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ABSTRACT 
 

 When developing new techniques to analyze neuro-chemical 

microenvironments, it is important to realize the incredible variability in the cellular 

content and the response to stimulation between cells and within a single cell.  

Conventional analysis techniques yield an average result to describe the content and 

function of cells.  This approach often misses important information since the onset of 

pathological conditions is always initiated in a small number of cells. New minimally 

invasive single cell analysis techniques are required for single cell studies in order to 

gain new insights and understanding of cells’ functions. The objective of my Ph.D. 

study was to fabricate, characterize, and apply submicrometric fluorescence sensors 

for the analysis of neuron cells. This dissertation will report the fabrication of 

miniaturized fluorescence sensors for Ca2+, pH and Zn2+ analysis.  In the first 

approach, liposomes (phospholipid vesicles) were used as miniaturized containers for 

fluorescent sensing reagents. Liposome-based fluorescence sensing technology offers 

several advantages over commonly used fluorescence sensing techniques including 

high spatial resolution, protection of the sensing dye from quenchers and high 

biocompatibility. However, liposome based sensors were found to be unstable in the 

cellular environment.  The second approach was to synthesize submicrometric 

particle-based fluorescence sensors named lipobeads to replace the fluorescent 

liposomes in cellular studies. Lipobeads are polystyrene particles that are coated with 



 

 x

a phospholipid membrane. One unique advantage of fluorescent sensing lipobeads is 

the ability to immobilize hydrophobic indicator molecules in the phospholipid 

membrane.  This enables the use of these indicators in aqueous media since the 

lipobeads are fully water miscible.  The lipobeads also proved to be highly 

biocompatible in cellular studies.  This is attributed to their phospholipid bilayer 

membrane, which is similar in structure to cell membranes. The dissertation will 

describe the analytical properties of fluorescence sensing lipobeads and their 

application in studying zinc ion release and pH changes near neuron cells under 

physiological conditions, conditions of neuronal injury and stress and acidic cortical 

spreading depression during stroke like conditions. 
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                CHAPTER 1: BACKGROUND OF SINGLE CELL ANALYSIS 

  

When developing new techniques to perform intracellular analysis at the single 

cell level, it is important to realize the incredible variability not only in chemistry from 

cell to cell but also in physiological response time and compartments within single cells. 

Analyses of extracellular fluid as well as single whole cells must be considered primary 

goals for eventual understanding of single cell function. Recent advances in 

biotechnology enabled the development of biochemical sensors with single cell 

measurement capabilities.  Biosensors are applied in many areas of biological monitoring 

including studying the functions of the brain and clinical monitoring of brain health. 

Biosensors are attractive because they use the specificity and high turnover rates of 

enzymes to give excellent selectivity for important bioactive species in a simple 

continuously recording device. Biosensor systems used in such demanding environments 

must be sensitive, stable, reproducible, and give a quick response [1]. Chemical sensors, 

which are defined as a combination of a sensing element and a transducer, share the same 

requirements as biosensors. Moreover, biosensors or chemical sensors must be real- time, 

noninvasive tools for the analysis of chemical processes in   living cells and their sub-

compartments [2].  

Biological studies at the single cell level have attracted the attention of 

researchers from various disciplines for decades. However, the analysis of individual 

cells provides an extreme analytical challenge due to the complexity of the cellular 
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environment and its dynamic nature. Recent advances in biotechnology enabled the 

development of biochemical sensors with single neuron cell measurement capabilities.   

Several useful techniques exist for single cell analysis. The patch-clamp technique has an 

impressive sensitivity for characterizing individual ion channels in single cells [3]. 

Microelectrodes using amperometry and voltammetry modes were successfully applied to 

provide significant new insights into mechanisms of exocytosis and stimulus–secretion 

coupling in neurons [4-7].  The pioneering work of Adams [8-9] and Wightman [10] has 

demonstrated that important issues in neurophysiology and neuropharmacology could be 

addressed using microelectrodes based sensors. Neurotransmitter release and uptake were 

investigated in single cells, brain slices, and the intact brain. Wightman et al [11] showed 

that catecholamine is secreted from neurons in the form of sharp spikes, which is 

evidence of quantal release occurring from non-neurite-bearing endocrine cells.  Their 

work provided the first temporally-resolved measurements of chemical secretion 

expected for quantal release and also proved the advantages of microelectrodes in 

possessing the sensitivity and temporal resolution to detect single cellular activities. 

Capillary electrophoresis separation in conjunction with electrochemical detection has 

also been applied to single cell analysis [12-16]. Swanek et al. developed a new method 

for the direct identification of dopamine from two separate vesicle compartments of a 

fully developed neuron in Planorbis corneus by capillary electrophoresis with scanning 

electrochemical detection. This method allows for both qualitative and quantitative 

identification in cellular analysis and demonstrates the utility of scanning electrochemical 

detection for both [17]. However, many neuromodulators, neurotransmitters, and 

neuropeptides are not intrinsically electroactive and the response depends on the 
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geometry of the cell/electrode pair. As in the case of patch clamp recording techniques, 

the stimulation of the secretion is not controllable. Most of the cells could not be 

stimulated by electrical depolarization [18-19]. More importantly, the information 

obtained with microelectrodes from a cell sample is limited. It is not feasible to place a 

large number of microelectrodes with sensitivity and selectivity toward multiple analytes 

and measure cellular events simultaneously in a large number of cells.  Furthermore, the 

analytical properties of microeletrodes are limited by poor stability and interferences, 

their fabrication is cumbersome, and if and how they affect signaling events in neuron 

cells remain unknown. Therefore, alternative techniques have to be applied for single 

neuron analysis. Microdialysis combined with discrete sampling, separation by capillary 

electrophoresis, and subsequent determination can provide a comprehensive picture of 

metabolic processes occurring in the sampling region. Unfortunately, microdialysis has a 

relatively poor temporal and spatial resolution [20]. Besides capillary electrophoresis, 

mass spectrometry, and electrochemical techniques, fluorescence techniques for single 

cell studies are considered as an alternative.  

 

1.1. Fluorescence and Fluorescence Sensing 

Fluorescence is a luminescence phenomenon that occurs in poly-aromatic 

hydrocarbons or heterocycles molecules called fluorescent molecules. It is the process in 

which absorption of light of a given wavelength by a fluorescent molecule is followed by 

the emission of light at longer wavelengths. Fluorescence, chemiluminescence and 

phosphorescence are examples of luminescence, which are defined based on the nature of 

the excited state. Fluorescence occurs when the molecule returns to the electronic ground 
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state, from the excited singlet state, by the emission of a photon. Phosphorescence is the 

emission of light from the spin forbidden transition of the electron from the triple excited 

state to the ground state. Chemiluminescence occurs when a chemical reaction produces 

an electronically excited species which emits a photon in order to reach the ground state. 

 Below are several principles, which are important to understand the phenomenon of 

fluorescence and fluorescence sensing techniques. 

1.1.1. Jablonski diagram 

Once a molecule has been absorbed in the form of electromagnetic, there are a 

number of routes by which it can return to the ground state (the statistically most 

common energy state for room temperature chemical species). Jablonski diagram 

(Figure 1.1) illustrates the processes involved in the creation of an excited electronic 

state by optical absorption and subsequent emission. 

 

 

 

 

 

 

 

 

http://www.deltadot.com/technologies/background/flourescence/ 
 
Figure 1.1. A Jablonski diagram describing radiative and non-radiative transitions following 
excitation. A: Absorbance; F: Fluorescence; P: Phosphorescence  
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S0, S1, S2, and Sn   represent the singlet grounds of 1st, 2nd, and nth electronic states. 

A number of vibrational energy levels exist in each of these electronic states. There 

are few processes occurring following the absorption of light.  A fluorophore is 

excited to higher vibrational levels of S1 or S2. The molecule is then relaxed to the 

lowest vibrational level of S1 through a process called internal conversion, which 

occurs very quickly (<1 x 10-12 seconds). Returning to the ground state occurs to a 

higher excited vibrational ground state level, which then quickly reaches thermal 

equilibrium. Due to energy dissipation during the excited-state lifetime, the energy of 

the emission photon h EM is lower, and therefore of longer wavelength, than the 

excitation photon h EX. The difference in energy or wavelength represented by (h EX 

– h EM) is called the Stokes shift. The Stokes shift is fundamental to the sensitivity of 

fluorescence techniques because it allows emission photons to be detected against a 

low background, isolated from excitation photons.  If the photon emission occurs 

between states of the same spin state (e.g. S1 ---> S0), this is termed fluorescence. If 

the spin state of the initial and final energy levels is different (e.g. T1 --> S0), the 

emission is called phosphorescence. The fluorescence lifetimes are very short; about 

1 x 10-5 to 10-8 seconds. The phosphorescence lifetimes are longer; about 1 x 10-4 

seconds to minutes or even hours.  

   There are three significant nonradiative deactivation processes: internal 

conversion (IC), intersystem crossing (ISC) and vibrational relaxation. Internal 

conversion is the radiationless transition between energy states of the same spin state 

(compare with fluorescence-a radiative process). Intersystem crossing is a 

radiationless transition between different spin states (compare to phosphorescence). 
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Vibrational relaxation, the most common of the three-for most molecules, occurs very 

quickly (<1 x 10-12 seconds). Vibrational relaxation is enhanced by physical contact 

of an excited molecule with other particles with which energy, in the form of 

vibrations and rotations, can be transferred through collisions.  

1.1.2. Fluorescence quantum yield and lifetime 

 The fluorescence quantum yield (Q) is the ratio of the number of emitted photons 

to the number of absorbed photons. Substances with a large quantum yield display 

bright emission.  Fluorescence lifetime (tF) is the average length of time a molecule 

remains in its excited state. The fluorescence lifetime determines the time available 

for the fluorophore to interact with or diffuse in its environment.  

1.1.3. Fluorescence spectra 

   The fluorescence process is cyclical. The same fluorophore can be repeatedly 

excited and detected. A single fluorophore can generate thousands of detectable 

photons and this is fundamental to the high sensitivity of fluorescence detection 

techniques. The distribution of wavelength-dependent intensity that causes 

fluorescence is known as the fluorescence excitation spectrum. The fluorescence 

emission spectrum is the distribution of wavelength-dependent intensity of emitted 

energy. Excitation and emission spectra depend on the chemical structure of the 

fluorophore and the solvent in which it is dissolved. 
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   Figure 1.2. Excitation and emission spectra of a typical fluorophores 

 

1.1.4. Fluorescence quenching 

Fluorescence quenching can be defined as a bimolecular process that reduces the 

fluorescence quantum yield or decreases the intensity of the fluorescence emission 

without changing the fluorescence emission spectrum. It can result from collisional or 

dynamic quenching, self-quenching, static quenching, quenching by energy transfer, 

excited state reactions, and molecular arrangement. Collisional quenching occurs 

when the excited state fluorophore is deactivated upon contact with some other 

molecule in solution, which is called the quencher.  When quenching occurs by a 

collisional mechanism, the quenching is an additional process that deactivates the 

excited state besides radiative emission. Because dynamic quenching depopulates the 

excited state without allowing fluorescence emission, the decrease in fluorescence 

intensity equates to the decrease in fluorescence lifetime. The dependence of the 
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emission intensity, F on quencher concentration [Q] is given by the Stern-Volmer 

equation: 

 
F0/F =ττττ0 / ττττ = 1 + kqττττ0[Q]                       [1.1]                               

Here, F0 and F are the intensities observed in the absence and presence of 

quencher. τ  and τ0 are the lifetimes in the presence and absence of quencher, 

respectively. kq is the bimolecular rate constant for the dynamic reaction of the 

quencher with the fluorophore. The product of kqτ0 is referred to as the Stern-Volmer 

constant or KSV.   

Fluorescence can be quenched by other mechanisms. Self-quenching or 

'concentration quenching' happens when a molecule quenches its own fluorescence at 

high concentration. The mechanism can be through radiationless transfer of energy 

between identical molecules (particularly where the Stokes Shift is small), through 

formation of aggregates (common for large molecules such a porphyrins), or via a 

Stern-Volmer mechanism in solution. Common fluorescent dyes such as fluorescein 

and its derivatives show marked concentration quenching, both in solution and when 

used to label macromolecules. Static quenching occurs when an interaction between 

the fluorophore and quencher is involved. Static quenching can result from the 

formation of a ground state complex that is non-fluorescent or weakly fluorescent in 

the presence of quenchers. This process occurs in the ground state and does not rely 

on diffusion or molecular collisions. Additionally, the fluorophore may react with 

reactive species such as singlet oxygen and destroy its chromophoric struture. Or the 

fluorophore is irreversibly destroyed in the excited state under high intensity 
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illumination conditions.  This type of quenching is called photobleaching. 

Photobleaching originates from the triplet-excited state, which is created from the 

singlet state S1 via intersystem crossing. Another quenching process is based on 

resonance energy transfer (RET). This is a radiationless process where excited species 

transfer excitation energy to a neighbor having an absorption that overlaps the 

fluorophore's emission spectrum. RET is only efficient for molecules in very close 

proximity (typically within <10nm). It is only seen in concentrated solutions in 

absence of specific interactions. In addition, quenching can occur by non-molecular 

mechanisms, such as attenuation of the incident light by the fluorophore itself or other 

absorbing species. These processes do not contain molecular information, and are not 

of great interest. 

1.1.5. Molecular information from fluorescence 

The spectra of extrinsic probes are used to determine a probe’s location on a 

macromolecule because the emission spectra are sensitive to the fluorophore’s 

environment. A variety of small molecules or ions, such as iodide (I-), oxygen, and 

acrylamide, can act as quenchers of fluorescence. They decrease the intensity of the 

emission. The accessibility of fluorophores to these quenchers can be used to 

determine the location of probes on macromolecules or the porosity of proteins and 

membranes to quenchers. In addition, fluorophores absorb light along a particular 

direction with respect to the molecular axes.  The extent to which a fluorophore 

rotates during the excited-state lifetime determines its polarization or anisotropy. 

Fluorescence polarization can be used to measure the apparent volume or molecular 



 

 

10

weight of proteins. On the other hand, RET can be used also to measure the distance 

between sites on macromolecules when the donor and acceptor are within the Forster 

distance typically in the range of 15-60 Α°. The extent of donor quenching can be 

used to calculate the donor- to-acceptor distance in association [21]. 

1.2. Fluorescence Probes 

Fluorescence probes can be divided into two main classes: intrinsic and extrinsic. 

Intrinsic fluorophores are those which occur naturally, including the aromatic amino 

acids, flavins, and derivatives of pyridoxal and chlorophyll. When no fluorescence or no 

changes in the spectral properties of the samples exists, extrinsic fluorophores are added 

to the sample to provide fluorescence. Examples of extrinsic fluorophores are Alexa 

Fluor® 488 carboxylic acid, and fluorescein-5-isothiocyanate (FITC). 

 

a) Intrinsic or natural fluorophores 

  The quantum yield of a fluorophore is a function of the molecular structure. The 

common groups found in biological macromolecules (and their assemblies) have 

significant fluorescence (high enough quantum yield) including tryptophan, tyrosine, 

nicotinamide adenine dinucleotide reduced form (NADH), and flavin adenine 

dinucleotide (FAD). Intrinsic protein fluorescence originates with the aromatic amino 

acids such as trytophan, tyrosine, and phenylalanine. The indole groups of trytophan 

residues are the dominant source of UV absorbance and emission in proteins. Enzyme 

cofactors like NADH frequently are fluorescent. NADH  (reduced form) is highly 

fluorescent with absorption and emission maxima at 340 and 460 nm. The oxidized 

form of NADH, NAD+, is non-fluorescent. The lifetime of NADH in aqueous 
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solution is near 0.4 ns. Depending on the protein, NADH fluorescence can increase or 

decrease upon protein binding. FAD absorbs light in the visible range (at ~ 450 nm) 

and emits around 525 nm. Typical lifetimes for flavin mononucleotide and FDA are 

4.7 and 2.3 ns. In contrast to NADH, which is highly fluorescent when bound to 

protein, flavo-proteins are generally non-fluorescent.  

 

 b) Extrinsic fluorophores:  

  It is necessary to add an external molecule, which is fluorescent (an 

extrinsic fluorescent probe) to the system of interest; or to obtain fluorescence from 

samples that have little or no intrinsic fluorescence (i.e. lipids). There are two 

common types of extrinsic fluorescent probes: intensity- based sensing probes, and 

wavelength-ratiometric probes. 

• Intensity- based sensing probes: Fluorescent probes display changes in 

intensity and do not display spectral shifts. Changes in the fluorescence 

intensity are typically due to different quantum yields of the free and 

complexed forms, rather than differences in the absorption spectrum. The 

analyte concentration [A] can be obtained from Equation 1.2. 

[A] = KD {(F-Fmin) / (Fmax - F)}                                [1.2] 

Fmin is the fluorescence intensity when the indicator is in the free form. Fmax is 

the fluorescence intensity when the indicator is totally complexed. F is the 

intensity when the indicator is partially complexed by the analyte. KD is the 

dissociation constant. This is the critical factor in using probes, which bind 

specific analytes. The useful range of analyte concentrations is typically 
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restricted to 0.1 KD < [A ]< 10KD. Concentrations lower than 0.1 KD or higher 

than 10KD will produce little change in the observed signal.  

• Wavelength- ratiometric probes: Probes display spectral shifts in their 

absorption or emission spectra upon binding analytes. In these cases, the 

analyte concentrations can be determined from the ratio of intensities, 

independent of the overall probe concentration.  The use of wavelength-

ratiometric probes makes the measurements independent of the probe 

concentration, unlike intensity-based measurements. 

 

This dissertation focuses on pH, calcium ions, and zinc ions, which are very 

important in neurotransmission. The significance of measuring these species at the single 

cell level will be discussed in later chapters. These species are naturally non fluorescent, 

so extrinsic intensity-based fluorophores must be used for their analysis. 

 

1.3. Fluorescence detection techniques for single cell studies 

  The advantages of using fluorescence detection, rather than absorbance methods, 

as an analytical tool in medical testing, biotechnology, and drug discovery include higher 

sensitivity, and selectivity [22].  Most commonly used fluorescence techniques include 

flow cytometry [23] and fluorescence microscope [24]. Flow cytometry is a powerful 

technique for single cell analysis and high throughput screening applications. Flow 

cytometry allows rapid screening of individual cells and is used to individually analyze a 

large number of cells at the single cell level. The rate of analysis in flow cytometry can 

reach 10,000 cells/second.  Each cell is observed once as it flows through the detection 
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region. This technique is not able to follow the kinetics of the cellular response because 

the analysis is performed in an irreversible manner.  On the other hand, fluorescence 

microscopy is used for real time continuous observation of cells over time. A general 

problem in both flow cytometry and fluorescence microscopy is the lack of quantitative 

accuracy due to incomplete reaction between the tagging molecules and their target 

analytes, heterogeneous distribution of fluorophores in cells, and interferences from other 

cellular species.  

  Combined with a variety of optochemical probes and sensors, fluorescence 

microscopy has become a primary choice for single cell analysis despite its accuracy 

limitations. The development of highly sensitive and relatively inexpensive charge 

coupled device (CCD) cameras has led to a dramatic improvement of the accuracy and 

reliability of fluorescence microscopy measurements [25-29].  Furthermore, fluorescence 

sensors were also proposed as an alternative to microelectrodes in cellular analysis. 

Potential advantages of fluorescence sensors compared to microelectrodes include non-

invasiveness, insensitivity to electroactive interferences, increased simplicity and 

sensitivity. 

 

1.4.Fluorescence Sensors 

 A fluorescence bio/chemical sensor designed for single cell measurements must 

be highly compatible with the cellular environment, show low cytotoxicity, and high 

chemical stability as well as photostability.  To prevent cytotoxicity upon insertion of the 

sensor into the cell, the sensing reagent must be isolated from the cellular environment by 

a biocompatible matrix barrier that is selective to the intracellular analyte.  In principle, it 
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is possible to fabricate a sensor that contains several fluorophors and bioactive 

macromolecules such as enzymes, protein receptors and antibodies for multiple analyte 

sensing.  It is also possible to incorporate ligands on the sensor that are not soluble in 

aqueous solution and can be used for site -specific extracellular measurements.         

