
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

Summer 8-4-2011

Enhancing the Verification-Driven Learning Model for Data Enhancing the Verification-Driven Learning Model for Data

Structures with Visualization Structures with Visualization

Yashwanth Reddy Kondeti
University of New Orleans, ykondeti@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/td

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Kondeti, Yashwanth Reddy, "Enhancing the Verification-Driven Learning Model for Data Structures with
Visualization" (2011). University of New Orleans Theses and Dissertations. 461.
https://scholarworks.uno.edu/td/461

This Thesis-Restricted is protected by copyright and/or related rights. It has been brought to you by
ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis-Restricted in any
way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you
need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative
Commons license in the record and/or on the work itself.

This Thesis-Restricted has been accepted for inclusion in University of New Orleans Theses and Dissertations by
an authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F461&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.uno.edu%2Ftd%2F461&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/461?utm_source=scholarworks.uno.edu%2Ftd%2F461&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Enhancing the Verification-Driven Learning Model for Data Structures with Visualization

A Thesis

Submitted to the Graduate Faculty of the

University of New Orleans

in partial fulfillment of the

requirements for the degree of

Master of Science

In

Computer Science

by

Yashwanth Reddy Kondeti

B.E., SRM University, India, 2008

August, 2011

ii

ACKNOWLEDGEMENT

Sincere thanks to my parents and all my friends who gave me so much love and encouragement.

I would like to thank Dr. Shengru Tu for his excellent guidance and valuable feedback without

which this thesis would not have been possible. I would also like to extend thanks to Dr.

Christopher Taylor and Dr. Adlai DePano for being part of my thesis defense committee.

iii

 Table of Contents

List of Figures ..v

List of Tables ... viii

Abstract .. ix

1. Introduction ...1

2. Background ...4

 2.1 Data Structures ..4

 2.2 Adobe Flex ..4

 2.3 MXML ..5

 2.4 Action Script ...5

 2.5 Adobe Flash Builder ...5

 2.6 Adobe Flash Player ...6

 2.7 Flash Professional CS5 ...6

3. Teaching Data Structures with Operational Animations and Code Visualization7

 3.1 Lab Design ..7

 3.1.1 Animation and Code Visualization for Array ..7

 3.1.2 Animation and Code Visualization for Linked List ...9

 3.1.3 Animation and Code Visualization for Doubly-Linked List12

 3.1.4 Animation and Code Visualization for Circular-Linked List13

 3.1.5 Animation and Code Visualization for Stack ..15

 3.1.6 Animation and Code Visualization for Binary Tree Traversal17

 3.1.7 Animation and Code Visualization for Hash Table ...18

 3.1.8 Animation and Code Visualization for AVL Tree ...19

 3.2 Visualizing Program Execution by Highlighting Code24

4. Application of Animations in Learning Tool ...26

 4.1 Leaning Cases ...27

iv

 4.2 Code Highlighting for Bug Identification ..66

5. Learning Tool Implementation ..69

6. Discussion and Conclusion ...73

References ..74

Vita…… ...75

v

List of Figures

Figure1 ..8

Figure2 ..9

Figure3 ..10

Figure4 ..11

Figure5 ..12

Figure6 ..13

Figure7 ..14

Figure8 ..15

Figure9 ..16

Figure10 ...17

Figure11 ...18

Figure12 ...19

Figure13 ...20

Figure14 ...21

Figure15 ...22

Figure16 ...23

Figure17 ...24

Figure18 ...25

Figure19 ...31

Figure20 ...31

Figure21 ...32

Figure22 ...33

Figure23 ...33

Figure24 ...34

Figure25 ...35

vi

Figure26 ...35

Figure27 ...36

Figure28 ...36

Figure29 ...37

Figure30 ...38

Figure31 ...38

Figure32 ...39

Figure33 ...40

Figure34 ...41

Figure35 ...41

Figure36 ...42

Figure37 ...43

Figure38 ...44

Figure39 ...45

Figure40 ...46

Figure41 ...46

Figure42 ...47

Figure43 ...47

Figure44 ...47

Figure45 ...48

Figure46 ...49

Figure47 ...50

Figure48 ...51

Figure49 ...51

Figure50 ...52

Figure51 ...52

Figure52 ...52

vii

Figure53 ...53

Figure54 ...54

Figure55 ...55

Figure56 ...55

Figure57 ...56

Figure58 ...57

Figure59 ...58

Figure60 ...59

Figure61 ...60

Figure62 ...60

Figure63 ...61

Figure64 ...61

Figure65 ...62

Figure66 ...64

Figure67 ...65

Figure68 ...66

Figure69 ...67

Figure70 ...67

Figure71 ...70

Figure72 ...71

Figure73 ...72

viii

 List of Tables

Table 1 ..27

Table 2 ..28

ix

Abstract

The thesis aims at teaching various data structures algorithms using the Visualization Learning

tool. The main objective of the work is to provide a learning opportunity for novice computer

science students to gain a broader exposure towards data structure programming. The

visualization learning tool is based on the Verification-Driven Learning model developed for

software engineering. The tool serves as a platform for demonstrating visualizations of various

data structures algorithms. All the visualizations are designed to emphasize the important

operational features of various data structures. The learning tool encourages students into

learning data structures by designing Learning Cases. The Learning Cases have been carefully

designed to systematically implant bugs in a properly functioning visualization. Students are

assigned the task of analyzing the code and also identify the bugs through quizzing. This

provides students with a challenging hands-on learning experience that complements students’

textbook knowledge. It also serves as a significant foundation for pursuing future courses in data

structures.

Keywords: Data Structures, Visualization Learning tool, Verification-Driven Learning Model,

Learning Cases.

1

1. Introduction

Learning programming concepts is often considered very challenging for novice students [1].

High attrition rate among students in data structures courses is a common phenomenon in

computer science programs. The challenge is largely because students often fail to understand all

the aspects of the algorithms and intricate code that implements them. In learning of data

structures, it is imperative that students understand the abstract models and the algorithms in an

intuitive and tangible manner at their initial learning stage.

The target group of people for this thesis is the computer science students enrolled in the

data structures courses. Our selection of this target group is based on the fact that learning data

structures is important as they take a pivotal position in programming. Textbooks are an

important source to students that explains the working functionality of programming concepts

such as data structures. However, recent studies have found that the usefulness of a textbook in

exposing the entirety of a concept matter is very limited [2]. Students are often not able to

identify the important features in programming for data structures. To prevent this, students need

additional help in learning data structures.

Hands-on activities are regarded as an efficient means in helping students comprehend

the programming concepts. Studies show that students who are encouraged to attend lab courses

along with the classroom lectures have performed well in a definitive testing environment [3].

These lab courses use animations and other visual representations that bring the abstract concepts

of the object oriented programming to the fore [3].

Our project is based on teaching data structures with the help of code visualization and

operational animations. Failures in understanding the object-oriented programming occurs

because of two major reasons: Misunderstanding of the concept itself and misunderstanding of

2

the program code [4]. We believe that learning data structures poses similar challenges. To

develop an efficient learning platform, it is necessary that these two issues are addressed.

Students are given proper user interfaces to interact with the programs, and focus on the

important aspects of the data structures that would otherwise be overlooked in just reading. To

address the aforementioned issues, we have implemented learning cases based on the

verification-based learning model for the students.

 The project has enhanced the Verification-Driven learning model (VDL) with high-

quality animations and code visualizations. The basic VDL learning procedure [5] has been

adjusted to the process given below:

Step 1: Students begin the process by reviewing the functionalities of the data structures and

understanding the goal of the operations.

