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Abstract 

 

There has been an on-going debate about choices of the most suitable model amongst a 

variety of model specifications and parameterizations.  The first dissertation essay investigates 

whether asymmetric leptokurtic return distributions such as Hansen’s (1994) skewed t-

distribution combined with GARCH specifications can outperform mixed GARCH-jump models 

such as Maheu and McCurdy’s (2004) GARJI model incorporating the autoregressive 

conditional jump intensity parameterization in the discrete-time framework.  I find that the more 

parsimonious GJR-HT model is superior to mixed GARCH-jump models.  Likelihood-ratio (LR) 

tests, information criteria such as AIC, SC, and HQ and Value-at-Risk (VaR) analysis confirm 

that GJR-HT is one of the most suitable model specifications which gives us both better fit to the 

data and parsimony of parameterization.  The benefits of estimating GARCH models using 

asymmetric leptokurtic distributions are more substantial for highly volatile series such as 

emerging stock markets, which have a higher degree of non-normality.  Furthermore, Hansen’s 

skewed t-distribution also provides us with an excellent risk management tool evidenced by VaR 

analysis. 

The second dissertation essay provides a variety of empirical evidences to support 

redundancy of stochastic volatility for SP500 index returns when stochastic volatility is taken 

into account with infinite activity pure Lévy jumps models and the importance of stochastic 

volatility to reduce pricing errors for SP500 index options without regard to jumps specifications.  

This finding is important because recent studies have shown that stochastic volatility in a 

continuous-time framework provides an excellent fit for financial asset returns when combined 

with finite-activity Merton's type compound Poisson jump-diffusion models.  The second essay 



 x

also shows that stochastic volatility with jumps (SVJ) and extended variance-gamma with 

stochastic volatility (EVGSV) models perform almost equally well for option pricing, which 

strongly imply that the type of Lévy jumps specifications is not important factors to enhance 

model performances once stochastic volatility is incorporated.  In the second essay, I compute 

option prices via improved Fast Fourier Transform (FFT) algorithm using characteristic 

functions to match arbitrary log-strike grids with equal intervals with each moneyness and 

maturity of actual market option prices. 
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Introduction 

 

The various models analyzed in this dissertation have been built upon pioneering work of 

Nobel Laureates Robert F. Engle (2003) and Robert C. Merton (1997) for methods of analyzing 

economic time series with time-varying volatility (ARCH) and a new method to determine the 

value of derivatives, respectively.  This dissertation fills the gaps which another Nobel Laureate 

Harry M. Markowitz's (1990) mean-variance analysis fails to capture. Especially, this 

dissertation investigates dynamic processes of asset returns, volatility, and jumps which are time-

varying and stochastic in discrete- and continuous-time settings.  I demonstrate that these 

additional computational and modeling efforts provide us with significant benefits to better 

capture actual financial time-series data and to reduce option pricing errors. 

  If we only consider mean and variance (1st and 2nd moments) as in Markowitz, most 

likely we may not fully appreciate recent advances in risk managements, investments, and 

derivatives pricing since many researchers recognize the importance of economic and statistical 

roles of skewness and kurtosis (3rd and 4th moments).  To better explain well-known skewness 

and excess kurtosis of financial time-series returns, I employ asymmetric fat-tailed distributions 

such as Hansen's skewed t-distribution in the first dissertation essay and Lévy jump models in 

the second dissertation essay.  

I have been motivated by Torben G. Andersen, Tim Bollerslev, Francis X. Diebold 

(2002)'s paper titled “Parametric and Nonparametric Volatility Measurement” - Handbook of 

Financial Econometrics, Amsterdam : North Holland, Yacine Aït-Sahalia and Lars Peter Hansen 

(eds.) to investigate the financial modeling approaches analyzed in this dissertation.   
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“Since Engle's (1982) seminal paper on ARCH models, the econometrics 

literature has focused considerable attention on time-varying volatility and the 

development of new tools for volatility measurement, modeling and 

forecasting.  These advances have in large part been motivated by the empirical 

observation that financial asset return volatility is time-varying in a persistent 

fashion, across assets, asset classes, time periods, and countries.  Asset return 

volatility, moreover, is central to finance, whether in asset pricing, portfolio 

allocation, or risk management, and standard financial econometric methods and 

models take on a very different, conditional, flavor when volatility is properly 

recognized to be time-varying.  The combination of powerful methodological 

advances and tremendous relevance in empirical finance produced explosive 

growth in the financial econometrics of volatility dynamics, with the 

econometrics and finance literatures cross-fertilizing each other furiously.” 
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Chapter 1 

A Comparison of mixed GARCH-Jump Models with Asymmetric Fat-tailed 

Asset Return Distributions 

 

1.  Introduction 

A vast numbers of research endeavors have been made to explain well-documented 

stylized facts and empirical properties of asset returns and volatility – absence of 

autocorrelations, leptokurtosis (high peaks and heavy tails of the distribution), long memory and 

volatility persistence, mean-reverted volatility, aggregated Gaussianity, volatility clustering, slow 

decay of autocorrelation in absolute returns, leverage effect, and volume/volatility correlation.1  

However, most currently existing models including GARCH-families with normal error 

distributions and constant jump-diffusion models following Merton (1976), fail to reproduce all 

these statistical features simultaneously. 

 In order to improve overall goodness-of-fits for the models and especially to better 

describe unique features of conditional higher moments (extreme observations, outliers and non-

zero skewness in returns) prevalent in most financial assets, financial researchers have proposed 

two distinct classes of econometric models.  One emphasizes the economic and statistical roles 

of jumps and tries to capture infrequent/abnormal extreme events through Poisson-distributed 

jumps.  The examples of this class are voluminous (Jorion (1988), Lin and Yeh (1999), Scott 

(1997), Carr et al. (2002), Wu (2003), Ait-Sahalia (2004), Eraker et al. (2003, 2004) and 

Johannes (2004)).  Very recently, more sophisticated jump-diffusion models such as the mixed 

                                                 
1  For an excellent summary of empirical properties and statistical issues of asset returns and volatility, see Ghysels 
et al. (1995), Cont (2001) and Engle and Patton (2001). 
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GARCH-Jump models incorporating time-varying autoregressive jump intensity have been 

developed by Chan and Maheu (2002) and extended by Maheu and McCurdy (2004).   

The other continues to find promising theoretical probability distribution models that fit 

the empirical distributions for conditional returns better than traditional normal distributions.  In 

this group, models of asset returns can be divided in two categories based on whether the 

parameters of return-generating process are time-dependent or not (Gillemot et al., 2000).  For 

example, time-independent models of asset returns include student t-distribution, Levy-type 

distribution, general stable distribution, and mixture of normal distributions.  Similarly, time-

dependent models include GARCH-type models, stochastic volatility (SV) models and models 

based on chaos theory leading to complex dynamics. In any situation, to be considered a 

candidate for an empirical return distribution, a probability density function (PDF) with three 

essential parameters (location, scale, and shape) must be estimable and have sufficiently flexible 

shape parameters so as to explain the skewness and kurtosis that may be encountered in finance 

(Verhoeven and McAleer, 2003). 

 As such, more recently several capable alternative distributions that provide an effective 

means of modeling asymmetry and fat-tailedness of financial data have been applied to financial 

research in the past decade (e.g., Skewed t-distribution (Hansen, 1994), Non-central t-

distribution (Harvey and Siddique, 1999), and Log generalized gamma distribution (Brannas and 

Nordman, 2003)).  Most important distinctions of these new approaches are to incorporate 

asymmetry into the conditional density function explicitly since most attention has focused on 

the use of symmetric conditional density functions especially with GARCH-type models.  

Recently, Bond (2001) compares a review of some of asymmetric conditional density functions 

in GARCH-type models and put emphasis on the role of alternative return distributions to 
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capture skewness in financial returns.  This can be a particularly relevant issue in emerging stock 

markets as well as in matured stock markets such as G7 countries.           

Therefore, there has been an on-going debate about choices of the most suitable model 

amongst a variety of model specifications and parameterizations.  So far, numerous research has 

been performed to compare and evaluate model performances of different GARCH, SV, and/or 

jump-diffusion specifications to capture volatility clustering and leptokurtosis of asset returns.  

In the similar vein, there already exist several published papers that investigate a variety of 

models to seek desirable alternative return distributions to better explain conditional higher 

moments of asset returns.     

 However, very few papers examine superiority between mixed GARCH-jump models 

and alternative models assuming more generalized distributions compared to normal distribution. 

Furthermore, to the best of my knowledge, it is hard to find the papers which have compared and 

evaluated Hansen’s (1994) skewed t-distribution and the GARJI model (a mixed GARCH-jump 

model incorporating the autoregressive conditional jump intensity parameterization) which was 

originally proposed by Chan and Maheu (2002) and then most recently extended by Maheu and 

McCurdy (2004).  Therefore, the main contribution of the first chapter in this dissertation is to 

investigate whether alternative return distributions such as Hansen’s skewed t-distribution 

combined with similar GARCH specifications can outperform mixed GARCH-jump models.   

 This question is very important because GARJI model has many more parameters to 

estimate and is relatively computationally-intensive compared to the Hansen’s skewed t-

distribution model.  For example, in GARJI model, there are 11 parameters to estimate through 

maximum likelihood estimation (MLE).  However, I only need to estimate 6 parameters for the 

Hansen’s skewed t-distribution when combined with GJR-GARCH specification (henceforth, 
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GJR-HT).  In addition, it takes about 7-10 minutes to estimate GARJI model using highly-

optimized algorithms of MATLAB V6.5 through Intel 2.8GHz Pentium 4 Processor with Hyper-

Threading Technology.  However, it only takes 1-2 seconds to obtain the stable estimation 

results for the GJR-HT. 

 Therefore, this study is the first to question whether complicated jumps specification can 

provide a better fit to the empirical distribution of the data and jump models have been 

parameterized in such a way that they can accommodate and explain the most common stylized 

facts observable in the data compared to the more parsimonious GJR-HT model can.  To answer 

this empirical research question, I perform several goodness-of-fit diagnostic tests and Value-at-

Risk (VaR) analysis and employ likelihood-ratio tests and information criteria to determine the 

most suitable model specifications which give me both better fit to the data and parsimony of 

parameterization.  Additionally, I will examine the ability of each model to capture extreme 

outliers in Asian and Latin emerging stock markets through VaR analysis.   

In the separate section of the first chapter in this dissertation, I try to answer the 

following fundamental question; why do the asymmetric fat-tail distributions such as Hansen’s 

skewed t-distribution outperform the mixed-GARCH models?  I find that Poisson-distributed 

jump-diffusion (JD) models fail to capture the excess fat tails and peakness around zero in equity 

returns, especially in the emerging stock markets, by using the boxplot methods (1997) and the 

probability analysis of Ait-Sahalia (2004).  In my analysis, JD models can only capture a small 

portion of the extreme values prevalent in emerging stock markets.  More importantly, the 

simulation results strongly support that the skewed t-distribution models have the flexibility of 

capturing both jump and non-jump extreme values depending on the degree of freedom 

parameter. 
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 The first chapter is organized as follows.  In Section 2 I setup five different model 

parameterizations and illustrate their likelihood functions.  Section 3 describes the data covered 

in this study.  Section 4 presents estimation methodology for model comparisons.  Section 5 

discusses the empirical results of the proposed models, along with goodness-of-fit diagnostic 

tests.  In Section 6, I perform 95% and 99% Value-at-Risk (VaR) analysis to further evaluate 

each different model specification.  Section 7 explains the rationales on why asymmetric fat-

tailed distributions such as Hansen’s skewed t-distribution outperform the mixed GARCH-jump 

models.  Section 8 provides a summary and conclusion. 

 

2.  Model Specifications 

I follow Harvey and Siddique’s (1999) approach to develop different model 

specifications considered in this study because of nonlinearity of likelihood functions and choice 

of good starting values to obtain global maximum.  Estimation of parameters in stages moving 

from simpler models to more complex specifications has also an advantage of goodness-of-fit 

diagnostic tests.  That is, if more complex models nest simpler models, complex ones should 

have higher likelihood values than those of simpler ones to pass likelihood ratio (LR) test.        

In addition, I will set up models in a discrete-time setting since GARCH processes can be 

seen as approximations to continuous-time diffusion processes with stochastic volatility.  Nelson 

(1990) shows that most GARCH processes converge in distribution to diffusion processes.  That 

is, the discrete-time GARCH (1, 1) model converges to a continuous-time diffusion model as the 

sampling interval gets arbitrarily small.  Therefore, simple GARCH processes offer a discrete-

time filter for stochastic volatility models and GARCH models with jumps can be similarly 

viewed as filters for continuous-time stochastic volatility models with jumps in returns and/or 
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volatility.  (For review of linkage between discrete-time and continuous-time framework, see an 

excellent Sundaresan (2000)’s survey paper and Duan et al. (2004)).  This finding is important 

because it is much easier to perform MLE for GARCH processes with discretely recorded data.  

   

2.1.   GJR-N: GJR-GARCH with Normal Return Distributions 

Although the simple GARCH (1, 1) model is usually a good starting point when 

modeling financial returns, there is substantial evidence that time-varying asymmetry is a major 

component of volatility dynamics (e.g., Nelson (1991), Engle and Ng (1993), Glosten et al. 

(1993)). Hence, in order to avoid misspecification of the conditional variance equation, I 

explicitly include a leverage term in the GARCH specification (Glosten et al., 1993) and I label 

GJR-N since its standardized error, t
t

t

z
h
ε

= , is assumed to be a standard normal distribution, 

(0,1)NID  and the normal distribution is by far the most widely used distribution when 

estimating and forecasting GARCH-type models.  

Suppose 1t−Ψ  is the information set at time 1t − , then I can define functional form of 

GJR-N as:  

 

 
1

ln( )t
t t

t

Pr
P

µ ε
−

= = +  (1) 

 

 2
0 1 1 1 1 1 1( )t t t th I hα α γ ε β− − −= + + +  (2) 

 

 1 ,       ~ (0,1)t t t t th z z NIDε −Ψ =  (3) 
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where 1tI −  is an indicator function which equals 1 when 1 0,tε − <  and zero otherwise.  In this 

model, good news (or positive shocks, 1 0tε − > ) have an impact of 2
1 1 0tα ε − ≥  on volatility, while 

bad news (or negative shocks, 1 0tε − < ) have an impact of 2
1 1 1( ) 0tα γ ε −+ ≥ .  Therefore, if 1 0γ ≠ , 

I can say that there exist asymmetric effects on conditional volatility.  In equation (2) and (3), th  

is a time-varying, positive and measurable function of the information set at time 1t −  and tz  is 

an independently and identically distributed process with ( ) 0tE z =  and ( ) 1tVar z = .  By 

definition, tε  is serially uncorrelated with mean zero, but its conditional variance equals th  and, 

therefore, may change over time, contrary to what is assumed in OLS estimations (For overview 

of the most important theoretical developments in the parameterization and implementation of 

GARCH-type models, see Bollerslev et al. (1992)). 

The log-likelihood function of the sample under a normality assumption for the 

disturbances is:  

 

 
2

1
1

1( ; , ) ln(2 ) ln
2 2

T
t

T t
t t

TL r r h
h
επ

=

⎛ ⎞
Θ = − − +⎜ ⎟

⎝ ⎠
∑  (4) 

 

where T is the number of observations.  To ensure that the GJR-N model is stationary, ( )L Θ  is 

maximized under the restriction 1 1 1
1 0
2

α β γ+ + < .  When 1 0γ = , the second moment regularity 

condition of GJR-N reduces to the well-known second moment condition for the GARCH (1, 1) 

model.  It follows that unconditional variance implied by GJR-N model is 

[ ] 0

1
1 11

2

tE h α
γ α β

=
⎛ ⎞− + +⎜ ⎟
⎝ ⎠

.     
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2.2.   JD-GJR: Jump-Diffusion Model with GJR-GARCH process 

A way to obtain more realistic distributions is to assume that the stock price follows a 

jump-diffusion process.  For example, in pricing and hedging with financial derivatives, jump-

diffusion models are particularly important, since ignoring jumps in financial prices will cause 

pricing and hedging risks.  Merton (1976) develops a model in which the arrival of normal 

information is modeled as a diffusion process, while the arrival of abnormal information is 

modeled as a Poisson process.  As an extension, Jorion (1988) combines jump processes with 

ARCH models in a discrete-time framework.  Therefore, in this study, I consider a jump-

diffusion process, which is a mixture of normal error distribution and a compound Poisson jump 

process for the US and emerging stock markets.   Then, this constant jump-diffusion model is 

combined with GJR-GARCH specification to reflect time-varying volatility and asymmetric 

effects (henceforth, JD-GJR).  Therefore, JD-GJR is one of the simplest forms among the mixed 

GARCH-Jump models considered in this paper.     

However, note that there is an important difference between my JD-GJR specification 

and existing Jorion-type mixed jump-diffusion models because I explicitly assume that jumps are 

incorporated in both returns and volatility.  Much recent research has provided strong evidence 

of the presence of positive jumps in volatility (See Bates (2000), Duffie et al. (2000), Pan (2002), 

and Eraker (2003, 2004)).  All of them argue that the specification of the volatility process 

should include jumps, possibly correlated with the jumps in returns.   

Eraker et al. (2003, pp. 1269-1970) explain that “Jumps in returns can generate large 

movements such as the crash of 1987, but the impact of jump is transient: A jump in returns 

today has no impact on the future distribution of returns.  On the other hand, diffusive volatility 

is highly persistent, but its dynamics are driven by a Brownian motion.  For this reason, diffusive 
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stochastic volatility can only increase gradually via a sequence of small normally distributed 

increments.  Jumps in volatility fill the gap between jumps in returns and diffusive volatility by 

providing a rapidly moving but persistent factor that drives the conditional volatility of returns.” 

Therefore, for model comparison purpose and to follow the direction of modern financial 

research, I incorporate jumps in returns and volatility across all mixed GARCH-Jump models 

examined in this paper.  The JD-GJR model is formally described as follows: 

 

 

 1, 2,
1

ln( ) ,     t
t t t t t

t

Pr
P

µ ε ε ε ε
−

= = + = +  (5) 

 

where   

 

 1, 1 ,                   ~ (0,1)t t t t th z z NIDε −Ψ =  (6) 

 

 2
2, 1 , ,

1
,        ~ ( , )

N

t t i t i t
i

J J NIDε θλ θ δ−
=

Ψ = −∑  (7) 

 

The returns process consists of three components, a linear drift (µ ), ‘normal’ price 

vibrations ( 1,tε ), and jump innovation representing a compound Poisson process that accounts for 

‘abnormal’ change in prices (jumps) due to arrival of news ( 2,tε ).  The GJR-GARCH 

specification is the same as that of GJR-N except squared innovations term ( 2
1tε − ) of JD-GJR 

model contain previous shocks from both normal price vibrations and abrupt jump innovations 

such as crashes, devaluations, corrections or defaults.  In equation (7), the jump innovation at 

time t is the sum of the tN  jumps which arrived over the time interval ( 1t − , t), where jump 

magnitude ,i tJ  is determined by sampling from an iid normal distribution with mean jump size 

(θ ) and jump size variability ( 2δ ).  This special case makes estimation and hypothesis testing 
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tractable and has become one of the most important representations of the mixed GARCH-jump 

models.    

