 
(0.0062) 

0.0086 
(0.0322) 

 

0.6164 
(0.0002) 

0.033705 
(0.0006) 

Black-
Karasinski 

0.0045 
(0.5773) 

-0.0002 
(0.9686) 

0.0065 
(0.9287) 

0.0 18.0489 
(0.0028) 

12

 

- 0.0054 
 (0.00002) 

- 53.6871 
 (0.0001) 

Vsicek 0.0095 

 

0.0062 0.0123 

0.0116 

 
- 0.0026 

 

1.0 30.2123 

GBM - 0.0108 0.0027 
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GMM Estimate of the Unrestricted and Nine Restricted Models of Short-Term 

Coefficients, Their Significance Levels, and Overidentifing Test  
for the Period (1973 Through 1981) 

 
Model 

(p-value) (p-value) (p-value) (p-value) 
OverIdentifying 

(  

 
 
 
 
 
 
 
 
 

Table 7 

Interest Rate Dynamics 

α β σ 2 

 

γ 
Test 

p-value)
Unrestricted 0.0364 

(0.8603) (0.9723) (0.4291)  (0.0000) (0.1188) 
 

0.0011 0.0007 1.4574 7.3417 

Merton 0.0474 
 (0.3036) 

- 0.1445 
 (0.0000) 

- 9.7688 
 (0.1347) 

Vsicek 
 (0.3183)  (0.4664)  (0.0000) 

- 10.8916 
(0.0535) 

CIR SR 
(0.3140) (0.4604) (0.0000) 

0.5 10.1825 
(0.0702) 

Dothan - - 
(0.0000) 

1.0 11.2764 
(0.1270) 

GBM - 
(0.2400)  (0.0000) 

1.0 9.7399 
(0.1360) 

Schwrtz  (0.4059)  (0.5652)  (0.0000) 
1.0 8.1456 

(0.1483) 

CIR VR - - 
(0.0000) 

1.5 12.0959 
 (0.097) 

CEV - 
(0.1783) (0.3202) (0.0002) (0.1579) 

Karasinski (0.7576) (0.8925) (0.9287) 
0.0 10.5524 

(0.0610) 

 
0.1919 

 

-0.0224 0.17900 

0.1921 

 

-0.0225 0.0287 

0.0043 

 
0.0083 

 

0.0044 

Brennan- 0.1513 -0.0166 0.0042 

 
0.01148 

 
0.0094 0.0005 

 

1.5135 7.9686 

Black- 0.013216 -0.0030 10.5524 
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Table 8 
GMM Estimate of the Unrestricted and Nine Restricted Models of Short-Term Interest 

Rate Dynamics 
Coefficients, Their Significance Levels, and Overidentifing Test  

for the Period (1981 Through 2002) 
 

Model α 
(p-value) 

β 
(p-value) 

σ 2 
(p-value) 

γ 
(p-value) 

OverIdentifying 
Test 

(p-value) 
Unrestricted 0.0023 

(0.7421) 
 

0.0106 
(0.0610) 

0.0087 
(0.0536) 

0.6002 
 (0.0014) 

19.0725 
(0.0007) 

Merton 0.0131 
 (0.0167) 

 

- 0.0091 
 (0.0002) 

- 33.7344 
(0.0000) 

Vsicek 0.0095 
 (0.1453) 

 

0.0062 
 (0.2380) 

0.01235 
(0.0000) 

- 40.2910 
(0.0000) 

CIR SR 0.0044 
(0.4735) 

 

0.0093 
(0.0788) 

0.0116 
(0.0000) 

0.5 22.1136 
(0.0004) 

Dothan - - 0.0026 
(0.0000) 

 

1.0 30.2123 
(0.0000) 

GBM - 0.0108 
(0.0086) 

0.0027 
 (0.0000) 

 

1.0 23.3978 
(0.0006) 

Brennan-
Schwrtz 

-0.0014 
 (0.8222) 

0.0121 
 (0.0288) 

0.0026 
 (0.0000) 

 

1.0 20.2354 
(0.0011) 

CIR VR - - 0.0057 
(0.0000) 

 

1.5 29.3079 
 (0.0001) 

CEV - 0.01147 
(0.0062) 

0.0086 
(0.0322) 

 

0.61643 
(0.0002) 

21.6277 
(0.0006) 

Black-
Karasinski 

0.0045 
(0.5773) 

-0.00026 
(0.9686) 

0.0065 
(0.9287) 

0.0 18.0489 
(0.0028) 
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during this subperiod. Comparing the results gleaned from Table 7 with the results from 

Tables 6 and 8, we conclude that the unrestricted model cannot outperform the other 

mean reverting models during the first and last subperiods because the first and last 

subperiods display low volatility (i.e., no volatility inducement). Also The random walk 

process cannot capture the short-term interest rate during the first and the last subperiods 

because of two reasons. First, the process is not a random walk but nonlinear trend 

stationary. Second, there is no stationarity inducement during these two subperiods. 

 

Finally, the short-term riskless rate displays a regime shifting behavior and the finding 

that high elastic volatility models outperform others is extremely sensitive to the sample 

period and largely due to the second subperiod. 

VI. A Simple Model of Short-Term Interest Rate with Dynamic Trend  

In this model we assume that the level of short-term interest rate is nonlinear trend 

stationary. As a result, it is mean reverting to its long-term conditional mean (the 

dynamic trend) denoted by (mt).  Following Hodrick and Prescot (1981, 1997), let the 

short-term interest rate composed of the stationary component (c) and the dynamic trend 

(mt)  

                                              Ttmcr ttt ,.......1=+=                                    (21) 

 The trend component mt is determined by solving the loss function: 

                                                   [ ] [ ]∑∑
==

∇+
T

t
t

T

t
mtc

2

22

1

2)( λ                                                 (22) 

given (21), where, ∇  is the second order lag operator tm2

                          ( ) [ ] [ ])1()()()1(1 22 −−−−+=−= tmtmtmtmmLm tt∇                        (23) 
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where L is the lag operator, such that , and itt
i mmL −= ∇  is the regular difference.  