Step 2: Students interact with the program by playing the animations of operations provided.

These operations are based on a set of data structures.

Step 3: Students go through the task of analyzing the code and understand the code in an

implementation point of view. They will be able to relate the code implementation to the

actions of the animations.

Step 4: Students are challenged by multiple-choice questions that require the students to identify

the bugs that are deliberately planted in the program.

Step 5: Students will make use of the code logic visualization provided along with the animations

to identify the bugs.

3

With a successful implementation of the aforementioned process of steps, students will

be able to identify the extent to which they understand the concepts implemented in the learning

model. A VDL model for data structures supported by visualization consists of the following

aspects. This list is a customization of the VDL model for general software engineering [5].

1. A working implementation of the set of subject data structures.

2. An explanation of the algorithms of the subject data structures.

3. Animations that visualize the specifications of data structures and their functionalities.

4. An interactive user interface that controls the animations.

5. Test cases that encourage the students to do critical thinking and analyze the algorithms

implemented by the code

6. Multiple-choice questions that challenge the students’ critical thinking.

4

2. Background

A brief description of the concepts, tools and development environments utilized in the project

are given in this chapter.

2.1 Data structures

A data structure is a particular way of organizing data in a memory so that it can be used

efficiently. Data structures are the foundation in programming and very often used as organized

means of storing data in software design. Only a few data structures are involved in disk storage.

For example, B-Trees are usually used for the implementing databases.

Array, Linked List, Stack, Hash Map, Heap, Queue, Tree, etc., are the most common

used data structures in programming. In a broader sense, data structures are categorized under

two types: Linear and Non Linear data structures. For the purposes of demonstration of

animation and learning cases, we have implemented the animations for the following data

structures: Array, Linked List, Doubly-Linked List, Circular-Linked List, Stack, Queue, Binary

Tree, AVL Tree and Hash Table.

2.2 Adobe Flex

The Flex SDK in the visualization learning tool is used to provide a launching platform for both

flex and flash enabled animations. The entire application layout and design is carried out through

Flex.

Adobe Flex is a free, open source framework for building highly interactive, expressive

web applications that deploy consistently on all major browsers, desktops, and operating

systems. Flex includes a rich component library for creating rich Internet applications (RIAs).

Flex applications considerably reduce the network burden and also provide fast rendering ability

to the web applications. In a flex application, the client is always bound to the server. This makes

5

it easy for the flex applications to render the web content. Typical HTML applications consist of

multiple pages and as a user navigates between them, the application data must be passed along

so the application itself (the collection of pages and functionality it consists of) can maintain

state.

In contrast, Flex applications are stateful. A Flex application is embedded in a single

HTML page that the user does not leave and is rendered by Flash Player. The Flex application

can dynamically change views and send and retrieve data asynchronously to the server in the

background, updating but never leaving the single application interface.

2.3 MXML

MXML is a convenience language which provides an alternate way to generate ActionScript

using a declarative tag-based XML syntax. When an application is compiled, the MXML is

parsed and converted to ActionScript in memory and then the ActionScript is compiled into byte

code with swf file format.

2.4 Actionscript

Actionscript is used to write the design and layout implementation logic in Flex. Also, it is used

to manipulate the timing aspects of the animation in the Flash Professional CS5. ActionScript

code is compiled to swf file format which is then loaded in to the browser of the client and

played using Adobe Flash Player.

2.5 Adobe Flash Builder

Flash Builder 4.0 is used to create the flex background for the learning tool. The use of Flash

Builder for the flex applications makes it very convenient to manage, deploy and debug the flex

project during the development process.

6

2.6 Adobe Flash Player

Adobe Flash Player is a browser plugin that is required to deploy the Flex/Flash swf files on the

client side. It is an Active X control that has a much richer object model and rendering engine

that allows developers to include more highly expressive and interactive content in web

applications.

2.7 Flash Professional CS5

Adobe Flash Professional CS5 is used to design the animations necessary for the concept

visualization of the data structure functionalities. The compiled swf files are deployed into the

flex application layout to run the animations.

http://www.adobe.com/products/flashplayer/

7

3. Teaching Data structures with Operational Animations and Code Visualization

The primary objective of the animations is to illustrate the algorithms of data structures in a

visually appealing and intuitive manner. The final goal is to provide students with a sound

knowledge through concrete examples.

3.1 Lab Design

The project implements various animations to illustrate the working processes of the data

structure algorithms. To help the users understand the algorithms in an efficient way, the

animations are illustrated along with the visualization of the code. Additionally, the play/pause

and replay buttons allow students to control the animations while they are being visualized. The

following are the brief descriptions of the data structures and their algorithm animations we have

developed for the project.

3.1.1 Animation and Code Visualization for Array

An array is a data structure consisting of a group of elements occupying a contiguous area of

memory. The applications of arrays are often mathematical vectors and matrices.

Our project implements animations for a number of algorithms including sorting,

searching, insertion and deletion in arrays. We have implemented animations of quick sort,

bubble sort, insertion sort and merge sort. Figure 1 shows the code that implements the quick

sorting for an array.

8

Figure 1

Figure 2 shows the snapshot of the quick sort animation. Each bar in the animation

represents an individual element of the array. The bars highlighted in green indicate the items

currently being compared for sorting. By showing the movement of the elements in the array, we

public class QuickSort{

public static void main(String a[]) {

 int i;

 int array[] = {50,33,70,20,40,90,10,30,55,34,23,12};

 quick_srt(array,0,array.length-1);

}

public static void quick_srt(int array[],int low, int n) {

int lo = low;

int hi = n;

if (lo >= n) {

return;

}

int mid = array[(lo + hi) / 2];

while (lo < hi) {

while (lo<hi && array[lo] < mid) {

lo++;

}

while (lo<hi && array[hi] > mid) {

 hi--;

 }

 if (lo < hi) {

 int T = array[lo];

 array[lo] = array[hi];

 array[hi] = T;

}

}

if (hi < lo) {

 int T = hi;

 hi = lo;

 lo = T;

 }

quick_srt(array, low, lo);

 quick_srt(array, lo == low ? lo+1 : lo, n);

}

}

9

visualize the actions of the algorithm. Each line of the code in the code visualization box is

highlighted when the corresponding action happens in the animation.

Fig 2

3.1.2 Animation and code visualization for Linked List

A linked list is a data structure that consists of a sequence of nodes each of which contains a

reference to the next node in the sequence. A linked list data structure can be used to implement

several other data structures such as stacks and queues. One major advantage of linked list is that

the list elements can be easily added or removed without reallocation or reorganization of the

entire structure.

A linked list contains nodes, each with a reference (a pointer) to its next node. The

animations are carefully designed to resemble the structure. The major operations on a linked

10

list are search, insert and delete. In an insert operation, after the new node is added, it is

important to rearrange the references between the nodes.

Pukjhkjhkblic void destNode (int id)

Figure 3

class Node {
public int iData;
public Node next;
public Node (int id);
{

iData = id;
}

}
public Node searchNode (int id) {

Node destNode = null;
if (first !=null) {

Node curNode = first;
while (curNode !=null) {

if (curNode.iData == id) {
destNode = curNode;
break;

}
curNode = curNode.next;

}
}
return destNode;

}

public void deleteNode (int id) {

Node destNode = searchNode (id);
if (destNode !=null) {

if (destNode == first) {
first =first.next;

}
else {

Node prevNode = searchNode (destNode);
prevNode.next = destNode.next;

}
}

}

11

When a node is deleted, the references between the remaining nodes must be rearranged.