 

2.3.   ARJI-GJR: Autoregressive Jump Intensity with GJR-GARCH 

Johannes and Kumar (1999) mention that standard state-independent models of returns 

such as Merton (1976)’s jump-diffusion model, Jorion (1988)’s mixed GARCH-jump model and 

JD-GJR model cannot capture the persistence in the jump processes.  In reality, in contrast to the 

iid specification of jump size distribution, actual financial data exhibit jump-times clustering and 

temporally-dependent jump sizes.  As such, the structure of jumps plays an important role in 

most financial applications including derivatives pricing, hedging, risk and portfolio 

management such as Value-at-Risk (VaR) which identify the maximum allowed movement in 

asset prices for a given threshold probability. 

To overcome weaknesses of state-independent models such as the JD-GJR model, Chan 

and Maheu (2002) propose jump dynamics in stock market returns using the ARJI 

(Autoregressive conditional jump intensity) model coupled with a GARCH specification.  For 

comparison with other models discussed in this paper, I consider a model which permits time 

variation in the jump intensity combined with GJR-GARCH specification (henceforth, ARJI-

GJR).  Return process and volatility equation have identical parameterizations as those of the JD-

GJR model, which were already shown in equation (2) and (5).   

The time variation in the jump intensity and the jump intensity residual to capture jump 

clustering are modeled as: 

 

 0 1 1t t tλ λ ρλ ϕξ− −= + +  (8) 

 

where 
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 1 1 1 1
0

( )t t t t
j

jP n jξ λ
∞

− − − −
=

= = Ψ −∑  (9) 

 

 

2.4.   GARJI: The mixed GARCH-Jump model with Autoregressive Jump Intensity 

Most recently, Maheu and McCurdy (2004) propose GARJI specification, which is the 

extended mixed GARCH-jump model with autoregressive jump intensity of Chan and Maheu 

(2002).  The only difference between ARJI-GJR model and GARJI model is that the variance 

equation of GARJI model includes the effect of both past normal innovations and past jump 

innovations to returns.  In other words, GARJI model estimates the number of jumps that 

occurred during period 1t −  and allow it to directly affect the feedback that 1tε −  has on the 

GARCH variance process.     

 Formally, return process is the same as those of previous models such as JD-GJR model 

and ARJI-GJR model.  However, variance equation of GARJI model has somewhat different 

characterization compared to those of previous GARCH-families.  Specifically, the GARCH 

specification of GARJI model is defined as: 

 

 2
0 1 1 1( , ) , t t t th g hα ε β− − −= + Λ Ψ +  (10) 

 

where 

 

 ( )( )( )1 1 1 1 , 1 1( , ) expt j t t t a a j t tg E n I E nα α ε α α− − − − − −Λ Ψ = + ⎡ Ψ ⎤ + + ⎡ Ψ ⎤⎣ ⎦ ⎣ ⎦  (11) 

 

Time-varying jump intensity structure of GARJI model is assumed to be identical as that of 

ARJI-GJR in the equation (8) and (9). 



 14

For estimation, the log-likelihood function of GARJI model (including JD-GJR model 

and ARJI-GJR model) is defined as2: 

 

 1 1
2

( ; , ) ln ( )
T

T t t
t

L r r f r −
=

Θ = ⎡ Ψ ⎤⎣ ⎦∑  (12) 

where 

 

 1 1 1
0

( ) ( ) ( , )t t t t t t t
j

f r P N j f r N j
∞

− − −
=

Ψ = = Ψ = Ψ∑  (13) 

 

      
2

22
0

exp( ) ( )1 exp
! 2( )2 ( )

j
t t t t

j tt

r j
j h jh j
λ λ µ λθ θ

δπ δ

∞

=

⎛ ⎞− − + −
= ⋅ −⎜ ⎟++ ⎝ ⎠
∑  (14) 

 

For comparison with other estimated conditional density functions and computations of 

corresponding empirical quantiles to evaluate VaR, the standardized version of conditional 

density function for GARJI model can be derived as:  

 

 1 1 1
0

( ) ( , ) ( )t t t t t t t
j

f z f z N j P N j
∞

− − −
=

Ψ = = Ψ ⋅ = Ψ∑  (15) 

 

where  

 

 
2 2( )

t
t

t t

rz
h

µ

θ δ λ

−
=

+ +
 (16) 

 

and  

 

                                                 
2  To see more detailed economic intuitions of each specification in equation (8)-(14), refer to Chan and Maheu 
(2002) and Maheu and McCurdy (2004). 
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1

2 2 2

22

2 2

( , )

( ( ) )1        exp
2( )2 ( )

             ( )

t t t

t t t t

tt

t t

f z N j

z h j
h jh j

h

θ δ λ θλ θ
δπ δ

θ δ λ

−= Ψ

⎛ ⎞⋅ + + + −
⎜ ⎟= −
⎜ ⎟++ ⎝ ⎠

× + +

 (17) 

 

In addition, I can also show that the standardized version of conditional density function for 

GARJI model is qualified as a distribution since integration of Equation (15) is: 

 

 1( ) 1t t tf z dz
∞

−
−∞

Ψ =∫  (18) 

 

Therefore, standardizing tr  as in Equation (16) results in a zero-mean and unit-variance random 

variable with the distribution in Equation (15).  

 

2.5.   GJR-HT: GJR-GARCH with Hansen’s Skewed t-Distribution 

It is well-documented that even asymmetric GARCH models fail to fully account for 

sample skewness and leptokurtosis of high frequency financial time series when they are 

assumed to follow normal or symmetric Student’s t distributions with ν  degree of freedom3 in 

order to allow for excess kurtosis in the conditional distribution.  This has naturally led to the use 

of asymmetric non-normal distributions to better model conditional higher moments.  To make 

progress, Hansen (1994) has assumed that the distribution of the error term tz  can be skewed.  

                                                 
3  While financial time series can be skewed, the unconditional skewness is still zero since the distribution of the 
error process tz  is symmetric around zero.  Another disadvantage of using t-distribution as one of candidates in 
return distributions is that it is not high-peaked around zero returns, which is one of important features of 
leptokurtosis (high peak + heavy tails) of financial asset returns.  
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The same specification for the GJR-HT is applied to define mean and variance equations 

as those of GJR-N in the equation (1) and (2).  However, underlying return distribution is now 

assumed to follow Hansen’s skewed t-distribution.  

 

 1 ,     ~ ( , )t t t t th z z HT zε η φ−Ψ =  (19) 

 

where  

 

                             

1
2 2

1
2 2

11          if  
2 1

( , )

11          if  
2 1

bz abc z a b

HT z

bz abc z a b

η

η

η φ
η φ

η φ

+
−

+
−

⎧
⎛ ⎞⎛ ⎞+⎪ ⎜ + ⎟ < −⎜ ⎟⎪ ⎜ ⎟− −⎝ ⎠⎪ ⎝ ⎠= ⎨

⎪ ⎛ ⎞⎛ ⎞+⎪ ⎜ + ⎟ ≥ −⎜ ⎟⎜ ⎟⎪ − +⎝ ⎠⎝ ⎠⎩

 (20) 

 

The values a , b , and c  in the distribution are defined as: 

 

 2 2

1
2 24 ,      1 3 ,      c
1 ( 2)

2

a c b a

η
ηφ φ

ηη π η

+⎛ ⎞Γ⎜ ⎟− ⎝ ⎠≡ ≡ + − ≡
− ⎛ ⎞− Γ⎜ ⎟

⎝ ⎠

 (21) 

 

The conditional distribution of the standard residuals tz  is characterized by two parameters: 

kurtosis parameter (η ) and asymmetry parameter (φ ).  These are restricted to 4 30η< <  and 

1 1φ− < < .  This distribution nests the symmetric Student t-distribution when the asymmetry 

parameter (φ ) equals 0 and also nests the standard normal distribution when kurtosis parameter 

(η ) goes ∞ .     

As an alternative parameterization of Hansen’s model, Harvey and Siddique (1999) 

employ variants of Hansen’s (1994) autoregressive conditional density model (ARCD) with a 

skewed version of the t-distribution specified for the error term.  The model extends the standard 
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GARCH-M model by allowing the conditional skewness and degrees of freedom of the skewed 

t-distribution to depend linearly on functions of lagged error terms.  They also investigate the 

existence of coskewness using a bivariate GARCH on daily and monthly stock indexes.  The log-

likelihood function of the GJR-HT is similarly defined as: 

 

 1 1
2

( ; ) ln ( , ; )
T

t t
t

L HT z η φ− −
=

Θ Ψ = ⎡ Ψ ⎤⎣ ⎦∑  (22) 

 

 

3.  Data and Descriptive Statistics 

I use the daily returns tr  from the index series collected in each trading day at closing 

time from 07/05/1995 to 08/07/2002 for the US and four emerging stock markets (2 Asian stock 

markets: Korea, Indonesia and 2 Latin American stock markets: Mexico, Brazil).  The data are 

obtained from CRSP (Center for Research in Security Prices) for the US and EMDB (Emerging 

Markets Database) for emerging stock markets.  Zero returns associated with non-trading days 

have been excluded from the dataset. 

The tr  values are the continuously compounded returns calculated as the natural 

logarithm of two consecutive index values,
1

ln t
t

t

Pr P−

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 to obtain approximately stationary 

series.  The rationales I consider daily index returns for this study are that 1) a research has 

shown that jump-diffusion models are not supported for monthly data, due to the fact that less 

frequently observed data is not appropriate for detecting the jump component in asset returns 

process (see Lin and Yeh (1999)) and 2) VaR analysis has more important practical roles in daily 

basis.   
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Figure 1.  Boxplots of Daily Returns for the US and Four Emerging (Asian and Latin American) 
Stock Market Indices.  This figure summarizes the distribution of a set of data by displaying the 
centering and spread of the data using a few primary elements.  The box portion of a boxplot represents 
the first and third quartiles (middle 50 percent of the data).  Data points outside the inner fence are 
considered as outliers. 

 

 

Figure 1 displays boxplots of daily returns for my samples.  This figure summarizes the 

distribution of a set of data by displaying the centering and spread of the data using a few 

primary elements.  The box portion of a boxplot represents the first and third quartiles (middle 

50 percent of the data).  Data points outside the inner fence are considered as outliers.  The US 

has relatively few outliers in the sample.  However, as expected, Korea and Indonesia include a 
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lot of extreme outliers since these countries were severely affected by Asian currency crisis in 

1997.  Mexico and Brazil have also several outliers in between the US and Asian stock markets.   

 

Table I 

Descriptive Statistics 
This table presents summary statistics for returns on the US and four emerging (Asian and Latin American) stock 
indices for the period from 07/05/1995 to 08/07/2002. JB is the Jarque-Bera statistic for testing normality. This is 
asymptotically distributed as 2χ (2) with 2 degree of freedom. KS is the Kolmogorov-Smirnov statistic for testing 
the null hypothesis of normality. ARCH is the Engle’s hypothesis test to examine for the presence of 
ARCH/GARCH effects.  Q2(30) represents the Ljung-Box test statistics for serial autocorrelation in the squared 
returns at a lag of 30 trading days for each stock index.  The p-values are reported in square brackets.   
 
 US Korea Indonesia Mexico Brazil 

 Observations 1788 1784 1815 1832 1816 

 Mean 0.0003 -0.0002 -0.0008 0.0003 0.0000 

 Median 0.0004 -0.0006 -0.0004 0.0002 0.0006 

 Maximum 0.0557 0.2679 0.2543 0.1426 0.1436 

 Minimum -0.0711 -0.2156 -0.4085 -0.1460 -0.1514 

 Std. Dev. 0.0120 0.0307 0.0368 0.0185 0.0229 

 Skewness -0.1745 0.3049 -0.8631 -0.0430 -0.3191 

 [0.0013] [0.0000] [0.0000] [0.2263] [0.0000] 

 Kurtosis 6.1418 11.6586 22.1726 8.9594 9.1843 

 [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] 

 JB 744.48 5600.47 28024.25 2711.47 2924.75 

  [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] 

 KS 0.4810 0.4553 0.4500 0.4723 0.4675 

 [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] 

 ARCH 60.9868 70.2904 82.4824 14.5321 87.9282 

 [0.0000] [0.0000] [0.0000] 0.0001 [0.0000] 

 Q2(30)           408.34       2652.59        1511.63 357.85 813.81 

         [0.0000]        [0.0000]        [0.0000] [0.0000] [0.0000] 

 
 

Table I presents summary statistics on my samples.  The Jarque-Bera (JB) tests and 

Kolmogorov-Smirnov statistics (KS) show non-normality of all of five indexes distributions and 
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in all cases this is mainly due to the presence of skewness and excess kurtosis while the 

coefficient of skewness for the Mexico is not significant at the conventional 5% level.  Engle’s 

LM test indicates the presence of ARCH/GARCH effects in the conditional variance and the 

Ljung-Box tests, Q2(30), show strong autocorrelations in the squared returns at a lag of 30 

trading days for each stock index.   

I also perform non-parametric runs test to check normality of returns distributions for my 

samples because severe non-randomness and higher predictability of stock returns strongly imply 

non-normality in return distributions.  Table II shows the estimation results of a non-parametric 

runs test used for detecting the frequency of the changes in the direction of a time series.  The 

runs test determines whether the total number of runs in the sample is consistent with the 

hypothesis that the changes are independent.  The standard normal Z-test statistic used to conduct 

a runs test is given by: 

 

 
( ) 0.5

( )
R E R

Z
Var R

⎛ ⎞− −
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 (23) 

 

where R is the observed number of runs and  

 

 1 2

1 2

2( ) n nE R
n n

=
+

 (24) 

 

where 1n  and 2n  are the number of observations below respectively above the mean4, and 

 

 1 2 1 2 1 2
2

1 2 1 2

2 (2 )( )
( ) ( 1)
n n n n n nVar R
n n n n

− −
=

+ + −
 (25) 

 

                                                 
4   Other versions of the test use the median or mode instead of the mean.  
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The hypothesis of randomness is then rejected at the 100-α significance level if 

{ }2 P Z z α⋅ > <  where ~ (0,1)Z NID .  A runs test carried out on the daily data for indices of 

the US and four (Asian and Latin American) emerging stock markets gives Z-values of -0.3247 

(US), -5.6424 (Korea), -5.8863 (Indonesia), -4.3439 (Mexico), and -3.7380 (Brazil) which have 

p-values that are basically equal to zero except the US, thus giving huge evidence to reject the 

hypothesis of randomness5 or normality of asset returns for four emerging stock markets.  

 

Table II 

Nonparametric Runs Test for Randomness 
This table shows the estimation results of a nonparametric runs test used for detecting the frequency of the changes 
in the direction of a time series.  A runs test is conducted for each of the US and four emerging (Asian and Latin 
American) stock markets indices. 
 

Runs Test US Korea Indonesia Mexico Brazil 

 Observations 1788 1784 1815 1832 1816 

 Below Cutoff 862 922 920 908 871 

 Above Cutoff 926 862 895 924 945 

 Number of Runs 887 773 783 824 828 

 Cutoff 0 0 0 0 0 

 E[R] 893.8546 891.9910 908.3278 916.9301 907.4923 

 Std Dev. 21.1094 21.0889 21.2915 21.3935 21.2660 

 Z-Value -0.3247 -5.6424 -5.8863 -4.3439 -3.7380 

 P-Value [0.7454] [0.0000] [0.0000] [0.0000] [0.0002] 

                                                 
5  Positive Z-values indicate the sample contains greater-than-expected numbers of runs and negative Z-values 
indicate the sample contains fewer-than-expected numbers of runs. 
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4.  Estimation Methodology 

For the five different model specifications, parameters are estimated using the maximum 

likelihood principle (MLE), i.e., I maximize the conditional log-likelihood functions of each 

model for a sample of T observations 1, , Tr r  with respect to parameter vector Θ .  Especially, 

estimation of parameter values for the GJR-HT through MLE is quite easy to implement and its 

estimation does not face serious problems of convergence6.  The optimization algorithm used is 

the Broyden, Fletcher, Goldfarb and Shanno (BFGS) Quasi-Newton updating scheme.  To avoid 

the unexpected explosions of parameter values during the iterations of numerical optimizations, I 

use a constrained optimization algorithm (fmincon) built in the MATLAB.  Furthermore, I also 

ensure global maximum by trying a few qualified starting values to see whether I obtain same (at 

least almost identical) parameter values and likelihood values for each different model 

specification. 

For comparison among nested models such as GJR-N, JD-GJR and ARJI-GJR, I employ 

the likelihood ratio (LR ) test since within the MLE framework, it is the standard method for 

testing goodness of different models.  The idea of this test is that the distributions 1f  and 2f  with 

dimension of parameter spaces 1d  and 2d  ( 1d < 2d ) determine the likelihood ratio: 

 

 ( )( ) ( )( )( )2 2 1 1 2 1

22 ln ln ~f d f d d dLR L r L r χ −= Θ − Θ  (26) 

 

where 
1f

L  and 
2f

L  are the likelihood functions; 1d  and 2d  are the respective parameter spaces, 

and r  is the data.  LR  follows asymptotically 2χ  distribution with ( )2 1d d−  degrees of freedom.  

                                                 
6  I am grateful to Dr. Andrew Patton who provides me MATLAB source codes to estimate Hansen (1994)’s skewed 
t-distribution.  Although I considerably modified original m-files for this study, I appreciate his generosity to allow 
programs to be available to other researchers.       
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However, to compare ARJI-GJR, GARJI and GJR-HT model, I need alternative measures 

because these three models are non-nested, which means that the parameter space of the PDF 

with smaller number of independent parameters is not derived from the parameter space of the 

PDF with higher dimensionality.  

 Therefore, the goodness-of-fit for the models in this paper is also measured using the 

following three information criteria since past research has not provided common single 

conventional test criteria7:  Akaike information criteria (AIC), Schwarz criteria (SC), and 

Hannan-Quinn criteria (HQ).  All of them are applicable when the parameter spaces of the 

different model being compared are non-nested.   

  

 

2( / ) 2( / )
2( / ) log( ) /

 = 2( / ) 2 log(log( )) /

AIC l T k T
SC l T k T T

HQ l T k T T

= − +
= − +
− +

 (27) 

 

Note that all the above three information criteria include an adjustment for the degrees of 

freedom that depends on both the number of parameters (k) and the sample size (T).  Therefore, 

the model that minimizes the above information criteria values provides the best fit, since it is 

the model that has the highest likelihood value while controlling for the number of parameters in 

the model and the sample size.     

 

5.  Empirical Results and Goodness-of-fit Diagnostic Tests 

Tables III presents estimation results and parameter values for each model specification 

for the US and four emerging markets (see Panel A to E).  LR test statistics and several model 

selection measures strongly suggest that GJR-HT outperforms GARJI model, let alone all other 
                                                 
7  McAleer (1995) surveys more than one hundred empirical papers in which models have been tested against one or 
more non-nested alternatives.  Granger et al. (1995) argue that it is often better to use model selection criteria rather 
than formal hypothesis testing when evaluating alternative models. 
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model specifications for every country considered in this study.  Although the likelihood value of 

GARJI (5608.96) is slightly higher than that of GJR-HT (5608.60) for the US (See Panel A), 

GJR-HT model has the smallest values of three information criteria.  Of course, in this case, 

information criteria should be used to select better model specification since GARJI and GJR-HT 

model are non-nested.  For emerging stock markets, superiority of GJR-HT over GARJI model is 

even more astounding.  GJR-HT model has not only the highest likelihood values, but also the 

smallest values of information criteria, which imply that GJR-HT model provide not only the 

best but also parsimonious model specification for my sample.  