 Cellular labeling, which is a classical fluorescence sensing technique, uses 

fluorescent dyes sensitive to a given analyte of interest. It provides a strong, average, 

fluorescent signal that can be calibrated to a specific concentration level of analyte [30-

31].  The monitoring changes of the fluorescence properties provide information on the 

cellular responses to external stimuli. The problems with this technique are the toxicity to 

the cells by excessive dye loading, protein binding, and lack of site- specific information. 

A new experimental approach to address problems associated with whole cell 

fluorescence labeling has been the development and utilization of submicrometer fiber 

optic chemical sensors, where a fluorescent dye is immobilized at the distal end of the 

fiber in a polymerization matrix, to measure the level of intracellular analytes and cellular 

dynamics [32-34].  The miniaturization of the sensors results in at least a million-fold 

reduction of the sample volume and in milliseconds or less response times.  Such sensors 

offer a great potential as they are applicable for chemical analysis in limited volume 

samples like single biological cells and for scanning of chemical reactions on surfaces or 

in small domains [35].  However, cellular analysis with a fiber optic sensor is limited to 

one cell at a time. In addition, the insertion of the tapered fiber optic sensor into the 

observed cell may still cause a physical damage to the cell membrane. Miniaturized 

particle-base fluorescence sensors were proposed as an alternative to microelectrodes and 

fiber optic sensors in cellular analysis. Potential advantages of particle based fluorescence 
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sensors compared to microelectrodes include non-invasiveness, insensitivity to 

electroactive interferences, increased simplicity and sensitivity. In these polymer particle 

based sensors, the sensing dyes are immobilized to the particle surface through chemical 

bonding or physical absorption [36-37]. The sensing dyes can be also embedded within a 

hydrogel particle during the polymerization [38]. The sensors can be directed into a 

specific region of interest in a cell to provide site-specific information. They can obtain 

information from a large number of cells simultaneously. The nanometric size of the 

sensors increases the resolution of site-specific analysis. In 1999, Kopelman et al [39] 

developed a new type of fluorescence nanosensor called PEBBLEs  (Probes Encapsulated 

by Biologically Localized Embedding). In PEBBLEs, probes are embedded within a 

hydrogel particle during polymerization. The size of the sensor range is from 20 nm to 

200 nm. The PEBBLEs show high selectivity, reversibility, and fast response time. They 

have been applied for intracellular pH, calcium ion, nitric oxide, and glucose 

measurements [40-41]. Nevertheless, these sensors have some structural problems that 

limit their cellular applications. The direct contact between the polymer and cells may 

have negative impact on cell mortality. The particles often aggregate and their analytical 

capability is limited by rapid photobleaching of the sensing indicators embedded in the 

polymer particles. The use of unilamillar phospholipid vesicles, liposomes, as 

fluorescence nanosensors provides a novel way to overcome the biocompatibility 

problem of particle based sensors. In this dissertation, the development of fluorescence 

liposome based sensors is described and discussed in later chapters. The latest developed 

sensors that are described in this dissertation are phospholipid coated sensing beads, 
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called lipobeads. They combine the strength of liposomes, and polymer particle based 

sensors.             

              

  1.4.1. Liposome-based sensors 

Phospholipid vesicles, e.g. liposomes, have been used as drug-delivery 

vesicles   in the last three decades [42-46]. This dissertation introduces for the first 

time the use of liposomes as nanosensors. The main advantages of liposomes based 

sensors include their biocompatibility, ability to effectively encapsulate hydrophilic 

or hydrophobic indicators and the sensitivity of their fluid-like membrane to 

temperature and pH. 

  a) Basics of liposomes 

Liposomes are spherical phospholipid vesicles that form spontaneously 

when phospholipids are introduced to aqueous media. Upon dispersion in aqueous 

solution, entropic and hydrophobic effects cause phospholipids to align 

themselves closely in a bilayer membrane and nearly spherical emulsion, known 

as liposomes, which encapsulating a certain volume of the surrounding media. 

The bilayer membrane could also contain cholesterol and fatty acids to increase 

its fluidity and flexibility. The size, size distribution, and morphology of 

liposomes greatly depend on the method used for liposome preparation. 

The morphology of liposomes is classified according to the 

compartmentalization of aqueous regions between bilayer shells.  In unilamellar 

liposomes, the aqueous compartment is segregated from the external solution by 
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only one membranal bilayer.  Unilamellar liposomes are further classified 

according to their size.  Small unilamellar liposomes (SUV) average 100 nm in 

diameter while large unilamellar liposomes (LUV) are greater than 100 nm with a 

maximal size of up to 10 µm.  In multilamellar liposomes, there is more than one 

bilayer surrounding each aqueous compartment.  Multilamellar liposomes 

typically form large complex honeycomb structures that are difficult to reproduce.     

 

 

 

 

 

 

 

When introducing sensing indicators into the liposome formation process, 

depending on the hydrophobicity of the dyes and methods of preparation, they can 

be either entrapped within liposomes aqueous compartment or within the 

membrane. The injection method [47] is used to encapsulate hydrophilic dyes in 

the internal compartment of liposomes (figure 1.4a). Hydrophobic compounds 

and dye labeled phospholipid derivatives are incorporated into the bilayer 

membrane of liposomes by drying the phospholipids from an organic solvent that 

http://wps.prenhall.com/wps/media/objects/376/385232/MediaPortfolio/chapter_24/text_images/FG24_
06.JPG 

 
Figure 1.3. Lipid vesicles (Liposomes) 
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already contains the hydrophobic compounds (figure 1.4b). Another preparation 

technique is based on dehydration and then rehydration of phospholipids in the 

presence of the encapsulated material. This method is primarily used to 

encapsulate water-soluble macromolecules or bio-conjugates, i.e. fluorescent 

conjugates of dextrans and proteins (figure 1.4c) [48-49].  Liposomes containing 

phospholipids labeled with fluorophores are prepared using the injection 

technique (figure 1.4d).  The fluorophores in these lipsomes are attached 

covalently to the phospholipid headgroup or to the hydrophobic alkyl tail of the 

phospholipids. 

 

 

 

  

 

 

 

 

 

b) Characterization of liposomes 

 The main characterization techniques are based on light scattering, 

electronic and atomic force microscopy, and capillary electrophoresis. Static and 

dynamic light scattering measurements are used to characterize the size, size 

distribution, and shape of extruded vesicles under isotonic conditions [50]. 

Figure 1.4 - Tailoring liposomes (a) Dyes encapsulated in the internal 
compartment of the liposomes.(b) Dyes encapsulated in phospholipid membrane of 
the liposomes (c) Dextran-conjugated dyes encapsulated in the internal 
compartment of the liposomes. (d) Dye-DHPE as a part of the phospholipid 
membrane of the liposomes. 

(a)                                  (b)                              (c)                                (d) 
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Transmission electron microscopy (TEM) and atomic force microscopy (AFM) 

are used to determine the morphology of liposomes. While light scattering 

techniques provide average values of the physical characteristics of liposome 

suspensions, TEM and AFM provide information on individual liposomes that 

may or may not represent the entire liposome population. AFM imaging 

measurements could be conducted on untreated samples in air or in solution, 

avoiding all processing such as fixation, dehydration embedded sectioning, and 

staining required in TEM [51].  Since liposomes appear to be stable under 

conditions of high electric fields like the ones applied in capillary electrophoresis 

(CE), it is possible to use CE to obtain qualitative and quantitative information 

about the size to charge ratio of liposomes [52-53]. The size to charge ratio of 

liposomes is directly related to their mobility in the capillary when a high 

potential difference is applied.  Since an equal distribution of charge on the 

liposomes is assumed, the electrophoretic distribution observed is primarily due to 

liposome size.  The peak shape of the electropherogram is indicative of liposome 

size distribution and uniformity. Under normal CE conditions, liposomes produce 

electropherograms with a smooth broad Gaussian distribution with few spiking 

events. 

 

 c) Liposomes as fluorescence nanosensors 

             The use of unilamillar phospholipid vesicles, called liposomes, was  

brought to the attention of the scientific world by A.D. Bangham and his students 

in 1965.  In liposome-based sensors, the sensing reagents are encapsulated in the 
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internal aqueous compartment of the liposomes and maintained their free solution 

properties [54]. The encapsulation of sensing reagents in liposomes increases the 

physical dimensions of the sensing elements, and lead to an increase in the 

chemical stability of the sensor.  Unlike in dextran conjugation, it is expected that 

the encapsulated fluorescent molecules would maintain their free solution 

properties, including high emission quantum yield and sensing capability.   The 

long-term stability of fluorescence-based sensing liposomes with respect to 

leakage of internalized compounds has been a concern because the permeability 

of the liposome bilayer membrane is strongly temperature dependent.  A 

transition temperature, Tc, can be identified for phospholipids used to make the 

liposomes [55].  The transition temperature is defined as the point below which 

assembled liposomes display a gel like phase, and the bilayer permeability is 

minimized, reducing the effects of leakage.  Close to the transition temperature, 

the liposome bilayer membrane will adopt a more permeable fluid like structure, 

and leakage rates of encapsulated materials may increase.  It is therefore 

important to select phospholipids with a Tc, which is clearly below or clearly 

above room temperature. The use of unilamellar phospholipid vesicles, liposomes, 

as fluorescent nanosensors for pH and calcium ion levels in aqueous solutions has 

been demonstrated [56-57]. The sensing reagents were encapsulated in the 

internal aqueous compartment of the liposomes and maintained their free solution 

properties.  This improves the response characteristics of the sensors since matrix 

effects common to covalent bonding or entrapment of sensing reagents in solid-

state supports are eliminated.    
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Liposomes have been used to target specific cells or tissues using ligand-

receptor strategies [58]. The same process that enables for site-specific sensing 

strategy becomes an obstacle when applying these fluorescence based liposome 

sensors to site-specific extracellular sensing approaches.  When incubated with 

cells in vitro, liposomes are expectedly seen to deliver the encapsulated 

fluorescent dyes into the cytoplasm in a diffuse and non- specific manner [59]. 

The result of this approach is an averaged analytical signal (with an associated 

decrease in resolution) for each cell, which is similar to that seen in cellular 

labeling technique. Clearly, for effective, site-specific cellular analysis, a 

fluorescent sensor needs to have a sensing geometry, which can maintain 

mechanical stability and can preclude damage to the cell upon uptake or 

attachment. 

 

      1.4.2. Lipobead based sensors 

While the sensing properties of liposome-based sensors were adequate for 

aqueous solution measurements, their application as cellular sensors was impaired by 

high leakage rate and poor chemical stability in the cellular environment. Although 

the liposome based sensors failed in cellular analysis, the advantages of applying the 

phospholipid membrane in sensor design are still remarkable and recognize. Hence, 

phospholipid coated particles, called lipobeads, are the latest developed sensors. 

Lipobeads combine the strength of liposomes, dye-labeled sensing beads and 

PEBBLEs.  
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a) Basics of lipobeads 

 Particle-based fluorescence nanosensors named lipobeads have 

hydrophobic indicator embedded in the lipid-like layer. This will not only 

improve the chemical and photostability of these nanosensors, but also to enable 

hydrophobic indicators to be used for sensing applications in aqueous samples. 

These lipobeads (shown in Figure 1.5) have a polystyrene core and phospholipid 

shell. The phospholipid membrane formed on the surface of the polystyrene core 

is biocompatible and provides protection for the sensing fluorophore from the 

surrounding environment. The new hybrid sensing particles with cell-like lipid 

bilayer surface similar to natural cells combine complementary advantages of 

liposomes and polymeric beads. Overall, in the lipobead model, the binding force 

is the affinity between the hydrophobic phospholipid tail and the hydrophobic 

surface of polystyrene beads in a hydrophilic environment. The hydrophobic 

sensing indicator is also bound onto the beads surface and trapped in between the 

bead surface and the phospholipid tail through the physical stability. The 

technique is highly versatile since it is possible to incorporate biomolecules such 

as antibodies, enzymes, and receptors into the membrane of the particles and use 

them as selective and sensitive biosensors. 
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 Figure 1.5. Lipobead model 

 

b)  Characterization of lipobeads 

The main characterization techniques used in my studies are transmission 

electron microscopy (TEM), fluorescence spectroscopy, and digital fluorescence 

imaging microscopy. TEM is used to determine the morphology of lipobeads. 

Fluorescence spectroscopy and digital fluorescence imaging microscope are used 

for studying analytical properties of lipobead - based sensors. 

 

c) Lipobead based sensors 

 These unique particles could be applied to measure the level of 

intracellular/extracellular ion analytes in a non-invasive manner with high 

reproducibility, selectivity and sensitivity. It is possible to incorporate 

biomolecules such as antibodies, enzymes and receptors into the membrane of the 

particles and use them as selective and sensitive biosensors. These  lipobeads 

combine the mechanical stability of polymer particles with the biocompatibility of 

liposomes.  Furthermore, hydrophobic indicators could be immobilized in the 

membrane of the lipobeads and used to measure the level of ion analytes in 
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aqueous and cellular samples. The phospholipid membrane formed on the surface 

of the polystyrene core is biocompatible and provides protection for the sensing 

fluorophore from the surrounding environment.  Lipobeads offer greater 

flexibility in fluorescent indicator selection compared to previously prepared 

particle based fluorescence sensors.  Particularly, water insoluble hydrophobic 

indicators could be employed successfully in sensing applications of lipobeads 

because of the amphiphylic nature of the phospholipid membrane.  Lipobeads 

with pH, zinc ion and glucose measurement capabilities were fabricated and 

applied for intracellular measurements in murine macrophages and for 

extracellular measurements in rat cortical neurons  [60-62].   

 

1.5. Neurons 

 Neurons were chosen to evaluate the development of fluorescence based 

liposome and lipobead sensors. The brain is a collection of about 100 billion 

interconnected neurons.  Neurons are cells specialized for the conduction and 

transmission of electrical signals in the nervous system. They communicate with each 

other thousands of times a second through an electrochemical process. Although other 

cells die and are replaced, many neurons are never replaced when they die.  
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     1.5.1. Morphology of neurons 

 

 

 

 

 

 

Figure 1.6. Neuron morphology 

       

A neuron (shown in figure 1.6) has a soma, which is body of the cell. The soma 

houses the nucleus, in which the neuron’s main genetic information can be found. 

Neurons have specialized projections called dendrites and axons. Dendrites bring 

information to the cell body and axons take information away from the cell body.   

The presynaptic terminal is where the nerve cell transmits a signal. 

 

      1.5.2.Synapse 

Functional communication between neurons occurs at specialized junctions 

called synapses. The most common types of synapses in the brain use chemicals  

(more specifically, neurotransmitters, which are the messengers that travel between 

one brain cell and another ) to communicate between neurons. These are called 

chemical synapses. The synapse is a small gap separating 2 neurons. The synapse 

consists of a presynaptic ending that contains neurotransmitters, mitochondria and 

other cell organelles, a postsynaptic ending that contains receptor sites for 
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(body)

Cell Processes
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(body)
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neurotransmitters, and the synaptic cleft which is a space between the presynaptic and 

postsynaptic endings. 

1.5.3. Nerve cell communication 

Neurons communicate through a process called synaptic neurotransmission.  

Neurons make use of one of two basic forms of synaptic transmission: electrical and 

chemical. Synaptic communication in the brain relies mainly on chemical mechanism. 

Chemical transmission is central to understanding brain function and behavior. There 

is no structural continuity between the presynaptic and postsynaptic cells. They are 

separated by synaptic clefts, which are usually 20-40 nm wide.  As a result, chemical 

synaptic transmission depends on the release of neurotransmitters from presynaptic 

neurons. 

 

1.6. pH regulation  

    pH regulation in the nervous system and other tissues is considered to be an 

important homeostatic process. In response to neuronal activity and cell activation by 

neurotransmitters, other messengers or receptor agonists, intra- and extracellular pH can 

rapidly and transiently change just like the activity of other ions.  Changes in pH affect 

many processes in the nervous systems including neuronal excitability, synaptic 

transmission, and intercellular coupling via gap junctions. 

 1.6.1.  Intracellular pH (pHi ) regulation 

  pHi is an important modulator of metabolic processes. Regulation of intracellular 

pH (pHi) can compromise the four processes: (1) cytosolic H+ buffering, (2) H+ 

sequestration into intracellular organelles, (3) release or metabolic production of H+, 
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and (4) transmembrane movement of acid/base equivalents [63]. pHi may play an 

important role in neurotransmission process. pHi may 1) influence the uptake of some 

neurotransmitters in synaptic vesicles [64], 2) regulate synaptic vesicle endocytosis 

[65], and 3) possibly influence some of the multiple protein-protein interactions 

involved in the process of synaptic vesicle exocytosis [66].   

 

1.6.2. Extracellular pH (pH0) transients 

Electrical stimulation induces extracellular pH changes accompany with 

alkaline-acid shifts in most nervous systems. Synaptic activation of glutamate and the 

recombinant type-A γ- aminobutyric acid (GABAA) receptor channels leads to a fast 

extracellular alkaline transient. The extracellular alkalinizations are likely to emerge 

several minutes after a brief electrically evoked depolarization. This alkalinization 

changes are associated with a net efflux of bicarbonate ions across GABAA receptor 

channels  [67-68].  The stimulus induced extracellular acidification may involve 

metabolic increases in the production of CO2 and/or lactate. The proton accumulating 

intercellularly may be extruded via the Na+/H+ co-transporter, or buffered by HCO3
- 

shifts across HCO3
- transporters. These ion movements cause extracellular 

acidification down to pH 6.8 [69]. Lactate could leak out of the neurons across large 

holes induced within the cell membrane during depolarization or through non-ionic 

diffusion [70]. 
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1.6.3.  Model of H+-dynamics during neuronal activity 

The nervous system is composed of neurons and glial cells, and the 

extracellular spaces. The extracellular spaces are a channel like network between the 

cells that establishes the medium for communication between the cells. Intra- and 

extracellular pH changes in the nervous system may occur as follows: 

Step1: Neuronal activity leads to the release of a neurotransmitter and K+ during 

action potential. 

Step2: The release of neurotransmitters leads to the opening of neurotransmitter-gated 

ion channels, allowing the flux of acid/base equivalents along their electrochemical 

gradient into and out both neurons and glial cells. 

Step3: In neurons, the increase in intracellular Ca2+, either due to Ca2+ influx via 

voltage-gated and transmitter gated ion channels, or due to Ca2+ release from 

intracellular stores, may lead to a secondary increase in intracellular protons by 

activating Ca2+/H+ - ATPase. Each of these processes and the uptake of 

neurotransmitters cause extracellular alkalinization and intracellular acidification of 

neurons [71]. 

  The enzyme carbonic anhydrase is a key enzyme in these processes and necessary 

for the fast buffering of the extracellular alkalinization by supporting acid/base 

equivalents from the CO2/HCO3
- buffer system. The acid accumulated in the neurons 

is transported out of the neurons via the Na+/H+ exchanger due to CO2 diffusion 

contributing to the transient acidification of the extracellular spaces [72].  
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1.7. Zinc and its significant functions in the brain 

Zinc is one of the most abundant transition elements in the body and essential for 

neuronal activities. The zinc concentration in the brain increases with growth after birth 

and is maintained constant in the adult brain. Approximately 90% of the total brain zinc 

is zinc metalloproteins. The rest is in the presynaptic vesicles and histochemically 

reactive [73]. Extracellular free zinc is absent in the extracellular fluid, with the estimated 

concentration being below the detection limits for most analytical methods (<1pM). The 

appropriate concentration of zinc ion in storage (releasable) pools is about 3-30 mM in 

presynaptic vesicles [74]. The distribution of zinc in the brain is non-uniform and its 

concentration is highest in the hippocampus, amyglada, and cortex [75]. It is very 

important for neurons to maintain cellular zinc content within a very narrow window.  