Figure 3 shows the code that implements the delete operation in the linked list. Figure 4 shows a

snapshot of the animation of the delete operation in a linked list.

Fig 4

The objective of the animation in Fig 4 is to illustrate the deletion of node 22. The

deletion of the node is accomplished by the change in the references to the nodes that are on

either side of the deleted node. From the figure, the “next” reference of the node 108 is to be

replaced by the reference pointing to node19.

12

3.1.3 Animation and code visualization for Doubly-Linked List

In a doubly-linked list, each node has two references: one reference points to its previous node

and the other points to its next node. Though adding or deleting nodes in a doubly linked list

requires more operations, there is neither need to keep track of the previous node during traversal

nor no need to traverse the list to find the previous node. This makes node reference

modifications easier. Fig 5 shows the code that implements the search operation in a Doubly-

linked list. Figure 6 is a snapshot of the animation to search node 22.

Figure 5

class DoublyNode {
public static void main (String[] args) {

NodeList theList = args[0];
Node destNode = theListsearchNode(22);

}
}
public Node searchNode (int id) {

Node destNode = null;
if (first !=null) {

Node curNode = first;
while (curNode !=null) {

if (curNode.iData == id) {
destNode = curNode;
break;

}
curNode = curNode.next;

}
}
return destNode;

}

13

Fig 6

3.1.4 Animation and code visualization for Circular-Linked List

A circular-linked list is a linked list in which the “next” reference of the last node points to the

first node. Hence, a pointer to the last node gives easy access also to the first node, by following

one reference. Thus, in applications that require access to both ends of the list (e.g., in the

implementation of a queue), a circular structure provides convenience. Figure 8 is a snapshot of

the insert operation of node 20 in a circular-linked list. The animation also shows the

rearrangement of the references of nodes 108 and 22 after inserting node 20. Figure 7 shows the

code that implements the insert operation in a Circular-Linked list.

14

Fig 7

public Node searchPrvNode (Node destNode) {
Node prevNode = null;
if (first !=null) {

Node curNode = first;
while (curNode !=first && curNode !==null) {

if (curNode.next ==destNode) {
prevNode = curNode;
break;

}
curNode = curNode.next;

}
}
return destNode;

}

public void insertNode (int pos, int id) {

Node newNode = new Node (id);
Node destNode = searchNode (pos);
if (destNode == null ||destNode == first) {

newNode.next = first;
first = newNode;

}
else if (destNode == last) {

newNode.next =null;
last = newNode;

}
else {

Node prevNode = searchprvNode (destNode);
newNode.next = destNode;
prevNode.next = newNode;

}
}

15

Fig 8

3.1.5 Animation and code visualization for Stack

Stack is a data structure that stores its data values in a FILO manner. Each data entry is stacked

on the top of the previous entry. A Stack data structure usually implements two functionalities:

PUSH and POP. Figure 10 is a snapshot of the animation of the application of a stack theStack.

Class stackPop {
public static void main (String [] args) {

Stack theStack = new Stack();
theStack.push(20);
theStack.push(30);
theStack.push(40);
while (!theStack.isEmpty ()) {

double value = theStack.pop ();
System.out.println (value);
System.out.println (“,”);

}
}

}

16

(figure continued)

Fig 9

Figure 9 shows the code that performs the applications of the stack. The animation in

Figure 10 shows that since the value 20 is added first in to the stack, it will be the last item to be

popped out. With each pop operation, exactly one item (on top of the stack) is removed.

class Stack {
private int maxSize;
private double [] stackArray;
private int top;
private int front;
public Stack (int s) {

maxSize = s;
stackArray = new double [maxSize];
top = -1;
front = 0;

}
public void push (double j) {

stackArray [++top] = j;
}
public double pop () {

return stackArray [top--];
}

}

17

Fig 10

3.1.6 Animation and code visualization for Binary Tree Traversal

Traversal of a tree structure means visiting all the nodes of a tree exactly once. For the purpose

of illustration, inorder, preorder and postorder tree traversals have been implemented. The

following is a snapshot of the inorder traversal of the binary tree.

In an Inorder traversal, the left child, root node and the right child are traversed in the

respective order. The traversal is programmed with a recursive style of implementation.

18

Fig 11

3.1.7 Animation and code visualization for Hash Table

A Hash Table uses a key-value pair to store information in a table. The hash function operates on

the key and the result of the hash function determines the location where the data value has to be

stored. To deal with hash collisions, we applied the linear probing technique to store the data

records. If the intended location to store a key is unavailable, the immediate next slot is

attempted until an empty slot is found to store the data. Figure 12 is a screenshot of the insert

operation in a hash table.

19

Fig 12

As shown in figure 12, the key-value pair entered by the user is stored in the location

determined by the hashing function. The hashing function is:

Hash (key) = key mod 31

The numeric equivalent value of the text key is determined by the customized ASCII

conversion. The numeric value is operated upon by the hashing function to determine the

location where the data needs to be stored. The maximum number of characters for the key is

constrained to 24.

3.1.8 Animation and code visualization for AVL tree

An AVL tree is a nearly balanced binary search tree. The maximum difference between the

heights of the left and right sub trees of any node cannot be greater than 1. Imbalance in the sub-

trees of a node arises when a new node is added to the tree. We implement the animation for the

20

double rotation that adjusts the imbalanced tree. To illustrate the double rotation in the AVL tree,

we insert node 70 into the tree. Figure 13 shows the Avl tree before adding node 70.

Fig 13

When we add node 70 as the right child to node 65, the tree becomes imbalanced at node

90. This is because the height of the left sub-tree of node 90 is now increased to 4 while the

height of its right sub-tree is to 2. The resulting imbalanced tree is shown in Figure 14.

21

Fig 14

To balance the tree, we need to perform double rotation. In the animation, Double

rotation is achieved by two single rotations. First, we perform single rotation at node 50 by

rotating it to the left. Figure 15 shows a snapshot of the animation after rotating the tree at node

50.

22

Fig 15

Since the tree is still not balanced, we perform single rotation at node 90 by rotating it to

the right. Figure 15 shows a snapshot of the animation after the tree is rotated at node 90. From

the Figure 16, it can be seen that the tree is now balanced with the highlighted sub-tree shifting

to the right side of the root node. The code to perform the tree rotation in the tree is given in

Figure 17.

23

Fig 16

(figure continued)

//x – the new node to insert
// t – the node that roots the tree

private AvlNode insert (Comparable x, Avl Node t) {

if (t == null)
t = new AvlNode (x, null, null);

else if (x.compareTo (t.element) <0) {
t.left = insert (x, t.left);
if (height (t.left) – height (t.right) == 2)

if (x.compareTo (t.left.element) < 0)
 t = rotateWithLeftChild (t);

else
t = doubleWithLeftChild (t);

}

24

Fig 9

Fig 17

3.2 Visualizing Program Execution by Highlighting Code

Dynamically highlighting the currently executing code has been a common feature of most

program debugging tools. To demonstrate the actions of the code, we have implemented the

feature of dynamic code highlighting along with animations. When each action happens in the

animation, the corresponding line of code is highlighted. Students can replay and pause to trace

the relationship between the actions and code to the most detailed level.