 

Table III 

Parameter Estimates for the Maheu and McCurdy’s (2004) GARJI Model and GJR-
GARCH with Skewed t Error Distribution (GJR-HT) 
 
The tables (Panel A~E) present parameter values and test statistics through maximum likelihood estimates (MLE) 
for the GARJI model and GJR-GARCH with skewed t error distribution.  For comparison, estimation results of 
Merton’s constant jump model combined with GJR-GARCH are also provided.  Ln L is log-likelihood values with 
the k parameters estimated using T observations for each model specification and data series.  For model comparison 
purpose, three information criteria are also computed by AIC (Akaike Information Criterion), SC (Schwarz 
Criterion), and HQ (Hannan-Quinn Criterion).  The p-values are reported in square brackets.   
 
Mean Equation  : 1ln( )t t t tr P P µ ε−= = +  
 

1

2
1, 2, 1, 1 2, 1 , ,

1
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Variance Equation 
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Autoregressive Jumps Intensity 
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The Information Criteria 

AIC 2(ln / ) 2( / )     SC 2(ln / ) log( )/     HQ 2(ln / ) 2 log(log( ))/L T k T L T k T T L T k T T= − + = − + = − +  
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Panel A:  US 
 

 GJR-N JD-GJR ARJI-GJR GARJI GJR-HT 

0α  0.0000 0.0012 0.0011  0.0000 0.0000 
 [0.0000] [0.0000] [0.0000]  [0.0000] [0.2616] 
β  0.9025 0.8961 0.9178  0.9041 0.8999 
 [0.0000] [0.0000] [0.0000]  [0.0000] [0.0000] 

1α  0.0188 0.0051 0.0002  0.0000 
 [0.0653] [0.0947] [0.1928]  [0.4993] 

1γ  0.1970 0.1513 0.1329  0.1712 
 [0.0000] [0.0000] [0.0000]  [0.0000] 
α     -6.0885  
     [0.0000]  

jα     -3.5436  
     [0.0001]  

aα      4.1337  
     [0.0000]  

,a jα      3.2791  
     [0.0035]  
η      10.3639 
     [0.0000] 
φ      -0.1208 
     [0.0001] 

0λ    0.0566  0.0310  
   [0.0000]  [0.0000]  
ρ    0.3891  0.5462  
   [0.0083]  [0.0000]  
ϕ    0.4037  0.3008  
   [0.0050]  [0.0011]  
λ   0.1175    
  [0.0006]    
θ   -0.0058 0.0097 -0.0160  
  [0.0000] [0.0000]  [0.0000]  
δ   0.0100 0.0088  0.0068  
  [0.0000] [0.0000]  [0.0196]  
      

ln L  5583.32 5602.39 5605.26 5608.96 5608.60 
AIC -6.2409 -6.2588 -6.2598  -6.2617 -6.2669 
SC -6.2286 -6.2373 -6.2322 -6.2279 -6.2485 
HQ -6.2363 -6.2509 -6.2496 -6.2492 -6.2601 
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Panel B:  Korea 
 

 GJR-N JD-GJR ARJI-GJR GARJI GJR-HT 

0α  0.0000 0.0019 0.0021  0.0000 0.0000 
 [0.0371] [0.0000] [0.0000]  [0.0003] [0.1846] 
β  0.9333 0.9063 0.9234  0.9225 0.9217  
 [0.0000] [0.0000] [0.0000]  [0.0000] [0.0000] 

1α  0.0457 0.0482 0.0322  0.0502 
 [0.0000] [0.0004] [0.0036]  [0.0000] 

1γ  0.0433 0.0547 0.0562  0.0542 
 [0.0000] [0.0001] [0.0000]  [0.0009] 
α     -3.3262  
     [0.0000]  

jα     -0.0513  
     [0.4661]  

aα      0.8989  
     [0.0001]  

,a jα      0.2854  
     [0.3738]  
η      6.2460 
     [0.0000] 
φ      0.0156 
     [0.2916] 

0λ    0.0152  0.0184  
   [0.0214]  [0.0035]  
ρ    0.7217  0.6634  
   [0.0000]  [0.0000]  
ϕ    0.4338  0.3125  
   [0.0274]  [0.0039]  
λ   0.0897    
  [0.0000]    
θ   0.0040 0.0018  0.0018  
  [0.0010] [0.3832]  [0.3707]  
δ   0.0331 0.0466  0.0461  
  [0.0000] [0.0000]  [0.0000]  
      

ln L  4079.91 4097.38 4106.08 4102.15 4112.53 
AIC -4.5694 -4.5856 -4.5931 -4.5865 -4.6037 
SC -4.5571  -4.5641 -4.5655 -4.5527 -4.5853 
HQ -4.5649 -4.5777 -4.5829 -4.5739 -4.5969 
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Panel C:  Indonesia 
 

 GJR-N JD-GJR ARJI-GJR GARJI GJR-HT 

0α  0.0000  0.0001  0.0025  0.0000  0.0000 
 [0.0000]  [0.3175]  [0.0000]  [0.0001]  [0.0253] 
β  0.9318  0.8816  0.8350  0.7984  0.8627 
 [0.0000]  [0.0000]  [0.0000]  [0.0000]  [0.0000] 

1α  0.0467  0.0706  0.0643   0.0880 
 [0.0000]  [0.0000]  [0.0002]   [0.0000] 

1γ  0.0483  0.0456  0.1350   0.0986 
 [0.0000]  [0.0002]  [0.0000]   [0.0001] 
α     -2.5460  
     [0.0000]  

jα     -1.4485  
     [0.1959]  

aα      0.6850  
     [0.0232]  

,a jα      1.4272  
     [0.2084]  
η       4.3000 
      [0.0000] 
φ      -0.0386 
      [0.0762] 

0λ     0.0670  0.0005  
    [0.0000]  [0.0007]  
ρ     0.1475  0.9072  
    [0.1772]  [0.0000]  
ϕ     0.1843  0.0450  
    [0.0390]  [0.0017]  
λ    0.1524    
   [0.0000]    
θ   -0.0019 -0.0108 -0.0043  
   [0.0095]  [0.0120]  [0.1354]  
δ    0.0329  0.0560  0.0548  
   [0.0000]  [0.0000]  [0.0000]  
      

ln L  4172.33 4213.00 4233.38 4256.43 4277.06 
AIC -4.5932 -4.6347 -4.6550 -4.6782 -4.7064 
SC -4.5811 -4.6135 -4.6277 -4.6448 -4.6882 
HQ -4.5887 -4.6269 -4.6449 -4.6659 -4.6997 
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Panel D:  Mexico 
 

 GJR-N JD-GJR ARJI-GJR GARJI GJR-HT 

0α  0.0000 0.0026   0.0021  0.0000 0.0000 
 [0.0000] [0.0000]   [0.0000]  [0.0000] [0.0153] 
β  0.8830 0.8428   0.9212  0.8817 0.8774 
 [0.0000] [0.0000]   [0.0000]  [0.0000] [0.0000] 

1α  0.0247 0.0533   0.0164  0.0289 
 [0.0080] [0.0000]   [0.0461]  [0.0012] 

1γ  0.1373 0.1346   0.0680  0.1358 
 [0.0000] [0.0000]   [0.0000]  [0.0000] 
α     -3.6319  
     [0.0000]  

jα     -0.2742  
     [0.4137]  

aα      1.8286  
     [0.0000]  

,a jα      3.4104  
     [0.0033]  
η      6.9359 
     [0.0000] 
φ      0.0269 
     [0.1873] 

0λ      0.0205  0.0372  
     [0.0946]  [0.0000]  
ρ      0.7021  0.2576  
     [0.0000]  [0.0435]  
ϕ      0.4044  0.2567  
     [0.0377]  [0.0292]  
λ   0.1220    
  [0.0000]    
θ   0.0041 -0.0042 -0.0025  
  [0.0000]   [0.3156]  [0.2853]  
δ   0.0235   0.0263  0.0312  
  [0.0000]   [0.0000]  [0.0000]  
      

ln L  4905.81 4928.25 4932.44 4935.40 4945.55 
AIC -5.3513 -5.3725 -5.3749 -5.3760 -5.3925 
SC -5.3393 -5.3515 -5.3479 -5.3429 -5.3745 
HQ -5.3469 -5.3648 -5.3649 -5.3638 -5.3859 
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Panel E:  Brazil 
 

 GJR-N JD-GJR ARJI-GJR GARJI GJR-HT 

0α  0.0000  0.0029  0.0022   0.0000  0.0000 
 [0.0000]  [0.0000]  [0.0000]   [0.1471]  [0.0158] 
β  0.1733  0.8439  0.8895   0.8944  0.8586 
 [0.0000]  [0.0000]  [0.0000]   [0.0000]  [0.0000] 

1α  0.0626  0.0509  0.0364   0.0600 
 [0.0000]  [0.0000]  [0.0001]   [0.0000] 

1γ  0.8175  0.1226  0.0862   0.1276 
 [0.0000]  [0.0000]  [0.0000]   [0.0000] 
α       -1.8997  
      [0.0000]  

jα     -20.4076  
      [0.0034]  

aα      -0.1010  
      [0.4073]  

,a jα     19.8977  
      [0.0041]  
η       6.9236 
      [0.0000] 
φ      -0.0918 
      [0.0013] 

0λ     0.0685   0.0242  
    [0.0000]   [0.0619]  
ρ     0.4922   0.7695  
    [0.0002]   [0.0000]  
ϕ     0.3228   0.2941  
    [0.0139]   [0.0027]  
λ    0.0809    
   [0.0000]    
θ   -0.0236 -0.0137  -0.0165  
   [0.0000]  [0.0007]   [0.0001]  
δ    0.0166  0.0240   0.0253  
   [0.0000]  [0.0000]   [0.0000]  
      

ln L  4605.93 4629.19 4637.39 4643.02 4645.49 
AIC -5.0682 -5.0905 -5.0973 -5.1013 -5.1096 
SC -5.0561 -5.0693 -5.0701 -5.0680 -5.0914 
HQ -5.0637 -5.0827 -5.0873 -5.0890 -5.1029 
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Panel A: US 
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Panel B: Korea 
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Panel C: Indonesia 

-5 -4 -3 -2 -1 0 1 2 3 4
-10

-5

0

5

10

Normal Distribution

In
do

ne
si

a

-6 -4 -2 0 2 4 6 8
-10

-5

0

5

10

Skewed t distribution

In
do

ne
si

a

 
 
Panel D: Mexico 
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Panel E: Brazil 
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Figure 2.  QQ-plots of Standardized Innovations for GJR-N and GJR-HT.  The figures illustrate the 
QQ-plots of the standardized innovations for the GJR-GARCH model against normally distributed and 
Hansen’s skewed t distributed random values using random number generator. 

 

 

To see if GJR-HT model can describe equity returns well for the US and emerging 

markets, I also draw QQ-plots of standardized innovations for GJR-N and GJR-HT using random 

number generator in Figure 2.  QQ-plots are useful in comparing distributions of observed 

sample values with values from a known distribution.  If the sample data were generated from a 

random sample of the reference distribution, the plot should look roughly linear.  If the reference 

distributions have heavier tails than the sample distribution, the plot curves down at the left end 
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and up at the right end.  Therefore, the QQ-plot is particularly helpful for analysis of tail 

behavior as shown in Hilgers (2004). 

To generate random numbers from the Hansen’s skewed t-distribution at η  and φ , I 

transform draws from the uniform [0,1] distribution using the inverse of the following 

cumulative distribution function of skewed t-distribution: 
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In Equation (28), ( )t ν  is a t-distribution with degree of freedom, ν , and the values a  and b  in 

Equation (29) were already defined in Equation (21).   

Therefore, denoting ( )
r

HT z dz
−∞∫  and ( )

s
t dν ν

−∞∫  by ( )HT r  and ( )T s  respectively, the 

random number r  from Hansen’s skewed t-distribution is obtained by Equation (30) (For more 

detailed mathematical derivation, CDF, generating random samples from the Hansen’s skewed t-

distribution, refer to Hashmi and Tay (2001)).  
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Figure 2 presents QQ-plots of the sample data against normal values.  Under the 

assumption of normal distribution, for all countries, the plot is only approximately linear in the 

center of the distribution, while it curves up at the right end and down at the left end.  This 

strongly indicates that return distributions of the US and emerging stock markets have much 

heavier tails compared to a normal distribution.   

QQ-plots of the stock market data against the simulated skewed t-distributed random 

numbers are also displayed in Figure 2.  All of these plots show an approximately linear 

dependence of the quantiles over the largest part of the distributions.  This suggests that the 

market time series are much better described by skewed t-distributed than by normal random 

numbers.  Therefore, the skewed t-distribution gives an excellent description for most of the 

sample values, and in particular for the large negative values.  Moreover, the QQ-plots imply that 

fat tails are not symmetric.   

Table IV reports summary statistics of the standardized residuals from the estimated five 

different model specifications.  The Ljung-Box statistics for the first order autocorrelation in the 

squared residuals are all insignificant.  This indicates that all of models I consider effectively 

remove the relationship among the squared returns since I have used same GJR-GARCH 

specifications for the variance equation except GARJI model.  Note that all the raw squared 

returns displayed significant first order autocorrelation in Table I.  Therefore, it might be more 

interesting to examine model implied higher moments to compare performances on different 

models.   
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Table IV 

Goodness-of-Fit Diagnostic Tests 
 
The tables present the Ljung-Box Portmanteau statistics (Panel A) and Engle’s ARCH tests (Panel B) of squared 
standardized residuals for each of the six different model specifications.  The figure in square brackets is the p-value 
of the Ljung-Box Q2(30) test and ARCH test against the null hypothesis of no serial correlation. 

 
Panel A: Ljung-Box Q-statistic Lack-of-fit Hypothesis Tests 
 

 GJR-N JD-GJR ARJI-GJR GARJI GJR-HT 
US 21.8938 22.4375 19.6887 19.9094 20.5907 

 [0.8578] [0.8377] [0.9244] [0.9189] [0.9002] 
Korea 22.7161 26.5992 25.1750 24.5985 23.1463 

 [0.8267] [0.6442] [0.7165] [0.7443] [0.8092] 
Indonesia  35.7587 34.5111 31.8396 18.4733 36.4404 

 [0.2161] [0.2609] [0.3750] [0.9504] [0.1940] 
Mexico 28.5057 29.0669 27.2744 15.5045 28.9697 

 [0.5437] [0.5141] [0.6088] [0.9866] [0.5192] 
Brazil 26.1925 29.2633 32.9575 29.0389 28.6627 

 [0.6657] [0.5038] [0.3244] [0.5156] [0.5354] 
 
 
 
Panel B: Engle's hypothesis test for the presence of ARCH/GARCH effects 
 

 GJR-N JD-GJR ARJI-GJR GARJI GJR-HT 
US 2.5637 2.0571 0.9462 1.4185 1.7269 

 [0.1093] [0.1515] [0.3307] [0.2337] [0.1888] 
Korea 2.1771 1.7838 3.3546 2.9128 2.4768 

 [0.1401] [0.1817] [0.0670] [0.0879] [0.1155] 
Indonesia  0.5045 0.3607 2.4919 0.0024 0.0604 

 [0.4775] [0.5481] [0.1144] [0.9611] [0.8058] 
Mexico 0.4635 0.1698 1.5910 0.5365 0.3643 

 [0.4960] [0.6802] [0.2072] [0.4639] [0.5461] 
Brazil 1.3275 4.2520 0.0104 0.2738 0.3710 

 [0.2493] [0.0392] [0.9185] [0.6008] [0.5425] 
 

 

For the JD-GJR, ARJI-GJR, and GARJI models, conditional higher moments can be 

computed using the following formula derived by Das and Sundaram (1999). 
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Therefore, the distributions for the mixed GARCH-jump models are leptokurtic when 0tλ >  and 

skewed for 0θ ≠ . 

Conditional higher-order moments (model implied skewness and kurtosis) of GJR-HT are 

also obtained by the following equations (For mathematical proof, see Jondeau and Rockinger, 

2000).  
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Hence, Hansen’s skewed t-distribution is also fat-tailed, and is skewed to the left (right) 

when φ  is less (greater) than 0.   

Table V shows that assuming from fat-tailed distributions is somewhat consistent with 

the mixed GARCH-jump models over the short term in some degree.  However, unlike GJR-HT, 

even GARJI model could not capture extreme outliers for the Indonesia since jump times and 
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jump sizes are very difficult to estimate precisely.  In addition, jump models are hard to explain 

high peak around zero returns since the role of jumps is to capture infrequent extreme events, 

which is another important feature of leptokurtosis of empirical return distribution. 

Figure 3 present graphical illustrations of the conditional density functions of Hansen’s 

skewed t distribution with estimated kurtosis (η ) and skewness (φ ) parameters for standardized 

innovations of the GJR-HT model. For comparison, each figure additionally provides the 

standard normal density function and standardized mixed conditional density of JD-GJR, sharing 

with identical distribution of Maheu and McCurdy’s (2004) GARJI model.  All three densities 

are scaled to have zero mean and unit variance for comparison purpose.  Standardized version of 

conditional density function of GARJI model was shown in Equation (15).   

The skewed t-distribution assigns greater probability mass close to zero (for small returns 

of either sign) than does the normal and mixture of GARCH and jump distribution.  In addition, 

from the plots, the skewed t-model appears to capture skewness when it is present.  Furthermore, 

GJR-HT can match the high conditional kurtosis of returns (tail thickness) documented in the 

literature for many classes of financial assets for emerging stock markets.  

 

Table V 

Model Implied Higher Moments 
 
These tables present the model implied skewness (Panel A) and kurtosis (Panel B) across each different model 
specification.  For the mixed jump-GARCH models (JD-GJR, ARJI-GJR, and GARJI), I report the average values 
of conditional skewness and conditional kurtosis of the index returns implied by their corresponding models.  For 
comparison, I also provide sample skewness and sample kurtosis in the first columns.  The model implied higher 
moments of each model are computed from:  
 
 
JD-GJR, ARJI-GJR, and GARJI (Das and Sundaram, 1999) 
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GJR-HT (Jondeau and Rockinger, 2000)  
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Panel A: Model implied Skewness 

Country Sample 
(Unconditional) JD-GJR ARJI-GJR GARJI GJR-HT 

US -0.1711 -0.2874 -0.3171 -0.3814 -0.8188 

Korea 0.3049 0.1169 0.0454 0.0509 0.1077 

Indonesia -0.8631 -0.1131 -0.6081 -0.2321 -0.3120 

Mexico -0.0430 0.0363 -0.1401 -0.0896 0.1853 

Brazil -0.3191 -0.2750 -0.5659 -0.5831 -0.6328 
 

* The sample skewness of Mexico is statistically insignificant at the 5% significance level. (p-value: 0.2263) 
 

 

Panel B: Model implied Kurtosis 

Country Sample 
(Unconditional) JD-GJR ARJI-GJR GARJI GJR-HT 

US 6.1418 3.9561 3.8573 4.0567 4.5321 

Korea 11.6586 5.0286   5.9019 6.0683 5.6869 

Indonesia 22.1726 6.6469 11.9501 11.7916 23.3423 

Mexico 8.9594 4.7625 4.6813 5.4919 5.0790 

Brazil 9.1843   4.2302 5.2710 5.4411 5.4844 
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Figure 3.  Estimated Conditional Density Functions. The figures present graphical illustrations of the 
conditional density functions of Hansen’s skewed t distribution with estimated kurtosis(η ) and 
skewness(φ ) parameters for standardized innovations of the GJR-HT model. For comparison, each figure 
additionally provides the standard normal density function and standardized mixed conditional density of 
JD-GJR, sharing with identical distribution of Maheu and McCurdy’s (2004) GARJI model.  All three 
densities are scaled to have zero mean and unit variance. 