The first term in (22) penalizes the poorness of fit, while the second term 

penalizes the variability in the trend. The, HP-parameter λ is a positive parameter that 

balances the trade off between the two decisive factors. In this framework, the value of 

the parameterλ  is determined by assuming the probability distribution where  

                                                    ( )2,0~)1()( cINtctc σ−−                                           (24a) 

                                                     ( )2,0~)()1( mINtctm σ−+                                         (24b) 

and solving the loss function in (22) when ( )22 / mc σσλ = . 

 

A useful insight of the filter can be derived from its representation of time domain by 

considering the case of a finite sample in which the trend component can be presented as, 

                                                                                                     (25) ( ) t

T

i
iitt rLMrwm ∑

=

==
1

 that is mt is a two side weighted moving average of the short-term interest rate. The 

stationary component is, 

                                                  c                                           (26a) ( ) tt

T

i
it rLCrw =







−= ∑

=1
1

To set the ball rolling, let the stationary component follows the following AR(1) 

specification 

                                                      ( ) 11 ++ +−= tttt vmrc γ                                              (26b) 

Subtracting  from both sides of 21 after taking one period ahead and plugging (26b) 

specification we get 

tr
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                                             ( ) 111 +++ +−+−=− ttttttt vrmmrrr γ                                   (27) 

where   is now an inverted ARMA process. 1+tv

 

We follow the CIR SR model to ensure a positive interest rate. Thus, our model is similar 

to the CIR SR model except in that the level of interest rates is mean reverting about its 

growth component. For simplicity, consider the CIR SR with the following drift function 

                                                                     (28)  ( ) dtrwrwrmr
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i
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i
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To estimate the model, we replace the moments condition in (17) by the following vector 
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1 ,

where vt  is a noise term that takes the following econometric specification 

                                             ][ 111 +++ −+−−= tttttt mmrrrv γβ                                      (30)                         

We examine three different specifications for the model by setting a number of 

restrictions on the parameter γ. Particularly, we examine, the unrestricted CIR SR, CIR 

SR, and Vasicek models. We invoke the GMM in (29) and compare the performance of 

our model to others. 

 

Table 9 reports the GMM estimation of the nonlinear trend stationary model. As shown, 

the value of the parameter γ sharply declines from 1.184 to 0.889 when the unrestricted 

model is modified to nonlinear trend stationary. Also the goodness of fit statistic shows  
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Table 9. 
GMM Estimate of Modefied CIR SR Model of Short-Term Interest Rate  Dynamics 

Coefficients, Their Significance Levels, and Overidentifing Test  
for the Period (1934 Through 2002) 

 
Model β 

(p-value) 
Θ 

(p-value) 
σ 2 

(p-value) 

γ 
(p-value) 

Overidentifying Test 
(p-value) 

Unrestricted -0.0790 
(0.0001) 

0.9212 
(0.0000) 

0.0027 
(0.6360) 

0.8892 
(0.0268) 

5.8527 
(0.1190) 

Vsicek -0.4883 
(0.0002) 

0.5092 
(0.00008) 

0.0189 
(0.0012) 

0.0386 
(0.0000) 

27.1339 
(0.0000) 

 
CIR SR -0.083382 

(0.0000) 
0.91583 
(0.0000) 

0.000139 
(0.0000) 

0.5 
(0.0000) 

11.3021 
(0.1259) 
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extreme improvement where (X2) statistic declines from 13.203 to 5.852.   Also, the 

nonlinear trend stationary CIR SR shows extreme improvement and the p-value of the 

(X2) goodness-of fit statistic sharply increases from 0.0063 to 0.127, implying that the 

model cannot be rejected at even 88% confidence interval. Across the three suggested 

models, the value of the parameter β is approximately equal (θ-1) which is negative and 

significantly different from zero implying mean reversion about the trend. 

 
VII. Conclusion 
 
In this paper we employ a wide range of unit root tests to evaluate the stationary 

hypothesis of the short-term riskless rate.  Consistent with Bandi (2002) and Perron 

(1989), the random walk hypothesis is strongly accepted when it is tested against the 

stationary and linear trend stationary hypotheses. However, when the random walk 

hypothesis is tested against the alternative of non-linear trend stationary, the unit root 

hypothesis is no longer accepted (the result is robust to structural break and size 

distortions). Consistent with Beirens (1997) and Philips (1998), we conclude that the 

riskless rate is nonlinear trend stationary.  

 

Based on the finding of nonlinear trend stationarity in the level of the short-term interest 

rate, we locate the stationary component of the process using the HP filter and examine 

the performance of 10 models of short-term riskless rate. The analysis shows that all 

mean reverting models (even those models which assume homoscedastic interest rate 

volatility) show extreme improvement in capturing the cyclical component of the interest 

rate. In contrast, we document a significant performance decline in all models which 

assume the level effect, except for the CIR SR model which shows significant 
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improvement. Moreover, the long-term constant or deterministic mean converges to zero 

in all models that assume mean reversion; this implies invalidity of the linearity 

assumptions about this parameter.  Based on this finding, we modify the CIR SR model 

by replacing the constant drift with the stochastic trend (the long-term dynamic mean of 

the interest rate). The results imply a substantial improvement in the CIR SR model 

toward a nonlinear trend stationary process.    
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