The snapshot in Figure 18 illustrates the code highlighting feature in the Push algorithm

of a stack. Students can use the pause and replay buttons to understand the animation and

analyze the current line of code that the animation is implementing. The figure shows the push

operation on the stack by adding the new value 40, along with the corresponding code line being

highlighted in the code visualization box.

else if (x.compareTo (t.element) >0) {
t.right= insert (x, t.right);
if (height (t.right) – height (t.left) == 2)

if (x.compareTo (t.right.element) < 0)
 t = rotateWithRightChild (t);

else
t = doubleWithRightChild (t);

}
else ;
t.height = max (height (t.left), height (t.right)) +1;
return t;

}

25

Fig 18

By helping students simultaneously co-relate the code with the actions in the animation,

we hope to provide them a good visualization tool for learning actual implementation.

The learning tool has two modes: The Learning Mode and the Quiz mode. The Learning

mode employs all the functionally correct animation visualizations. The debug mode employs

the animations that are deliberately tweaked to implant errors in the animations. Students are

assigned the task of identifying the problems in these animations and are asked to answer the

multiple choice questions. The multiple-choices questions pose a challenge to the students that

require thorough study of the algorithm and a clear understanding of the functionality of the

animated operation.

26

4. Applying Algorithm Animations and Code Visualization to VDL Learning Cases

The thesis aims at teaching students various data structures algorithms. All the algorithms are

illustrated in the form of animations. The following data structures are implemented for the

project – Array, Linked list, doubly linked list, Circular linked list, Stack, Queue, Binary Tree,

AVL tree, Hash Table. The animations in the thesis are presented in 2 modes: Learning mode

and Debug mode.

Learning mode illustrates all the animations for all the algorithms implemented for the

respective data structures. A total of 28 animations, constituting all the data structures, are

presented in the Learning mode. Students are provided with Play, Pause and Replay buttons to

control the animations for better and clear understanding of the concepts presented.

Table 1 lists all the algorithm animations implemented for the project in the Learning

mode for each data structure:

The Debug mode poses various challenges to the students. Students are encouraged to

analyze the animations carefully and participate in interactive quizzing and bug identification

exercises. Basing on the animations presented in the Learning mode, bugs are planted in selected

algorithms from all the data structures. The code for these animations are tweaked and implanted

with bugs to result in erroneous animations. These bug animations are interspersed with correct

animations and listed in the Debug mode. Students are then challenged to identify the code

changes responsible for the errors and also identify a possible solution through multiple choice

questions. Each error/bug animation is developed in to an individual Learning case inside the

Debug mode. A total of 20 learning cases are developed for the project.

27

Animation No. Data Structure Algorithm

1 Array Merge Sort

2 Array Insertion Sort

3 Array Quick Sort

4 Array Bubble Sort

5 Array Binary Search

6 Array Insert element

7 Array Delete element

8 Linked List Search Node

9 Linked List Insert Node

10 Linked List Delete Node

11 Doubly Linked List Search Node

12 Doubly Linked List Insert Node

13 Doubly Linked List Delete Node

14 Circular Linked List Search Node

15 Circular Linked List Insert Node

16 Circular Linked List Delete Node

17 Stack Push

18 Stack Pop

19 Queue Enqueue

20 Queue Dequeue

21 Binary Tree In-order Traversal

22 Binary Tree Pre-order Traversal

23 Binary Tree Post-Order Traversal

24 AVL Tree Single Rotation

25 AVL Tree Double Rotation

26 AVL Tree Insert Node

27 AVL Tree Delete Node

28 Hash Table Lookup, Insert, Delete

Table 1

Students are provided with additional features such as “Show the Animation” and

“Pinpoint to Error” buttons that help them to compare the erroneous animations with the actual

animations and identify the possible cause of error in the code.

Table 2 lists all the Learning Cases implemented for the project in the Debug mode for

each data structure:

28

Learning Case No. Data Structure Algorithm Learning Case Description

1 Array Merge Sort This Learning Case teaches students the

sorting of elements during merge sorting

algorithm.

 Array Insertion Sort -

 Array Quick Sort -

2 Array Bubble Sort This Learning Case teaches students the

sorting of elements during Bubble

sorting algorithm.

 Array Binary Search -

 Array Insert element -

 Array Delete element -

 Linked List Search Node -

3 Linked List Insert Node This Learning Case teaches students how

to insert a new node in a linked list.

 Linked List Delete Node

4 Doubly Linked

List

Search Node This Learning Case teaches students the

search algorithm in a Doubly linked list.

 Doubly Linked

List

Insert Node

5 Doubly Linked

List

Delete Node This Learning Case teaches students how

to delete a node in a Doubly linked list.

 Circular Linked

List

Search Node -

 Circular Linked

List

Insert Node -

6 Circular Linked

List

Delete Node This Learning Case teaches students how

to delete a node in a Circular linked list.

7 Stack Push This Learning Case teaches students the

implementation of Push algorithm in a

Stack.

8 Stack Pop This Learning Case teaches students the

implementation of Pop algorithm in a

Stack.

9 Queue Enqueue This Learning Case teaches students the

implementation of Enqueue algorithm in

a Queue.

10 Queue Dequeue This Learning Case teaches students the

implementation of Dequeue algorithm in

a Queue.

29

11 Binary Tree In-order Traversal This Learning Case teaches students the

implementation of In-order traversal in a

Binary tree.

12 Binary Tree Pre-order Traversal This Learning Case teaches students the

implementation of Pre-order traversal in

a Binary tree.

 Binary Tree Post-Order Traversal -

13 AVL Tree Single Rotation This Learning Case teaches students the

implementation of single rotation in an

AVL tree.

14 AVL Tree Single Rotation This Learning Case teaches students the

implementation of single rotation in an

AVL tree.

15 AVL Tree Double Rotation This Learning Case teaches students the

implementation of Double rotation in an

AVL tree.

16 AVL Tree Double Rotation This Learning Case teaches students the

implementation of Double rotation in an

AVL tree.

17 AVL Tree Double Rotation This Learning Case teaches students the

implementation of Double rotation in an

AVL tree.

18 AVL Tree Double Rotation This Learning Case teaches students the

implementation of Double rotation in an

AVL tree.

 AVL Tree Insert Node -

 AVL Tree Delete Node -

19 Hash Table Lookup, Insert,

Delete

This Learning Case teaches students the

implementation of delete operation in a

Hash table.

20 Hash Table Lookup, Insert,

Delete

This Learning Case teaches students the

implementation of delete operation in a

Hash table.

Table 2

All the learning cases are presented in the data structure visualization learning tool in which we

have designed a Learner’s Corner. We have implemented algorithm animations and code

visualization for both correct code and programs having planted bugs. The students’ task is to

identify the planted bug. This kind of task places the students on the spot where concentration

30

and critical thinking are highly demanded. We hope such a setting can simulate students’

interests and sharpen their analysis capability.

The learning cases provide an opportunity for students to dig into the implementation of

the algorithms. The following learning cases are implemented in various data structure to assist

students’ learning. Table 1 shows the list of learning cases developed for the project

Learning Case #1

This learning case is designed to teach students the insert operation in a linked list data structure.

When node 20 is added to the linked list, the pointer references for nodes 108 and 22 must be

altered. The result of inserting node 20 before node 22 is shown in Figure 19. The code

visualization box in the Figure 20 shows the portion of the code used to rearrange the pointer

references to the nodes in the linked list after inserting the new node. This portion of the code is

deliberately changed. A bug is implanted in the program. Figure 21 shows the changes made to

the code.