Low zinc levels inhibit cell growth and division and can lead to cell death. High zinc 

levels are toxic.  

 

1.7.1. Zinc containing neurons 

Zinc containing neurons are defined as neurons that sequester weakly bound 

(histochemically stainable) zinc in the vesicles of their presynaptic boutons [76]. It is 

critically important to note here that there is no histochemically reactive zinc 

anywhere but in the secretory vesicles of zinc containing boutons (or en route in their 

axons).  Any staining for zinc in the nucleus, or dendrites of a neuron in the brain 

indicates either cell injury or artifact [77]. In a brain, the only neurons that have 

vesicular zinc are glutamatergic. Not all glutamatergic neurons are zinc-containing 

neurons, but all zinc- containing neurons are glutamatergic [78]. As a general rule, the 
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large neuron, long axon systems of the brain are non-zinc containing. Specific 

examples include all of the first order sensory fibers of the cranial nerves, ascending 

sensory pathways, and essentially all of the long fiber pathways descending from the 

cerebral cortex to the brain stem or spinal cord [79].  

 

1.7.2. Zinc movement in the brain 

The life cycle of zinc containing synaptic vesicles include storage, release and 

reuptake.  There are several routes of entry and exit for zinc in neurons. These 

pathways include (1) presynaptic release along with glutamate when synaptic vesicles 

empty their contents into the synaptic cleft [80], (2) voltage-gated L-type Ca2+ 

channels and glutamate –gated channels that provide an entry route when cells are 

depolarized and that mediate extracellular zinc toxicity [81], and (3) a plasma 

membrane transporter potentially present in all neurons important for cellular zinc 

homeostasis [82]. The least understood of these pathways in term of mechanisms is 

the transporter pathway.  

a) Zinc transport in the brain and uptake into neurons 

Zinc transports into the brain via both the blood brain and blood 

cerebrospinal fluid barriers.  Zn2+ can enter neurons by multiple routes. First, Zn2+ 

can permeate through NMDA receptor-gated Ca2+channels. Secondly, Zn2+ can 

also entry through voltage gated Ca2+channels. The third route of entry may be via 

transporter-mediated exchange with intracellular Na+. A fourth route of neuronal 

Zn2+ entry is through the Ca2+ permeable channels gated by certain subtypes of α- 
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amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) or kainite 

receptors [83-84].  

b) Zinc release and reuptake from zinc containing neuron terminals  

Zn2+ is released from presynaptic terminals of neurons upon 

depolarization and calcium dependent [85].  It is presumed that zinc release is the 

result of synaptic vesicle fusion with the presynaptic membrane. The release of 

zinc from the presynaptic vesicles of zinc containing neurons probably occurs via 

the mechanism of exocytosis.  Zinc can be taken up back into neurons to replenish 

depleted synaptic vesicle stores [86]. Synaptic Zn2+ can be released and achieve 

100 µM concentrations in the extracellular space. It is also widely assumed that 

the synaptic zinc that is released from boutons actually enters the extracellular 

fluid as Zn2+ [87]. The release is completely blocked at room temperature (20-

260C) and vigorous in the range of normal rat body temperature (37-390C) [88]. 

Essentially there is nothing known about the kinetics of zinc release. Zn2+ is 

potentially neurotoxic to neurons. The movement of Zn2+ from pre- to 

postsynaptic neurons contributes to the selective nerve cell injury observed in 

conditions of epilepsy, and brain trauma. The modulation of zinc release and 

reuptake is potentially important therapeutic strategy for protection against 

neurotoxicity [89]. 

There is a hypothesis that the pH gradient across the plasma membrane, in 

particular its direction being opposite to the direction of Zn2+ flux, is a principal 

determinant of the extent of Zn2+ transport. After electrical stimulation of neurons and 

Zn2+ depletion, pH dependent plasma membrane Zn2+ transport can supply Zn2+ directly 
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to subcellular compartments and effect a rapid refilling of these stores in the presence of 

an inwardly directed Zn2+ gradients and physiological pH values [90].  The plasma 

membrane pH dependent pathway may provide the means for release Zn2+ to reenter 

neurons under physiological and non- physiological conditions.  A better understanding 

of plasma membrane pH dependent Zn2+ transport will help to clarification of the role of 

Zn2+ playing in selective neuronal death after brain injury. 

In this dissertation, the development of fluorescence based sensors for single 

neuron cell analysis is described. Research accomplishments include the development of 

fluorescence based liposomes and lipobeads as sensors for calcium, zinc ion and pH in 

primary rat cortical neurons. The development of these sensors, their advantages and 

limitations, and their applications in monitoring the effect of physiological and non-

physiological simulation conditions and kinetic studies of biological processes at single 

neuron cell levels are discussed more details in the following chapters. 
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CHAPTER TWO: EXPERIMENTAL 

 

This chapter describes the experimental methods and instruments used to carry 

out the studies that are summarized in this dissertation. Specific technical and 

experimental details are described in related chapters. 

 

2.1. Materials and Reagents 

1-ml syringes were purchased from Becton Dickinson. Hamilton syringes and 

Corning glass cover slips used for microscopy (12x12 mm) were purchased from Fisher 

Scientific.  Dimyristoylphosphatidylcholine (DMPC) was purchased from Avanti Polar 

Lipids. Cholesterol and dihexadecyl phosphate were purchased from Aldrich.  Sephadex 

G-100 was purchased from Sigma.  Alexa-labeled calmodulin (Calmodulin-Alexa-Fluor 

488) was purchased from Molecular Probes. Polystyrene particles (mean diameter: 1.6 

µm, -/+ 0.5%) were purchased from Bangs Laboratories, Inc. (Fishers, IN) in powder 

form. ZnCl2 (AR), N- (6-methoxy-8-quinolyl)-p-toluenesulfonamide (TSQ) was obtained 

from Molecular Probes, In. (Eugene, OR).  N- (fluorescein-5-thiocarbamoyl)- 1,2-

dihexadecanoyl-sn-glycero-3- phosphoethanolamine, triethylammonium salt (fluorescein 

DHPE) was purchased from Molecular Probes, Inc. (Eugene, OR). Poly-L-lysine was 

purchased from Sigma. Lab-Tek II chambered coverglass used for microscopy and pH 

buffers were purchased from Fisher Scientific. Aqueous solutions were prepared with 18 
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MΩ deionized water purification system (Barnstead Thermolyne Nanopure). 

Dihexadecyl phosphate (DP), cholesterol, and spectroscopic grade ethanol were 

purchased from Aldrich Chemical Company (Milwaukee, WI). Succinyl-concanavalin A 

(SuccCon A) and cytosine (beta)-D-arabinofuranoside (AraC) were purchased from 

Sigma (St. Louis, MO).   Sodium hydroxide and hexane were purchased from EM 

Sciences and used without further purification.  Spectroscopic grade ethanol was 

purchased from Aldrich Chemical Company (Milwaukee, WI).  All aqueous preparations 

were made using nano-pure distilled water. 22 x 22 mm glass coverslips were obtained 

from Fisher Scientific, Pittsburgh, PA. Matrigel was purchased from Becton Dickinson, 

Bedford, MA. 35mm diameter petri plates were from Falcon-Becton Dickinson Labware, 

Franklin Lakes, NJ.   Essential medium without phenol red containing 10 % horse serum 

was from Gibco, Grand Island, NY. All reagents were used as received without further 

purificaton. 

 

2.2. Protocols and Procedures 

2.2.1.  Sol-gel for immobilization of liposomes to glass slides or vials 

(a) 4-morpholino-propanesulfonic acid (MOPS) solution 

• 0.0419 g MOPS + 0.0584 g NaCl + 10 ml PBS buffer pH 7.4 

(b) The acidic sol 

• 15.25 ml TMOS (tetramethylorthosilicate) + 3.35 ml of distilled water+ 0.22 

ml of 0.04 M HCl 

Mix  (a) and (b) together (1:1 v/v), chill in an ice bath for 20 minutes in order to 

retard gelation, rapidly mix with the liposome solution, and place on a microscope 
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slide or into a vial sealed with a cap until the mixture becomes clear, colorless and 

monophasic. 

 

2.2.2. Sephadex column solution and Sephadex column separation using a 

microcolumn centrifuge technique 

a) Sephadex column preparation 

Sephadex G50: 10 g of G50 + 120 ml of distilled water + 0.9 g NaCl 

Sephadex G100: 10 g of G100 + 175 ml of distilled water + 1.575 g NaCl 

• Allow the sephadex solution to swell overnight at room temperature before 

preparing the sephadex columns for separation. 

• Place glasswool at the bottom of an empty 1-ml syringe. 

• Pipette 1 ml of Sephadex suspension into the syringe to form a plug above the 

glasswool. 

• Centrifuge the Sephadex containing syringe in a low-speed centrifuge at 2000 

rpm for 5 minutes to form a dry solid Sephadex column, absent of cracks or voids. 

• Further add Sephadex solution and centrifuge the syringe until a plug of dried 

Sephadex of ~8-9 cm long formed in the column. 

• Make sure the Sephadex columns have no cracks or void and are not wet 

before separation process. 
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 b) Microcolumn centrifuge technique for separation 

 

 

 

 

 

 

 

 

 

  Figure 2.1. A schematic of a microcolumn centrifuge technique 

 

• Add 200 µL of the liposome solution drop wise to the top of the column and 

the syringe is placed in a 10 mm diameter, 13 cm height centrifuge tube.  

• Centrifuge the syringe, inserted into the tube, at 700 rmp for 15 minutes 

(Fisher, Model Marathon 8K).  

• Collect the liposomes in the centrifuge tube while the Sephadex column retains 

the free bio-conjugate molecules.  

• Repeat the process at least three times to ensure complete washing of free bio-

conjugates from the liposome solution with a new Sephadex column every 

time. The washed liposome solution is stored at room temperature in a light 

tight environment. 
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2.3.3. Preparation of adhesive slides 

• Immerse the slides in 70% ethanol/water for 15 minutes. 

• Air dry slides or place in 600C oven for 2 minutes. 

• Place slides in poly-L-lysine solution (1ml/ml) for 4 hours. 

• Drain slides and leave at room temperature overnight or dry in 600C oven for 

15 minutes. 

 2.2.4. Locke’s buffer for neuron cell culture 

• 154 mM NaCl, 5.6 mM KCl, 3.6 mM NaHCO3, 2.3 mM CaCl2.2H2O, 5.6 mM 

glucose, 1.2 mM MgCl2.6H2O, and 5 mM HEPES (pH 7.4). 

2.2.5. Phospholipid cocktail for liposome and lipobead coating  

• 50 mM lipid stock solution prepared with a 5:4:1 molar ratio of DMPC, 

cholesterol, and DP in chloroform, store at –200C until used. 

 

2.3. Liposome preparation (details of each method will be described in chapter 3 

and chapter 4) 

a) Injection method 

• Dry 40 µl aliquot of phospholipid cocktail in a glass tube under N2 stream 

gas until all the chloroform is removed. 

• Add 40µl dry 2-propanol with rapid vortexing.  

• Inject this solution while vortexing into 1 ml of hydrophilic fluorescence 

dye or probe, which will be encapsulated inside liposomes. The optimal 

concentration of dye encapsulating is determined by a concentration 

dependence of the fluorescence intensity of the dye prior to the liposome 
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preparation. The fluorescence intensity of each individual dye 

encapsulating liposome depends on the number of dye molecules 

encapsulated in the liposomes, which in turn depends on the concentration 

of the dye in the liposome preparation solution. 

• In the case of hydrophobic dye, the dye will be added into the 

phospholipid cocktail and dry under nitrogen gas stream all together. The 

mixture will be reconstituted in dry 2-propanol and then added in 1 ml of a 

suitable buffer for liposome formation as steps shown above. 

 

b) Dehydration-Rehydration method for bio-conjugates encapsulating 

liposomes 

• 50 mM lipid stock solution prepared with a 5:4:1 molar ratio of DMPC, 

cholesterol, and DP in 0.5 mM EGTA/ 5.0 mM Tris-HCl buffer (pH 7.0), and 

dispersed using probe sonicator (Fisher Model 60 Sonic Dismembrator) at 

40W for 2 minutes. Filtrate undisolved components with 0.4µm (in diameter) 

membrane filter. 

• Add 200 µL aliquot of the phospholipid stock solution to 200 µL of bio-

conjugated solution in 0.5 mM EGTA/ 5.0 mM Tris-HCl buffer  (pH 7.0). 

This may be scaled up as desired. 

•  Dry the solution at room temperature using a rotating flask evaporator 

under nitrogen to form a film of phospholipids and bio-conjugate at the 

bottom of the flask.   
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•  Re-hydrate the film by adding 0.4 ml of 0.5 mM EGTA/ 5.0 mM Tris-HCl 

buffer (pH 7.0) to form liposomes with embedded bio-conjugate molecules in 

their bilayer membrane.  

•  Incubate the re-hydrated sample for 1 hour at room temperature to form small 

unilamellar vesicles. 

• Separate the bio-conjugate containing liposomes from the excess, unbound 

molecules remaining in the solution by using a micro-column centrifuge 

technique described above. 

 

2.4. Lipobead preparation (specific details will be described in chapter 5 and 

chapter 6) 

• Disperse 4 mg of polystyrene microsphere in 100 µl of ethanol/hexane (1:1 v/v). 

Sonicate for 15 minutes using a 47 KHz Bransonic sonicator. 

• Sonicate the mixture of 250 µl of phospholipid cocktail solution and 10-100 µl of 

hydrophobic encapsulated dye with an optimal concentration for 15 minutes using 

a 47 KHz Bransonic sonicator. 

• Add both the particle suspension and the mixture of phospholipid and dye 

together. Sonicate for another 15 minutes using a 47 KHz Bransonic sonicator. 

• Incubate the whole mixture at room temperature for 2 hours. 

• Dry the whole mixture overnight under nitrogen gas stream. 

• Add 1 ml of phosphate buffer pH 7.0 to the dried suspension, and sonicate for 15 

minutes with a 47 KHz Bransonic sonicator. 
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•  Incubate the suspension for 2 hours to allow the indicator and the phospholipid 

molecules to absorb onto the surface of the particles. 

• Remove unbound dye molecules, liposomes, and unbound particles by 

centrifugation at least 3 times at 2000 rpm/ 15 minutes each time. The dye-coated 

lipobeads are collected at the bottom of the glass centrifuge while the supernatant 

and unbound beads/ dye molecules are discarded. 

• Store in a glass test tube at room temperature until used. 

 

2.5. Preparation of Rat Cortical Neurons and Cell Culture Plates 

     Primary cultures of rat cortical neurons were prepared and grown in neuronal culture 

medium [91-92] by dissecting cerebral cortices from embryonic day 15 rats.  The cells 

were cultured in neuronal culture media consisting of 10% fetal calf and 10% horse 

serum.  The cells were then treated with cytosine arabinoside to control astrocyte 

proliferation. For the current studies, cells were grown on glass slides (22x22x1 mm) 

coated with Matrigel (Collaborative Research).  For these experiments, cells were plated 

onto 22 x 22 mm glass coverslips, which had been coated with a 1:2.5 dilution of 

matrigel.  Matrigel was diluted with minimum essential medium.  All coverslips were 

placed, one each, in 35mm diameter petri plates and maintained at 37° C in humidified, 

5% CO2 incubators (Gallenkamp- Sanyo Scientific, Chicago, IL).  Cells were allowed to 

attach to coverslips for one day in vitro (DIV), and then each petri dish was flooded 

with2 ml of cell culture media.  At 4 DIV, 10-5 M cytosine (beta)-D-arabinofuranoside 

was added to cultures to minimize astrocyte proliferation.  AraC was removed at 8 DIV, 

at which time cells were switched to minimum essential medium without phenol red 
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containing 10 % horse serum.  Experiments were carried out on coverslips with cells after 

12 DIV. 

   

2.6. Adhering the lectin-coated lipobeads to cell culture 

• Add 200 µl of prepared lipobeads into the 2 ml of culture media already in the 

petri dish or coverglass slide chamber for 2 hours. 

• Wash extensively but very gently (5 exchanges of 2 ml volume) with Locke’s 

solution pH 7.4, lacking MgCl2.      

• Take images immediately after washing. 

 

2.7. Data Analysis 

2.7.1. Spectrofluorometer Measurements 

The fluorescence spectra are obtained by holding the excitation wavelength 

constant and scanning through the emission wavelengths. The spectrum is the 

intensity vs. wavelength. The obtained highest peak intensity in the emission 

spectrum is used to construct the calibration curve.  The instrument does the 

background correction automatically. The data is saved as a text file and transferred 

to Microsoft Excel to reproduce the spectrum for presentation purposes.  The data 

analysis and manipulation capabilities of Excel are used to obtain ratiometric spectra 

and averaged spectra.  Each spectrum that is presented in this dissertation was the 

average of three replicate spectra unless otherwise noted.   
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2.7.2. Digital Fluorescence Imaging Microscopy Measurements 

a) Spectral analysis 

A CCD camera collects the fluorescence spectrum of the particles. The 

spectrum is presented as intensity vs. number of pixels, which ranges from 1 to 

1024 in our CCD camera. Given the properties of the 500 nm blazed grating with 

600 grooves/inch the spectral range of the spectrograph under these conditions is 

about 300 nm.  This implies that the spectral resolution of our CCD spectral 

measurements is about 0.3 nm, which is more than sufficient to resolve our 

solution-typical broad emission peaks. The instrument does the background 

correction automatically. The obtained highest peak intensity is used to construct 

calibration curves of signal against concentration. The data is saved in a unique 

Roper scientific software format that could be converted to ASCII format and 

from it to a Microsoft Excel format for further data treatment.  The CCD camera 

used for spectral imaging is a 16 bit resolution camera with gray levels range from 

0 to 65536 (216).  Each spectrum that is presented in this dissertation is the 

average of three spectra unless otherwise noted.    

 b) Digital imaging analysis 

Analysis of our digital fluorescence images involves measuring the 

average fluorescence intensity of the observed particles either by manually 

selecting the particles for analysis or by using the automatic features of our digital 

imaging analysis software image Pro plus.  The software enables the automatic 

selection of multiple particles and analyze their size and average intensity.  It is 

also equipped with image enhancement features such as contrast adjustment and 
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edge emphasis.  The signal  (S) to noise (N) ratio in a fluorescence image is 

determined as following 

   S/N = (Ssample - Sbackground) / 2 σσσσbackground)  

Where Ssample is the average signal of a fluorescent particle 

           Sbackground is the average signal of the background near the observed particle 

           σBackground is the signal deviation of the background 

The digital images are saved as TIFF files or GIF files.  TIFF and GIF are general 

formats that enable us to further enhance the image quality using a photo 

enhancement software like Adobe Photoshop 5. 

 c) Error analysis 
Error bars indicate signal variation between 3 fluorescence intensity 

measurements of an observed particles or a group of particles.  The results are 

presented as the average reading +/- the standard deviation from the average. The 

standard deviation (SD) is the square root of the variance, which is a measure of 

how spread out a distribution is. It is computed as the average squared deviation 

of each number from its mean.  

 

 2.7.3. Sources of Errors: 

Various experimental parameters contribute to uncertainties in the analysis.  First, 

the fluctuation of the light source used in the work, mercury lamp. It is absolutely 

essential that the light source energy output remains constant and stable during the 

measurement, as the fluorescence intensity is directly proportional to the exciting 

intensity. In reality, the lamp is not stable. There is up to 5% fluctuation in the energy 

output during our experiments. Secondly, heterogeneities in the field of illumination 
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and in the samples contribute greatly to the large variation observed in the kinetic 

data.  Inconsistencies in sample handling also contribute to the experimental 

uncertainties.  Overall, +/- 5% in digital imaging microscopy experiments is 

reasonable using currently available state of the art microscopy systems.  This will 

definitely improve in the future with the expected replacement of mercury burners 

with highly stable diode lasers as excitation sources and further improvement in 

automation of sample handling. 