 

 

6.  Value-at-Risk Analysis 

VaR model has been widely used over the past decades as a primary tool since senior 

executives could have easily interpreted the financial risk exposures of their corporations using 

the VaR computations.  In addition, VaR is useful since 1) it concentrates on downside risk and 

subsequently on the behavior of a lower tails for the assumed distribution and 2) accurate 

estimation of VaR requires precise modeling of the unconditional kurtosis of returns distribution 
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(For recent evaluations of VaR forecasts at commercial banks, see Berkowitz and O’Brien 

(2002)). 

J.P. Morgan (1996)’s EWMA model (also called RiskMetrics) puts more weight on the 

more recent observations, and thus takes some account of the dynamic ordering in returns.  The 

formal description can be written as  
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where 0.94ψ =  is smoothing constants and governs the degree of dependence of th  on the past 

history of 2
tr .  Therefore, the larger the value ψ  the more weight is placed on past observations 

and so the smoother the series becomes.  The first term, 2
1thψ − , determines the persistence in 

volatility.  The second term, 2
1(1 ) trψ −− , determines the intensity of reaction of volatility to market 

events.  From Equation (35), I can see that the variance at time t is a weighted average of the 

variance at time t-1 and the magnitude of the return at time t-1.  To compare and evaluate model 

performances on five different model specifications along with EWMA model, I choose the 

following criteria.  That is, I consider how much each model underestimates the losses since this 

criterion is reasonable in VaR perspective.   

The total numbers of violations ( N ) and percentages of violations ( Perc ) are computed 

from: 
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1 1
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t t t
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= = ×∑  (37) 

 

where   

 

 1 1
ˆ( )t t t tVaR F hα+ += ⋅  (38) 

 

and ( )F α  is the corresponding empirical quantile (95th or 99th) of the assumed distribution and 

1t̂ th +  is the forecast of the conditional standard deviation at time t+1 given the information at 

time t. 

Therefore, the VaR forecast is the quantity, 1 1
ˆ( )t t t tVaR F hα+ += ⋅ , such that 

( )1 1Pr t t tr VaR α+ +< =  over the next trading day.  Here 0.05α = ( 0.01α = ), so that the model 

predicts a lower bound on losses not to be exceeded with 95% (99%) confidence (see Berkowitz 

and O’Brien (2002)). 

 Therefore, for the GJR-N model, the values of ( )F α  are always -1.96 (95%) and -2.58 

(99%).  However, for JD-GJR, ARJI-GJR and GARJI models, ( )F α  should be computed 

numerically by integrating their standardized PDF in Equation (15) because cumulative 

distribution functions (CDF) are unfortunately unknown analytically.  For GJR-HT model, ( )F α  

can be obtained by inverting CDF at the probabilityα  computed from Equation (28).  Therefore, 

except GJR-N model, the values of ( )F α  are always changed depending on data and sample 

periods since the shapes of distribution functions will be determined by estimated parameter 

values.  This implies that the mixed jump-GARCH models and skewed t-distribution allow for 

asymmetric VaR forecasts and fully takes into account for the fact that the density distribution of 

asset returns can be substantially skewed.          
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Table VI 

Evaluations of Performances on VaR 
 
The tables compare the total numbers and percentages of violations of 95% and 99% Value-at-Risk (VaR) across the 
whole sample periods for each different model specification.  For comparison, EWMA model created by J. P. 
Morgan, which is a standard benchmark for risk management models, is also considered.  The total numbers of 
violations (N ) and percentages of violations (Perc ) are computed from: 
 

1 1
1 1

1 1 1
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 ,       ,      100%

0,     if 

Tt t t
t t

t t t t

r VaR NI N I Perc
r VaR T
+ +

+ +
+ + =

<⎧⎪⎪= = = ×⎨⎪ ≥⎪⎩
∑  

                where  1 1
ˆ( )t t t tVaR F hα+ += ⋅   

                      ( )F α    :  the corresponding quantile (95th or 99th) of the assumed distribution 

                    1t̂ th + :  the forecast of the conditional standard deviation at time t+1 given the information at time t 
 
 
Panel A: 95% Value-at-Risk (VaR) 

Country EWMA GJR-N JD-GJR ARJI-GJR GARJI GJR-HT 

US 67 (3.75%) 55 (3.08%) 73 (4.08%) 62 (3.46%)  61 (3.41%) 45 (2.52%) 

Korea 65 (3.65%) 50 (2.80%) 76 (4.26%) 76 (4.26%)  73 (4.09%) 44 (2.47%) 

Indonesia 66 (3.64%) 55 (3.03%) 92 (5.07%) 83 (4.57%) 102 (5.61%) 51 (2.81%) 

Mexico 64 (3.50%) 43 (2.35%) 75 (4.09%) 66 (3.60%)  59 (3.22%) 43 (2.35%) 

Brazil 66 (3.64%) 58 (3.19%) 96 (5.29%) 66 (3.63%)  69 (3.80%) 48 (2.64%) 

 
 

Panel B: 99% Value-at-Risk (VaR) 

Country EWMA GJR-N JD-GJR ARJI-GJR GARJI GJR-HT 

US 25 (1.40%) 17 (0.95%) 21 (1.17%) 17 (0.95%)  15 (0.84%) 11 (0.62%) 

Korea 21 (1.18%) 11 (0.62%) 16 (0.90%) 14 (0.78%)  14 (0.79%)   7 (0.39%) 

Indonesia 32 (1.76%) 24 (1.32%) 58 (3.20%) 15 (0.83%)  18 (0.99%) 10 (0.55%) 

Mexico 24 (1.31%) 18 (0.98%) 21 (1.15%) 18 (0.98%)  17 (0.92%) 13 (0.71%) 

Brazil 34 (1.87%) 22 (1.21%) 40 (2.20%) 19 (1.05%)  18 (0.99%) 12 (0.66%) 
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Panel A: Violations of 99% VaR for the GJR-N Model 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Panel B: Violations of 99% VaR for the GARJI Model 
 
 

 
 

07/1995   04/1996 01/1997 10/1997 08/1998 05/1999 03/2000 12/2000 10/2001 08/2002

-0.4

-0.3

-0.2

-0.1

0   

0.1 

0.2 

0.3 

In
do

ne
si

a

07/1995   04/1996 01/1997 11/1997 08/1998 06/1999 03/2000 01/2001 11/2001 08/2002

-0.08

-0.06

-0.04

-0.02

0    

0.02 

0.04 

0.06 

U
S

Daily returns
99% VaR
Violations of 99% VaR

07/1995   04/1996 01/1997 10/1997 08/1998 05/1999 03/2000 12/2000 10/2001 08/2002

-0.2 

-0.15

-0.1 

-0.05

0    

0.05 

0.1  

0.15 

B
ra

zi
l

07/1995   04/1996 01/1997 11/1997 08/1998 06/1999 03/2000 01/2001 11/2001 08/2002

-0.08

-0.06

-0.04

-0.02

0    

0.02 

0.04 

0.06 

U
S

Daily returns
99% VaR
Violations of 99% VaR

07/1995   04/1996 01/1997 10/1997 08/1998 05/1999 03/2000 12/2000 10/2001 08/2002

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0   

0.1 

0.2 

0.3 

In
do

ne
si

a

Daily returns
99% VaR
Violations of 99% VaR



 46

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Panel C: Violations of 99% VaR for the GJR-HT Model 

 
 

 
 

 
 
 
for the GJR-N, GARJI and GJR-HT model.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  Violations of 99% VaR for GJR-N, GARJI and GJR-HT Model.  The figures (Panel A ~ 
C) present graphical illustrations of continuously compounded daily returns, 99% VaR, and its violations 
for the GJR-N, GARJI and GJR-HT model.   

07/1995   04/1996 01/1997 10/1997 08/1998 05/1999 03/2000 12/2000 10/2001 08/2002

-0.2 

-0.15

-0.1 

-0.05

0    

0.05 

0.1  

0.15 

B
ra

zi
l

Daily returns
99% VaR
Violations of 99% VaR

07/1995   04/1996 01/1997 11/1997 08/1998 06/1999 03/2000 01/2001 11/2001 08/2002

-0.1 

-0.08

-0.06

-0.04

-0.02

0    

0.02 

0.04 

0.06 

U
S

Daily returns
99% VaR
Violations of 99% VaR

07/1995   04/1996 01/1997 10/1997 08/1998 05/1999 03/2000 12/2000 10/2001 08/2002

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0   

0.1 

0.2 

0.3 

In
do

ne
si

a

07/1995   04/1996 01/1997 10/1997 08/1998 05/1999 03/2000 12/2000 10/2001 08/2002
 

-0.25

-0.2 

-0.15

-0.1 

-0.05

0    

0.05 

0.1  

0.15 

Br
az

il



 47

 

Figure 4 illustrates the time series of daily returns for the US, Indonesia, and Brazil and 

corresponding one-day-ahead 99% VaR and its violations for the GJR-N, GARJI, and GJR-HT 

models.  The total number of violations, 1
1

T

t
t

N I +
=

= ∑ , may be regarded as a random variable that 

has a binomial distribution.  If the model is correctly specified, 100%NPerc
T

= ×  should be less 

than 5% (95% VaR) and 1% (99% VaR) since model has the tendency to underestimate losses as 

Perc  becomes larger.  Consequently, if Perc  is greater than thresholds, it strongly implies that 

VaR does not work well.  As I can see from the Table VI and Figure 4, GJR-HT model 

outperforms all other model specifications and the time-series of VaRs achieve the smallest 

violation rates of 95% (99%) VaRs compared to other model parameterizations.   

  

7.  Why do asymmetric fat-tail distributions outperform the GARCH-Jump 

models?  

To make our analysis manageable, I assume constant volatility and zero skewness to 

exclude GARCH effects and asymmetric effects from our analysis.  In this section, I show that 

the jump-diffusion model (JD) only capture a small portion of the extreme values and Poisson-

type jumps cannot capture the component that is related to extreme (non-jump) realization.  For 

this analysis, I will make use of the boxplot and the probability analysis of Ait-Sahalia (2004).  

To further support the empirical findings in this chapter, I will perform simulation analysis to 

show that the skewed t model has the flexibility of capturing both jump and non-jump extreme 

values.  
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7.1.   Boxplot Methods and Probability Analysis 

I employ the boxplot (Figure 1) as an informal nonparametric way to detect jumps8.  Ait-

Sahalia (2004) explains the difficulty of inferring jumps from large realized returns in discretely 

sampled data.  Ait-Sahalia discusses the fact that an extreme realization can be a jump or a large 

realization of the Brownian noise.  More importantly, he derives the probability that an observed 

large value of the return is a jump or a large realization of a diffusion noise.  Therefore, I exploit 

the probability analysis of Ait-Sahalia to determine a threshold for the jumps.  

Ait-Sahalia explains that as far into the tail as 3.5 times standard deviation, it is still more 

likely that a large observed log-return was produced by Brownian noise only.  He emphasizes the 

fact that is difficult to rely on large observed returns as a means of identifying jumps.  In addition, 

he also shows, among others, the probability of a jump as it relates to the size of the observed 

returns, whereby the size of the returns is expressed in terms of the number of standard 

deviations.  From Ait-Sahalia’ analysis, I can observe a large value 5 or 6 times the standard 

deviation that it is a jump almost surely.  Therefore, the values greater than the threshold value of 

5 times standard deviation definitely can be considered as jumps.  For example, Ait-Sahalia 

shows that when one observes a value of 10% for the daily absolute returns, there is a 60% 

probability that this value was generated by a jump. 

 To examine whether Poisson-based Jump-diffusion can capture all the jumps that lead to 

fat tails, I use 5 times standard deviation as the threshold to identify the jumps in daily Indonesia 

returns.  Using 5 times standard deviation allows us to capture only few extremely large jumps.  

                                                 
8  There are many formal nonparametric ways to capture jumps including the bi-power variation method, the wavelet 
method, the median approach, and the variance swap strategy.  However, the informal and adhoc boxplot way of 
capturing extreme values as in Figure 1 also serves very well for our purpose to show why it fails to capture the 
excess kurtosis in emerging stock markets.  However, the choice of the threshold for extreme values is somewhat 
arbitrary, although it is derived from the probability analysis of Ait-Sahalia (2004), and that it will be only used for 
illustration purposes and not as any formal tests.   
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Since this threshold is based on the probabilities derived from the Poisson based jump-diffusion 

model with constant volatility in Ait-Sahalia, this result clearly underscores the fact the  

Poisson based jump-diffusion model only captures the extreme large jumps.   

To double check this empirical finding, I also count how many observations should be 

considered as jumps based on 5 times standard deviation threshold value.  For Indonesia, there 

are exactly 13 jumps based on 5 times standard deviation threshold during our sample period 

from 07/05/1995 to 08/07/2002.  Next, I determine how many jumps are recorded by the JD 

model when applied to Indonesia.  According to the estimation results of JD model, the 

annualized jump intensity parameter has a value of 0.3658 for Indonesia.  Therefore, this value is 

equivalent to one large jump per about 2.73 years.  Finally, I compare the boxplot number of 

jumps based on 5 times standard deviation threshold value with the number of jumps based on 

JD model.  Indonesia should have no more than 3 jumps during our sample periods (7.2 

years) based on JD model.  Therefore, it appears that JD model underestimates the number of 

jumps compared to boxplot method. 

 

7.2.   Simulations 

To examine whether Hansen’s skewed t-distribution has the flexibility to exhibit jumps 

depending on the degree of freedom parameter, I use simulated data derived from skewed t-

distribution based on the following three categories.  First, I consider very low levels of degree 

of freedom (df = 2.5 and df = 4) since extreme leptokurtosis can be frequently observed in the 

emerging stock markets such as Indonesia where severely affected by Asian currency crisis.  

Second, I consider a medium value of degree of freedom (df = 7) to capture moderate 

leptokurtosis which can be observed in most of emerging markets and developed countries.  
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Finally, I employ very high levels of degree of freedom (df = 15 and df = 30) which resemble 

normal innovations to show difficulty in distinguishing small jumps from large normal 

innovations based on jump-diffusion model. 

 

 
 
 
Figure 5.  Simulations of Hansen’s skewed t-distribution.  The figures present simulated time-series 
plots derived from Hansen’s skewed t-distribution depending on the different degrees of freedom 
parameters.  All of the plots are scaled to have zero skewness and unit standard deviation to exclude 
asymmetric effects and GARCH effects. 



 51

Table VII 

Parameter Estimates for Jump-Diffusion Model based on Simulated Time-Series Data  
derived from Hansen’s skewed t-distribution 
 
The table compares the parameter estimates through maximum likelihood estimates (MLE) for jump-diffusion 
model based on simulated time-series data derived from Hansen’s skewed t-distribution depending on the different 
degrees of freedom parameters.  The p-values are reported in square brackets.   
 

Extreme Leptokurtosis 
(Emerging Markets) 

Moderate Leptokurtosis 
(Developed Countries) Normal Innovations 

 

df = 2.5 df = 4 df = 7 df = 15 df = 30 

µ  0.0057 -0.0001 0.0000 -0.0001  0.0006 

 [0.0000]  [0.4678] [0.3685]  [0.2372]  [0.0094] 

σ  0.0035  0.0064 0.0067  0.0076  0.0080 

 [0.0000]  [0.0000] [0.0000]  [0.0000]  [0.0000] 

λ  0.6547  0.4396 0.5947  0.5394  0.6862 

 [0.0000]  [0.0000] [0.0000]  [0.0014]  [0.0000] 

θ  0.0085  0.0001 0.0001 -0.0004 -0.0003 

 [0.0000]  [0.4820] [0.4704]  [0.2006]  [0.2735] 

δ  0.0190  0.0101 0.0100  0.0083  0.0070 

 [0.0000]  [0.0000] [0.0000]  [0.0000]  [0.0000] 

 
 

 If we assume df = 2.5 or df = 4, skewed t-distributions are capable of capturing extreme 

realizations up to excess kurtosis 134.89 and 8.16, respectively9.  It appears that skewed t-

simulated data mimic daily stock returns data very well, showing several jumps-looking extreme 

realizations, which can be frequently observed in emerging financial markets.  It is almost 

impossible for us to distinguish these plots from actual daily returns or simulated time-series 

from Poisson-type JD model.  Especially, in the extreme case, if I assume df = 2.5, simulated 

                                                 
9  Note that in this analysis, the shapes of plots and the values of excess kurtosis will be changed per each simulation.  
However, the important statistical feature simulated from skewed t-distribution will remain the same.   
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time-series data from skewed t-distribution are capable of representing 21.35 times standard 

deviation.   

Since most countries will have larger values of degree of freedom, this simulation result 

strongly implies that we can capture leptokurtosis of daily returns almost surely using the 

flexibility of degree of freedom of skewed t-distribution.  More realistically, simulated time-

series based on df = 4 can capture infrequent, extreme realizations up to 7.23 times standard 

deviation.  Now I perform similar analysis to compare the above simulation results with others 

based on df = 7, df = 15, and df = 30, then I compare the estimation results of JD model using the 

above simulated data.  The estimation results are reported in Table VII.   

  

8.  Summary and Concluding Remarks 

In this study, I have shown that for the US and emerging stock markets simple GJR-N 

model and even more sophisticated model incorporating time-varying jumps such as Maheu and 

McCurdy’s (2004) GARJI model failed to capture these extremely fat tails of conditional return 

distributions, especially for the Indonesia.  However, unlike other model specifications, GJR-HT 

model was capable of capturing leptokurtosis represented by both extreme outlying observations 

and high peaks of asset returns distribution, which cannot be adequately captured by a time-

varying conditional variance and mixed GARCH-jump models including recently proposed 

GARJI models. 

Using boxplot methods and simulations, I have also shown that skewed t-distribution is 

capable of capturing extreme realizations by allowing the flexibility of degree of freedom (df) 

parameter.  As evidenced by the estimation results of jump-diffusion model based on simulated 

data from skewed t-distribution using different values of degree of freedom, skewed t-
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distribution can mimic jump-looking abnormal and large events quite well.  In addition, as the 

values of degree of freedom parameter increase, jump variability parameters in the estimation 

results of jump-diffusion model decrease, although jump intensity parameters are still non-zero 

significant, implying that jump-diffusion model cannot disentangle small jumps from large 

normal innovations.  Therefore, jump-diffusion estimation tends to misguide us by providing us 

with spurious values of jump parameters. 

Therefore, asymmetric non-normal distributions, especially Hansen’s skewed t-

distribution, provide better estimation results than the Gaussian and mixed jump-diffusion 

distribution do.  As expected, the benefits of estimating GARCH models using asymmetric 

leptokurtic distributions are more substantial for highly volatile series such as emerging stock 

markets, which have a higher degree of non-normality.  In addition, skewed t-distribution also 

provides me an excellent risk management tool evidenced by VaR analysis. 
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Chapter 2 

An Examination on the Roles of Diffusions and Stochastic Volatility in the 

Exponential Lévy Jumps Models 

 

1.  Introduction 

Academic research on financial modeling based on Lévy processes has been extensive10 

even though independence of increments is not a property observed in historical time series of 

returns such as volatility clustering.  They allow flexible modeling of tail behavior at various 

time scales by generalizing the Black-Scholes model by introducing jumps but conserving 

independence of log-returns.  It is very well known that the traditional Black-Scholes option 

pricing model assumes that returns follow Brownian motion, but actual return processes differ 

from this benchmark in several ways.  For example, Carr and Wu (2004) summarize three 

important deviations of actual returns distributions from traditional Black-Scholes' assumptions – 

jumps which lead to non-normal return innovations, time-varying return volatilities, and negative 

correlation between equity returns and their stochastic volatilities. 