31

Fig 19

Fig 20

public void insertNode (int pos, int id) {
Node newNode= newNode (id);
Node destNode = searchNode (pos);
if (destNode ==null || destNode ==first) {

newNode.next = first;
first = newNode;

}
else {

Node prevNode = searchPrvNode (destNode);
 newNode.next = destNode.next;
 destNode.next = newNode;

}
}

32

Fig 21

Because the pointer references are wrongly defined, the new node with id 20 is inserted between

nodes 22 and 19, while a correct implementation would have inserted the new node between the

nodes with ids 108 and 22 as shown in Figure 19.

Figure 22 shows the wrongful insertion result. The student should examine the insert

operation and identify that the node references have been wrongly assigned, resulting in the node

being added with incorrect position. After the animation is complete, a challenging multiple

choice question is presented to the student inside the description box. Figure 23 shows the

multiple-choice question for the test case.

To help the student answer the question, the button “Show the Animation” calls the

animation deployed with the correct code. This gives the student to understand a comparison

between the animations created based on the correct code and that based on the wrong code.

public void insertNode (int pos, int id) {
Node newNode= newNode (id);
Node destNode = searchNode (pos);
if (destNode ==null || destNode ==first) {

newNode.next = first;
first = newNode;

}
else {

Node prevNode = searchPrvNode (destNode);
 newNode.next = destNode.next;
 destNode.next = newNode;

}
}

33

Fig 22

Ultimately the student will analyze the code responsible for the error. The student can

also attempt the multiple choice question at any point later in the debug mode by clicking the

“What’s wrong” button.

Fig 23

Learning Case #2

This test case is implemented to demonstrate the implementation of the search operation in the

doubly-linked list. A doubly-linked list has three main operations: Find, insert and delete. Figure

24 shows a snapshot of a successful implementation of the search operation in a doubly linked

34

list. The animation for the find operation shows node 22 successfully returned as the search

result.

Fig 24

To create a test case, we have modified the code of the find operation on the doubly-linked list.

The modified code can be seen in Figure 25 below.

publicNode searchNode (int id) {
Node destNode = null;
if (first ! = null) {

Node curNode =first;
while (curNode != null) {

 if (curNode.iData == id) {
 destNode = curNode.next;

 break;
 }
 curNode = curNode.next;

}
}
return destNode;

}

35

Fig 25

As seen in Figure 25, the code statement that determines the search result node is

modified. Due to the change in the code, the search result always returns the node next to the

original node that is being search for. Hence the animation now returns node 19 instead of node

22 as the search result. Figure 26 shows a snapshot of the animation with the planted error.

The student should examine the animation and identify that the search result statement

has been modified to give a wrong result. After the animation is complete, a challenging multiple

choice question is presented to the student inside the description box. Figure 27 shows the

multiple-choice question presented for this test case.

Fig 26

36

To help the student answer the question, the button “Show the Animation” calls the

animation deployed with the correct code. This gives the student to understand a comparison

between the animations created based on the correct code and that based on the wrong code.

Ultimately the student will analyze the code responsible for the error.

Fig 27

Learning Case #3

This test case is implemented to demonstrate the delete operation in a doubly-linked list. The

successful operation deletes the node 22 and reassigns the node pointer from node 108 to node

19. Figure 28 shows a snapshot of the animation in the doubly-linked list.

Fig 28

37

To implement the test case, we have implanted the bug in the code for the delete method. Figure

29 shows the code changes made to the delete operation of the doubly-linked list. As seen in

Figure 29, the code statement that identifies the node to be deleted (node 22) is deliberately

modified to delete node 108 instead of node 22. Figure 30 shows a snapshot of the doubly-linked

list delete operation with the planted error.

Fig 29

After the animation is complete, a challenging multiple choice question is presented to

the student inside the description box. Figure 31 shows the multiple-choice question. To help the

student answer the question, the button “Show the Animation” calls the animation deployed with

the correct code. This gives the student to understand a comparison between the animations

created based on the correct code and that based on the wrong code.

public void deleteNode (int id) {
Node destNode = searchNode (id);
Node nxtNode = searchNode(destNode.next);
if (destNode != null) {

if (destNode == first) {
first = first.next;
first.prev = last;

}
else if (destNode == last) {

Node prNode = searchNode (destNode.prev);
prNode.nxt = null;

}
}
else {

Node prNode = searchNode (destNode.prev);
Node oNode = searchNode(prNode.prev);
destNode.prev = prNode.prev;
oNode.next = destNode;

}
}

38

Fig 30

Fig 31

Ultimately the student will analyze the code responsible for the error. The student can

also attempt the multiple choice question at any point later in the debug mode by clicking the

“What’s wrong” button.

39

Learning Case #4

This test case is implemented to demonstrate the delete operation in a circular-linked list. The

successful operation deletes the node 22 and reassigns the node pointer from node 108 to node

19. Figure 32 shows a snapshot of the animation in the circular-linked list.

Fig 32

public void deleteNode (int id) {
Node destNode = searchNode (id);
if (destNode != null) {

if (destNode == first) {
first = first.next;

}
else if (destNode == last) {

Node prevNode = searchNode (destNode);
prevNode.next = destNode.next;

}
}
else {

Node prevNode = searchNode (destNode);
prevNode.next = prevNode;

}
}

40

Fig 33

To implement the test case, we have implanted the bug in the code for the delete method. Figure

33 shows the code changes made to the delete operation of the circular-linked list. As seen in

Figure 38, the code statement that must reassign the pointer from node 108 to the next node

(node 19) after deleting node 22 is deliberately modified to point to node 108 itself. Figure 34

shows a snapshot of the circular-linked list delete operation with the planted error.

After the animation is complete, a challenging multiple choice question is presented to

the student inside the description box. Figure 35 shows the multiple-choice question. To help the

student answer the question, the button “Show the Animation” calls the animation deployed with

the correct code. This gives the student to understand a comparison between the animations

created based on the correct code and that based on the wrong code.

41

Fig 34

Fig 35

Ultimately the student will analyze the code responsible for the error. The student can

also attempt the multiple choice question at any point later in the debug mode by clicking the

“What’s wrong” button.

Learning Case #5

A stack data structure has two main operations: PUSH and POP. The push operation inserts the

new record on top of the previous records. The pop operation deletes the top record from the

stack. Hence a stack is a FIFO data structure. We have implemented a learning case to

demonstrate the implementation of the stack.

The code to implement a stack can be presented as in the Figure 36. In order to implant

an error to show the functioning of the stack in an incorrect manner, we replace the correct code

with the erroneous code inside the pop method.

42

Fig 36

Using the PUSH operation, values 20, 30, 40 are pushed into the stack respectively.

Hence the value 20 will be at the bottom of the stack. For the value 20 to be able to be popped, it

is needed that the top most records with values 30 and 40 be popped first. However, with the

erroneous code in the POP method, the animation will show that the values 20, 30 and 40 are

popped in the same order as they are pushed on to the stack. This animation hence will

Class stackPop {
public static void main (String [] args) {

Stack theStack = new Stack();
theStack.push(20);
theStack.push(30);
theStack.push(40);
while (!theStack.isEmpty ()) {

double value = theStack.pop ();
System.out.println (value);
System.out.println (“,”);

}
}

}

Class Stack {
private int maxSize;
private double [] stackArray;
private int top;
private int front;
public Stack (int s) {

maxSize = s;
stackArray = new double [maxSize];
top = -1;
front = 0;

}
 public void push (double j) {
 stackArray [++top] = j;
 }
 public double pop () {
 return stackArray [top--];
 }
}

43

contradict the FILO ordering of the stack data structure. Figure 37 shows the snapshot of the

animation resulted from the wrongful implementation of the POP method.