 

2.8. Spectrofluorometer  

 A schematic diagram of the spectrofluorimeter is shown in Figure 2.2. Excitation 

and emission spectra, the spectral response of fluorescence probes and sensors in solution 

to analytes of interest were conducted using a PTI model QM-1 spectrofluorimeter (PTI, 

Quantamaster, Ontario, Canada) as shown in Figure 2.2. 

In general, light from the source passes through the excitation monochromator, 

which selectively passes a narrow band of the spectrum centered about the excitation 

wavelength. This light hits the sample. Light given off by the sample is collected and 

passed through the emission monochromator, which selects a narrow band of the 

spectrum for the detector to look at. For an emission scan, the excitation monochromator 

is fixed at a wavelength absorbed by the sample, and the emission monochromator is 

scanned to obtain the spectrum of light emitted by the sample. For an excitation scan, the 

emission monochromator is fixed at a wavelength emitted by the sample and the 

excitation monochromator is scanned to obtain a spectrum of the light, which excites 
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fluorescence in the sample. Often an excitation spectrum looks just like an absorption 

spectrum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  For general- purpose applications, the instrument has a xenon lamp as the source 

of excitation light. It is equipped with two monochromators, which are used to select the 

excitation and emission wavelengths, and are monitorized to allow automatic scanning of 

wavelengths. The fluorescence is detected with photomultiplier tubes and quantified with 

the appropriate electronic devices. The excitation spectrum represents the relative 

                                                                 http://www.pti-nj.com/qm-2000-7.gif 

            Figure 2.2.  Schematic diagram of the PTI spectrofluorometer used in our studies 
 
1.Lamp housing; 2. Adjustable slits; 3.Excitation Monochromator; 4. Sample compartment; 5. Baffle; 6.
Filter holders; 7. Excitation/emission optics; 8. Cuvette holder; 9. Emission port shutter; 10. Peltier 
cooling & temperature probe; 11 Emission Monochromator; 12. PMT detector. 
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emission of the fluorophore at a fixed emission wavelength at each excitation 

wavelength. The emission spectrum represents the photon emission rate or power emitted 

at each wavelength when the excitation wavelength is fixed, over a wavelength interval 

determined by the slit widths and dispersion of the emission monochromator. For most 

fluorophores, the quantum yield and emission spectra are independent of excitation 

wavelength.  

 There are four characteristics for an ideal optical components: 1) The light source 

must yield a constant photon output at all wavelength; 2) The monochromator must pass 

photons of all wavelength with equal efficiency; 3) The monochromator efficiency must 

be independent of polarization; 4) The detector (photomultiplier tube) must detect 

photons of all wavelengths with equal efficiency. Unfortunately, light sources, 

monochromators, and PMT with such ideal characteristics are not available. As a result, 

there is always a compromise to select components, and to correct for the non-ideal 

response of the instrument. The general characteristics of individual components of a 

spectrofluorometer are described as follow, along with the reasons for choosing specific 

components. 

 

a) Light source 

A 75 W high- pressure xenon (Xe) lamp is used as the excitation light source. 

The lamp provides a relatively continuously light output from 250 to 700 nm.  The 

lamp consists of two electrodes sealed under high pressure in a quartz glass bulb 

containing Xe. Xe arc lamps emit a continuum of light as a result of the 

recombination of electrons with ionized Xe atoms.  These ions are generated by 
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collisions of Xe atoms with electrons, which flow across the arc.  Complete 

separation of the electrons from the atoms yields the continuous emission. Xe lamps 

are contained within specially designed housing as shown in Figure 2.2. 

 

 

 

 

 

 

 

   http://www.pti-nj.com/manual_a-1010.html#INTRODUCTION 

Figure 2.3. The arc lamp housing 

The housing protects the user from the lamp and from its intense optical 

output because of the high-pressure gas in xenon lamps, and their extreme brightness. 

The house also serves to direct air over the lamp and remove excess heat and ozone. 

Another role of the housing is to collect and illuminate the lamp output, which can be 

focused into the entrance slit of the monochromotor.  

 

b) Monochromator 

  A monochromator (as shown in Figure 2.4) is a wavelength selector. All 

monochromators contain the following component parts: an entrance slit, a 

collimating lens, a dispersing device (usually a prism or a grating), a focusing lens, 

and an exit slit. Polychromatic radiation (radiation of more than one wavelength) 
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enters the monochromator through the entrance slit. The beam is collimated, and then 

strikes the dispersing element at an angle. The beam is split into its component 

wavelengths by the grating or prism. By moving the dispersing element or the exit 

slit, radiation of only a particular wavelength leaves the monochromator through the 

exit slit.  Excitation and emission wavelength selection in this system is composed of 

two monochromators, one for exicitation and one for emission. The monochromators 

are autocalibrated and are under computer control for scanning and positioning. 

 

 

 

 

 

 

 

 

 

http://www.phys.virginia.edu/classes/318/atom_spec/atom_spec.html 

Figure 2.4. A typical monochromator design: A = Entrance slit; B = Mirror; C1 = 
Collimating mirror; C2 = Focusing mirror; D = Grating; E = Mirror; F = Exit slit  

 

c) Photomultiplier tube (PMT) detector 

  Photomultiplier tubes (PMTS) (shown in Figure 2.5) are designed to convert photons 

to an electrical signal. 
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They have a high internal gain and are very sensitive light detectors for low 

intensity applications.  They consist of a photocathode, a series of dynodes, and an 

anode in an evacuated glass enclosure. A photocathode is a mixture of alkali metals, 

which make the PMTS sensitive to photons throughout the visible region of the 

electromagnetic spectrum. When a photon of sufficient energy strikes the 

photocathode, it ejects a photoelectron due to the photoelectric effect. The 

photocathode is at a high negative voltage from –500 to –1500 volts.  The 

photoelectron is accelerated towards to the first dynode. Upon the photon encounter, 

the first dynode emits several photoelectrons, which are attracted to the second 

dynote. Additional electrons are generated at each dynode due to successive 

photoelectric effects.  As a result of each dynode the photons encounter, 105 to 107 

 

                                       http://elchem.kaist.ac.kr/vt/chem-ed/optics/detector/pmt.htm 
 
Figure 2.5. Schematic of a photomultiplier tube (PMT) 
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electrons are created for each photoelectron ejected from the initial photocathode. 

This effectively drives the photons consecutively from the first dynode to another and 

finally to the anode. The amplified signal is finally collected at the last anode where it 

can be measured and interpreted. The overall amplification depends on the number of 

dynodes and the accelerating potential difference between the electrodes. 

 
2.9. Digital Fluorescence Imaging Microscopy System  

The detection system used for fluorescence measurements of the fluorescence 

probes and sensors in single cell is shown in Figure 2.6. The system consists of an 

inverted fluorescence microscope (Olympus IX 70) equipped with three detection ports. 

The major components are excitation light source, wavelength selection devices, 

objective and grating, and a charge- coupled -device (CCD). 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Digital fluorescence imaging microscopy system 
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a) Excitation light source 

  To generate enough excitation light intensity to furnish emission capable of 

detection, powerful light sources are needed, usually arc (burner) lamps. A100W 

mercury (shown in Figure 2.7a) consists of two electrodes sealed under high pressure 

in a quartz glass envelope, which also contains mercury. It is used as the light source 

to evaluate free fluorescence probe sensing and phospholipid coated particle based 

sensing techniques. Mercury burners have a life of 200 hours. When the burners reach 

their rated lifetime, the spectral emissions may change and the quartz envelope 

weakens. The mercury burners do not provide even intensity across the spectrum 

from ultraviolet to infrared (Figure 2.7b). The intensity of the mercury burner is 

expended in the near ultraviolet, with peaks of intensity at 313, 334, 365, 406, 435, 

546, and 578 nanometers. At other wavelengths of visible light, the intensity is steady 

but not nearly so bright, but still usable for blue excitation. 

 

 

 

 

 

 

 

 

        (a)          (b) 

 

 

http://www.olympusmicro.com/primer/techniques/fluorescence/fluorosources.html 
 
Figure 2.7. a) Mercury arc lamp; b) Mercury arc lamp UV and visible emission spectrum



 

 

52

The separation of excitation and emission wavelengths is achieved by the 

proper selection of filters to block or pass specific wavelengths of the spectrum. 

Optical filters are commonly used to select a certain part of the light for transmission, 

while preventing the rest of the light from passing through. Proper selection of filters 

is the key to successful fluorescence microscopy. There are three filters: exciter 

filters, barrier filters and dichromatic beamsplitters (dichroic mirrors) that are usually 

combined to produce a filter cube as illustrated in Figure 2.8.  

 Exciter filters permit only selected wavelengths from the illuminator to pass 

through on the way toward the specimen. Barrier filters (or emission filters) are used 

to suppress or block (absorb) the excitation wavelengths and permit only selected 

emission wavelengths to pass toward the eye or other detector. Dichromatic 

beamsplitters (dichroic mirrors) efficiently reflect excitation wavelengths and pass 

emission wavelengths. They are used in reflected light fluorescence illuminators and 

are positioned in the light path after the exciter filter but before the barrier filter.  

 

 

 

 

 

 

 

http://www.olympusmicro.com/primer/techniques/fluorescence/filters.html 

Figure 2.8. A fluorescence filter cube 
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b) Objectives and grating 

After going through the emission filter, the fluorescence from the specimen is 

collected by a 20X or 40X objective with a numerical aperture 0.5 or 0.9. The signal 

is then reflected to the detector directly to obtain images, or dispersed by a 

spectrograph and detected to obtain a spectrum. The spectrograph is 150mm 3 mirror-

spectrograph  (Acton Research Inc.) equipped with a 600 groves/mm grating blazed 

at an optimum wavelength of 500nm. 

 

c) Charge-coupled devices (CCD) 

 

 

 

 

 

 

 

 

 

 

 

http://www.olympusmicro.com/primer/digitalimaging/concepts/ccdanatomy.html 

Figure 2.9. Schematic diagram of a charge-coupled device (CCD) 

Charge-coupled devices (CCDs) shown in Figure 2.9 are silicon-based 

integrated circuits consisting of a dense matrix of photodiodes that operate by 

converting light energy in the form of photons into an electronic charge. Electrons 
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generated by the interaction of photons with silicon atoms are stored in a potential 

well and can subsequently be transferred across the chip through registers and output 

to an amplifier that reads out the quantity of accumulated charge. The charge 

accumulation is proportional to the total light exposure. The charge at each pixel 

point can be read out when desired to obtain a two dimensional image. The most 

common CCD designs have a series of gate elements that subdivide each pixel into 

thirds by three potential wells oriented in a horizontal row. Each photodiode potential 

well is capable of holding a number of electrons that determines the upper limit of the 

dynamic range of the CCD.  

There are three commonly used CCD designs: the full-frame CCD, the 

interline transfer CCD, and the frame transfer CCD. Full-frame charge-coupled 

devices (CCDs) feature high-density pixel arrays, which are capable of producing 

high- resolution digital images. After photons composing, the image is collected by 

the pixel elements and converted into electrical potential. The CCD undergoes 

readout by shifting rows of image information in a parallel fashion, one row at a time, 

to the serial shift register. The serial register then sequentially shifts each row of 

image information to an output amplifier as a serial data stream. All integrated charge 

must be clocked out of the serial register before the next parallel line of image data 

can be transferred to the horizontal array. The entire process is repeated until all rows 

of image data have been directed to the output amplifier and off the chip to an analog-

to-digital signal converter integrated circuit. The image in a digital format is 

constructed and the final photograph or photomicrograph is formed. Full-frame CCD 

architecture has a 100 percent fill factor. The entire pixel array is used to detect 
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incoming photons during exposure to the object being imaged. Full frame CCDs 

typically have square pixel dimensions to avoid image distortion and are fabricated 

with pixel sizes ranging from 7 to 24 microns in arrays containing up to 6 million 

pixels. A mechanical shutter or synchronized strobe illumination scheme must be 

used to prevent smearing for most exposure periods.  

Frame-transfer CCDs have a design similar to full-frame CCDs. These 

devices have a parallel shift register that is divided into two separate areas, called the 

image and storage arrays. During the period in which the parallel storage array is 

being read, the image array is busy integrating charge for the next image frame. A 

major advantage of this architecture is the ability of the frame-transfer device to 

operate without a shutter or synchronized strobe, allowing for an increase in device 

speed and faster frame rates.  

Interline- CCDs are composed of a hybrid structure incorporating a separate 

photodiode and an associated parallel readout CCD storage region into each pixel 

element. The functions of these two regions are isolated by a metallic mask structure 

placed over the light shielded parallel readout CCD elements. Major advantage of this 

architecture is the ability of the interline transfer device to operate without a shutter or 

synchronized strobe, allowing for an increase in device speed and faster frame rates.  

In this work, a high performance frame transfer CCD (Roper Scientific, model 

256 HB) with a 512x512 pixel arrays is used in order to increase the sensitivity of the 

imaging system. A computer is employed for data acquisition. The Princeton 



 

 

56

Instrument software WinSpec 1.4.3 is used for spectra data analysis. The Roper 

Scientific software Winview 3.2 is used for image analysis.  
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CHAPTER THREE:  OPTOCHEMICAL SENSING BY 

IMMOBILIZING FLUOROPHORE-ENCAPSULATING 

LIPOSOMES IN SOL-GEL THIN FILMS 

 
 

   3.1. Introduction 

  Immobilization of sensing reagents in the host matrix of optochemical sensors greatly 

affects their stability.   In general, covalent immobilization of the sensing reagent to the support 

is the preferred method since it eliminates leaking of the dye molecules from the host matrix [93-

94].  However, the sensing reagent must have an appropriate functional group suitable for 

covalent immobilization.  Furthermore, functionalization of the sensing dye or covalent 

immobilization itself may alter the structural and spectral properties of the sensing reagent and 

lead to a loss of analyte response.  While physical immobilization of the sensing reagent to the 

sensing support prevents these problems, it may result in dye leaking, which decreases the 

stability of the sensor [95].  Several research groups have recently reported the physical 

immobilization of dextran-fluorophore conjugates instead of free fluorescent molecules as 

sensing reagents in fluorescence-based sensors [96-98].  Conjugation of the fluorophores to high 

molecular weight dextran (70,000 Da) increases the molecular size of the sensing reagent, thus 

minimizes the rate of dye leaking of the sensing dye from the supportive matrix [99].  However, 

similar to covalent immobilization, the sensing dye must have a functional group suitable for 
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conjugation with dextran.   Furthermore, recent reports indicate that covalent attachment of 

fluorophores to dextran chains decreases their emission quantum yield [99-100]. 

                  The use of fluorescent dye encapsulating liposomes for nano-scale sensing of pH and 

molecular oxygen in aqueous media [101-102] has been reported in our research laboratory.  

These vesicles self-assemble when mono-dispersed phospholipids are introduced to an aqueous 

medium due to the hydrophobic nature of the aliphatic hydrocarbon chain and the hydrophilic 

nature of the polar head group [103-104]. The self-assembly results in an internalized volume of 

water, which may contain one or more water-soluble compounds (dyes, biological material, etc.). 

The long-term stability of fluorescence-based sensing liposomes with respect to leakage of 

internalized compounds has been a concern because the permeability of the liposome bilayer 

membrane is strongly temperature dependent.  A transition temperature, Tc, can be identified for 

phospholipids used to make the liposomes [105].  The transition temperature is defined as the 

point below which assembled liposomes display a gel like phase, and the bilayer permeability is 

minimized, reducing the effects of leakage.  Close to the transition temperature, the liposome 

bilayer membrane will adopt a more permeable fluid like structure, and leakage rates of 

encapsulated materials may increase.  It is therefore important to select phospholipids with a Tc, 

which is clearly below or clearly above room temperature. 

In this chapter, a new approach for immobilizing fluorescent reagents in a sensing 

support is presented.  The fluorophores are encapsulated in the internal compartment of 

liposomes that are entrapped in a sol-gel film.  Sol-gel films have been used extensively as 

supporting matrices for fluorescence sensors [106-109].  Some advantages associated with sol-

gel supports include high mechanical and chemical stability, lack of spectral interference, 

minimal quenching of fluorescence reagents and ease of fabrication.   Leaking of 
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macromolecules from sol gel films is minimal [110-111].  However, the leakage rate of 

hydrophilic fluorescence dyes from sol-gel films is significant.  For example, Brennan et al. have 

recently used the fluorescence of tryptophan to probe the environment and reaction kinetics 

within protein-doped sol-gel-derived glass monoliths [112].  They have measured the leaking 

rate of the protein monellin and the fluorescence dye N-acetyltryptophanamide (NATA) from 

sol-gel monoliths.  For wet-aged sol-gel monoliths, complete leakage of the fluorophore occurred 

over a period of 8 hours. For dry-aged monoliths, 30% of the NATA leaked over 8 hours.  No 

leakage of protein molecules from either dry or wet-aged sol-gel monoliths has been observed.   

Fluorescent liposomes have frequently been used to amplify the signals in fluorescence 

immunoassays [113-116].  The effect of insoluble compounds on the phospholipid transition 

temperature has also been used to detect anesthetics [117].   In a recent study, Yamanaka et al. 

immobilized dye labeled liposomes in a sol-gel support and used the sol gel films for heavy 

metal ion sensing [118].    In this work, liposomes were used as miniaturized containers for 

fluorescent sensing reagents as an alternative to covalent conjugation of the fluorescence 

molecules to phospholipid membranes or to dextran chains.  The encapsulation of sensing 

reagents in liposomes increases the physical dimensions of the sensing elements, and lead to an 

increase in the chemical stability of the sensor.  Unlike in dextran conjugation, it is expected that 

the encapsulated fluorescent molecules would maintain their free solution properties, including 

high emission quantum yield and sensing capability.   The objective of this study is to evaluate 

the analytical properties of this new sensing geometry in aqueous solution.  The fluorescein 

derivative carboxyfluorescein is used as a pH-sensing reagent as it is easily encapsulated in 

liposomes, displays high quantum efficiency, and a wide dynamic range over the physiological 
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pH range.  These characteristics make it ideal for determinations of encapsulation efficiency, 

leakage rate and pH sensitivity.  

 

3.2.    Specific Experimental and Technical Details 
 
 

a) The detection systems 

The detection systems used to measure the fluorescence of the pH responsive 

solgel films in aqueous solution are the digital fluorescence imaging microscope, 

fluorometer, and transmission electron microscope (TEM). The fluorescence of the pH 

sensitive liposomes is collected by a 20X microscope objective with N.A. = 0.5.  A 480 

nm narrow band excitation filter, a 500-nm dichroic mirror, and a 515-nm long pass 

emission filter are used to ensure spectral imaging purity.  Typically, an exposure time of 

100 mseconds is used for image collection.  TEM images of the dye encapsulating 

liposomes are obtained using a Zeiss-10C TEM microscope.  A staining technique using 

0.5% uranyl acetate is applied to observe the liposomes.  

 

    b) Preparation of carboxyfluorescein-encapsulating liposomes  

    A 40µl aliquot of the phospholipid cocktail is dried under nitrogen in a glass vial 

until all the chloroform is removed.  The sample is immediately reconstituted in 50 µl of 

dry isopropanol with rapid vortexing.  To prepare carboxyfluorescein- encapsulating 

liposomes, the reconstituted phospholipid mixture is added to 1 ml of a 1 mM 6-

carboxyfluorescein aqueous solution at pH 7.4.  The solution is then vortexed for 1 minute 

to form carboxyfluorescein-encapsulating liposomes.  Liposomes that are larger than 100 

nm are removed by passing the liposome sample back and forth several times using an 
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extrusion device through a 100 nm pore size polycarbonate membrane (Avanti Polar 

Lipids, Inc.). All reagent transfers during the preparation of the liposomes are made with a 

Hamilton glass syringe.  The small size of the liposomes (<100 nm) is verified by 

transmission electron microscopy (TEM) and dynamic light scattering (DLS) 

measurements. 

A microcolumn centrifuge technique, previously described by Fry et. al. [119] is 

used to separate the dye encapsulating liposomes from the excess unencapsulated free dye 

remaining in the liposome solution.  A Sephadex G-50 column is used for this separation.  