 To address these issues simultaneously, at least two research endeavors have been made 

to incorporate a stochastically changing volatility effect.  First, the constant volatility parameter 

of Black-Scholes model is made to be stochastic in a proper manner (Hull and White (1987); 

Heston (1993)) and their volatility process is driven by a Brownian motion.  This idea can be 

easily extended to the case of more general infinite activity pure jump Lévy processes11 such as 

                                                 
10  For comprehensive textbook reviews of Lévy processes on historical financial time-series and pricing financial 
derivatives, refer to Schoutens (2003) and Cont and Tankov (2004).   
11  In contrast to a standard Poisson or compound Poisson process, pure infinite activity jump process has an infinite 
number of jumps over any time interval, allowing it to capture the extreme activity traditionally handled by diffusion 
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symmetric variance-gamma (VG) (Madan and Seneta (1990)), and its asymmetric extension 

(Madan and Milne (1991); Madan et al. (1998)), normal inverse Gaussian (NIG) (Barndorff-

Nielsen (1998)), and its generalization to the generalized hyperbolic class (Eberlein et al. (1998)) 

and generalization of the VG model (CGMY model; Carr et al. (2002)).  The main weakness of 

these homogeneous Lévy processes is that volatility is assumed to be constant and does not 

change stochastically over time. 

 Second, to capture the evidence on stochastic volatility, Carr et al. (2003) and Carr and 

Wu (2004) proposed a stochastic time change to the Lévy processes.  This amounts to increasing 

or decreasing the level of uncertainty by speeding up or slowing down the rate at which time 

passes.  According to the Brownian motion scaling property12, random changes in volatility can 

alternatively be captured by changes in time after I employ a mean-reverting positive process as 

a measure of the local rate of time change such as the Ornstein-Uhlenbeck (OU) process or the 

classical Cox-Ingersoll-Ross (CIR) process. 

 Empirical work has supported the need for both stochastic volatility to calibrate the 

longer maturities and jumps to reflect shorter maturity option prices (See Carr et al. (2003); Carr 

and Wu (2004); and Huang and Wu (2004)).  More specifically, while jumps are necessary to 

explain the variation in strike at shorter terms, stochastic volatility appears to explain the 

variation in strike of option prices at longer terms.  In addition, unlike approximately 

uncorrelated stock returns, their volatility exhibits strong serial dependence.  The time-varying 

                                                                                                                                                             
processes.  Most of jumps are very small and may be regarded as approximating the transition from one decimalized 
price to another one nearby (Carr and Wu (2003)).  
12  There is a well-known set of transformations of Brownian motion which produce another Brownian motion.  One 
of these is the scaling property which says that if { },  0tW W t= ≥  is a Brownian motion, then, for every 0c ≠ , 

{ }2/
,  0t t c

W W cW t= = ≥  is also a Brownian motion. (For an overview of the classical properties of Brownian 
motion, refer to Schoutens (2003).) 
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term structure of the implied volatility also suggests that stochastic volatility still remains under 

the risk-neutral measure.  

 However, most recent papers have mainly focused on time-changed volatility combined 

with infinite activity Lévy jump model to tackle this difficulty.  Therefore, in this paper, I apply 

Heston (1993) stochastic volatility process to variance-gamma (VG) process proposed by Madan 

and Milne (1991) and Madan et al. (1998) to see if this specification improves fits of financial 

time-series data and reduces option pricing errors.  Since the characteristic function is known 

analytically, option prices can be readily computed using efficient fast Fourier transform (FFT). 

Although some of theoretical/empirical approaches to combine Heston (1993) stochastic 

volatility with Lévy processes have been proposed for the Finite Moment Log Stable (FMLS) 

process (Carr and Wu (2003)) and the Meixner process (Schoutens (2003)), none of the authors 

report empirical performance on both historical time-series underlying asset returns and options 

pricing and Schoutens (2003) only focuses on calibration of option prices to estimate parameters 

to compare pricing errors among competitive model specifications. 

 However, I should distinguish statistical models (under a probability measure P ) for 

financial time series returns behavior of underlying assets from option pricing models (under a 

risk-neutral measure Q ) for risk-neutral dynamics.  For example, although the processes defined 

by measures P  and Q  share the identical paths, they can have quite different analytical and 

statistical properties (Cont and Tankov (2004)).  Formally, if P  defines a Lévy process X , the 

process Y  defined by Q  is not necessarily a Lévy process.  That is, it may have increments 

which are neither independent nor stationary. Recall that a Lévy process is defined as a 

continuous in probability, càdlàg (right continuous left limit) stochastic process ( )x t , 0t >  with 

independent and stationary increments and (0) 0x = . 
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 Therefore, in this second chapter, I will assume structure-preserving changes of measure 

so that X  and Y  are both Lévy processes and the equivalence of their measures gives one-to-

one correspondence between their parameters for risk-neutral pricing.  If so, I can price any 

financial instruments in an arbitrage-setting under an appropriate risk-neutral measure since the 

price of a derivative security can be expressed as an expectation of discounted payoffs, which 

become martingales.  In addition, it allows me to estimate parameters and analyze their 

properties using both historical financial time-series underlying asset returns and option prices. 

 Using option prices for calibration to estimate parameters gives me flexible tools to 

examine different model specifications by comparing measures of pricing errors such as mean 

squared errors (MSE), mean absolute errors (MAE), mean absolute relative errors (MARE), and 

root mean squared errors (RMSE).  In addition, their estimated parameters using option prices 

are more informative since the parameters coming out of the calibration procedure by 

minimizing sum of squared errors between the market and model prices resemble the current 

view on the market.  This is the main rationale why many authors do not explicitly take into 

account any historical data of underlying assets. 

 Much cares, however, have to be taken when I use option prices to compare model 

performances.  One of pitfalls of this procedure is that pricing errors, in general, will be reduced 

as the number of parameters increases.  This implies that more complicated model specifications 

incorporated with jumps and stochastic volatility will frequently outperform more parsimonious 

ones.  It makes me challenged to empirically investigate the statistical and economic roles of 

diffusions, jumps, and stochastic volatility parameters.  Carr et al. (2002) show that a diffusion 

parameter is statistically insignificant for many financial assets if infinite activity Lévy jumps are 

included using both time series on 13 individual stock prices and 5 closing option prices on 5 
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underlying assets, AMZN, IBM, INTC, MSFT, and SPX.  Eraker (2004) finds that complex 

jump specification with state-dependent arrival intensity fits better in options and returns data 

simultaneously, but it adds little explanatory power in fitting only options data.  Therefore, 

analyzing both time-series underlying asset returns and option prices is necessary and required to 

draw a full picture for my purpose. 

 In this chapter, I will answer to the following empirical questions; Does stochastic 

volatility perform differently between returns and options?  Unlike a diffusion term such as 

CGMYe model (Carr et al. (2002)), does stochastic volatility still remain significant in EVGSV 

and SVJ models?  Does stochastic jump volatility have the same impact as stochastic diffusion 

volatility?  Do my empirical results coincide with the hypothesis by Carr and Wu (2003)?  Carr 

and Wu (2003) provide a comprehensive analysis of when infinite activity jump and diffusions 

should matter.  The main contribution of the infinite activity process should be primarily on the 

short term OTM options.  So, I expect diffusions with constant volatility to give a substantial 

contribution for ATM options and diffusions with stochastic volatility to improve the pricing of 

both ATM and longer term maturity OTM.   

 This chapter contributes to the literature in three ways by providing comprehensive 

analysis of empirical performance on different model specifications using both returns and 

options together.  First, I extend Carr et al. (2002)'s work, which showed unimportance of a 

diffusion parameter when it is incorporated with infinite activity of Lévy jumps process such as 

CGMY model, to see if similar conclusion can be made for the stochastic volatility.  To achieve 

my goal, I examine the role of stochastic volatility when it is taken into account with 

infinite/finite activity pure jump Lévy processes.  It is well-known that stochastic volatility 

significantly improves fits of data when it is incorporated with compound Poisson jump process 
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of Merton (1976) which has finite activity of jumps (Bates (1996, 2000); Bakshi et al. (1997); 

Duffie et al. (2000)).  On the contrary, I confirm that stochastic volatility does not play a key role 

when incorporated with infinite-activity Lévy type pure jump models such as variance-gamma 

and normal inverse Gaussian processes to model high and low frequency historical time-series 

SP500 index returns.   

Second, I show that unlike SP500 index returns, stochastic diffusion volatility with 

infinite-activity Lévy jumps processes considerably reduces SP500 index call option in-sample 

and out-of-sample pricing errors of long-term ATM and OTM options, which contributed to a 

substantial improvement of pricing performances of SVJ and EVGSV models, compared to 

constant volatility Lévy-type pure jumps models and/or stochastic volatility models without 

jumps.  Therefore, I also figure out why stochastic volatility performs differently depending on 

infinite/finite activity of jumps specifications. 

Finally, I find that whether sources of stochastic volatility are diffusions or jumps are not 

relevant to improve the overall empirical fits of SP500 index returns.  Interestingly, I also reveal 

that unlike asset returns, whether pure Lévy jumps specifications are finite or infinite activity is 

not an important factor to enhance option pricing model performances once stochastic volatility 

is incorporated.   

 This chapter is organized as follows.  In Section 2, I set up the models and characteristic 

functions along with important econometric properties considered in this paper.  Then, I describe 

returns and options data briefly in Section 3 and illustrate FFT estimation methodologies 

proposed by Carr and Madan (1999) in Section 4 to estimate parameters and plot density fits of 

underlying asset returns using characteristic functions of each model specification.  Section 5 

analyzes estimation results and compares model performances based on likelihood ratio tests 
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along with information criteria for spot index returns and a variety of measures of in-sample and 

out-of-sample pricing errors for SP 500 index options.  Section 6 concludes and suggests 

subjects for future research. 

 

2.  Lévy Model Specifications and their Characteristic Functions 

2.1.   Pure Diffusions and Stochastic Volatility Models  

2.1.1.   Black-Scholes-Merton Model  

The characteristic function for an exponential Brownian motion with volatility σ , which 

is the only continuous Lévy process generated by a normal distribution, is given by  

 

 21( ) exp ( )
2

tiuX
X u E e u u i tφ σ⎧ ⎫⎡ ⎤= = − +⎨ ⎬⎣ ⎦ ⎩ ⎭

 (39) 

 

This result can be obtained by performing the integration explicitly or directly from the Lévy-

Khintchine representation, which justifies that any Lévy process can be expressed as the sum of a 

linear drift term, a Brownian motion and a jump process.  In generalized multivariate setting on 

Lévy-Khintchine theorem, the characteristic function of X , has the form 

 

 ( )( ) ,       0
T

xti X
X E e e tθθφ θ − Ψ⎡ ⎤= = ≥⎣ ⎦  (40) 

 

where the characteristic exponent ( )x θΨ , dθ ∈R , is given by 

 

 ( )
0

1
1( ) 1 1 ( )
2 d

i x
x xiw e i x dxθθ θ θ θ θ

ΤΤ Τ
<Ψ = − + Σ + − + Π∫R  (41) 

 

The Lévy process X  is specified by the vector dR , the positive semi-definite matrix Σ  on d d×R , 

and the Lévy measure Π  defined on 0
dR  ( { }0 \ 0

d
d d=R R ), satisfying  
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 { }( ) ( )
0

20 0   and   1 ( )
d

x dxΠ = ∧ Π < ∞∫R  (42) 

 

The triplet ( , , )µ Σ Π  is referred to as the Lévy characteristics of X .  Since a Lévy 

process is uniquely characterized by its triplet of Lévy characteristics ( , , )µ Σ Π , the Lévy process 

is determined by individual specification of the components of this triplet.  The first component 

µ  is the constant drift term.  This component is often determined by no-arbitrage or equilibrium 

pricing relations and thus depends on the specification of the other two elements of the triplet.  

To get the drift parameter µ , I restrict ( ) 1tX
T i E eφ ⎡ ⎤− = =⎣ ⎦  by imposing that the risk-neutral 

expectation of the stock price be the forward price with the assumption of zero interest rates and 

dividends.  The second component Σ  denotes the constant covariance matrix of the continuous 

components of the Lévy process.  Finally, the third component is the Lévy measure ( )dxΠ , 

which describes the jump structure and controls the arrival rate of jumps of every possible size 

( x ) for each component X .  By definition, it is obvious that this third jump component, Π , 

should be orthogonal to the second diffusion component, Σ  (Carr and Wu (2004)).   

 

2.1.2.   Stochastic Volatility (SV) Model 

The SV model allows the instantaneous variance 2
tv σ=  to be stochastic.  This process is 

not a Lévy process since its increments are path-dependent.  As in Heston (1993), I assume that 

the instantaneous variance follows a mean reverting square root process 
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where tZ  is another Brownian motion, possibly correlated with the Brownian motion tW  in the 

return process: [ ]t tE dW dZ dtρ= .  Parameter κ  measures the speed of mean reversion, θ  is the 

average level of volatility and vσ  is the volatility of volatility.  Then, the characteristic function 

of ( )( ) ln
(0)

S tr t
S
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 is 

 

 [ ]( ( , ), ; ) exp ( , ) ( , ) (0)r V t t u C u t D u t Vφ = +  (44) 
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with 
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The Heston characteristic function can be derived as follows.  By definition, the 

characteristic function is given by 0( ) 0tiuX
X u E e Xφ ⎡ ⎤= =⎣ ⎦ .  The probability of the final log-

stock price TX  being greater than the strike price is given by  
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where ( )ln /tx S K= .  Let the log-strike y  be defined by ( )ln / ty K S x= = − .  Then, the 

probability density function ( )p y  must be given by  
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Then, 
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2.2.   Finite Activity Jumps with/without Diffusions and Stochastic Volatility Models 

2.2.1.   Jump-diffusion Model (JD) 

Under the JD model (Merton (1976)), the log return has both a diffusion component and a 

compound Poisson jump component, where the jump size (J) is assumed to be log-normally 

distributed with mean log-jump κ  and standard deviation δ .  The stock price follows the SDE 

 

 ( 1)   with ~ (0,1)dS Sdt SdZ e Sdq Nκ δεµ σ ε+= + + −  (49) 

 



 69

Then, Lévy measure is derived as 
2

22

( )( ) ( ) exp
22

xdx dF x λ απ λ
δπδ

⎧ ⎫−
= = −⎨ ⎬

⎩ ⎭
 since the 

compound Poisson jump process of Merton (1976) exhibits a finite number of jumps within any 

finite time interval, 
0

( )dxπ λ= < ∞∫R  where λ  is the Poisson intensity,13 defined as the number 

of jumps per year of the Poisson process.   

 By applying the Levy-Khintchine representation (2)-(3), the closed-form characteristic 

function is given by  
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and convexity correction factor, ( )22 / 21 1
2

eκ δω σ λ += − − − , can be obtained by imposing 

( ) 1T iφ − =  so that ( )22 / 21exp 1 1
2

wt t t eκ δσ λ +⎧ ⎫+ + − =⎨ ⎬
⎩ ⎭

. 

 

 

                                                 
13  As Carr and Wu (2004) explain, it is possible to think of any distribution, ( )F x , for the jump size under the 
compound Merton (1976)'s Poisson specification.  For example, the Lévy measure of Kou (2002)'s a double-
exponential conditional distribution for the jump size can be derived by  

1( ) ( ) exp
2

x k
dx dF x dxπ λ λ

η η
⎛ − ⎞
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where the jump size has asymmetric double exponential distribution 
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with 0 1uη< < , 0dη >  are means of positive and negative jumps, respectively.  p and q represent the probabilities 
of positive and negative jumps satisfying ,  0p q ≥  and 1p q+ = . 
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2.2.2.   Stochastic Volatility with Jumps (SVJ) Model 

The SVJ model (Bates (1996); Bakshi et al. (1997)) can be derived by adding a Merton's 

lognormally distributed jump process to the Heston SV model specification.  The characteristic 

function for this SVJ model is simply the product of Heston's SV and Merton's jump 

characteristic functions.  

 

 
[ ]
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where ( , )C u t  and ( , )D u t  are defined in (6). 

 

2.3.   Infinite Activity Pure Jumps Process with/without Diffusions and Stochastic 

Volatility Models 

2.3.1.   Variance-Gamma (VG) Model14 

A VG process ( ); , ,jX t σ ν θ  is a random time changing Brownian motion with tempered 

0-stable subordinator with unit mean rate which is a pure jump process.  A VG model for stock 

movements leads to an incomplete market and therefore the existence of many equivalent 

martingale measures since perfect hedging is impossible in the presence of a large number of 

very small jumps of varying sizes.  Therefore, I need correction term, w , to obtain an equivalent 

martingale measure by imposing r wµ = +  where µ  is a drift parameter and r  is a 

                                                 
14  For robust check, an additional infinite-activity pure Lévy process such as the normal inverse Gaussian (NIG) is 
also considered.  The characteristic function for NIG process is defined as 

2 21 1( ) exp 1 2X u t iuw u i uφ κσ θκ
κ κ

⎛ ⎞= + − + −⎜ ⎟
⎝ ⎠

 

where convexity correction term to be martingale is { }21 1 2 1w σ κ θκ
κ

= − − − .  The diffusion and stochastic 

volatility parameters can be easily incorporated into this characteristic function specification of NIG process.  
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continuously-compounding risk-free interest rate assumed to be zero in this paper.  Therefore, 

VG model can be defined as: 

 

 ( )( ) (0)exp ; , ,jS t S wt X t σ ν θ⎡ ⎤= +⎣ ⎦  (52) 

 

where wt  is the negative of the logarithm of the VG characteristic function, ( , )X u tφ , evaluated 

at 1/ i . 
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where i i= −  is an imaginary number and ( , )X u tφ  is given by 
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and ( ) ( ; , , )jX t X t σ ν θ≡ .  For the estimation purpose, the log difference is used to be consistent 

with most previous literature.  Therefore, characteristic function specification for de-meaned 

returns should be transformed as in (16). 
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2.3.2.   Extended Variance-Gamma (EVG) Model 

Daal and Madan (2005) extend VG model for the exchange rate process by adding a 

separate diffusion component.  Examples of this line of research include Carr et al. (2002) and 
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Carr and Wu (2003).  They showed empirically that the addition of a diffusion component to the 

CGMY and FMLS process adds little to the explanatory power.   
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where σ  and ( )Z t  are the instantaneous volatility of the added diffusion parameter and a 

standard Brownian motion, respectively.  From equations (1) and (15), the explicit characteristic 

function for the de-meaned returns in the EVG model can be easily derived by 
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2.3.3.   Extended Variance-Gamma with Stochastic "Diffusion" Volatility (EVGSV) 

Model 

Unlike a diffusion parameter, to examine if stochastic volatility remains important even 

when incorporated with infinite activity pure Lévy jump process such as VG model, I allow a 

diffusion parameter to be stochastic across time.  Therefore, EVGSV model is essential 

extensions of the paper written by Carr et al. (2002) who argue that index dynamics and the risk-

neutral process should be free of a diffusion component.  They find that the statistical and risk-

neutral processes for equity prices are pure jump processes of infinite activity and finite variation.   
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Therefore, the characteristic function of ( )( ) ln
(0)

S tr t
S
⎡ ⎤

= ⎢ ⎥
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 is  

 

 [ ]( ( , ), ; ) exp ( , ) ( , ) (0)r V t t u wt C u t D u t Vφ = + +  (59) 

 

where wt  is a convexity correction term and ( , )C u t  and ( , )D u t  are same as before. 