Fig 37

 It shows the instant when the first value in the stack is popped. The animation will show

that value 20 is popped first. This is an erroneous animation since this value at the bottom of the

stack, and that the first value to be popped must be value 40 according to FILO ordering of stack

data structure.

The student should identify the error in the stack implementation of the Pop method. We

challenge the student with the multiple choice question presented in the description box. Figure

38 shows the multiple-choice question.

44

Fig 38

To help the student answer the question, the button “Show the Animation” calls the

animation deployed with the correct code. This gives the student to understand a comparison

between the animations created based on the correct code and that based on the wrong code.

Ultimately the student will analyze the code responsible for the error.

Learning Case #6

This learning case demonstrates the implementation of the PUSH operation in a stack. Using the

push operation, values 20, 30, 40 are pushed into the stack respectively. Initially the size of the

stack is Zero. As the value 20 is added to the stack, the size of the stack is incremented by 1 and

the value 20 is stored at the top of the stack. As the values 30, 40 and 50 are added respectively,

the size of the stack is incremented by 1 each time and the values in it are pushed downwards

with the latest value to be added placed at the top of the stack.

In order to show the functioning of the stack in an incorrect manner, we replace the

correct code with the erroneous code inside the push method. Due to this deliberately planted

bug, the stack is shown to have a predefined size and the newly added values are added to the

bottom of the stack instead of being added at the top. This is a wrong implementation of the

stack data structure. Figure 39 shows the snapshot of the successful push operation in a stack.

45

Fig 39

 Figure 39 shows the animation at the instant when the value 50 is being added to the

stack.

The animation resulting due to the planted error is shown in figure 40. As shown in the

figure, the values have been added to the bottom of the stack instead of being added at the top.

46

Fig 40

The student should identify the error in the stack implementation of the Push method. We

challenge the student with the multiple choice question presented in the description box. Figure

41 shows the multiple-choice question.

Fig 41

To help the student answer the question, the button “Show the Animation” calls the

animation deployed with the correct code. This gives the student to understand a comparison

between the animations created based on the correct code and that based on the wrong code.

Ultimately the student will analyze the code responsible for the error.

Learning Case #7

This Learning Case demonstrates the preorder depth-first traversal algorithm in a binary tree. In

preorder traversal technique, the root node, the left child and the right child are traversed in the

respective order. The code to represent the Preorder traversal of a binary tree is given in Figure

42:

private void preOrder(node localRoot) {
if(localRoot !=null) {

localRoot.displayNode();
 preOrder(localRoot.leftChild);
 preOrder(localRoot.rightChild);

}
}

47

Fig 42

The order of the statements that control the traversal routes through the child nodes is modified.

The animation hence traverses through the right child before traversing through the left child.

The code of the traversal algorithm modified deliberately to plant the bug is shown in Figure 43:

Figure 43

A snapshot of the animation with the wrong implementation of the traversal order is shown in

Figure 44.

Fig 44

private void preOrder(node localRoot) {
if(localRoot !=null) {

localRoot.displayNode();
 preOrder(localRoot.rightChild);
 preOrder(localRoot.leftChild);

}
}

48

In this case, the animation is critical to students’ understanding because the problem is in the

process of computing rather than the output. We use the following multiple choice question to

challenge the student.

Fig 45

The correct implementation of the traversal order is presented to the student when the “Show the

animation button” is clicked.

Learning Case #8

By implementing this learning case, we would like to illustrate the single and double rotations in

an Avl tree. The code to implement the single and double rotations in an Avl tree is given in

Figure 46.

(Figure continued)

//x – the new node to insert
// t – the node that roots the tree

private AvlNode insert (Comparable x, Avl Node t) {

if (t == null)
t = new AvlNode (x, null, null);

else if (x.compareTo (t.element) <0) {
t.left = insert (x, t.left);
if (height (t.left) – height (t.right) == 2)

if (x.compareTo (t.left.element) < 0)
 t = rotateWithLeftChild (t);

else
t = doubleWithLeftChild (t);

}

49

Fig 46

By using the above code, we add nodes 65 and 70 in to the avl tree in the respective

order. Since the addition of node 65 imbalances the tree at node 55, the code performs single

rotation at node 55 to its right, thus balancing the tree. The addition of node 70 imbalances the

tree at node 90. So the code rotates the tree twice to perform double rotation. The first rotation is

made at node 50. The tree is rotated to the left at the node 50. The second rotation is made at

node 90. The tree is now rotated to right at node 90. Hence the avl tree is balanced using single

and double rotations. Figure 45 shows a snapshot of the animation of the code implementation.

To deliberately plant the bug inside the code of the avl tree insert algorithm, we alter the

condition for implementing the single and double rotation methods. The implications of the

resulting code change means that the rotation methods would not be invoked unless the height

difference between the left and right sub trees of any given node exceeds 3. The code modified to

deliberately plant the bug in the single and double rotation methods is shown in Figure 47.

else if (x.compareTo (t.element) >0) {
t.right= insert (x, t.right);
if (height (t.right) – height (t.left) == 2)

if (x.compareTo (t.right.element) < 0)
 t = rotateWithRightChild (t);

else
t = doubleWithRightChild (t);

}
else ;
t.height = max (height (t.left), height (t.right)) +1;
return t;

}

50

Fig 47

//x – the new node to insert
// t – the node that roots the tree

private AvlNode insert (Comparable x, Avl Node t) {

if (t == null)
t = new AvlNode (x, null, null);

else if (x.compareTo (t.element) <0) {
t.left = insert (x, t.left);
if (height (t.left) – height (t.right) == 4)

if (x.compareTo (t.left.element) < 0)
 t = rotateWithLeftChild (t);

else
t = doubleWithLeftChild (t);

}
else if (x.compareTo (t.element) >0) {

t.right= insert (x, t.right);
if (height (t.right) – height (t.left) == 4)

if (x.compareTo (t.right.element) < 0)
 t = rotateWithRightChild (t);

else
t = doubleWithRightChild (t);

}
else ;
t.height = max (height (t.left), height (t.right)) +1;
return t;

}

51

Fig 48

As seen in the Figure 48, the statements that check for the imbalance of the tree are

modified and hence the tree would not perform single or double rotations when node 65 and 70

are added.

After node 65 is inserted, the tree gets imbalanced at node 55 as the height difference

between its left and right sub trees becomes 2. However, the tree is left imbalanced and followed

by the insertion of node 70. Figure 49 shows the snapshot of the animation resulting from the

wrongful code implementation.

Fig 49

The student must identify that the code does not perform any rotation when either node

65 or 70 are inserted. After the animation is complete, a challenging multiple choice question is

52

presented to the student inside the description box. Figure 50 shows the multiple-choice

question.

Fig 50

By looking at the correct implementation of the single and double rotations, students can

understand and analyze the tree rotation in an Avl tree.

Learning Case #9 (a)

This learning case is implemented to teach students the implementation of double rotation in an

Avl tree. As explained in learning case #8, to balance the tree after adding node 70, we need to

rotate the tree in left and right directions respectively. This test case is implemented by altering

the code so that the tree rotates in left and left directions respectively instead of rotating in left

and right directions. Figure 51 shows a snapshot of the animation with the error in the

implementation.