To prepare the column, 10 grams of Sephadex G-50 are allowed to swell overnight in 120 

ml of 0.9% NaCl solution. Glass wool is placed at the bottom of an empty 1-ml tuberculin 

syringe.  A volume of 1-ml Sephadex solution is pipetted into the syringe to form a plug 

above the glass wool.  The Sephadex containing syringe is then centrifuged in a low speed 

centrifuge (Adams Dynac) at 2,000 rpm for 3 minutes to form a dry solid Sephadex 

column, absent of cracks or voids.  Sephadex solution is added and the syringe is again 

centrifuged until a plug of dry Sephadex of about 7 cm long is formed in the column.  To 

remove the free dye from the liposomes, 200 µl of the stock liposome solution is added 

dropwise to the top of the column and the syringe is placed in a 10 mm diameter, 13 cm 

height centrifuge tube.  The syringe, inserted into the tube, is centrifuged at 2,000 rpm for 

4 minutes.  The liposomes are collected in the centrifuge tube while the Sephadex column 

retains the free dye.  The process is repeated at least three times to ensure complete 

washing of free dye from the liposomes solution.  The washed liposome solution is sealed 

and stored in a light free environment at room temperature. 
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c) Preparation of a sol-gel thin film containing carboxyfluorescein encapsulating 

liposomes  

Sol-gel thin films were prepared as described elsewhere [108]. Briefly, sols are 

prepared by sonicating a mixture of tetramethylorthosilicate (TMOS), water and 0.1 N 

HCl in a ratio of 4.5:1.4:0.1 (v/v/v) for 2 hours until the mixture becomes clear, colorless 

and monophasic. The solution is then stored at -200C for 7 days to ensure complete 

hydrolysis of unreacted TMOS.  Then, 0.5 ml of TMOS, 0.7 ml of MOPS buffer at pH 

7.2 and 50 uL of washed carboxyfluorescein encapsulating liposomes are rapidly mixed 

and placed on a microscope slide or in a sealed vial until gelation occurs. 

 
3.3. Results and Discussion 

 
3.3.1. pH sensitivity of sol-gel films containing carboxyfluorescein-encapsulating 

liposomes  

As previously mentioned, carboxyfluorescein encapsulating liposomes are 

immobilized in micrometer thick sol-gel films.  Photographs of sol-gel films containing 

carboxyfluorescein- encapsulating liposomes are shown in Fig. 3.1.  Fig. 3.1a shows a 

sol-gel film containing a small number of fluorescent liposomes.  Individual liposomes 

can be clearly seen, indicating that the liposomes maintain their structural integrity when 

immobilized in the sol-gel support.  Fig. 3.1b shows a sol-gel film with a liposome 

density that is typically used in our pH measurements.  The fluorescence spectra of this 

pH responsive film in aqueous solutions of pH 5, 6, 7 and 8 are shown in Fig. 3.2a.   A 

ratiometric method is used to determine the pH of analyte samples of unknown pH.  The 

fluorescence response is expressed as I (490) / I (440) where I (490) and I (440) are the 
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peak fluorescence intensities at 525 nm when the excitation wavelengths are 490 nm and 

440 nm respectively.  The pH of analyte samples is determined by converting the 

fluorescence of carboxyfluorescein to proton activity, which is approximately equal to 

proton concentration according to the following expression: 

[H+] = Ka x [(Rmax – R)/(R – Rmin)] x [Fbase440 / Facid440]                               (1) 

Ka, the acid dissociation constant, is 316 nM (pKa = 6.5) [115], R is the 

fluorescence response of the sensor when excited at 490 and 440 nm, and when the 

emission is measured at 525 nm, Rmax is the ratio I490/I440 when the fluorescence intensity 

at 525 nm reaches its maximum at pH 9, and Rmin is the ratio I490/I440 when the 

fluorescence intensity at 525 nm reaches its minimum at pH 4.  Eq. (1) is derived from 

acid dissociation equation. 

 pH = pKa – log {[(Rmax – R) / (R – Rmin)] x [Fbase440 / Facid440]}                      (2) 

Fbase440/Facid440 is the ratio of the fluorescence signals at 525 nm with an excitation 

wavelength of 440 nm under the conditions used to determine Rmax (pH 9) and Rmin (pH 

4). Since the excitation wavelength of 440 nm is the isosbestic point of 

carboxyfluorescein, the fluorescence intensity of the sensor is relatively insensitive to pH 

changes from pH 4 to pH 9 when the sensor is excited at this wavelength.   In these 

measurements, Fbase440/Facid440 is found to be 0.97 ± 0.02.   As a close approximation for 

the ratiometric method it is possible to calculate the pH based on the following 

expression: 

pH = pKa – log [(Rmax – R) / (R – Rmin)]                                                  (3) 

A calibration curve describing the pH dependence of the ratio (Rmax – R) / (R – Rmin) of 

the liposome containing sol-gel pH sensor in standard samples is shown in Fig. 3.2b.    
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Data points obtained from standard solutions are shown as filled circles while pH data 

points calculated using Eq. (3) are shown as unfilled circles. Up to 5% variation between 

the calculated pH and the actual pH, as measured with a pH meter, is typically observed.  

In agreement with pH dependent fluorescence measurements of carboxyfluorescein 

solutions, the dynamic range of the sensor is between pH 6 and pH 7.5.   

The employment of a ratiometric approach greatly improves the precision of the 

pH measurements over fluorescence intensity based measurements. The ratio I (490)/I 

(440) is unaffected by dye photobleaching, dye leaking, and fluctuations in the intensity 

of the light source and signal collection geometry.  Consequently, the sensor shows 

higher long-term stability compared to fluorescence intensity based sensors.  The sensor 

is highly reproducible.  Each data point in the calibration curve is the average of 5 

consecutive measurements with a variation of about 3%. 
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   (a)                                                                     (b) 

  
 Figure 3.1.Photographs of fluorescent liposomes immobilized in a sol-gel thin film: (a) A film 

containing a low density of liposomes.  Individual liposomes can be seen indicating that the 
liposomes maintain their structural integrity when immobilized in the gel; (b) A photograph of a 
liposome containing sol-gel film of a typical liposome density used for our pH sensing 
measurements.  
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Figure3.2. pH sensitivity of a liposome containing sol gel film: (a) Fluorescence spectra of the 
gel in solutions of pH 5, 6, 7 and 8,  (b) A calibration curve describing the pH dependence of the 
liposome containing sol-gel film (Filled circles - data points of standard solutions, unfilled circles 
– data points of solutions of unknown pH). 

 

(a) 

(b) 
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3.3.2. Leaking stability of a sol-gel film containing carboxyfluorescein encapsulating 

liposomes  

As previously mentioned, leaking of dye molecules is a major concern in 

fluorescence-based sensors.  To characterize the leaking stability of our sol-gel based 

sensors, carboxyfluorescein containing sol gel films were placed in MOPS buffer 

solutions of pH 7.2 for 48 hours.   The fluorescence intensity of the sol-gel sensors and 

the solutions in which they are placed were measured periodically. The fluorescence 

intensity of the MOPS solution placed on top of a liposome containing sol-gel film show 

only a residual fluorescence intensity and did not increase throughout the experiment. 

The fluorescence intensity of the MOPS solution placed on a free carboxyfluorescein 

containing sol-gel film show a rapid increase during the first 12 hours of observation, a 

clear indication of a significant leakage of carboxyfluorescein from the sol-gel support.   

The fluorescence intensity of a sol-gel film containing carboxyfluorescein-encapsulating 

liposomes remained stable throughout the experiment.  The fluorescence intensity of a 

sol-gel film containing free carboxyfluorescein lost about 60% of its initial intensity in 12 

hours before reaching a relatively stable fluorescence signal.   These leaking experiments 

clearly show that the encapsulation of fluorescent liposomes in sol-gel films prevents its 

leakage from the sol-gel matrix support.  To further verify this observation, free dye and 

liposome containing sol gel thin films have been stored in air instead of in a buffer 

solution.  The films have been exposed to the same excitation conditions used to measure 

the leaking stability of the films in buffer solutions.   Under low level excitation 

conditions, the fluorescence intensity of these films remains stable throughout the 48 

hours experiment.  To prevent photodecomposition of the carboxyfluorescein molecules, 
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the exposure time used to obtain each data point is only 100 msec.   As a result, the 

fluorescent sol-gel films are exposed for only a few seconds to the excitation light during 

the 48 hour- experiment.   Under these experimental conditions, the observed 

fluorescence decrease observed in sol-gel films that contain free carboxyfluorescein 

results from dye leaking and not from photodecomposition.  

 

 3.3.3. Photobleaching stability of a sol-gel film containing carboxyfluorescein 

encapsulating liposomes  

 During the work with samples of carboxyfluorescein encapsulating liposomes, it is 

noted that the background fluorescence (from remaining free dye) photobleaches faster 

than the dye that is encapsulated within the liposomes.   Figure 3.3a shows a fluorescence 

image of a sol-gel film containing liposomes that have only been washed once to 

incompletely remove free carboxyfluorescein prior to gel formation.  While the fluorescent 

liposomes can be clearly seen, the signal to noise ratio of this film is only about 4.   Figure 

3.3b shows the same sample following a 3 min of continuous illumination with a 488-nm 

light of the fluorescence microscope excitation burner.  The liposome sample is virtually 

free of any significant background fluorescence, and the signal to noise ratio increases by 

almost an order of magnitude to about 26.  One possible explanation for this phenomenon 

may be less preferable conditions for the formation of singlet oxygen inside the internal 

compartment of the liposomes that in turn leads to a reduced photobleaching rate.  It is also 

possible that the interaction of the encapsulated carboxyfluorescein molecules with the 

phospholipid bilayer membrane makes them less susceptible to photobleaching.   Further 

experiments and theoretical studies are needed to fully explain this interesting observation.   
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It should be noted that there would not be any suggestion to illuminate fluorescent dye 

encapsulating liposomes as an effective protocol for “removing” free dye from an 

unwashed sample, as the liposomes themselves are also bleached, albeit at a much slower 

rate.   

 

 

 

 

 

 

 

 

         

                              (a)              (b) 

Figure3.3: Photobleaching stability of a sol-gel film containing carboxyfluorescein-
encapsulating liposomes: (a) A fluorescence image of a sol-gel film containing incompletely 
washed fluorescent liposomes, with a signal to noise ratio of about 4; (b) The same sol-gel film 
following 3 minutes continuous illumination with a 488-nm light. The signal to noise ratio 
increases by almost an order of magnitude to about 26.  
 

 

3.3.4. Response time of a sol-gel film containing carboxyfluorescein-encapsulating 

liposomes  

 A response time characterization of a liposome containing sol-gel thin film is 

shown in Figure 3.4 where the fluorescence response, I490/I440, of the sensor is plotted 

against a time coordinate. The response time of the pH sensitive sol-gel film is determined 

           T=0                                3 min 
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as follows: First, the ratio I490/I440 is measured when the sensor is in contact with a 200 µl 

aqueous solution of pH 4 (adjusted with 0.01 N HCl).    Then, 50 µl of a 0.1 mM NaOH 

solution are injected into the solution to instantly increase the pH to about 9.  A rapid 

increase in the ratio I490/I440 is observed in less than 1s.   It is possible that the response 

curve follows the injection of the alkaline solution, which is slower than the actual response 

time of the sensor.  In comparing the response time of a liposome containing sol-gel film to 

the response time of a free carboxyfluorescein containing sol-gel film we find a minimal 

and inconsistent difference in the response time. This observation indicates that the 

diffusion of protons across the bilayer membrane of the liposome does not have a 

significant affect on the response time of the sensor, which is regulated primarily by the 

thickness of the sol-gel film itself.    

  To characterize the reversibility of the sensor, the pH of the analyte solutions is changed 

repeatedly between pH 5 and 10.  As can be seen in Figure 3.4, the effect of consecutive 

pH changes of the analyte solution on the sensor is marginal.   Consecutive pH 

measurements in standard buffer solutions show that the deviation of I490/I440 data points 

from their average value is approximately 5%.  This result is comparable with previously 

described fluorescence-based pH sensors [120-121]. 
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Figure 3.5. Characterization of the response time, reproducibility and reversibility of a 
micrometer thickness sol-gel film, containing carboxyfluorescein-encapsulating liposomes.  The 
sensor shows sub-second response time, about 95% reproducibility, and high reversibility. 
 
 

3.4. Summary 
 

A new method for physical immobilization of hydrophilic sensing reagents in sol-gel thin 

films is described.   The immobilization of fluorescent dye encapsulating liposomes in a sol-gel 

film is an effective way to prevent dye leaking and to increase the chemical stability of sol-gel 

based optochemical sensors.  Water-soluble fluorescence dyes are readily encapsulated in 

liposomes and the presence of conjugating functional groups is not necessary.  The major 

advantage of this new immobilization method is its simplicity.  Dye encapsulating liposomes 

form spontaneously when a cocktail containing phospholipids and cholesterol is injected into an 

aqueous solution of the sensing reagent.  Encapsulation efficiencies vary between 5% to 70% 
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depending on the specific dye and composition of the cocktail used to make the liposomes, 

which are then added to the aqueous buffer used to prepare the sol-gel film.   The pH sensor 

fabricated using this new immobilization protocol is more stable than previously described 

optochemical pH sensors prepared by physical immobilization.  It shows sensitivity and linear 

dynamic range that are comparable with previous sensors.  The sub-second response time of the 

sensor to rapid pH changes indicates that the diffusion of protons across the bilayer membrane 

does not slow the response time of the sensor, which depends greatly on the thickness of the sol-

gel film.  It is difficult to control the size of these sensors in a consistent manner as they are 

immobilized in a sol- gel matrix.  It is also not feasible when the examined cells are not 

dispersed in solution and needed to grow on a support platform. The next chapter shifts to a new 

unique approach for fabrication of liposome-based sensors. For the first time, a liposome-based 

biosensor for Ca2+ by encapsulating fluorescein labeled calmodulin, a calcium binding protein, 

in unilamellar liposomes is introduced. Upon binding, calmodulin undergoes a conformational 

change that exposes its hydrophobic core and affects the fluorescence intensity of the attached 

fluorophors. 
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CHAPTER FOUR: CALCIUM ION FLUORESCENCE DETECTION USING 

LIPOSOMES CONTAINING ALEXA-LABELED CALMODULIN 

 4.1. Introduction 

There has been a growing interest in the development of fluorescence detection 

techniques for the analysis of calcium ions in biological samples and single cells [122-123].   

In most recent optochemical calcium ion sensors, calcium ion sensitive fluorescence indicators 

were immobilized to particles, polymer films or to the distal end of optical fibers [124-126]. 

The analysis of calcium ion levels was based on a direct interaction between calcium ions and 

the fluorescence indicators.  The fluorescence intensity of these sensors was calcium ion 

concentration dependent. The principle of this measurement is identical to the principle of 

intracellular calcium ion level measurements using cell permeable calcium ion fluorescence 

indicators such as indo-1, quin-2, fura-2, fluo-3, calcium orange, and calcium crimson [127-

128]. These dyes may show up to 50-fold fluorescence increase when binding to calcium ions. 

The high signal-to-noise (S/N) ratio in these measurements enables the determination of 

submicromolar calcium ion levels in cells.  

Quantitative analysis of calcium ion levels and calcium ion signaling processes using 

common fluorescence indicators is not always accurate.  This is due to the limited 

photostability of the dyes, interference from other divalent ions such as magnesium ions, 

heterogeneous distribution of the dyes in cells and poor stability in the cellular environment. 

Recent studies have been focusing on the use of conformational changes of proteins, peptides 

and DNA structures as an alternative way to sense ions in biological samples. The detection 
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strategy is based on fluorescent allosteric signal transduction proteins. Binding to a ligand 

causes these proteins to undergo a large conformational change at their binding sites. This 

conformational change yields a measurable optical signal [129-134].  The proteins usually 

possess a chain that folds into two domains connected together by a hinge region. The ligand 

binding sites are located in the interface between the two domains. Such a protein would have 

two stable conformations: an “open” form when binding to the ligands, and a “closed” form 

when free of the ligands [135].  For example, Miki et al have revealed that the amino acid 

sequence of the protein BRCA1, encoded by the familiar breast and ovarian cancer 

susceptibility gene, has an amino terminal ring finger domain, which is a zinc-binding motif 

[136].  A distinct conformational change of the ring finger is observed when zinc ions bind to 

the protein.  Roehm et al characterized the metal binding and metal –dependent folding 

properties of a peptide encompassing the BRCA1 ring finger by using cobalt (II) as a 

spectroscopic probe [137]. Proteins can be covalently labeled with various fluorophores, thus 

producing fluorescent protein conjugates. Hence, tagging a protein with fluorescent labels is an 

important and valuable tool for studying structure and microenvironment. In this project, the 

conformational change of calmodulin (CaM), a calcium ion binding protein, is used as a 

principle for selective calcium ion sensing. This conformation change strongly affected the 

fluorescence intensity of the covalently bound fluorophore, Alexa Fluor488. 

Calmodulin (CaM) is a major membranal calcium ion binding protein in eukaryotic 

cells. CaM plays an important role in cell signaling and regulates a wide variety of cellular 

processes including nucleotide metabolism, cell proliferation, microtubular function, exocytotic 

secretion, calcium regulation of smooth muscle contraction, ion pumps and channels, and cell 
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cycle control [138-142].  CaM contains two globular lobes joined by a linker region as shown in 

Figure 4.1. Each globular lobe consists of two helix-loop-helix Ca2+-binding sites called EF 

hands [143-144]. Upon binding to calcium ions, CaM undergoes an induced conformational 

change that exposes its hydrophobic cores, which may act as active sites for the interactions with 

target enzymes or CaM antagonists. Both the carboxy- and amino- terminal domains of CaM 

then undergo large structural rearrangements from the “ closed” conformation (the two helices of 

each hand are almost anti-parallel) to the “open” conformation (the two helices are more 

perpendicular) [145-151].   When a fluorophore, Alexa Fluor488, covalently bound to the 

protein, a calcium ion induced conformational change affects its fluorescence intensity [152-

154].  

 Baccas et. al have previously fabricated a fiber optic fluorescence sensor for calcium 

ions using fluorescein labeled calmodulin as a calcium ion sensitive indicator [155].  In their 

sensor, a solution containing calmodulin was encased between two membranes.  This assembly 

was attached to the distal end of an optical fiber.  The sensor was large and exhibited a long 

response time in the minutes time scale due to the presence of the encasing membrane designed 

to prevent leakage of calmodulin into the sample solution.   The use of fluorescein limited the 

accuracy of the measurement because of its poor photostability.  In our study, calmodulin is 

immobilized to the bilayer membrane of liposomes, which may serve as individual calcium ion 

nanosensors, or immobilized to a glass surface to form calcium ion sensitive films.  

Furthermore, the highly photostable fluorophore Alexa 488 is used to label the calmodulin 

molecules. 
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M. Ikura, TIBS 1996, 21,14-18. 
 
Figure 4.1. The carboxy-terminal domain of calmodulin (CaM) (a) in the “ closed” Ca2+ - free states 
(b) in the “open” Ca2+ - bound states. 
 
 

Alexa Fluor 488 dye  (chemical structure shown in Figure 4.2) is the best fluorescein 

FITC substitute available for most applications. Fluorescence spectra of Alexa Fluor 488 and 

fluorescein are almost identical with excitation/emission maxima of 491/515 nm. It has the 

fluorescence lifetime of about 4.1 nanoseconds.  Alexa Fluor 488 is much more photostable 

than fluorescein, and pH-insensitive fluorescence between pH 4 and pH 10.  This pH 

insensitivity is a major improvement over fluorescein, which emits fluorescence that is affected 

by pH. Protein conjugates prepared with Alexa Fluor 488 dye are much better conjugates with 

significant brighter, more photostable and pH insensitive compared than that of fluorescein 

FITC. 
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Figure 4.2. Chemical structures of  (a) Alexa Fluor® 488 carboxylic acid, succinimidyl ester, (b) 
fluorescein-5-isothiocyanate (FITC). 
 