 

2.3.4.   The Variance Gamma with Stochastic "Jump" Volatility (VGSJV) Model 

The VGSJV model proposed by Carr et al. (2003) is additionally considered to see if the 

source of stochastic volatility does matter.  In particular, I study whether stochastic jump 

volatility does not have the same impact as stochastic diffusion volatility. 
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CGMY version of the characteristic function of ( )Y t  is  
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where  
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The characteristic function for ( )VGZ t  is given by 
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3.  The Data and Sample Selections Criteria 

  The data used in this study should have the following minimum qualifications for returns 

and options. 

3.1.   Historical Time-Series Underlying Assets Returns  

For historical time-series underlying assets returns, empirical results should be relatively 

stable and robust across distinct sample periods.  Therefore, this paper examines daily, weekly, 

and monthly15 SP500 index returns for the whole sample periods from January 1, 1994 through 

December 31, 2003.  Then, the whole sample is divided into two sub-samples to verify 

robustness of my estimation results.  The first sub-sample periods (January 1, 1994 – December 

31, 1998) coincide with those of Carr et al. (2002) and are directly comparable with their 
                                                 
15  In general, non-normality and the role of jumps decrease as time horizon increases from high-frequencies 
(intraday or daily) to low-frequencies (weekly, monthly, quarterly, and annually).  Therefore, in this paper, weekly 
and monthly SP 500 index returns are also considered to check if my empirical results are affected by data 
frequencies for robustness.  
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findings.  The second sub-sample periods consist of remaining sample periods (January 1, 1999 – 

December 31, 2003).  Consistent with other studies, actual SP500 index returns have significant 

deviations from normal distribution, evidenced by leptokurtosis (high peaks around zero returns 

and fatter tails having extreme positive or negative returns) as illustrated in Panel A of Figure 1.  

For the sub-periods, the 2nd sub-period, in general, has more severe fluctuations and fatter tails 

compared to those of the 1st sub-period. 

 For further robustness check, I also considered different sample periods from July 3, 

1995 to August 7, 2002, equity returns such as GE and IBM, and an additional infinite-activity 

pure Lévy process such as normal inverse Gaussian (NIG) model.  However, empirical findings 

and main conclusions for returns remain exactly same.  The estimation tables are not reported 

here to save the space and can be provided upon requests. 

 

3.2.   Options 

For calibrations, I use SP500 index option prices collected from OptionMetrics to obtain 

robust parameter values.  Then, I observe how Lévy jumps and diffusion parameters are affected 

when stochastic volatility is considered.  For options quotes, I use average prices of bid and ask 

quotes for each Wednesday call options covering from October 2, 2002 through December 18, 

2002.  Recent studies have preferred OTM options in parameter estimations because of greater 

liquidity, insensitivity of ITM with positive intrinsic value to model specification, and a cheaper 

way to speculate on or hedge (Carr and Wu (2003)).  For example, Carr et al. (2002) only 

considered short-term OTM options with maturities between 1 and 2 months.  Carr and Wu 

(2003) only analyzed OTM SP500 index options across all strikes and maturities from April 6, 

1999 to May 31, 2000.   
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 However, for complete analysis, I include a wider collection of options with maturities 

for short-term (<30 days), mid-term (30 – 120 days), and long-term (>120 days) and with 

moneynesses defined as /K S  for ITM (0.9 – 0.97), ATM (0.97 – 1.03), and OTM (1.03 – 1.1).  

Due to illiquidity concerns, I exclude deep-ITM, deep-OTM options, very long-term options 

over 240 days, options less than $3/8, and zero-volume options.  Most zero-volume options are 

very cheap (<$3/8) and/or expensive options (ITM).   

 As in Table I, short-term, mid-term, and long-term options consist of about 34.51%, 

49.78% and 15.71% of the total number of options considered in this paper, respectively.  Unlike 

call options with different days to expiration, options with different moneynesses are relatively 

evenly distributed in my samples (e.g., ITM: 26.33%, ATM: 38.72%, and OTM: 34.96%).  Panel 

B of Figure 1 further illustrates data descriptions by detailed 2D and 3D graphs on how many 

options are included in each category.   

 

Panel A: SP500 Index Returns (January 1, 1994 – December 31, 2003, N = 2,518) 
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Panel B: SP500 Index Call Option Prices (Each Wednesday Call Option Covering from October 
2, 2002 through December 18, 2002, N = 452) 
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Figure 1. SP500 Index Returns and Call Option Prices.  For SP500 index returns of Panel A, the 
whole sample periods cover from January 1, 1994 through December 31, 2003.  The first sub-sample 
periods (January 1, 1994 – December 31, 1998) coincide with those of Carr et al. (2002) and the second 
sub-sample periods consist of remaining sample periods (January 1, 1999 – December 31, 2003).  Panel B 
illustrates SP500 index options by detailed 2D and 3D graphs on how many options are included in each 
category. 
 

 
Table I 
 

Categorizations for SP500 Index Call Options across each Moneyness and Maturity 
 

This table categorizes SP500 index options collected from OptionMetrics across different moneynesses and 
maturities. For options quotes, I use average prices of bid and ask quotes for each Wednesday call options covering 
from October 2, 2002 through December 18, 2002.  I include a wide collection of options with maturities for short-
term (<30 days), mid-term (30 – 120 days), and long-term (>120 days) and with moneynesses defined as /K S  for 
ITM (0.9 – 0.97), ATM (0.97 – 1.03), and OTM (1.03 – 1.1).  Due to illiquidity concerns, I exclude deep-ITM, 
deep-OTM options, very long-term options over 240 days, options less than $3/8, and zero-volume options.  Most 
zero-volume options are very cheap (<$3/8) and/or expensive options (ITM).  Median values of SP 500 index call 
prices are reported in square brackets. 
 

Call Options Days-to-Expiration (Maturity) 

ST (< 30 days) MT (30 – 120 days) LT (>120 days) 
Moneyness 

(K/S) 
Call N Call N Call N 

Sub-total 

ITM 58.45 74.83 98.66 

(< 0.97) [59.88] 
40 

[72.70] 
55 

[94.30] 
24 119 

(26.33%) 

ATM 17.72 40.51 63.57 

(0.97 – 1.03) [16.55] 
68 

[41.50] 
80 

[62.60] 
27 175 

(38.72%) 

OTM 3.77 16.27 34.88 

(> 1.03) [2.80] 
48 

[14.60] 
90 

[35.75] 
20 158 

(34.96%) 

Sub-total  156 
(34.51%)  225 

(49.78%)  71 
(15.71%) 

452 
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4.  Econometric Methodology 

 Although it is possible to estimate parameters of returns and price options through 

probability density functions (PDF), I will fully utilize the advantages of using characteristic 

functions in this chapter since most models considered in this chapter do not have closed-form 

density functions for SV models16 or, if exist, they are very computationally cumbersome for VG 

density function17, which includes a special function such as modified Bessel functions of the 

second kind ( K ( )v z , also called Basset functions)   
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where I ( )v z  is the modified Bessel function of the first kind defined as 
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 Therefore, for SP500 index returns, I rely on the binned maximum likelihood estimation 

to estimate parameter vectors, Θ , under the measure P  by inverting characteristic functions via 

                                                 
16  Indirect inference, Simulated Method of Moments (SMM), Efficient Method of Moments (EMM), Monte Carlo 
Markov Chain (MCMC), and Nonparametric methods have been often suggested as appealing alternatives to 
maximum likelihood estimation, when the likelihood function becomes intractable due to some unobserved state 
variables such as stochastic volatility (For more details, refer to Garcia et al. 2004). 
17  Daal and Madan (2005) derive the following VG probability density function for exchange rate process, ( )z t . 
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where K is the modified Bessel function of the second kind and the variable x  is given by  

( )2( ) 1 / 2J
tx z t tµ θν σ ν
ν

= − − − −  
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fast Fourier transform (FFT) initiated by Carr et al. (2002), which compute the level of the 

probability density at a prespecified set of values for returns.  I used 142 16,384N = =  as a power 

of 2 used in the fast Fourier discrete transform, integration spacing of 0.25, and a return spacing 

of (8 /  0.001534Nπ = ) to minimize discretization errors.  Then, I compare the performance of 

each model by likelihood ratio (LR) test for returns.  LR test is performed by obtaining  

 

 ( )( ) ( )( )( )2 2 1 1 2 1

22 ln ln ~f d f d d dLR L r L r χ −= Θ − Θ  (67) 

 

where 
1f

L  and 
2f

L  are the likelihood functions; 1d  and 2d  are the respective parameter spaces 

and r  is the data.  LR  follows asymptotically 2χ  distribution with ( )2 1d d−  degrees of freedom. 

 In addition, since past research has not provided common single conventional test criteria, 

I also perform the goodness-of-fit tests for the models using the following three information 

criteria; Akaike information criteria (AIC), Schwarz criteria (SC), and Hanna-Quinn criteria 

(HQ).  All of them include an adjustment for the degrees of freedom that depends on both the 

number of parameters (k) and the sample size (T).  Therefore, the model that minimizes the 

following information criteria values provides the best fit, since it is the model that has the 

highest likelihood value while controlling for the number of parameters in the model and the 

sample size.   

 

 

2( / ) 2( / )
2( / ) log( ) /

 = 2( / ) 2 log(log( )) /

AIC l T k T
SC l T k T T

HQ l T k T T

= − +
= − +
− +

 (68) 

 

 For SP500 index options, one of intuitive ways to compute option prices using 

characteristic functions come from Bakshi and Madan (2000).  They showed that option prices 
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can be obtained by computing delta18 of the option, 1Π , and the probability of finishing in the 

money, 2Π . 
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According to Lewis (2000), I can also compute option prices from the characteristic functions by 

inverting the closed-form characteristic functions of various stochastic processes considered in 

this chapter.     
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with ln Kk
S

⎛ ⎞= ⎜ ⎟
⎝ ⎠

.   

                                                 
18  The delta ( C

S
∂

=
∂

) is defined as the change in the value of the option compared with the change in the value of 

the underlying asset. 
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 However, the most efficient way to compute option prices has been proposed by Carr and 

Madan (1999) by inverting the modified call price dampened by exponential factor (e.g., 

1.5α = ) through fast Fourier transform (FFT).  The FFT is used to invert the generalized Fourier 

transform of the call price, which is applicable to other types of options as well.  Carr and Madan 

(1999) showed that  
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where ( , )T u tφ  denotes the characteristic function for the log of the stock price.  Then, ( , )C K T  

is obtained by approximating the equation (34)-(35) using discrete Fourier transform (DFT), 

which replaces an infinite integral of Fourier transform with summation of N points. 
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which improves significant amount of computational time.  To further obtain an accurate 

integration, I also apply Simpson's rule weightings.  Since the FFT option pricing algorithm only 

returns option prices at discrete moneyness levels ln /k K S≡  of a constant fine grid step k∆  

with grid size a power of 2 (e.g., 122N =  = 4,096), to add more preciseness of parameter 

estimations, I compute option prices via improved Fast Fourier Transform (FFT) algorithm to 
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match arbitrary log-strike grids with equal intervals with each moneyness and maturity of actual 

market option prices.   

 Although Carr and Madan (1999) suggest using the following FFT formula for the short-

term OTM options which makes the inverse Fourier transform integrand less oscillatory and 

facilitates the numerical integration problem, I find that using (34)-(35) to compute option prices 

for all the moneynesses and maturities does not alter my main empirical results19. 
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 For estimation of risk-neutral parameter vectors, Θ , under the measure Q  for SP500 

index options, I use nonlinear least squares method by minimizing the average of squared pricing 

errors (MSE) of matching option prices across both strikes and maturities by weekly calibrations 

and by pooled calibrations as in Bakshi et al. (1997).   

 

                                                 
19  Very recently, the fractional fast Fourier transform (FRFT) algorithm for option pricing has been proposed by 
Chourdakis (2005) since the vector of option prices computed from FFT will extend well beyond the range of log-
strike prices that are actually required, thus only small faction of the output vector may be of interest.  While this 
method enables me to compute option prices more efficiently with less function evaluations, I still utilize FFT 
algorithm proposed by Carr and Madan (1999) to be consistent with previous literature.  The advantage of 
computation time in FRFT is not critical because of the moderate sizes of options data (N = 452) I have used in this 
study.  In addition, Chourdakis (2005) shows that FFT and FRFT provide identical calibration results based on the 
experiment using VG model.   
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where N represents the number of options at date t, iC  denotes the observed market price of 

SP500 index option at a given strike K and maturity T tτ = − , and ( )ˆ
iC Θ  denotes the model-

implied option prices obtained from FFT as a function of the parameter vector Θ .   

 However, as Lehar et al. (2002) and Lehnert (2003) point out, the squared pricing errors 

tend to put too much weight on options with a high market price in the parameter estimation.  If 

so, the optimization procedure mainly minimizes the pricing errors of deep in-the-money call 

options.  For that reason, I also estimate parameters by minimizing the average of squared 

relative pricing errors (MSRE), defined as 
( ) 2

1

ˆ1 N
i i

i i

C C

N C=

⎛ ⎞− Θ
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ , for comparison (results not 

reported).  Nonetheless, I find that my empirical findings and main conclusions are robust in the 

specifications of loss functions. 

 For weekly calibrations, the aforementioned procedures should be taken at each 

Wednesday to obtain time series patterns of parameter estimates and pricing errors.  However, 

for pooled calibrations, only one step of estimation is required since N is simply total number of 

options during the sample periods.  Then, I compare the performance of each model by overall 

measures of the quality of the calibration such as MSE, MAE, MARE, and RMSE for SP500 

index options.  Pricing errors to measure the quality of fit can be computed in the appropriate 

way listed below.  Among them, MAE is an indication of the actual mispricing in dollars per 

option premium, whereas MARE takes into account the magnitude of the option value.   
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5.  Analysis of Statistical and Risk-Neutral Estimation Results and 

Comparison of Models Performance 

 Huang and Wu (2004) compare the empirical performance of different jump and 

stochastic volatility specifications in pricing SP500 index options based on time-changed Lévy 

processes.  Although Huang and Wu (2004)'s approaches to generate stochastic volatility are 

slightly different from ours, the empirical results on options are consistent with my evidences 

presented in this chapter.  Allowing stochastic volatility to be generated separately from the jump 

component and the diffusion component significantly improves the pricing performance.  In 

addition, I also agree with the Carr and Wu (2003)'s arguments that there are both continuous 

and jump components in the underlying index process by observing asymptotic behavior of 

short-maturity options.    

 However, Carr and Wu (2003) explicitly exclude analysis of underlying time-series of 

asset prices due to the following two reasons and identify the type of an asset price process by 

examining the convergence speeds of option prices as the time to maturity approaches to zero.  

First, the discretely sampled underlying assets' time-series returns paths from different stochastic 
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processes look very similar, unless the sampling frequency is extremely high.  Second, 

increasing the sampling frequency introduces market microstructure effects.   

 

5.1.   Model Performance Comparisons via Likelihood Ratio (LR) Tests and 

Information Criteria for SP500 Index Underlying Returns 

5.1.1.   The Role of Stochastic Diffusion Volatility 

Recent research studies have shown that GARCH (in a discrete-time framework) and/or 

mean-reverting stochastic volatility (in a continuous-time framework) provide an excellent fit for 

financial asset returns when combined with finite-activity Merton's type compound Poisson 

Jump-diffusion models.  Consistent with previous studies, the density plot drawn by FFT using 

characteristic functions for finite activity Lévy jump models such as Merton's type jump-

diffusion (JD) and stochastic volatility with jump process (SVJ) of Bates (1996, 2000) and 

Bakshi et al. (1997) shows that SVJ model significantly improves overall fits of actual data as I 

can observe from Panel A of Figure 2.  Unlike JD model, the MLE density plot of SVJ model 

passes through the middle of circles of actual returns points and high peaks around zero returns 

almost perfectly, which result in a much higher likelihood value (LL) for SVJ model 

(LL=7832.50) compared to that of JD model (LL=7793.99) for the whole sample periods.  These 

empirical results fully coincide with previous literatures emphasizing the importance of 

stochastic volatility in returns. 

 However, most importantly, this conclusion does not hold when stochastic volatility is 

incorporated with an infinite activity pure Lévy jump model such as extended variance-gamma 

(EVG) process by allowing a drift parameter to be time-varying using mean-reverting stochastic 

volatility process.  I observe that stochastic volatility does not play an important role in this 
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scenario as in a diffusion parameter.  For example, likelihood ratio test shows that the likelihood 

value (LL=7832.60) for EVG model is not improved by addition of a diffusion parameter into 

VG model (LL=7831.64), which is statistically insignificant at any confidence intervals.  This 

finding is also consistent with Carr et al. (2002) who showed redundancy of a diffusion 

parameter in the case of CGMYe model for index returns.      

 Surprisingly, likelihood value (LL=7832.67) of EVGSV model, which assumes stochastic 

diffusion volatility, is not high enough to compensate for additional stochastic volatility 

parameters compared to that of EVG (LL=7832.60) model.  This result remains in the 2nd sub-

period, even though the likelihood ratio between EVG and EVGSV models is statistically 

significant for the 1st sub-period.  The likelihood values of EVG and EVGSV models are 

4264.47 and 4275.11 for the 1st sub-period and 3657.28 and 3658.32 for the 2nd sub-period, 

respectively20.  LR test confirms that the difference between likelihood values of EVG and 

EVGSV models for the 2nd period is almost negligible since EVGSV model requires me to 

include four additional stochastic volatility parameters.   

 It seems that infinite numbers of frequent large jumps dominated the effect of stochastic 

volatility due to higher fluctuations and fatter-tailedness of SP500 index returns for the 2nd sub-

period compared to the 1st sub-period, as already illustrated in Figure 1.  Therefore, the 

estimation results of the whole sample and the 2nd sub-period strongly support my argument of 

the role of stochastic volatility combined with infinite activity pure Lévy jump processes.  This 

conclusion is also reconfirmed by the smallest values of three information criteria.  As shown in 

Table II, AIC (-6.2181), SC (-6.2112), and HQ (-6.2156) measures are minimized for VG model.  

Although EVGSV model has slightly higher likelihood value than that of VG model, this 

marginal improvement are severely penalized by excessive numbers of parameters, which results 
                                                 
20  Estimation results for each sub-period are not reported here for brevity and can be provided upon requests. 
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in higher values of AIC (-6.2150), SC (-6.1965), and HQ (-6.2083) measures.  Consequently, it 

appears that stochastic volatility is not required as VG model is flexible enough to fully capture 

randomness and persistence in the volatility of SP500 index returns.   

 

Panel A: Finite Activity Lévy Jump Models with/without Stochastic Volatility  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Panel B: Infinite Activity Lévy Jump Models with/without Stochastic Volatility  
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Figure 2.  MLE Density Fits via FFT using Characteristic Functions.  The figures illustrate the 
density plot drawn by FFT using characteristic functions of finite/infinite activity Lévy Jump Models 
with/without stochastic volatility. 

 
 
 
 

Table II 
 

Parameter Estimations using Historical Time-Series SP500 Index Returns  
via Fast Fourier Transformations (FFT) 
 

For SP500 index returns, I rely on the binned maximum likelihood estimation to estimate parameter vectors, Θ , 
under the measure P  by inverting characteristic functions via fast Fourier transform (FFT) initiated by Carr et al. 
(2002), which compute the level of the probability density at a prespecified set of values for returns.  I used 

142 16,384N = =  as a power of 2 used in the fast Fourier discrete transform, integration spacing of 0.25, and a 
return spacing of ( 8 /  0.001534Nπ = ) to minimize discretization errors.  LL is log-likelihood values and the 
following three information criteria (AIC, SC, and HQ) are also computed to measure the goodness-of-fit for the 
models.  The p-values are reported in square brackets.     
 