53

Fig 51

After the animation is completely over, the student is challenged with a multiple choice

question that tests his understanding of the tree rotations in the animations. Figure 52 shows the

multiple-choice question presented to the student after the animation is played.

Fig 52

54

In order to help the student identify the error, the “Show the animation” button calls the correct

animation. Student can hence understand the comparison between the correct and wrong

implementation of the directions in the tree rotations.

Learning Case #9 (b)

This learning case is implemented to teach the students the implementation of double rotation in

an Avl tree. This test case is implemented by altering the avl tree code so that the tree rotates in

right and right directions respectively instead of rotating in left and right directions. Figure 53

shows a snapshot of the animation with the error in the implementation.

 After the animation is completely over, the student is challenged with a multiple choice

question that tests his understanding of the tree rotations in the animations. Figure 54 shows the

multiple-choice question presented to the student after the animation is played.

Fig 53

55

In order to help the student identify the error, the “Show the animation” button calls the correct

animation. Student can hence understand the comparison between the correct and wrong

implementation of the directions in the tree rotations.

Fig 54

Learning Case #9(c)

This learning case is implemented to teach the students the implementation of double rotation in

an Avl tree. This test case is implemented by altering the avl tree code so that the tree rotates in

right and left directions respectively instead of rotating in left and right directions.

After the animation is completely over, the student is challenged with a multiple choice

question that tests his understanding of the tree rotations in the animations. Figure 55 shows the

multiple-choice question presented to the student after the animation is played.

56

Fig 55

In order to help the student identify the error, the “Show the animation” button calls the

correct animation. Student can hence understand the comparison between the correct and wrong

implementation of the directions in the tree rotations.

Fig 56

57

 Learning Case #10

This learning case is implemented to illustrate the dequeue operation in a Queue. A queue

follows a FIFO ordering for its operations. Figure 57 shows a snapshot of the animation of the

Dequeue operation in a queue. Using the enqueue operation, values 20, 30 and 40 are added to

the queue. The snapshot shows the value 20 currently being dequeued.

Fig 57

To implement the test case, the code used to implement the Dequeue operation is changed. The

resulting code is shown in Figure 58.

58

Fig 58

Due to the change in the code, the values from the queue are dequeued in the FILO order.

Figure 59 shows the resulting animation with the planted error.

class Queue
 {
 private int maxSize;
 private int[] queArray;
 private int front;
 private int rear;
 private int nItems;
 public Queue (int s)
 {
 maxSize = s;
 queArray = new int [maxSize];
 front = 0;
 rear = -1;
 nItems = 0;
 }
 public void Enqueue (int j)
 {
 if (rear == maxSize – 1)
 rear = -1;
 queArray[++rear] = j;
 nItems++;
 }
 public int Dequeue()
 {
 int temp = queArray [rear--];
 nItems--;
 return temp;
 }
 }

59

Fig 59

Figure 59 shows the value 40 being dequeued from the queue. Since value 20 is the first

value to be enqueued to the queue, it should be dequed first. However, due to the planted error in

the code, the elements are dequeued in the FILO order. The student must identify the code

change that is responsible for the error in the implementation of the Dequeue method. The

student is presented with a challenging multiple-choice question. Figure 60 shows the multiple-

choice question.

60

Fig 60

These sequences of steps require the full attention from the student. We believe getting

students’ complete concentration is important for their efficient learning.

Learning Case #11

A Hash Table uses a key-value pair to store information in a table. The key-value pair entered by

the user is stored in the location determined by the hashing function. The hashing function that

we have implemented for the hash table is:

Hash (key) = key mod 31

To deal with hash collisions, we applied linear probing technique to store the data

records. This learning case demonstrates the implementation of lookup, insert and delete

operations in a hash table. In this learning case, we have deliberately planted a bug to alter the

delete operation in the hash table.

In a hash table, whenever a data record is deleted, the corresponding empty index is

considered as empty for future insert operations and occupied for lookup operations. As seen in

Figure 61, when the data record at the index 18 is deleted, it will not leave any unwarranted

consequences for future insert/lookup operations. Figures 61 and 62 show a successful lookup

operation in the hash table. The key-value pair adams:125 is just deleted, but it is considered as

occupied for future search operations. Hence when we search for the record adams:567, it results

in a successful operation.

61

Fig 61

Fig 62

In the learning case, by planting the bug, we create an error during the delete process of a

record. As shown in figure 63 and 64, the delete operation on key value pair adams:125 results in

62

a vacant record that prevents successful results for the next search operations. Hence when the

key-value pair is queried for lookup, it results in an empty result.

Fig 63

Fig 64

63

The student is challenged with a multiple choice question that tests his understanding of

the operations performed in the hash table. Figure 65 shows the multiple-choice question

presented to the student.

Fig 65

Learning Case #12

With this learning case, we intend to help students understand merge sorting algorithm. In merge

sorting, elements should be recursively be divided in to sub lists of half the size of the parent sub

list. This effectively means that the array must be divided to form sub lists of 2 elements each

(with only 1 group containing a single element in case total number of elements is odd). The

elements should then be sorted within their sub lists and then merged back and then sorted again

to finally give a sorted array of elements. Figure 66 shows the correct implementation of merge

sorting algorithm.

64

Fig 66

In order to utilize this algorithm as a learning case, we have deliberately planted a bug in

the code. Due to this deliberately implanted bug, the unsorted list is divided only once resulting

in two sub lists of 4 elements each. Elements are then sorted within the respective sub lists and

merged back in to one sorted list of array.

This method of implementation does not reflect complete merge sorting. Figure 67 shows

the animation at the instant where the elements are divided in to two sub lists of 4 elements each

and sorted. This is an erroneous implementation of merge sorting because elements can only be

sorted after they are divided in to sub lists of 2 elements each.

65

Fig 67

 After the student examines the sorting animation, he must identify that the elements of

the array are not recursively divided in to sub lists of 2 elements each before being sorted. After

the animation is complete, a challenging multiple choice question is presented to the student

inside the description box. Figure 68 shows the multiple-choice question presented to the student

after the completion of the animation.

 To help the student answer the question, the “Show animation” button calls the animation

deployed with the correct code. This gives the student a comparison between the animations

created based on the correct and that based on the wrong code and will also help the student

analyze the code responsible for the error.

66

Fig 68

The student can also attempt the multiple choice question at any point later in the debug

mode by clicking the “What’s wrong” button.

4.2 Code Highlighting for Bug identification:

To assist students’ learning of algorithms through the animations and code visualization, we have

also implemented the code highlighting feature that allows the users to identify the bug in the

code.

In the debug mode, when the student analyzes the animation and finds a problem of the

animation, he can click the “Pinpoint to error” button and highlight the code lines that he thinks

are the reason for the error in the animation. Then he clicks “Check My Answer”. The animator

compares the highlighted code to the actual planted bug. If the user successfully identifies all the

lines of code that are responsible for the bug, the animator will give a success solute. Otherwise,

if he identifies the error partially, the animator alert says that he is partially correct. If he is not

able to identify the bug correctly, the animator shows the student the exact lines of bug code.

Figure 66 shows the user interface of this feature for the pop operation in a stack. After

the student analyzes the animation, he clicks the “Pinpoint to error” button and selects the lines

that he thinks are modified to plant the bug as shown in Figure 69.