 

4.2. Specific experimental and Technical Details 

a) The detection system 

 Digital florescence imaging microscopy and a fluorometer are used to measure the 

fluorescence of the calcium response of calmodulin labeled liposomes. A filter cube 

containing a 480 nm narrow band excitation filter, a 500 nm dichroic mirror, and a 515 nm 

long pass emission filter is used to ensure spectral imaging purity.   

b) Preparation of CaM-Alexa encapsulating liposomes  

A 5: 4: 1 molar ratio (50 mM) lipid stock solution is prepared with 

dimyristoylphosphatidylcholine, cholesterol, and dihexadecyl phosphate in 0.5 mM EGTA/ 

5.0 mM Tris-HCl buffer (pH 7.0) and dispersed using probe sonicator (Fisher Model 60 

Sonic Dismembrator) at 40W for 2 minutes. The solution is stored in a sealed vial at room 

temperature until use.  A 200 µL aliquot of the phospholipid stock solution is added to 200 

(a)                                                                                       (b) 
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µL of Alexa-labeled calmodulin solution (0.5 mg/ml) in 0.5 mM EGTA/ 5.0 mM Tris-HCl 

buffer (pH 7.0).  The solution is then dried at room temperature using a rotating flask 

evaporator under nitrogen to form a film of phospholipids and calmodulin at the bottom of 

the flask.  The film is rehydrated by adding 0.4 ml of 0.5 mM EGTA/ 5.0 mM Tris-HCl 

buffer (pH 7.0) to form liposomes with embedded Alexa-labeled calmodulin molecules in 

their bilayer membrane.  The rehydrated sample is then incubated for 1 hour at room 

temperature to form small unilamellar vesicles (SUV) [156-161].  A micro-column 

centrifuge technique, previously described by Fry et al. [162] is used to separate the 

calmodulin containing liposomes from the excess free protein molecules remaining in the 

solution.  To prepare the separation column, a 10g sample of Sephadex G-100 is allowed to 

swell overnight in a 175 ml 0.9% NaCl solution. Glass wool is placed at the bottom of an 

empty 1 ml tuberculin syringe. A volume of 1 ml Sephadex solution is transferred into the 

syringe to form a plug above the glass wool. The Sephadex containing syringe is then 

centrifuged in a low speed centrifuge (Adam Dynac) at 2000 rpm for 3 minutes to form a 

dry solid Sephadex column, absent of cracks or voids. Sephadex solution is added and the 

syringe is again centrifuged until a plug of dry Sephadex of ~ 8 cm long is formed in the 

syringe. To separate the free calmodulin from the calmodulin containing liposomes, 200 µL 

of the liposome solution is added drop wise to the top of the column and the syringe is 

placed in a 10 mm diameter, 13 cm height centrifuge tube. The syringe, inserted into the 

tube, is centrifuged at 700 rmp for 10 minutes (Fisher, Model Marathon 8K).  The 

liposomes are collected in the centrifuge tube while the Sephadex column retains the free 

proteins. The process is repeated at least three times to ensure complete washing of free 
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protein from the liposome solution. The washed liposome solution is stored at room 

temperature in a light tight environment. 

c) Preparation of a calcium ion sensing film on a glass surface  

 Calmodulin entrapping liposomes are immobilized to poly L-lysine coated glass 

microscope cover slips as follow: the Corning glass cover slips are washed in 70% ethanol / 

water solution (v/v), followed by washing with deionized water.  The cover slips are then 

dipped in 10 ml of 0.1 % poly-L- lysine solution and left overnight, at room temperature 

and in the dark. They are removed from the coating solution and rinsed with a phosphate 

buffer solution at pH 7.2. 1 ml of liposome solution is then placed on the glass cover slip 

surface. The cover slip is placed in a sample holder on the top of a homemade spinner and 

briefly spinned at 500 rpm to generate the sensing film. Unbound liposomes are washed 

with a phosphate buffer at pH 7.2. The liposome-coated cover slips are stored in a 

phosphate buffer solution at pH 7.2 at room temperature until use. Under these storage 

conditions the sensor maintains its calcium ion sensitivity for up to 3 days.  

4.3. Results and Discussion 

4.3.1. Calcium Sensitivity of Alexa-Labeled Calmodulin in Solution 

The calcium ion response of Alexa-CaM in aqueous solution at concentrations of 1, 

5 and 10 µM is shown in Figure 4.3.  The fluorescence intensity of Alexa-CaM decreases 

with increasing calcium ion concentration due to the binding of calcium ions to the CaM 

active binding sites.   The optimal concentration of Alexa-CaM is 5 µM where a dynamic 
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range between 0.1 and 1.3±0.05 µM of calcium ion in solutions is observed.   In our 

measurements, Alexa-CaM is dissolved in a phosphate buffer solution at pH 7.4 and kept at 

room temperature.  Under these conditions, the calcium ion binding affinity of Alexa-CaM 

gradually degrades and the protein becomes inactive within 2 hours. The lifetime of the 

calcium ion binding activity of Alexa-CaM is extended up to 6 hours when the protein 

solution is kept at 4°C. The encapsulation efficiency of Alexa labeled calmodulin in the 

liposomes was estimated by comparing the fluorescence of liposomes containing Alexa-

labeled calmodulin with the fluorescence of free Alexa labeled calmodulin at known 

concentrations. Based on these measurements we found the encapsulation efficiency to be 

about 10%.  

 

 

 

 

 

 

 

Figure 4.3. Calcium ion response of increasing concentrations of Alexa-CaM in aqueous 
solution:  (a) 1µM, (b) 5µM, and (c) 10 µM. 
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  4.3.2. Digital Fluorescence Imaging of Calmodulin Containing Liposomes  

       Calcium sensitive liposomes are prepared by embedding Alexa-CaM in the 

bilayer membrane of unilamellar liposomes.  The liposomes are immobilized directly to a 

glass microscope cover slip treated with poly-L-lysine. Digital fluorescence images of 

Alexa-CaM containing liposomes are shown in Figure 4.4.  Figure 4.4a shows an image of 

individual liposomes in a pH 7.2 phosphate buffer solution . A digital fluorescence 

intensity analysis of this image indicates that the ratio between the fluorescence intensity of 

individual liposomes and the background noise is 50±5.  Figure 4.4b shows an image of a 

large number of liposomes embedded in a poly-L-lysine film. This film could be used to 

obtain an average measurement of the level of calcium ions in a larger sample. The images 

are taken using a 20x microscope objective (NA =0.25) and an exposure time of 100 msec.  

This exposure time is optimal for imaging the liposomes. The time is short enough to 

prevent capturing their lateral diffusion and sufficiently long to detect their fluorescence 

signal.  Each spot represents the fluorescence of an individual liposome. The encapsulation 

efficiency depends on the mass ratio of lipid to solute.  We find that under our experimental 

conditions, the mass ratio of lipid to solute is approximately 1:1.  
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(a)             (b) 

 

 

 

Figure 4.4. a) A digital fluorescence image of Alexa-CaM containing liposomes. The image is 
taken    using a 40x microscope objective (NA =0.25) and an exposure time of 100 msec; b) A 
82,600 X transmission electronic micrograph of uranylacetate labeled liposomes.The average size 
of liposomes about 100 nm in diameter. 

 

4.3.3. Photostability of Alexa-CaM Containing Liposomes  

Figure 4.5 shows a comparison between the photostability of Alexa-CaM and 

Fluorescein-CaM containing liposomes. Samples of the fluorescent liposomes are 

illuminated by a 100 Watt/cm2 beam of a continuous mercury lamp (Oriel).  The 

fluorescence intensity of fluorescein-CaM containing liposomes decreases rapidly (curve a) 

while the fluorescence signal of Alexa-CaM containing liposomes (curve b) decreases 

initially by 45 % and remains constant for up to 1 hour of continuous illumination.  The 

initial decrease in the fluorescence intensity of Alexa-CaM containing liposomes may be 

attributed to photodecomposition of unstable isomers.  It should be noted, however, that the 

photon flux in our fluorescence microscopy experiment is much lower and the exposure 

time of the sample to the excitation light is only 100 msec per measurement.  Under these 

conditions, no photodecomposition of Alexa-CaM containing liposomes is observed.  

 

0 .1µ m0 .1µ m  
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Figure 4.5. Photostability of (a) fluorescein-CaM containing liposomes and (b) Alexa-CaM 
containing liposomes. Samples of fluorescent liposomes are continuously illuminated using a 
100 Watt/cm2 beam of a mercury lamp (Oriel). 

 

4.3.4. Analytical Properties of Alexa-CaM Containing Liposomes  

 The concentration dependence of the fluorescence intensity of Alexa-CaM containing 

liposomes is shown in Figure 4.6.  The fluorescence intensity of the liposomes at saturating 

calcium ion concentration of 39.8 µM, Imin, is subtracted from the fluorescence intensity of 

the liposomes at a given calcium ion concentration, I.  The corrected fluorescence signal is 

then normalized to the difference between the fluorescence intensity of the liposomes in a 

calcium ion free solution, Imax, and Imin. The normalized fluorescence intensity of the 

liposomes is described as a function of –log [Ca2+] or PCa2+. Each data point represents the 

average of 3 replicate measurements. The error bar of each data point is the standard 

deviation between these 3 measurements. The dynamic range of calcium ion sensitive 

liposomes is between 0.1 and 40 µM ± 0.05.  It is similar to the dynamic range of free 
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calmodulin in solution.  We therefore conclude that embedding calmodulin in the liposome 

bilayer membrane does not inhibit the calcium ion binding activity and the conformational 

changes that occur as a result of calcium ion binding.  This result confirms our prediction 

that since calmodulin is a membrane protein, its activity would not be degraded when 

embedded in a liposome bilayer membrane.  Furthermore, we find that calmodulin-

containing liposomes maintain their calcium ion sensitivity for 24 hours when kept in a 

phosphate buffer solution of pH 7.2 at room temperature. As previously mentioned, in 

solution, calmodulin maintains its calcium ion binding activity for only 2 hours under the 

same experimental conditions. The liposome solution is kept under light tight conditions to 

prevent photodecomposition of the fluorescence indicator.  Exposure of liposomes to a step 

change in calcium ion concentration between 0 and 1.5µM results in an immediate signal 

decrease indicating that the response time of the calmodulin containing liposomes is in the 

second time scale.  This is a significant improvement compared to previously described 

calmodulin-based sensors in which a response time of several minutes was reported. The 

interaction between calcium ions and CaM encapsulating liposomes at room temperature is 

not reversible. However, the calcium ions can be extracted from the liposomes and their 

fluorescence intensity could be restored to its calcium ion free level by increasing the 

temperature or by adding a chelating compound with a stronger binding constant like 

EGTA to the sample. Our calcium ion sensitive liposomes also show high selectivity for 

calcium ions over magnesium ions.  As previously reported by Bachas et. al., calmodulin 

also binds to magnesium ions [163].  However, the corresponding binding constants are 

2x103 and 3x102 M-1 for the high and low affinity sites of calmodulin.  To evaluate the 
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calcium ion selectivity of our liposomes, we measured the fluorescence intensity of Alexa-

CaM containing liposomes in solutions of increasing magnesium ion concentrations. No 

response was observed in solutions of up to 5 mM magnesium ions.    

 

 

 

 

 

Figure 4.6. The concentration dependence of the fluorescence intensity of Alexa-CaM containing 
liposomes. The fluorescence intensity of the liposomes at saturating calcium ion concentration of 
39.8 µM, Imin, is subtracted from the fluorescence intensity of the liposomes at a given calcium ion 
concentration, I.   The normalized fluorescence intensity of the liposomes is described as a function 
of –log [Ca2+] or PCa2+. The error bar of each data point is the standard deviation between these 3 
measurements. 

 

 4.4. Summary  

Liposomes containing Alexa labeled calmodulin show high sensitivity to calcium ions.  

The calcium ion sensitivity of Alexa-CaM containing liposomes improves significantly 

compared to the calcium ion sensitivity of Alexa-CaM in aqueous solution. When embedded in 

liposomes the calcium ion response of Alexa labeled calmodulin is 4 fold higher than its 

calcium ion response in solution.  This is attributed to the increasing stability of calmodulin 

when embedded in the liposome membrane. The dynamic range of Alexa-CaM containing 
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liposomes is between 0.1 and 40 µM ±0.05. The calcium ion sensitive liposomes show very 

high calcium ion selectivity. Unlike in commonly used fluorescence indicators, physiological 

levels of magnesium ions do not interfere with the calcium ion response of the Alexa-CaM 

containing liposomes.  The stability of the liposomes in biological samples is still a concern.  

Currently we are developing phospholipid coated polymeric particles, named lipobeads for ion 

sensing in and near cells.  In lipobeads the indicator would still be embedded in a bilayer 

membrane.  However, unlike in liposomes this membrane would coat polymer particles to 

increase the physical stability of the sensors. Characterization studies of this new system are 

underway. 

 In summary, chapters 3 and 4 describe liposome-based sensors for pH and calcium 

ions. Their instability in the cellular environment has led to the development of lipobead-based 

sensors.  Chapters 5 and 6 describe the development of pH and zinc ion sensing lipobeads and 

their application in neuron cell cultures.   
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CHAPTER FIVE: A LIPOBEAD-BASED pH FLUORESCENCCE SENSOR FOR SITE 
SPECIFIC pH MEASUREMENTS IN NEURON CELLS IN CULTURES 

 
 
5.1. Introduction 

Neuronal activity gives rise to rapid shifts of extracellular pH that occur in either 

the alkaline or acid direction [164]. The activity-dependent pH shifts in a given cell or 

brain region might lead to a decrease or increase in excitability and affect neuronal 

functions. Extracellular alkaline shifts related to neuronal activity are due to channel-

mediated flux of acid equivalents such as the net efflux of HCO3
- through gamma-

aminobutyric acid GABAA receptor channels, or bicarbonate-insensitive flux of hydrogen 

ions through cationic channels, activated by glutamate or aspartate [165-169].  The basis 

of activity dependent acidic shifts has generally been considered to be metabolic, 

involving the efflux of lactic acid, or classic acid extrusion membrane transport systems 

(Na+ / H+ or Na+ / HCO3
- / Cl- / H+).  The Na+ / H+ exchange across cell membranes is 

enhanced due to increased Na+ permeability. The resulting influx of Na+ and efflux of H+ 

leads to extracellular acidification [170-171].   In general, alkalosis increases neuronal 

excitability and initiates seizure activity. Acidosis decreases neuronal excitability and 

suppresses seizure activity [172]. 

 

Cortical spreading depression (CSD) is a phenomenon that involves a breakdown 

of neuronal ion gradients [173], increase of regional cerebral blood flow [174], release of 

a variety of neurotransmitters such as glutamate [175], and nitric oxide [176], and 
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permanent cell swelling [177]. During CSD initiation, the concentration of extracellular 

K+, [K+] 0, rapidly rises, causing brief neuronal excitation then depolarization and a 

period of electrical silence during which the direct current (DC) potential at the brain 

surface falls. Extracellular [Na+] and [Cl-] levels decrease as these ions enter cells. 

Consequently, water enters the cells, and the extracellular space is reduced. Neurons, 

especially dendrites, swell because NaCl uptake exceeds the discharge of K+ and organic 

anions. Ca2+ influx movements follow K+ effluxes. Additional negative ion species move 

outwards to maintain electrical balance [178]. Extracellular acidic shifts of several tenths 

of a unit of pH could be observed during CSD [179]. If the depolarization due to CSD is 

prolonged beyond a critical time, the neurons become permanently unresponsive. If, 

however, the depolarization induced influx of Ca2+ into neurons is prevented, then the 

neurons can regain function after extended CSD-like depolarization that otherwise would 

cause irreversible injury [180]. CSD might be associated with some clinical disorders and 

behavioral consequences, including migraine, cerebrovascular diseases, head injury, and 

transient global amnesia [181]. 

 

Currently, CSD in the nervous system can be triggered using high-frequency 

electrical nerve stimulation (10-100 Hz, 20- 60 seconds) [182], chemical injury evoked 

by local pressure ejection of glutamate and gamma-aminobutyric acid (GABA) [183], 

ouabain [184], benzolamide [185], or 4,4’-Diisothiocyanostilbene-2, 2’-disulfonic acid 

(DIDS) [186].  A pH electrode is placed in the cell medium to measure pH changes.  

However, the ability to visualize targeted and site- specific (as opposed to global) pH 

changes external to the neurons has been lacking.   
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In our laboratory, we focused in recent years on the synthesis of phospholipid-

coated particles, called lipobeads, and their use as submicrometric fluorescence sensors. 

The phospholipid membrane formed on the surface of the polystyrene core is 

biocompatible and provides the protection for the sensing fluorophore from the 

surrounding environment.  It also minimizes leakage of indicators into cells when the 

particles are used for extracellular measurements.  The new sensing particles with cell-

like lipid bilayer surface similar to natural cells combine complementary advantages of 

liposomes and polymeric beads. Unlike other particle-based sensors the use of 

phospholipid coating enables the stable immobilization of hydrophilic and hydrophobic 

indicators to the particles. To date, phospholipid coated nanoparticles, with pH, and 

oxygen-sensing capabilities were fabricated and applied for intracellular measurements in 

murine macrophages. [187-188].  The technique is highly versatile since it is possible to 

incorporate biomolecules such as antibodies, enzymes, and receptors into the membrane 

of the particles and use them as selective and sensitive biosensors. These types of 

lipobeads could be used to trace site-specific physiological events in neurons and other 

cells, and provide a novel technique for presenting growth, differentiation, and survival 

factors.   

 

In this chapter, the fabrication of pH sensing lipobeads with cellular targeting 

capability towards neuron cells is described. The lipbeads are labeled with Succinyl 

Concanavaine A (Succ. Con A), a lectinic protein that binds specifically to α-D- 

Mannose on the external membrane of neurons [189]. While these lipobeads attached to 

cell surface areas as well as the plate area covered with matrigel, many beads aligned 



 

 

90

along the neuronal processes and attached to the cell soma.   The small size of these 

sensors, combined with the technique to target the lipobeads to the neuronal surface, 

provide an important advancement in visualizing extracellular pH changes during cortical 

spreading depression in neuron cells.  

 

5.2. Specific Experimental and Technical Details 

 
a) The detecting system 

A 460/50 nm band-pass excitation filter, 500 nm dichroic mirror, and 515 nm 

long pass emission filter are used to ensure spectral imaging purity. An exposure time 

of0.3 second is used to acquire the fluorescence spectra of the lipobeads. Excitation 

and emission spectra are carried out using a PTI international (model QM-1) 

fluorimeter, equipped with a 75-W continuous Xe arc lamp as a light source. 

 

b) Synthesis of pH sensing lipobeads  

The synthesis was carried out using the following procedure:  Four milligrams 

of polystyrene microspheres 1.6 µm in diameter were dispersed in 100 µl of 

ethanol/hexane (1:1 v/v).  A 50 mM lipid stock solution was prepared with a 5:4:1 

molar ratio of DMPC, cholesterol, and DP in chloroform.  250 µl of the lipid solution 

and 10µl of 5 mM fluorescein - DHPE in chloroform were added to 100 µl of 

microsphere suspension.  The mixture was then sonicated by using a 47 kHz 

Bransonic sonicator for 15 minutes, held at room temperature for 2 hours, and then 

dried under nitrogen overnight.  The dried phospholipid microsphere sample was then 

resuspended in 1 ml of phosphate buffer pH 7.0 and sonicated for 15 minutes.  0.25 
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mg / ml of Succ. ConA (final concentration) was then added to the resulting lipobead 

suspension and the whole mixture gently stirred for 4 hours to ensure the absorption 

of lectin molecules onto/into phospholipid membrane on the beads.  Free unbound 

lectin molecules, excess phospholipid, and unreacted microsphere particles were 

removed by centrifugation (2600 rpm, 15 minutes).  The coated lipobeads with Succ. 

Con A were thus collected at the bottom of a glass centrifuge tube while the 

supernatant and unreacted beads were discarded.  Succ. Con A incorporated lipobeads 

were suspended in 1 ml of phosphate buffer (pH 7.0) and stored in glass vials covered 

with aluminum foil at 4° C until use.   