Pure 
Diffusions 

Finite Activity Pure Lévy 
Jumps with/without SV 

Finite Activity Pure Lévy Jumps  
with/without Diffusions and SV Parameters 

BS JD SVJ VG EVG EVGSV VGSJV 

σ  0.0114 0.0090    0.0034   
 [0.0000] [0.0000]    [0.0001]   
θ     -0.0003 -0.0005  -0.0002 -0.0057 
     0.1202]  [0.0388]  [0.2221] [0.4851] 
ν      0.7661  1.1281  0.7313 0.0000 
    [0.0000]  [0.0000]  [0.0000] [0.4477] 

Jσ      0.0113  0.0108  0.0109 0.2872 
    [0.0000]  [0.0000]  [0.0000] [0.0000] 
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Table II, cont. 
η        0.0027 
       [0.0000] 
λ   0.1104   0.0824    0.0709 
  [0.0000]   [0.0691]    [0.0000] 
κ   0.0023   0.4201    0.2416 
  [0.0757]   [0.0000]    [0.0000] 
δ   0.0195   0.1051     
  [0.0000]   [0.0000]     

Jθ      0.0022    0.0003  
     [0.0000]    [0.0424]  

Jκ    16.5908    24.9279  
     [0.0000]    [0.0000]  

vσ      0.2199    1.8323  
     [0.0000]    [0.0000]  
ρ     -0.0500   -0.3183  
     [0.0682]    [0.0399]  

initV      0.0001    0.0001 0.0014 
     [0.2072]    [0.4883] [0.0000] 
         

LL 7689.24 7793.99 7832.50 7831.64 7832.60 7832.67 7832.07 
AIC -6.1066 -6.1874 -6.2149 -6.2181 -6.2181 -6.2150 -6.2153 
SC -6.1043 -6.1782 -6.1963 -6.2112 -6.2088 -6.1965 -6.1991 
HQ -6.1058 -6.1841 -6.2081 -6.2156 -6.2147 -6.2083 -6.2094 

 

 

5.1.2.   Do Sources of Stochastic Volatility Matter? 

To examine the importance of the source of stochastic volatility, I also consider VGSJV 

model, which assumes stochastic jump volatility.  For SP500 index returns, I find that this 

specification does not help to improve fits of underlying index returns compared to simple VG 

model.  As Table II shows, I observe that the estimate of jump volatility parameter, Jσ , for 

VGSJV model is higher than those of other constant jump volatility models such as VG, EVG 

and EVGSV, which mirror dynamic feature of jump volatility captured only in VGSJV models.  

Therefore, it seems that unlike Merton's finite activity jump-diffusion model, infinite-activity 

pure Lévy jumps models such as VG are very flexible and powerful enough to capture large 
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jumps, small movements mimicking diffusions, and stochastic volatility features for returns 

simultaneously.  Panel B of Figure 2 illustrates MLE density fits for infinite activity pure Lévy 

jumps with/without stochastic volatility.  As expected, most density plots look very similar and 

simple VG model performs very well even without including diffusion and stochastic volatility 

parameters.   

 All of model specifications considerably improve fits of SP500 index returns compared to 

BS model and, interestingly, SVJ and EVGSV models perform equally well, which implies that 

jumps specifications do not enhance model performances once stochastic volatility is 

incorporated.  Therefore, I am now interested in investigating if these empirical results observed 

in SP500 index returns can be valid to the SP 500 index options as well.    

 

5.2.   In-Sample Weekly Calibrations of SP500 Index Call Options  

5.2.1.   Empirical Examinations between Statistical and Risk-Neutral Processes 

Table III reveals that the average values of weekly parameter estimates of the diffusion 

volatility parameters, σ , differ noticeably across statistical and risk-neutral processes.  For 

example, the parameter values of σ  for risk-neutral estimations are 0.2345 and 0.1462 for BS 

and JD models, respectively.  However, parameter estimates of σ  for statistical process are as 

small as 0.0114 and 0.0090 for the corresponding models.  The drift parameters, θ , to capture 

skewness become also more distinguishable for risk-neutral parameters compared to those of 

statistical ones as shown in Table II and Table III.  Although the statistical skewness parameters, 

θ , are only -0.0003 and -0.0002 for VG and EVGSV models, the risk-neutral skewness 

parameters, θ  are -1.1698 and -0.1612 for VG and EVGSV models with negative signs for 

statistical and risk-neutral estimations.   



 92

Table III 
 

Calibrated Risk-Neutral Parameters using SP500 Index Option Prices  
via Fast Fourier Transformations (FFT) 
 

For estimation of risk-neutral parameter vectors, Θ , under the measure Q  for SP500 index options, I use nonlinear 
least squares method by minimizing the average of squared pricing errors (MSE) of matching option prices across 
both strikes and maturities by weekly calibrations through fast Fourier transform (FFT).    

( ) 2

1

1 ˆarg min
N

i i
i

C C
NΘ =

Θ = − Θ∑  

The average values of parameter estimates are obtained and standard deviations are reported in square brackets for 
each model. 
 

Pure Diffusions and Stochastic 
Volatility 

Finite Activity Lévy Jumps 
with/without SV 

Infinite Activity Pure Lévy 
Jumps with/without Diffusions 

and SV Parameters 

BS SV JD SVJ VG EVGSV 

σ  0.2345  0.1462    

 [0.0360]  [0.0320]    

θ      -1.1698 -0.1612 

      [0.6073]  [0.4977] 

ν       0.0290  0.2688 

      [0.0193]  [0.2325] 

Jσ       0.1369  0.1387 

      [0.0674]  [0.0317] 

λ     2.7223  1.1671   

    [1.4365]  [0.9951]   

κ    -0.1582 -0.1519   

    [0.0734]  [0.0885]   

δ     0.0442  0.0812   

    [0.0656]  [0.0569]   

Jθ    0.0572   0.0389   0.0148 

   [0.0205]    [0.0382]   [0.0190] 

Jκ    6.1556   4.6367   6.7837 

   [9.4338]   [2.8166]   [9.4449] 

vσ    3.4006   0.8918   2.3296 

   [9.2752]   [0.7382]   [2.9459] 
ρ   -0.7001  -0.6121  -0.8589 

   [0.8093]   [0.2588]   [0.5583] 

initV    0.1200   0.0620   0.0639 

   [0.1508]   [0.0304]   [0.0447] 
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 However, the size of the variance rate of the gamma process, ν , to controls for the excess 

kurtosis between statistical and risk-neutral processes are opposite.  That is, the variance rate of 

the gamma process, ν , has larger value for statistical process compared to risk-neutral process 

for VG and EVGSV models.  Therefore, to compute overall levels of model-implied skewness 

and kurtosis of VG models along with JD and SVJ models, one should refer to the formula in 

Madan et al. (1998) and Das and Sundaram (1999)21.   

 For the JD and SVJ models, the numbers of jumps per year, denoted as Poisson jump 

intensity, λ , for statistical processes are much smaller than those of risk-neutral processes.  For 

example, although the numbers of jumps per year are only 0.1104 and 0.0824 for JD and SVJ 

models in statistical processes, risk-neutral estimations show that Poisson jump intensity, λ , 

increases up to, on weekly average, 2.7223 and 1.1671, respectively.  Comparably, the volatility 

of volatility parameter, vσ , also presents distinct features between statistical and risk-neutral 

processes.  It tends to have inconsistent parameter values across different calibration weeks for 

SP500 index options, evidenced by high standard deviations.  Similar instability is also found in 

the speed of mean reversion parameter, Jκ , for risk-neutral calibrations as reported in Table III. 

 The non-zero correlation between spot returns and volatility is necessary to generate 

negative skewness and leptokurtosis in the risk-neutral distribution of SP500 index options, 

which leads to substantial improvements in pricing options by reducing the implied volatility 

smile or skew. (Heston (1993); Schöbel and Zhu (1999)).  The estimation results of correlation 

parameter, ρ , to capture leverage effects and volatility feedback effects between returns and 

                                                 
21  Madan et al. (1998): ( )3 2( ) 2 3 JSk tθ ν σ θν= +i  and 

                              ( ) ( )4 2 2 2 4 3 4 2 2 4 2 2( ) 3 12 6 3 6 3J J J JKu t tσ ν σ θ ν θ ν σ σ θ ν θ ν= + + + + +i  

     Das and Sundaram (1999): 
3 2

2 2 3 2

( 3 )( )
( )

Sk λ κ κδ
σ σδ σκ

+
=

+ +
i  and 

4 2 2 4

2 2 2

( 6 3 )( ) 3
( )

Ku λ κ κ δ δ
σ λδ λκ

+ +
= +

+ +
i  
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volatility, defined as [ ]t tE dW dZ dtρ=  where 0ρ < , are consistent with several widespread 

beliefs among researchers.  In other words, the volatility of equity returns is increased by lower 

overall firm values (leverage effects) and the equity price is decreased by heavier discounting of 

future expected dividends stemming from higher volatility assessments (volatility feedback 

effects).  These phenomena also tend to be valid in index options and currency options as 

commonly founded in equity options22.     

 In my calibrations of SP500 index call options, all of stochastic volatility models show 

strongly negative risk-neutral correlations, ρ , between SP500 index returns and volatility, which 

are -0.7001, -0.6121, and -0.8589 for SV, SVJ, and EVGSV models, respectively.  Compared to 

the statistical estimation results of Table II, it seems that negative correlations become reinforced 

for risk-neutral case, which implies that leverage effects between returns and volatility process 

under the risk-neutral measure Q  is substantially larger than under the objective measure P . 

 However, it is likely that these differences among magnitudes of parameter values are 

mainly due to diverse time horizons of options prices compared to those of SP500 index returns.  

More specifically, the risk-neutral parameters are inferred from calibrations of market option 

prices with multiple days-to-expirations from short-term (<30 days), mid-term (30 – 120 days) to 

long-term (>120 days) maturities.  On the other hand, the parameter values for statistical 

processes are generally estimated by using high-frequency financial data such as daily or weekly, 

at most, monthly SP500 index returns.  Therefore, the risk-neutral calibrations tend to overplay 

the parameter values obtained by minimizing MSE between market and theoretical option prices. 

 

 

                                                 
22  Some examples include SP500 index options (Bakshi et al. (1997)), European currency call options written on 
British pound (Sarwar and Krehbiel (2000)), and KOSPI 200 index options (Kim and Kim (2004)), among others.  
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5.2.2.   Model Performance Comparisons via Pricing Errors 

Since the jumps models (JD or VG) do not handle very long-term maturities properly, 

introducing stochastic volatility improves the overall quality of calibration.  As a result, when 

stochastic volatility is considered with finite or infinite activity of jumps, various measures of 

pricing errors such as MSE, MAE, and RMSE noticeably decrease.  For example, MAE for SVJ 

and EVGSV models are only 0.9733 and 1.0039 and significantly lower than those (1.9782 and 

2.1134) of JD and VG models. 

 Formally, to judge the statistical significance of differences between pricing errors, I 

compute the pair-wise t-statistics, 

 

 
( )Average PE  - PE

Stdev(PE  - PE )

i j

i jt =  (80) 

 

which is the mean difference between the weekly pricing errors of the models divided by the 

standard deviation of the differences scaled by root of the number of weeks ( 12  in the samples) 

as in Huang and Wu (2004) and Daal and Madan (2005).  For further analysis, I also apply the 

nonparametric Wilcoxson sign rank test to check the statistical significance of the reduction in 

mispricing as in Chu and Freund (1996) and Fofana and Brorsen (2001).  For the sign rank test, 

the null and alternative hypotheses of the mispricing are  

 

 0 : PE PE

: PE PE

i j

i j

H

Hα

≤

>
 (81) 

 

where i  and j  are different model specifications compared and PE is the pricing error measures. 

 As reported in Table IV, SVJ and EVGSV models obviously improve in-sample pricing 

performance over JD and VG models, evidenced by statistically significant t-test values and 
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near-zero values of p-probability obtained from the Wilcoxson sign rank test.  All measures of 

pricing errors consistently substantiate superiority of JD and VG models over BS model as well.  

Besides, it seems that JD model slightly fits better than VG model in the samples based on t- and 

sign rank tests.  Remarkably, t- and sign rank tests between SVJ and EVGSV models confirm 

that these differences are statistically insignificant, implying that these two stochastic volatility 

models with finite/infinite activity of Lévy jump models have similar pricing errors.  Other 

measures of pricing errors reported in Table IV show similar pricing improvements when 

stochastic volatility is incorporated with Lévy jump models.  As such, stochastic volatility 

significantly contributes to reducing in-sample pricing errors and helping model-implied option 

prices to be closer to market option prices. 

   

Table IV 
 

Pricing Errors, Pair-Wise t-statistics and Nonparametric Wilcoxson Sign Rank Tests for 
In-Sample Model Performance Comparisons 
 

I evaluate overall measures of the quality of the calibration such as MSE, MAE, and RMSE for SP500 index options.  
Then, to judge the statistical significance of differences between pricing errors in formal way, I perform the pair-
wise t-test and the nonparametric Wilcoxson sign rank test to check the statistical significance of the reduction in 
mispricing.  In Panel B, the p-values computed from sign rank test are reported in square brackets.          

 
Panel A: Pricing Errors of In-Sample Risk-Neutral Calibrations 
 

Pure Diffusions and Stochastic 
Volatility 

Finite Activity Lévy Jumps 
with/without SV 

Infinite Activity Pure Lévy 
Jumps with/without Diffusions 

and SV Pricing 
Errors  

BS SV JD SVJ VG EVGSV 

MSE 10.9699 1.9544 6.4131 1.6046 7.4394 1.6033 

MAE   2.5305 1.0515 1.9782 0.9733 2.1134 1.0039 

RMSE   3.1968 1.3549 2.4274 1.2426 2.5933 1.2484 
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Panel B: The t- and Wilcoxson Sign Rank Tests Statistics 

 
Do Lévy jumps models outperform a pure diffusion Model? 
 

Pricing Errors BS – JD BS – VG 

MSE  6.1749 [0.0005]  4.7510 [0.0005] 

MAE  6.0915 [0.0005]  3.8535 [0.0005] 

RMSE  7.4353 [0.0005]  4.9776 [0.0005] 

 

Does stochastic volatility play an important role for option pricing? 
 

Pricing Errors JD – SVJ VG – EVGSV 

MSE 4.6221 [0.0005] 4.4243 [0.0005] 

MAE 5.8595 [0.0005] 5.4400 [0.0005] 

RMSE 5.4571 [0.0005] 5.3464 [0.0005] 

 

Which jump specifications are more relevant for option pricing with/without stochastic volatility? 
 

Pricing Errors JD – VG SVJ – EVGSV 

MSE -2.2905 [0.0034]  0.0144 [0.7910] 

MAE -2.5508 [0.0068] -0.9552 [0.9697] 

RMSE -2.4369 [0.0034] -0.1841 [0.7910] 
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5.2.3.   Pricing Errors in Moneyness/Maturity Categories 

Carr and Wu (2003) point out that unlikely a purely continuous diffusion process such as 

BS model, the probability that the underlying asset price can jump into the money within any 

short interval of time is significantly larger if the process has jumps.  Therefore, I expect that 

inclusion of jumps should help to enhance model performance for short-term OTM options.  

Similarly, incorporation of stochastic volatility should reduce the pricing errors of long-term 

ATM and OTM options.  Hence, I also assume that having jump components addresses 

moneyness biases, while having stochastic volatility allows risk-neutral distributions to evolve 

stochastically over time as discussed by Bates (2003).  For this reason, to scrutinize the role of 

jumps and stochastic volatility, I am now interested in moneyness/maturity categories in which 

make the most influential contributions of stochastic volatility.   

Within each model, OTM options, especially options with a short-time to maturity, are 

priced worst by all models in percentage terms (ARPE) due to low market prices in this category, 

as shown in Table V.  In the comparative study of different models, it is well-known that BS 

model outperforms other competing model specifications for short-term ATM options.  In the 

sample, BS model performs better than and JD and VG models for short-term ATM and OTM 

options in-sample calibrations.  In addition, JD and VG models only marginally improve pricing 

performance for long-term OTM options compared to BS model.  As expected, pricing 

performance of VG model is superior to that of BS model for short-term ITM and mid-term 

OTM options.  
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Table V 
 

In-Sample Pricing Errors in Moneyness/Maturity Categories 
 

The tables report average values of absolute pricing errors (APE) and absolute relative pricing errors (ARPE) in 
moneyness/maturity category.  Median values of pricing errors are reported in square brackets. 
  
Panel A: Pure Diffusions and Pure Stochastic Volatility Models 
 

Call Options Days-to-Expiration (Maturity) 

ST (< 30 days) MT (30 – 120 days) LT (>120 days) Models Moneyness 
(K/S) 

APE ARPE APE ARPE APE ARPE 

ITM 3.6909 0.0660 4.6721 0.0619 2.8613 0.0293 

(< 0.97)  [3.2435] [0.0622] [4.9803] [0.0658] [2.7101] [0.0315] 

ATM  1.7965 0.1265 1.8958 0.0469 3.0093 0.0486 

(0.97 – 1.03) [1.1565] [0.0969] [1.4863] [0.0403] [2.1904] [0.0350] 

OTM 0.4304 0.1794 2.0415 0.1998 5.6147 0.1707 

BS 

(> 1.03) [0.3776] [0.1412] [2.0763] [0.1323] [5.2766] [0.1719] 

ITM 1.8796 0.0346 1.3118 0.0179 1.0713 0.0113 

(< 0.97)  [1.5571] [0.0253] [1.1441] [0.0147] [0.8809] [0.0092] 

ATM  1.2036 0.1030 1.0191] 0.0258 0.9084 0.0143 

(0.97 – 1.03) [0.9768] [0.0666] [0.9501] [0.0229] [0.7565] [0.0117] 

OTM 0.5034 0.2312 0.8104 0.0605 0.8234 0.0242 

SV 

(> 1.03) [0.3368] [0.1488] [0.7749] [0.0453] [0.6242] [0.0224] 

 
Panel B: Finite Activity Lévy Jumps with/without SV 
 

ITM 2.1198 0.0400 2.5446 0.0331 2.4658 0.0248 

(< 0.97)  [1.6946] [0.0287] [2.4030] [0.0347] [2.1268] [0.0224] 

ATM  2.3166 0.2028 1.3100 0.0358 2.4304 0.0402 

(0.97 – 1.03) [2.0883] [0.1470] [1.0820] [0.0272] [2.2073] [0.0422] 

OTM 1.6193 0.5529 1.2643 0.0894 4.8209 0.1427 

JD 

(> 1.03) [1.2580] [0.5250] [0.9676] [0.0729] [4.4764] [0.1540] 

ITM 1.6606 0.0316 1.2523 0.0177 0.8446 0.0088 

(< 0.97)  [1.4323] [0.0241] [1.0637] [0.0135] [0.5076] [0.0043] 

ATM  1.1837 0.0937 1.0369 0.0264 0.8624 0.0137 

(0.97 – 1.03) [0.9743] [0.0763] [0.9777] [0.0262] [0.6493] [0.0107] 

OTM 0.3629 0.1770 0.7120 0.0530 0.8308 0.0239 

SVJ 

(> 1.03) [0.2791] [0.1138] [0.6384] [0.0424] [0.7905] [0.0239] 
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Panel C: Infinite Activity Pure Lévy Jumps with/without Diffusions and SV 
 

Call Options Days-to-Expiration (Maturity) 

ST (< 30 days) MT (30 – 120 days) LT (>120 days) Models Moneyness 
(K/S) 

APE ARPE APE ARPE APE ARPE 

ITM 2.6030 0.0475 3.0999 0.0411 1.8804 0.0198 

(< 0.97)  [2.3053] [0.0384] [2.9877] [0.0437] [1.4293] [0.0161] 

ATM  2.1617 0.2071 1.8244 0.0479 3.1898 0.0512 

(0.97 – 1.03) [2.0519] [0.1351] [1.5768] [0.0413] [2.3148] [0.0412] 

OTM 1.5121 0.5340 1.0939 0.0913 4.6600 0.1358 

VG 

(> 1.03) [1.2200] [0.5623] [1.0572] [0.0602] [4.2804] [0.1258] 

ITM 1.5091 0.0299 1.3718 0.0195 0.9344 0.0097 

(< 0.97)  [1.2735] [0.0209] [1.2182] [0.0153] [0.6070] [0.0062] 

ATM  1.1335 0.0902 1.0647 0.0272 0.8504 0.0132 

(0.97 – 1.03) [0.9367] [0.0709] [0.9807] [0.0267] [0.7457] [0.0122] 

OTM 0.4844 0.2142 0.7435 0.0545 0.9946 0.0280 

EVGSV 

(> 1.03) [0.3473] [0.1594] [0.7339] [0.0504] [0.9160] [0.0244] 

 
 

 On the other hand, it is obvious that inclusion of stochastic volatility significantly reduces 

pricing errors for the long-term ATM and OTM options from Table V.  For example, APE and 

ARPE for VG model ($3.1898 and 5.12%) decrease below to $0.8204 and 1.32% for long-term 

ATM options for EVGSV model.  Similarly, for long-term OTM options, APE and ARPE for 

VG model ($4.6600 and 13.58%) decrease below to $0.9946 and 2.80% for EVGSV model.  