67

Fig 69

Once the user selects the erroneous lines, he then clicks “Check my answer” to find out if

he has successfully identified the error. In this example, since the user has identified all the

erroneous code lines, the animator gives him a success message as shown in Figure 70:

Fig 70

68

By providing this feature, we attempt to sharpen students’ capability in code analysis.

This feature hence provides a hands-on experience for the students to learn data structures

programming with a greater attention to the details in the code.

69

5. Learning Tool Implementation

The basic platform for the learning tool is the visual representations of the data structures

algorithms. The animations are designed in Adobe Flash environment using a combination of

Flash components and action script code. The compiled animation files (with .swf extension) are

dynamically loaded in to the Flex development environment. Each algorithm of the chosen data

structure is designed using Flash based components discretely using Adobe Flash professional

CS5. The animations are created using the frame based implementations. The Action script code

in Flash is used to adjust the timing and the interactive nature of the animations to the user

inputs. The motion implemented in the animations is defined using the motion tweening feature

available in FLASH.

The Flex AlgorithmAnimation.mxml serves as the main application which orchestrates

various animation files on the web server side. On the client side, the flash animation files are

loaded in the browser and are played using Adobe Flash Player plugin. The use of a combination

of Flash and Flex components in the development provides great advantages, especially in

presenting the animations in a swift and appealing manner.

Designing animations in Flash Professional CS5

In a frame-based animation, each frame can be manipulated using the layout controls in the

properties pane. ActionScript code snippets are used to guide and control the direction and

motion aspects of the animation. Additionally, changes to the timing aspects can be performed

by using the ActionScript.

70

Figure 71 shows the development of the visualization through Frame based animation of

a stack data structure. The figure shows the exact snapshot of the animation at frame 50. The

combination of such individual frames at various instances generates a continuous animation.

Fig 71

In order to make the animations run according to the controls used by the student, we

need to access the motion tween at the code level. The primary use of the stop() method is to stop

the animation from running continuously. During the visualization of the animations, since the

students are provided the play, pause and replay buttons to control the animations, event listener

objects are added to the code. These event listener objects detect the input from the students and

call the respective methods to show the animations. We have taken the advantage of these code

snippets to make the textual objects move along during the animations. Figure 72 shows a code

snippet used for the stack PUSH animation.

71

Fig 72

Implementation of Flex components to visualize animations:

Flex components have been used to implement the visualization of the animations in the

browser. All the components are assigned with trigger events that perform certain action.

 Figure 73 shows a snippet of the XML based Flex code for the layout components.

code_sb._visible = false;

code_view.visible = false;

code.bg._visible = false;

stop();

code_sb.setScrollProperties (150,0,700);

//create listener object.

var sbListner:object = new object;

sbListner.scroll = function (evt_obj:object) {

//insert code to handle the scroll event.

//trace (code_sb.scrollPosition);

code_view._y = 51.3-code_sb.scrollPostion;

}

//Add listener

code_sb.addEventListner (“scroll”, sbListener);

<s:Panel width="100%" height="100%" title="Data Structures and algorithm animations."

horizontalCenter="0" verticalCenter="0" >

<mx:Image source="@Embed('animations/back.jpg')" x.start="0" y.start="0"/>

<s:Label text="Data Structure:" x="10" y="25" height="26" width="85" x.start="10"

y.start="115"/>

<s:DropDownList id="dataStrList" dataProvider="{dataStructures}" labelField="algorithm"

prompt="Select one" change= "dataStrList_changeHandler(event)" x="103" y="20"

width="139" x.start="103" y.start="110" width.start="160"/>

<s:Label x="10" y="64" text="Functionalities:" width="85" height="20" x.start="10"

y.start="154"/>

72

(Figure continued)

6. Discussion & Conclusion

Fig 73

The code shown in Figure 70 is an XML code that initializes the layout components and assigns

events to the components for a particular event. For example, the dropdown lists “Data

structures” and “Functionalities” are controlled by the events FunctionsList_ChangeHandler and

dataStrlist_ChangeHandler respectively. The multiple choices for corresponding test cases are

manipulate using the method LearningCaseHandler. These events are triggered by various

actions, for example, the student clicking a button. The pinpoint to error functionality is

manipulated using the handler event – findErrorHandler.

<s:DropDownList id="functionsList" x="103" y="58.5" dataProvider="{functions}"

prompt="Select function" labelField= "functionName” change=

"functionsList_changeHandler(event)" width="139" x.start="103" y.start="148.5"

width.start="160"/>

<s:BorderContainer id="learnerCorner" visible="false" x="20" y="350"

borderVisible="true" borderWeight="2" cornerRadius="3" width="222" height="136"

height.start="178" y.start="308" width.start="274" x.start="14">

<s:Label text="Learner's Corner" fontSize="16" fontWeight="bold" width="165" x="10"

y="16"/>

<s:Button x="10" y="41" label="Learning Case" width="125" fontWeight="bold"

click="learningCaseHandler(event)" x.start="10" y.start="44" width.start="125"

height.start="21"/>

<s:Button x="10" y="70" label="What's wrong?" width="125" fontWeight="bold"

x.start="10" y.start="73" width.start="125" height.start="21"/>

<s:Button x="10" y="101" label="Show animations" width="125" fontWeight="bold"

click="showAnimationHandler(event)" x.start="10" y.start="129"/>

73

6. Discussion & Conclusion

The primary objective of the Data Structures Visualization Tool is to help the computer science

students understand the basics of data structures algorithms and implementation. The tool has

adopted the Verification-Driven Learning Model and strives to illustrate the data structures in an

interactive manner to help students’ learning. In order to achieve the best results from this

learning tool, it is necessary that more research be done towards the development of the tool to

make sure it is enhanced in to a complete learning tool with more illustrations of various

concepts. The tool has provided the students with richer interactive environment for learning.

The process of prototyping this learning tool has shown that a combination of the Flex

programming and the Flash technology is a viable platform for development of algorithm

animation and code visualization for the learning tool.

74

References

[1] Michela Pedroni and Bertrand Meyer, “Object-Oriented modeling of Object-Oriented

Concepts – A Case Study in Structuring an Educational Domain”. ISSEP '10, December 2009.

[2] Jurgen Borstler , Marie Nordstorm and James H. Peterson, “On the Quality of Examples in

Introductory Java Textbooks”, ACM, Transactions on Computing Education (TOCE) , Volume

11 Issue 1, February 25, 2011.

[3] Carsten Schulte and Jens Bennedsen – “What do Teachers Teach in Introductory

Programming”, ICER '06, September 2006.

 [4] Jorma Sajaniemi, Marja Kuittinen, Taina Tikansalo – “ A study of the Development of

Students’ Visualizaions of Program State during an Elementary Object Oriented Programming

Course”, ICER '07, September 2007.

[5] Shengru Tu, Shireesha Tankashala, Sehun Oh, Brian Becker, Brian Horton, Aditya Kallem,

Zhao Yang- “Turning Real-World Systems into Verification-Driven Learning Cases”. ITiCSE

'10, June 2010

75

Vita

Yashwanth Reddy Kondeti was born in Nalgonda, India. He earned his Bachelor’s Degree with a

major in Electronics and Communication Engineering at SRM University, Chennai, India from

2004 to 2008. He was enrolled in to the graduate program in Computer Science Department at

the University of New Orleans in August 2008.

	Enhancing the Verification-Driven Learning Model for Data Structures with Visualization
	Recommended Citation

	tmp.1312735153.pdf.H_rQS