 

c) Immobilization of lipobeads on the surface of chambered coverglass for pH 

sensitivity measurements  

To immobilize the lipobeads, a chambered coverglass was dipped in 70% 

ethanol/water for 15 minutes.  The chamber was dried in a 600C oven.  The 

chambered coverglass was incubated in a 200µl solution of 10 % poly-L-lysine for 2 

hours. It was then drained and left to dry at room temperature overnight. A 200µl 

lipobead suspension was then placed in the chambered coverglass for 4 hours. The 

unimmobilized lipobeads were then rinsed out with a phosphate buffer at pH 7.0.  

 

 

 

 

 



 

 

92

5.3. Results and discussion 

 
5.3.1. Choice of Indicator 

Fluorescein was chosen here because of its high absorptivity and emission 

quantum yield in the visible range of the electromagnetic spectrum. Fluorescein and 

many of its derivatives exhibit multiple, pH dependent ionic equilibria as shown in 

Figure 5.1. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1. Ionization equilibria of fluorescein  

 

Only the monoanion and dianion are fluorescent with quantum yields of 0.37 

and 0.93, respectively. Excitation of either the neutral or cationic species also 

produces emission from the anion with effective quantum yields of 0.31 and 0.18.  A 

further equilibrium involves formation of colorless, non- fluorescent lactone. The 

lactone is not formed in aqueous solution above pH 5 but may become dominant form 
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of neutral fluorescein in solvents such as acetone. The fluorescence emission 

spectrum of fluorescein or fluorescein derivatives, even in acidic solution, is 

dominated by the dianion, with only small distributions from the monoanion. 

In this work, fluorescein derivatized dihexadecanoylglycerophosphoethanolamine 

(fluorescein DHPE) is used (chemical structure shown in Figure 5.2).  Fluorescein 

DHPE is a membrane surface probe that is sensitive to both the local electrostatic 

potential and pH. Since the dye molecules of fluorescein are covalently attached to 

phospholipid, this will prevent the leakage of dye molecules from the sensing 

particles to the observed environment. This leakage is the most common problem in 

fluorescence sensors fabricated by physically entrapping hydrophilic sensing reagents 

like pH indicators in a polymer matrix. The fluorescein DHPE has excitation 

wavelength at 480nm and emission wavelength at 525 nm. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.2. Structure of phospholipid component, N-(fluorescein-5-thiocarbamoyl)- 1,2-
dihexadecanoyl-sn-glycero-3- phosphoethanolamine, triethylammonium salt (fluorescein DHPE). 
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5.3.2. Site-Specific Targeting of pH Sensing Lipobeads to Primary Rat Cortical 

Neuron Cells  

Lectins can be found in many organisms and are involved in a variety of cellular 

processes that depend on specific recognition of complex carbohydrates. Their 

preferential binding to neuronal tissue has been studied extensively [190-191]. We 

chose Succ. Con A, which favors binding to neurons, to enable cell specific 

extracellular pH measurements under conditions simulating cortical spreading 

depression. 1.6 µm sized Succ. Con A coated lipobeads with neuron cells in cell 

cultures were incubated for 4 hours. Unbound lipobeads were washed off the cover 

slips with 5 exchanges of medium with Locke’s solution.  Figure 5.3a shows a 

transmission phase image of particles attached to cells and the culture cover slip 

under baseline conditions. Figure 5.3b shows a fluorescence image of the particles 

attached to neuron cells. The images were taken using a 40X microscope objective 

and an exposure time of a 100ms.  Digital image analysis indicates that the ratio 

between the fluorescence intensity of individual lipobeads and the background noise, 

S/B, is ~ 40. The lipobeads bound to neuronal cellular structures, including individual 

neuronal processes and cell soma. The lectin-coated lipobeads adhered strongly to the 

neuronal cell surfaces, and remain attached to these cells during stimulus conditions.  
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Figure 5.3. Image of 1.6 µm pH sensing lipobeads attached to a confluent cell culture of 
neurons and glial cells. Light source: 100W mercury lamp. Excitation filter: 460/50; Dichroic 
mirror: 500nm; Emission filter: BA 515 nm. Objective: 40X with N.A= 0.9. Neutral density: 1.3. 
Exposure time: 0.1sec. The imaging conditions remain the same throughout the experiments 
unless stated otherwise.  
 
 
 
5.3.3. Photostability of pH Sensing Lipobeads 

The photostability of submicrometric sensors is always a concern because of the 

limited number of fluorophors in each individual particle-based sensor. To test the 

photostability of the fluorescent lipobeads, samples were placed on the microscope stage 

and illuminated continuously at 435-485 nm.  The fluorescence intensity of the pH 

sensing lipobeads decreased by about 3 folds during 15 minutes of continuous 

illumination (data not shown). To overcome this problem, we limited the exposure time 

and the number of exposures of the fluorescent lipobeads to the excitation light during 

our kinetic measurements. Figure 5.4 describes the photobleaching of pH sensing 

lipobeads with 3 different neutral density filters.  Following 30 exposures of 100 msec 

the fluorescence intensity of the pH sensing lipobeads decreased by 65% when a neutral 

density filter was not used to decrease the excitation intensity (curve a). The utilization of 

neutral density filters improves the photostability of the lipobeads. The fluorescence 
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intensity decreased by 40% (curve b), 20% (curve c), and 13% (curve d) when neutral 

density filters of 0.6, 1.0 and 1.3 were used to decrease the excitation intensity. For this 

reason, we used a 1.3 OD neutral density filter and a small number of exposure times to 

minimize the photobleaching problem.   

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Photostability of pH sensing lipobeads using different neutral density filters: (a) 0 

OD (b) 0.6 OD, (c) 1.0 OD, and (d) 1.3 OD. 

 

5.3.4. Calibration of the pH Sensing Particles  

 The pH sensing particles were calibrated against standard solutions of pH 4.5 to 9.  

The particles were immobilized to the negatively charged surface of a glass cover slip 

coated with poly-L-lysine.  The particles adsorb strongly to the poly-L-lysin surface 

allowing replacement of solutions over the immobilized lipobeads. To acquire the 

fluorescence spectrum of the lipobeads 5-10 lipobeads were positioned at the center of 

the field of view.  The field of view was imaged through a slit allowing only the 
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fluorescence of these lipobeads to be dispersed  by the attached spectrograph.  A CCD 

camera was used to collect the fluorescence spectra of these same lipobeads at different 

pHs.  We prepared two types of pH sensing lipobeads to characterize the effect of Succ. 

ConA on the sensitivity and stability of the pH sensing lipobeads, one type of lipobeads 

contained fluorescein-DHPE and lectins.  The second type of lipobeads contained Succ. 

Con A labeled with fluorescein (Succ, Con A –FITC).  Figure 5.5 shows a comparison 

between the pH dependence of the fluorescence intensity of lipobeads labeled with 

fluorescein-DHPE and unlabeled Con A (a) and Succ. Con A–FITC containing lipobeads. 

A 10% reduction in sensitivity was observed when Succ. Con A-FITC was used for pH 

measurements. This decrease in sensitivity could be attributed to steric or electrostatic 

hindrances when FITC is attached directly to the lectinic protein.   The dynamic range of 

both lipobead types was between pH 5 and 8.5 with a pH sensitivity of 0.1 pH units. The 

response time of the particles was less than 1 second.   

 

 

 

 

 

 

 

Figure 5.5. A calibraion curve of the pH sensing lipobeads (a) fluorescein DHPE and unlabeled 

lectin containing lipobeads, and  (b) Succ.Con A-FITC labeled lipobeads. 
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5.3.5. Response of pH Sensing Lipobeads in a Lipobead-Neuron Mixture Induced by 

Acetazolamide  

As previously mentioned the particles bound to neuron cellular structures, 

including individual neuronal processes and cell soma. During the stimulation, the 

lipobeads remained bound to cells. The lipobeads maintained their structural integrity and 

fluorescence intensity for more than 24 hours. To demonstrate the utility of these 

fluorescence-sensing particles we used them to monitor the extracellular pH when the 

cells were exposed to increasing concentrations of acetazolamide. Acetazolamide is a 

membrane – permeate carbonic anhydrase inhibitor that causes rapid inhibition of 

interstitial carbonic anhydrase activity leading to extracellular acidification and acidic 

spreading depression [192].  Similar results were previously observed when neurons were 

exposed to elevated concentration of KCl  [193].  Cell swelling occurred minutes after 

CSD was induced by a single exposure of acetazolamide. It is characterized by a 

complete breakdown of ion gradients and an uptake of extracellular fluid into the 

intracellular compartment. Exposure of cortical neurons to acetazolamide resulted in 

marked extra- and intracellular pH shifts. The fluorescence intensity at 525 nm decreases 

by about 50% indicating a pH decrease of 0.5 units. Figure 5.6 describes the temporal 

dependence of the pH of the sensing lipobeads during the induced cortical spreading 

depression process triggered by (a) 0, (b) 5, (c) 10, and (d) 20 mM acetazolamide.  A 

sharp drop in the fluorescence of the lipobeads was observed when the cells were 

exposed to acetazolamide. The acidic shift was prolonged and enhanced over time. There 

was no recovery of extracellular pH (pHe) following the removal of acetazolamide from 

the sample after 40 minutes.  These results are in agreement with previous studies that 
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use pH electrodes to quantify extracellular pH changes during CSD. However, the use of 

high-resolution digital fluorescence imaging and spectroscopy allows us to monitor in 

real time the pH response of individual primary cortical neurons to conditions of CSD.  

 

 

 

 

 

 

 

 

 

Figure 5.6. Temporal response of the pH sensing lipobeads during to the application of 
acetazolamide - (a) acetazolamide free solution  (b) 10 mM acetazolamide (c) 15 mM 
acetazolamide (d) 20 mM acetazolamide 

 

Figure 5.7describes the response of individual cells from 3 different wells to 

induced spreading depression caused by 10 mM of acetazolamide.  It is clearly seen that 

the cells response to acetazolamide varies greatly from cell to cell.  This contributes 

greatly to the large variation observed in the kinetic data.  Furthermore, the ability of the 

cells to recover from acidic spreading depression depends on the number of unaffected 

cells in a well. Cell cultures recovered from the acidic depression only when adjacent 

cells were not affected by the acidic conditions. Our results suggest that neuron cells 

cannot survive when isolated from other neuron cells or astrocytes in culture.  
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Figure 5.7. The response of cells from 3 different wells to induced spreading depression caused 
by 10 mM of acetazolamide.   
 

5.4. Summary  

In the present study we show that adhesive molecules like lectins are easily 

incorporated into the phospholipid membrane of lipobead-based sensors. The lectinic 

residues enable us to target the lipobeads selectively to neuron cells in culture.  The 

micrometric lectin-coated lipobeads adhered to the neuronal cell soma and processes, 

remaining attached to the neurons in culture for up to 13 days without slowing cell 

growth or affecting cell viability. The lipobeads remained stably attached to the cells 

under depolarizing conditions.  This is a very important observation, which suggests that 

lipobeads could not only be used for ion measurements of neuron functions but also as 

submicrometric carriers in future drug delivery applications. Our site-specific pH sensors 

show that exposing cortical neurons to mM concentrations acetozalamide causes 

depolarization of the membrane and a change in extracellular pH at the proximity of the 

cells of up to 0.5 pH units. The use of high resolution fluorescence imaging and 
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spectroscopy system allows us to monitor in real time dynamic pH changes during 

depolarization induced cortical spreading depression in rat cortical neurons. Our results 

are in agreement with previous work done on global extracellular pH change 

measurements during cortical spreading depression. However, with the current system, 

we can target where pH measurements are made and possibly reveal subpopulations of 

different responses in real time. Presumably, the choice of different lectin coatings and/or 

lipobead composition might assist in targeting different cell types.  The next chapter 

focuses on the use of sensing lipobeads to measure chemical changes at the neuronal 

surface, which is in which free zinc ion sensing fluorophors and confocal microscopy are 

employed to follow zinc ion bursts in cells. The approach is to synthesize new sensing 

particles where the hydrophobic indicator, which is zinc ion sensing fluorophor, is 

embedded in the lipid-like layer. The technique not only improves the chemical and 

photostability of particle-based fluorescence nanosensors, but also enables hydrophobic 

indicators to be used for sensing applications in aqueous samples. This new lipobead- 

based fluorescence sensing technique is simpler than currently used zinc ion detection 

methods cells during experiments that last more than 40 minutes. 
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CHAPTER SIX: A LIPOBEAD-BASED ZINC ION FLUORESCENCE PROBE FOR 
TARGETED RELEASE MEASUREMENT OF ZINC IONS FROM SINGLE NEURON 

CELLS                                        
 

6.1. Introduction 

Zinc is one of the most abundant metals in the body. It is required by all cells 

and plays a critical role in the control of gene transcription and metalloenzyme function. 

Zinc ions are required for brain development and are needed for various brain functions. 

In the central nervous system (CNS), zinc ions mediate cell-cell signaling. Moreover, 

zinc ions function as endogenous neuromodulators of several important receptors 

including the γ – aminobutyric acid (GABA) and N-methyl-D-aspartate (NMDA) 

receptors. Neurons containing zinc ions sequester zinc ions in presynaptic vesicles and 

release them in a calcium dependent manner.  These neurons are thought to form neural 

circuits of learning and memory functions. The CNS contains a high level of chelatable 

zinc ions, which are primarily localized in the synaptic vesicles of excitatory nerve 

terminals. Zinc ions are released from neurons by high K+ or electrical stimulation of 

the perforant path and then translocated from presynaptic sites into postsynaptic 

neurons [194-201]. 

 

Zinc ion release has been characterized as similar to that of neurotransmitters:  it 

is Ca2+- dependent and tetrodotoxin-sensitive [202].  One possible synaptic signaling role 

for zinc ions is revealed by its interaction with amino acid receptors such as the NMDA, 
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AMPA, and GABA subtypes [203-204].  While this and other evidence suggests that zinc 

ions may act in concert with neurotransmitters such as glutamate in the CNS, a specific 

role for synaptically released zinc ions in physiological and pathological processes 

appears complex, and has yet to be defined.  Zinc ions, which are synaptically stored in 

the brain, were shown to elicit neurotoxicity after brief exposure to cortical neurons in 

culture [205].  Moreover, the synaptic localization of zinc ions appears to have great 

negative potential as far as neuronal health when the release of zinc ions is uncontrolled 

as is occurred in stroke and epilepsy.   

   

Currently, zinc ions in the nervous system can be detected using classical 

histochemical methods, i.e. Timm’s stain [206], the sulphide-osmium method [207], and 

a fluorochrome based stain [208].  These histological methods cannot trace real-time 

events.  More recently, real-time zinc ion indicators have been developed and utilized in 

living neuron cells.  However, these have demonstrated zinc ion release by disappearance 

of an intracellular loaded dye [209], or by detecting global zinc ion release outside of the 

neuronal tissue [210].  The ability to visualize targeted and site-specific (as opposed to 

global) zinc ion release external to the neurons has thus been lacking.   

 

  In this chapter, the fabrication of submicrometric lipobead-based zinc ion 

fluorescence probes is described.  The small size of these sensors, combined with the 

techniques to attach the lipobeads to the neuronal surface, provide an important 

advancement in visualizing zinc ion synaptic release events.  
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6.2. Specific Experimental and Technical Details 

a) Synthesis of TSQ - immobilized lipobeads  

  Four milligrams of polystyrene were suspended in 100 µl   ethanol/hexane 

solution (1:1 v/v). 50 mM lipid stock solution with a 5:4:1 molar ratio of 

dimyristoylphosphatidylcholine, cholesterol, and dihexadecyl phosphate in 

chloroform. To prepare zinc-sensing lipobeads, the lipid mixture was added to 100 µl 

of 9.44 mM TSQ and sonicated for 15 minutes by using a 47 KHz Bransonic 

sonicator. The mixture was then added to the particle suspension and sonicated again 

for 15 minutes. The whole mixture was incubated at room temperature for 2 hours 

and dried under nitrogen at room temperature overnight. The dried suspension was 

then resuspended in 1 ml of phosphate buffer pH 7.0 and sonicated for 15 minutes. 

The suspension is incubated for 2 hours to allow the indicator and the phospholipid 

molecules to absorb onto the surface of the particles. During these coating steps, there 

is a simultaneous formation of liposomes formed in addition to the coated particles. 

These formed liposomes, free unbound TSQ molecules, and unbound microsphere 

particles were easily removed by centrifugation a few times at 1500 rpm, 15 minutes 

each. The coated lipobeads with TSQ molecules and phospholipids were collected at 

the bottom of the glass centrifuge tube while the supernatant and unbound beads were 

discarded.  The TSQ- incorporated lipobeads were resuspended   in 1 ml of phosphate 

buffer pH 7.0 and stored in a glass test tube covered with aluminum foil at room 

temperature until use.  
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b) Immobilization of lipobeads on the surface of chambered coverglass for zinc 

sensitivity measurements  

 To immobilize the lipobeads, a chambered coverglass (borosilicate, Nalge 

Nunc International) is dipped in 70% ethanol/water for 15 minutes. The chambered 

coverglass is dried by placing it in a 60 0C oven for 5 minutes. The chambered 

coverglass is then incubated in a 200µl solution of 10 % poly-L-lysine for 2 hours. It 

is then drained and dried in a 60°C oven for 1 hour. A 200µl lipobead suspension is 

then placed in the chambered coverglass for 3 hours. The unimmobilized lipobeads 

are then rinsed out with a phosphate buffer at pH 7.0.  

   c) Preparation of rat cortical neurons and cell culture plates for imaging  
 

     Primary cultures of rat cortical neurons were prepared and grown in neuronal 

culture medium as previously described in section 2.5.  200 µl of prepared lipobeads 

were added into the 2 ml of culture media already in the petri dish.  Coverslips were 

incubated with beads in CO2 incubators as above for 2 hours. Immediately before 

imaging coverslips, dishes were washed extensively (5 exchanges of 2 ml volume) 

with Locke’s solution pH 7.4, lacking MgCl2.  Coverslips were then imaged in the 

petri dish in 2 ml of Locke’s solution with an Olympus inverted microscope and a 

slow scan CCD. 

 

6.3. Results and Discussion 

6.3.1. Choice of Indicator 

The fluorescent molecular probe, N- (6-methoxy-8-quinolyl)-p- 

toluenesulfonamide (TSQ), was used as extrinsic fluorescence sensing probe for the 
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quantitative measurements of zinc ion release from the depolarization-induced release 

of zinc from rat cortical neurons. TSQ is selective for zinc ions in the presence of 

physiological concentrations of Ca2+and Mg2+ ions. TSQ has an excitation 

wavelength at 367nm and emission wavelength at 495 nm.   The incorporated TSQ 

molecules react with zinc ions to form a highly fluorescent complex, which has a 

stoichiometry of two dye molecules per metal atom (shown in figure 1.6) [211]. 

Although the probe itself is fluorescent, its fluorescent intensity is negligible relative  

to that of the Zn-complex. 

 

 

 

 

 

 

 

Figure 6.1. Zinc ion sensing dye and its complex (a) N- (6-methoxy-8-quinolyl)-p- 
toluenesulfonamide (TSQ) (b) Complex of TSQ with Zn (II). 

 
 
 

   TSQ has been used to measure Zn2+ levels in artificial lipid vesicles and live 

sperm cells by flow cytometry [212]. In these studies, the fluorescence yield of the 

TSQ- Zn2+ complex was shown to be much higher when bound to lipids than in 

aqueous solution.  
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                                       Prat, M.D. et al, Journal of Fluorescence, 1(4) (1991) 
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6.3.2. Zinc Ion Sensing Lipobeads in Aqueous Solution   

Figure 6.2. shows a fluorescence image of zinc ion sensing lipobeads. The TSQ-

embedded lipobeads show weak fluorescence in the absence of zinc ions.  When 

placed in a solution of 1 µM zinc ions the formation of a complex between zinc ions 

and TSQ ligands leads to about 10-fold increase in the fluorescence intensity of the 

lipobeads. The images are taken using a 40× microscope objective and an exposure 

time of a 100ms. Digital image analysis indicates that the ratio between the 

fluorescence intensity of individual lipobeads and the background noise, S/B, is ~ 40.  

The sensing lipobeads show a variation of 10% in the average signal intensity.    

 

 

 

 

 

 

Figure 6.2. Digital fluorescence image of 2.1µm zinc sensitive lipobeads. Light 
source: 100W mercury lamp. Excitation filter: D480/30X; Dichroic mirror: 500nm; 
Emission filter: BA 515nm. Objective: 20X with N.A= 0.5. Neutral density: 1.0. 
Exposure time: 0.5sec. The imaging conditions remain the same through the experiments 
unless otherwise stated. 

 

6.3.3. Calibration of the Zinc Sensing Particles 

  The particles were immobilized to the negatively charged surface of a glass cover 

slip coated with poly-L-lysine.  The particles adsorb strongly to the poly-L-lysine 

surface allowing replacement of solutions over the immobilized lipobeads. To acquire 

the fluorescence spectrum of the lipobeads 5-10 lipobeads were positioned at the 
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center of the field of view. The field of view was imaged through a slit allowing only 

the fluorescence of these lipobeads to be dispersed  by the attached spectrograph.  A 

CCD camera was used to collect the fluorescence spectra of these same lipobeads at 

different zinc ion concentrations. Zinc sensing lipobeads are added to either pH 7.0 

buffer or Locke’s buffer containing 2.3 mM CaCl2 to characterize selectivity of the 

zinc sensing lipobeads.  

 

 

 

 

 

 

 

 

 

Figure 6.3.  A spectrum of zinc sensing concentration dependence of TSQ lipobeads.    
Concentrations of zinc ions (a) 0, (b) 0.01, (c) 0.10, and  (d) 8.40 µM. 

  

 Figure 6.3 describes the fluorescence spectra of solutions of various zinc ion 

concentrations and TSQ containing lipobeads. The fluorescence increase was 

measured using spectrofluorometry and digital fluorescence imaging microscopy. The 

excitation light was at 360 nm and the emission was observed at 480 nm. The peak 

maxima of the fluorescent lipobeads are similar to that of free TSQ in solution.  The 

fluorescence of TSQ increases with increasing zinc ion concentration due to the 
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formation of a Zn (TSQ)2 complex. A 4-factor of magnitude dynamic range between 

10 nM and 10 µM is observed. Figure 6.4 shows a comparison between the zinc ion 

dependence of the fluorescence intensity of lipobeads. As shown in Figure 5.4, TSQ- 

lipobeads show high sensitivity to Zn2+ with a linear dynamic range of 0.01 - 2 µM. 

The lipobeads are selectively to zinc ions and did not respond to calcium ions at 

physiological levels. The measured limit of detection is 10 nM.  

 

 

 

 

 

 

 

 

 

 

Figure 6.4. A zinc calibration curve of the zinc sensing lipobeads in pH 7.0 buffer       
and in Lockes’ buffer containing 2.3 mM CaCl2. 

 

6.3.4. Photostability of Zinc Sensing Lipobeads  

The photostability of submicrometric sensors is always a concern because of the 

limited number of fluorophors in each individual particle-based sensor. To overcome 

this problem, we limited the exposure time and the number of exposures of the 

fluorescent lipobeads to the excitation light during our kinetic measurements. Figure 
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6.5 describes the photobleaching of zinc sensing lipobeads with 2 different neutral 

density filters.  Following 30 exposures of 100 msec the fluorescence intensity of the 

zinc sensing lipobeads decreased by ~60% when a neutral density filter of 1.0 was 

used (curve b) to decrease the excitation intensity. The utilization of neutral density 

filters increased the photostability of the lipobeads. The fluorescence intensity 

decreased by ~ 13% (curve a) when neutral density filters of 1.3 was used to decrease 

the excitation intensity. For this reason, we used a 1.3 OD neutral density filter and a 

small number of exposure times to minimize the photobleaching problem.  No 

substantial photobleaching was seen under these conditions. 

 

 

 

 

 

 

 

 

 

Figure 6.5 Photostability of zinc sensing lipobeads using different neutral density 
filters: (a) 1.3OD, and (b) 1.0 OD 

 

 

 

 

 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 5 10 15 20 25 30 35

Fl
uo

re
sc

en
ce

 ( 
ar

b.
 u

ni
ts

)

Times exposure

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 5 10 15 20 25 30 35

Fl
uo

re
sc

en
ce

 ( 
ar

b.
 u

ni
ts

)

Times exposure  

(a

(b



 

 

111

6.3.5 Selectivity of Zinc Ion Sensing Lipobeads   

            The response of the zinc ion sensing particles to increasing zinc, calcium and 

magnesium ion concentrations is described in Figure 6.6.  

 

 

 

 

 

 

 

 

 

Figure 6.6. Selectivity of zinc sensing lipobeads 

 

The fluorescence intensity of the lipobeads increases by 6 folds in a 5 µM zinc 

ion solution compared to zinc ion free solution.   Similar levels of calcium and 

magnesium ions increase the fluorescence intensity by about 30%.  More importantly 

the effect of these ions is saturated at these concentrations.  This observation is of 

particular importance since zinc ion release measurements from neuron cells in 

culture are conducted in a Locke’s buffer containing mM levels of calcium ions.   
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6.3.6. Response of Zinc Sensing Lipobeads in a Lipobead/Liposome Mixture  

 To demonstrate the utility of these zinc-sensing particles, these zinc sensing 

lipobeads were used to monitor the release of zinc ion from liposomes encapsulating 

ZnCl2. The response of TSQ lipobeads to liposomes containing zinc ion in aqueous 

solution is shown in Figure 6.7.  The liposomes are lysed with a detergent to release 

the zinc ion content. The fluorescence increase, resulting from leaking of zinc ion 

from liposomes, is measured as a function of time. The fluorescence of the lipobead 

increases up to nearly 4 folds right at the time of adding zinc containing liposome 

solution. This shows that the technique has the sufficient sensitivity to monitor the 

secretion of zinc ions from cells.   

 

 

 

 

 

 

 

 

 

Figure 6.7. Fluorescence response of zinc sensing lipobeads upon the addition of zinc 
containing liposome solution over the period of time. 

 

6.3.7. Site Specific Zinc Sensing Lipobeads Targeting to Rat Cortical Neurons  

In a previous chapter, the attachment of lectins to micrometric phospholipid 

coated polystyrene beads has been applied successfully.  To demonstrate the ability of 
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lectins to attach the zinc ion sensing particles to neuron cells, these 1.6 µmeter zinc 

sensing lipobeads, which embedded glycinemax manose binding lectin, were 

incubated with neuron cells for 2 hours under cell culture conditions. Unbound beads 

were washed off cover slips with 5 exchanges of medium with Locke’s solution.  

Transmission phase images of the particles attached neuron cells are shown in Figure 

6.8.  Figure 6.8 a shows a phase image of beads attached to cells and the culture cover 

slip.   Figure 6.8 b shows a digital fluorescence image of the beads.   

 

 

 

 

 

 

Figure 5.8. Phase and digital fluorescence images of TSQ-Glycine max lipobeads/ rat 
cortical neuron mixture. Light source: 100W mercury lamp. Excitation filter: BP 330-
385; Dichroic mirror: 400nm; Emission filter: BA 420 nm. Objective: 40X with N.A= 
0.9. Neutral density: 1.3. Exposure time: 0.1sec 

 

While it is possible to target neurons with phospholipid coated polystyrene 

particles containing lectins, the physical attachment of lectins to the phospholipid 

membrane of the particles has been inconsistent.  

 

6.4. Summary  

In the study, the water-insoluble dye, N- (6-methoxy-8-quinolyl)-p-

toluenesulfonamide (TSQ) and adhesive molecules are easily incorporated into the 
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phospholipid membrane. The zinc sensing lipobeads could be used to measure zinc ion 

concentrations in volume limited aqueous samples and to monitor the release of zinc ions 

from neurons in culture.   These studies prove that particle-based sensors have the 

capability to quantitatively monitor cellular release events.  Furthermore, this new 

measurement technology is unique since the ion probe is positioned at or near the site of 

release where the ion concentration is much higher than the ion concentration in the 

diluted bulk solution.  Our experiments show that the attachment of lipobeads to the cells 

does not affect their viability for up to 14 days.  This is a very important observation, 

which suggests that lipobeads could not only be used for ion measurements of neuron 

functions but also as submicrometric carriers in drug delivery applications.  Experiments 

to this end are currently being conducted in the laboratory. 
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CHAPTER SEVEN: CONCLUSIONS AND DISCUSSIONS 

 

The advantages of using fluorescence detection, rather than absorbance methods, 

in medical testing, biotechnology, and drug discovery include high sensitivity and signal 

specificity. Combined with a variety of optochemical probes and sensors, imaging 

fluorescence microscopy has become a primary choice for single cell analysis.  A 

fluorescence bio/chemical sensor designed for single cell measurements must be highly 

compatible with the cellular environment, show low cytotoxicity, and high chemical 

stability as well as photostability.  

During the last four years I introduced a new analytical sensing technology that is 

based on fluorescent liposomes. The main advantages of liposomes include their 

biocompatibility, ability to effectively encapsulate hydrophilic or hydrophobic 

fluorescent probes and the sensitivity of their fluid-like membrane to temperature and pH. 

Chapter 3 presents a new method for physical immobilization of polar fluorescence dyes 

in a sensing support.  The method is based on the immobilization of fluorescence dye 

encapsulating liposomes in a sol-gel film of micrometer thickness. This is the first 

example of liposome- based sensors. The encapsulation of the dye molecules in the 

liposomes effectively increases the molecular dimensions of the sensing reagent, thus 

prevents its leakage from the matrix support.  This chapter describes the analytical 

properties of a pH sensor fabricated by immobilizing carboxyfluorescein-encapsulating 

liposomes in a sol-gel thin film.  The sensor shows excellent stability with respect to dye 
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leaking, which in turn leads to high reproducibility and sensitivity of about 0.05 pH units.  

The linear dynamic range of the sensor is between pH 6 and 7.5 and its response time is 

at the sub-seconds time scale. Chapter 4 describes the development of calcium ion sensor 

as another example of a liposome-based biosensor. It employed a calcium ion binding 

protein for recognition and a sensing fluorophore for signal transduction. To fabricate the 

sensor, Alexa-488 labeled calmodulin (CaM) molecules were encapsulated in the 

membrane of liposomes. Upon binding calcium ions, CaM shows large structural 

rearrangements from the “ closed” conformation (the two helices of each hand are almost 

anti-parallel) to the “open” conformation (the two helices are more perpendicular).   This 

conformation change strongly affected the fluorescence intensity of the fluorophore 

Alexa-488 that was covalently bound to calmodulin.  Liposomes containing Alexa-

labeled calmodulin show sensitivity to calcium ions in the micromolar range. The 

calcium ion response of the liposomes was 4 folds higher than the calcium ion response 

of Alexa-labeled calmodulin in solution.  This was attributed to the increasing stability of 

calmodulin when embedded in the liposome membrane. Unlike in commonly used 

fluorescence indicators, physiological levels of magnesium ions did not interfere with the 

calcium ion response of Alexa-CaM containing liposomes. It was not possible to use the 

fluorescence sensing liposomes for cellular measurements due to their instability in the 

cellular environment. The lipsomes fuse with the neurons and released their content 

inside the cell.  This led to the development of fluorescence sensing lipobeads. 

 To overcome the high leakage rate and poor stability in the cellular environemt, 

phospholipid-coated particles lipobeads are synthesized and used as particle-based 

fluorescent sensors in single cell measurements. Lipobead- based sensors are for the first 
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time designed to focus on the improvement of liposome- based sensors. The new hybrid 

sensing particles with cell-like lipid bilayer surfaces similar to natural cells combine 

complementary advantages of liposomes and polymeric beads. The use of phospholipid 

coating enables the stable immobilization of hydrophilic and hydrophobic indicators to 

the particles and provides the protection of the dyes from the complex cellular 

environments. The technique is highly versatile since it is also possible to incorporate 

biomolecules such as antibodies, enzymes, and receptors into the membrane of the 

particles and use them as selective and sensitive biosensors.  These unique particles could 

be applied to measure the level of intracellular ion flux in a non-invasive manner with 

high reproducibility, selectivity and sensitivity. The newly prepared fluorescent sensing 

lipobeads show significant improvement in mechanical stability and size homogeneity 

compared to liposomes. 

Chapter 5 describes the miniaturization of pH sensitive lipobeads and the 

applications of these fluorescence lipobeads as sensors in targeted, real time kinetic 

studies of extracellular pH changes in cortical neuron cells  under conditions simulating 

cortical spreading depression.  Succinyl Concanavalin A (Succ. Con A), which is a 

carbohydrate-specific binding membranal protein, was incorporated into the phospholipid 

membrane of the lipobeads and used to target the lipobeads to the membrane of neuron 

cells. The unique hydrophobic core-hydrophilic shell structure of the lipobeads enabled 

stable immobilization of the protein in the lipobead membrane while maintaining the 

mono-dispersity of the particles in aqueous solution. The lipobeads were highly 

biocompatible and did not cause cell death or structural changes to the cells even during 

long experiments that lasted up to 14 days.  The biocompatibility of the lipobeads is 
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attributed to the similarity between the phospholipid membranes of the lipobeads to the 

cell membrane. Site-specific pH sensors show that exposing cortical neurons to 

acetazolamide causes a depolarization of the membrane and a large change in 

extracellular pH at the proximity of the cells of up to 0.3-0.5 pH units.  It is importantly 

noted here that lipobead based sensors revealed differences in the response of different 

neurons to conditions of chemical injury. This is the first time that an analytical technique 

shows a clear difference in the response of different neurons to injury like conditions. 

Chapter 6 describes the fabrication of zinc sensing lipobead-based sensors. The 

micrometer -sized sensor was prepared by immobilizing N- (6-methoxy-8-quinolyl)-p-

toluenesulfonamide (TSQ) to the phospholipid coating of the particles. The incorporated 

TSQ molecules react with zinc ions to form a highly fluorescent complex. The 

fluorescence intensity of these lipobeads is zinc ion concentration dependent.  TSQ-

lipobeads were used effectively to monitor the release of zinc ions from liposomes. TSQ- 

lipobeads show high sensitivity to Zn2+ with a dynamic range of 0.1 - 2 µM. The 

lipobeads are selective to zinc ions and did not respond to calcium ions at physiological 

levels. The application of the zinc ion sensing lipobeads for zinc ion release from neuron 

cells proved to be problematic because of the very small number of zinc containing 

vesicles in prenatal primary neurons and neuron cell-lines. And also the unavailability of 

zinc containing neurons prevented the application of zinc ion sensitive lipobeads for real 

time zinc ion release measurements in neuron cell cultures. Currently the study is to focus 

on using the lipobeads to monitor zinc ion release from preloaded cells. 

These studies show that compared to other sensing techniques, such as electrodes 

or particle-based sensors, lipobeads are non-invasive, and biocompatible because of the 
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unique phospholipid membrane. The cytotoxicity of the dye, and the unwanted 

interactions between the dye and cellular interfering species are minimized.  However, 

there are several limited factors that need to be addressed for increasing the precision and 

accuracy of the quantitative power of miniaturized sensors. Lipbead based fluorescence 

sensors need to be miniaturized to nanodimensions. Size reduction of lipobeads down to 

nanometer scale will increase the spatial resolution of these sensors. This also implies 

that miniaturization of the sensors to nanometer scale would result in a decrease in the 

number of sensing fluorophores available for sensing per particle, which translates to 

lower signal to noise ratio and limited analytical performance. Previous studies that 

utilized nanometric particle-based sensors like PEBBLEs in cellular applications were 

based on the incorporation of a large number of particles (hundreds and more) into cells. 

The signal was measured from an ensemble of particles rather than from individual 

particles. This is remaining a problem, particularly because the concentration of the 

sensing dye in the particles cannot be higher than the self-quenching limit of the sensing 

dyes.  It is possible to compensate for the loss of fluorophores due to miniaturization by 

increasing the excitation power. However, increasing the excitation power will lead to a 

rapid photobleaching of the sensor since the photostability of the organic sensing dyes is 

limited. In the future, this could be done with a significant improvement of the imaging 

instrumentation such as a CCD camera with highly improved sensitivity and signal to 

background ratio, electronic shutters to enable illumination of the observed lipobeads 

only during actual CCD exposure times, and a laser port to enable illumination of the 

sample with laser beams to enhance the fluorescence signals obtained from the beads. A 

laser based digital imaging fluorescence microscope will also provide a higher precision. 
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The reason is that there is about ~5% fluctuation of the light source, the mercury lamp. 

This might add to the error found in the data. Difficulties in separating between the 

nanometric lipobeads and the excess of phospholipids and fluorophores used to coat the 

polystyrene particles might be encountered during the process of nanometric lipobead 

synthesis.  Increasing the speed of centrifugation and lengthening the centrifugation time 

degraded the structure of the lipobeads due to excessive heat and led to their aggregation. 

Improvement in centrifugation conditions will include the use of a temperature-controlled 

centrifuge.  This will enable the use of longer centrifugation times at low speed and low 

temperature to precipitate the nanometric size lipobeads. 

 Improvement of the lipobead system will also include the covalent attachment 

between the phospholipid membrane, indicator, and the core surface of the particles to 

increase the stability of the sensors. It is also desirable to control the synthesis in order to 

achieve more homogenous particle formulations, as well as to develop better data 

processing techniques since the large number of observed particles would generate huge 

amount of data in 5 dimensions (x, y, z, intensity, spectrum). 

Lastly, it is sometimes unreliable to use fluorescence intensity-based 

measurements for variety of reasons. The sensing method is based on the fluorescence 

intensity of the probe changing in response to the analyte.  Changes often occur in 

fluorophores due to quenching by oxygen or other interfering substances.  Also due to 

inherent chemical and poor photostability problems of organic fluorophores, the intensity 

based sensing sensors are limited in their applicability in the cellular environment to 

relatively large changes in analyte concentration that lead to fluorescence signal changes 

of at least 10%. One approach is to replace the organic fluorophors with luminescent 
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semiconductor nanoparticles, quantum dots. Luminescent quantum dots offer significant 

advantages over organic fluorophors such as higher emission quantum yield, higher 

chemical and photostability.  Another approach is to design new mechanisms for signal 

generation that are not based only on intensity measurements such as fluorescence 

resonance energy transfer (FRET). The development of FRET based lipobeads is under 

construction in our laboratory. In FRET sensing mechanisms, the signal transduction 

generation is based on the use of a biomolecular recognition component to selectively 

bind the analyte of interest to the beads and on FRET between donor and acceptor 

fluorophores. In this case, the sensor’s response would not depend on direct interaction 

between an analyte and an analyte selective fluorophore.  The response of the sensor will 

be given as a ratio between the donor and acceptor emission.  
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APPENDIX 
 

GLOSSARY OF TERMS 
 
AraC: Cytosine (beta)-D-arabinofuranoside 

CNS: Central nervous system 

CSD: Cortical spreading depression 

DMPC: Dimyristoyl phosphatidylcholine  

 DP: Dihexadecyl phosphate  

EGTA: Ethylene glycol bis(2-aminoethyl ether)-N,N,N'N'-tetraacetic acid 

FAD: Flavin adenine dinucleotide 

Fluorescein DHPE: N- (fluorescein-5-thiocarbamoyl)- 1,2-dihexadecanoyl-sn-glycero-3-  

        phosphoethanolamine, triethylammonium salt  

MOPS: 4-morpholino-propanesulfonic acid 

NADH: Nicotinamide adenine dinucleotide reduced form 

PBS: Phosphate buffered saline 

Succ. Con A: Succinyl-concanavalin A 

TMOS: Tetramethylorthosilicate 

TSQ: N- (6-methoxy-8-quinolyl)-p-toluenesulfonamide  
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