Similar analogy is also applied to JD and SVJ models.   That is, APE and ARPE for JD model 

($2.4304 and 4.02%) drop below to $0.8624 and 1.37% for long-term ATM options for SVJ 

model.  For long-term OTM options, APE and ARPE for JD model ($4.8209 and 14.27%) drop 

below to $0.8308 and 2.39%.   
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 Consistent with Kim and Kim (2004), I also observe that for all models OTM (ITM) 

options have highest (lowest) ARPE, whereas there are some inconsistencies for APE.  In 

addition, it seems that the impact of stochastic diffusion volatility on OTM options does not 

differ significantly when compared to ATM options.  Furthermore, pricing improvements for 

ITM options when stochastic volatility is taken into account are relatively moderate because of 

relative insensitivity of ITM options with positive intrinsic values to model specifications as 

pointed out by Carr and Wu (2003).  In other words, ITM options approach the nonparametric 

lower boundary given by the difference between current index level and discounted strike price.  

Nonetheless, the impact of stochastic diffusion volatility on long-term options differs 

significantly when compared to short-term and mid-term options.   
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Figure 3.  EVGSV Model Calibrations of SP500 Index Options and Pricing Errors.  The figures 
illustrate calibrations results of EVGSV model for the SP500 index options.  To examine sources of 
mispricing, I divide option data into 4 quartiles from the 1st quartile (denoted by good performers) to the 
4th quartile (denoted by bad performers) sorted by APE defined as ( )ˆ

i iC C− Θ .  In the scatterplots, 

circles are market prices and pluses are model prices. 
 

 

5.2.4.   Quartile Analysis and Price Differences for EVGSV Model Calibrations 

Figure 3 illustrates calibrations results of EVGSV model for the SP500 index options.  To 

examine sources of mispricing, I divide my option data into 4 quartiles from the 1st quartile 

(denoted by good performers) to the 4th quartile (denoted by bad performers) sorted by absolute 

pricing errors (APE) defined as ( )ˆ
i iC C− Θ .  In Figure 3, circles are market prices and pluses 

are model prices.  If I carefully observe "bad performers", which are right columns of Figure 3, 

there still remain small deviations between market options prices and model-implied option 

prices computed by FFT using characteristic functions.  
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Figure 4.  Comparison of Option Prices of BS and EVGSV models.  The above graphs compare price 
differences between model-implied option prices obtained from BS and EVGSV models.  Positive 
(negative) values imply overpricing (underpricing) of BS model compared to EVGSV model.   
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I find that most "good performers" are located in the category of OTM options 

(1.03 / 1.1K S< < ) and their model-implied option prices are almost perfectly identical with 

markets option prices.  Unlike "good performers", "bad performers" are scattered across each 

moneyness.   It appears that EVGSV model also performs relatively well for the short-term 

options, which can be explained by VG components.  However, although EVGSV model 

significantly reduces pricing errors for long-term options as found in Table IV, the empirical 

performance leaves still room for improvements to fit better for options with different 

moneynesses and maturities.   

Figure 4 compares price differences between model-implied theoretical option prices 

obtained from BS and EVGSV models.  In Figure 4, positive (negative) values imply overpricing 

(underpricing) of BS model compared to EVGSV model.  When price differences are plotted 

across moneyness, I find that BS model, in general, overprices for OTM options and underprices 

for ITM options.  For ATM options, price differences are relatively small.  However, when price 

differences are plotted across maturity, I find that BS model, in general, underprices for short-

term options and overprices for long-term options.  

 

5.2.5.   Time-Series Plots of In-Sample Pricing Errors and Pooled Calibrations for 

Model Performance Comparisons  

Figure 5 plots time-series of pricing errors measures (MSE, MAE, and MARE) obtained 

by weekly calibrations for model comparisons.  Interestingly, although JD model performs better 

than VG model in most cases except MARE, pricing performances among BS, VG, and JD 

models are sometimes changing dramatically across time.  That is, pricing performances of 

model specifications without stochastic volatility are not stable and highly depend on calibrations 
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weeks.  However, Lévy jumps models with stochastic volatility such as SVJ and EVGSV models 

outperform other model specifications through the sample periods and minimize in-sample 

pricing errors as far as stochastic volatility is considered, which reconfirm the importance of 

stochastic volatility for option pricing, unlike that of underlying SP500 index returns.     

 To further check robustness of my results, I also analyze the results based on pooled 

calibrations by aggregating the whole options included in the samples.  As such, unlike weekly 

calibrations of the models, pooled calibrations impose constant risk-neutral parameters over the 

full data interval.  Although pricing errors for weekly calibrations are smaller than the 

corresponding ones for pooled calibration, I find that the pricing performances are quite similar 

to each other and all of my empirical findings and main conclusions remain valid in my analysis 

without regard to the way of calibrations.   
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Figure 5.  In-Sample Model Performance Comparisons by Pricing Errors Measures.   The figures 
plot time-series patterns of measures of pricing errors such as MSE, MAE, and MARE obtained by in-
sample weekly calibrations for 6 different model specifications.  
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5.2.6.   Out-of-Sample Weekly Calibrations  

Unlike statistical processes on SP500 index underlying returns, I have shown that in-

sample risk-neutral calibration results of SP500 index call options clearly show the important 

economic and statistical roles of stochastic diffusion volatility incorporated with Lévy jumps 

models.  Nevertheless, I am still concerned about controlling for in-sample over-fitting by 

complicated models with many free parameters.  That is, pricing models with more parameters 

will, most likely, improve in-sample pricing performances simply due to excessive numbers of 

parameters. 

Therefore, it is highly recommended to perform out-of-sample tests to further check the 

stability of parameters and the robustness of my empirical results because misspecified models 

may achieve good in-sample results by over-fitting the data, but they have less predictive power 

for out-of-sample option valuation.  Although stochastic volatility has mean-reverting properties 

and daily volatility surface is highly serially correlated, out-of-sample option pricing tests are 

still informative for my purpose since I am using weekly calibrations rather than daily 

calibrations23 (See Bates (2003) and Lehnert (2003)).  

 Using model-implied risk-neutral parameters obtained in the previous week, I compute 

out-of-sample pricing errors such as MSE, MAE, and MARE for each different model 

specification.  The out-of-sample calibration results imply that there exist strong evidences of 

over-fitting for more complicated models including stochastic volatility.  Figure 6 does not show 

superiority of stochastic volatility combined with Lévy jumps models such as SVJ and EVGSV 

over simple JD and VG models.  If I examine estimated parameter values carefully, I can observe 

                                                 
23  To overcome this drawback of daily calibrations, Lehar et al. (2002) uses the sliding window technique that re-
estimates the models within relatively short time intervals to allow for changing parameters without re-estimating 
the option pricing models every day.  Then, the models are tested out-of-sample on the next window of ten days.  
Finally, the time window is shifted by ten days and the models are reestimated. 
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that the stochastic volatility parameters such as Jκ , and vσ  have relatively excessive variations 

depending on calibration weeks evidenced by larger values of standard deviations.  Therefore, it 

seems that these unstable parameters across sample periods are hard to represent the overall 

levels of parameter values and result in excellent in-sample fits but poor out-of-sample 

performances. 

 MSE, MAE and MARE measures undermine the usefulness of stochastic volatility 

combined with Lévy jumps models since they generate a few excess pricing errors of SVJ or 

EVGSV coming from unsteady parameters, which dominate remaining pricing performances 

across calibration weeks.  Therefore, I further classify out-of-sample pricing errors based on 

moneyness/maturity categories.  For comparison purpose, I keep the same table formats as in-

sample pricing errors performances.   
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Figure 6.  Out-of-Sample Model Performance Comparisons by Pricing Errors Measures.  The 
figures plot time-series patterns of measures of pricing errors such as MSE, MAE, and MARE obtained 
by out-of-sample weekly calibrations for 6 different model specifications. 
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Table VI 
 

Out-of-Sample Pricing Errors in Moneyness/Maturity Categories 
 

The tables report average values of absolute pricing errors (APE) and absolute relative pricing errors (ARPE) in 
moneyness/maturity category.  Median values of pricing errors are reported in square brackets. 
  
Panel A: Pure Diffusions and Pure Stochastic Volatility Models 
 

Call Options Days-to-Expiration (Maturity) 

ST (< 30 days) MT (30 – 120 days) LT (>120 days) Models Moneyness 
(K/S) 

APE ARPE APE ARPE APE ARPE 

ITM 2.7746 0.1154 3.8850 0.1221 2.7864 0.1721 

(< 0.97)  [2.6321] [0.0641] [3.8255] [0.0730] [2.1815] [0.1197] 

ATM  2.6918 0.1370 4.0502 0.1802 4.5010 0.2350 

(0.97 – 1.03) [1.8964] [0.0666] [2.7638] [0.0722] [4.7791] [0.1627] 

OTM 3.1371 0.1581 3.3034 0.1845 3.0406 0.2053 

BS 

(> 1.03) [2.7022] [0.1152] [2.6799] [0.0987] [2.2441] [0.1349] 

ITM 2.7435 0.1289 3.5942 0.0997 2.6229 0.1414 

(< 0.97)  [2.1909] [0.0756] [3.5171] [0.0721] [1.4466] [0.0747] 

ATM  2.7007 0.1540 3.4729 0.1662 2.7576 0.2047 

(0.97 – 1.03) [2.7151] [0.0845] [3.2309] [0.1018] [2.2825] [0.0865] 

OTM 2.5818 0.2020 2.6827 0.1565 2.1741 0.1658 

SV 

(> 1.03) [1.9379] [0.1065] [2.1687] [0.0812] [1.8292] [0.0799] 

 
Panel B: Finite Activity Lévy Jumps with/without SV 
 

ITM 2.5196 0.1398 4.1166 0.1238 2.9804 0.2659 

(< 0.97)  [2.0366] [0.0523] [3.7154] [0.0880] [2.9799] [0.1667] 

ATM  2.7529 0.2045 3.9891 0.1962 3.8429 0.2023 

(0.97 – 1.03) [2.5772] [0.0875] [2.9458] [0.1152] [3.3964] [0.1318] 

OTM 2.9710 0.1824 3.0837 0.1708 2.8185 0.1859 

JD 

(> 1.03) [3.0130] [0.1095] [2.5911] [0.1216] [2.2089] [0.0857] 

ITM 2.9776 0.1294 4.3195 0.1141 2.4721 0.1271 

(< 0.97)  [1.9272] [0.0830] [3.5885] [0.0758] [1.2744] [0.0907] 

ATM  5.9950 0.2886 3.8980 0.1644 2.4809 0.1767 

(0.97 – 1.03) [3.2596] [0.1217] [3.0799] [0.1016] [1.8104] [0.0864] 

OTM 2.8457 0.1563 2.9007 0.1568 2.1223 0.1799 

SVJ 

(> 1.03) [1.9119] [0.0991] [2.1540] [0.0789] [1.7871] [0.0637] 
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Panel C: Infinite Activity Pure Lévy Jumps with/without Diffusions and SV 
 

Call Options Days-to-Expiration (Maturity) 

ST (< 30 days) MT (30 – 120 days) LT (>120 days) Models Moneyness 
(K/S) 

APE ARPE APE ARPE APE ARPE 

ITM 2.4209 0.1221 3.4317 0.1466 2.9795 0.2407 

(< 0.97)  [2.1390] [0.0687] [3.4364] [0.0710] [2.6365] [0.1632] 

ATM  2.4959 0.2021 3.7399 0.1900 3.9130 0.1918 

(0.97 – 1.03) [1.6740] [0.0781] [2.3979] [0.0859] [3.6349] [0.1127] 

OTM 3.1477 0.2105 2.8911 0.1689 2.6830 0.1911 

VG 

(> 1.03) [2.2690] [0.1201] [2.3168] [0.1112] [1.5316] [0.0753] 

ITM 3.9020 0.1305 4.3192 0.1141 3.2945 0.1720 

(< 0.97)  [2.5412] [0.0934] [3.5065] [0.0733] [1.6473] [0.1030] 

ATM  3.7728 0.1488 4.0620 0.1633 2.6382 0.1672 

(0.97 – 1.03) [3.1481] [0.1036] [3.7193] [0.0978] [2.4261] [0.0872] 

OTM 2.5424 0.1519 2.5717 0.1392 1.9259 0.1584 

EVGSV 

(> 1.03) [1.9955] [0.1008] [2.3267] [0.0836] [1.5212] [0.0704] 

 
 

From Table VI, I find that most excessive pricing errors for SVJ and EVGSV models in 

Figure 6 originate from ITM options.  Stochastic volatility specifications combined with Lévy 

jumps models does not add any explanatory power for ITM options for out-of-sample 

calibrations.  In most cases, the simplest BS model performs better than more complicated 

models do.  These results are mainly comply with the rationale which some researchers exclude 

ITM options explicitly due to insensitivity of model specifications because of positive intrinsic 

values of ITM options (Carr et al. (2002) and Carr and Wu (2003)).   

 However, for the ATM and OTM options, out-of-sample pricing errors performances are, 

in general, consistent with those of in-sample calibrations.  SV, SVJ and EVGSV models 

considerably reduce pricing errors for long-term ATM and OTM options compared to BS, JD, 
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and VG models, strongly implying that stochastic volatility with/without inclusions with Lévy 

jumps models play an important role in improving empirical fits for SP500 index options.  For 

example, APE and ARPE of BS model are $4.5010 and 23.5% ($3.0406 and 20.53%) for long-

term ATM (long-term OTM) options.  On the other hand, for SVJ and EVGSV models, APE and 

ARPE are only $2.4809 and 17.67% ($2.1223 and 17.99%) for long-term ATM (long-term 

OTM) options for SVJ model and $2.6382 and 16.72% ($1.9259 and 15.84%) for long term 

ATM (long-term OTM) options for EVGSV model.  Similar pricing improvements are also 

found for mid-term ATM and OTM options for SVJ and EVGSV models.  However, consistent 

with previous studies, the BS model outperforms more complicated model specifications for 

short-term ATM options even in the out-of-sample calibrations. 

 

5.3.   Why does stochastic volatility behave differently between statistical and risk-

neutral processes? 

Empirical results have confirmed that the role of stochastic volatility is different from 

between statistical process for underlying SP500 index returns and risk-neutral process for 

SP500 index options.  It is striking that stochastic volatility does not add any explanatory powers 

for statistical process for SP500 index returns when it is incorporated with infinite-activity pure 

Lévy jumps models such as VG and NIG processes.  However, stochastic volatility plays a major 

role in improving empirical fits once it is combined with a finite-activity Lévy jumps model such 

as Merton's JD model for SP500 index returns.  Although Lévy jumps types are important for 

statistical process, it appears that stochastic volatility consistently contributes to enhancing 

model performances for SP500 index options without regard to finite or infinite activity Lévy 

jumps.  
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 A finite activity Poisson jump-diffusion model consists of frequent small diffusions and 

infrequent large discontinuous jumps.  Consequently, this model specification is difficult to 

mimic the role of stochastic volatility.  However, it seems that infinite activity jumps models 

such as VG and NIG processes can generate infinite numbers of small jumps mimicking 

diffusions as well as finite numbers of large jumps by the definition of finite variation.  

Interesting feature unexploited yet is that I can show theoretically whether VG or NIG processes 

can mimic the role of stochastic volatility, at least, in high-frequency data such as daily or 

weekly time horizons.  If so, I do not have to consider stochastic volatility explicitly for infinite 

activity Lévy jumps models since the most statistical processes for SP500 index time-series 

returns have daily or weekly frequencies.  They have much shorter time horizons compared to 

the SP500 index options panel data with different option maturities, which may be longer than 

several months.  Hence, stochastic volatility can readily contribute to improving pricing 

performances for long-term ATM and OTM options.   

 

6.  Conclusions and Suggestions of Future Research 

In this chapter, I have shown a variety of empirical evidences to support redundancy of 

stochastic volatility for SP500 index returns when stochastic volatility is incorporated with 

infinite activity pure Lévy jumps models and importance to reduce pricing errors for SP500 

index options without regard to jumps specifications.  This chapter also has demonstrated that 

SVJ and EVGSV models perform almost equally well for option pricing, which strongly imply 

that whether pure Lévy jumps specifications are finite or infinite activity is not important factors 

to enhance model performances once stochastic volatility is incorporated.  Therefore, theoretical 
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justifications are necessary to complement these empirical findings along with further relevant 

empirical extensions.   

These empirical findings are important for a number of financial applications including 

risk management, hedging, and derivative pricing.  For instance, first, in the perspective of risk 

management, Lehar et al. (2002) shows that more complex GARCH or stochastic volatility 

option pricing models can improve on the BS model only for the purpose of pricing, but not for 

the risk management tool such as Value-at-Risk (VaR), the expected loss that will only be 

exceeded with probability α .  These findings strongly imply a discrepancy between 

appropriateness for pricing and for risk management.   

Second, in the point of view of hedging, as Belledin and Schlag (1999) point out, option 

traders have a tendency to give more weights on a model with superior hedging performance 

since changes in the value of their positions are main concerns to them, compared to pricing 

quality of a model measured by absolute or relative pricing errors.  Therefore, the usefulness of a 

given model primarily relies on its ability to properly capture the price changes of options given 

a change in the value of the underlying assets.  To perform hedging test, I may think of the 

procedure taken by Bakshi et al. (2000) to compare the hedging performance of each model. 

Third, in the side of derivative pricing, unlike the objective distributions, risk-neutral 

distributions recovered from option prices suffer fundamental structural change evidenced by 

implied volatility smile/skew patterns before and after the crash of 1987 due to the large change 

in the risk aversion of the average investor.  Consequently, put options tend to be frequently 

overpriced for hedging since the 1987 crash, which is termed as 'crashophobia'.  Hence, it is also 

required to study if my empirical findings still hold for put options since put options can be 

readily obtained using the put-call parity.  As a result, while the numerically intensive techniques 
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have been proposed to price various types of derivatives, the continuous endeavors to find better 

stochastic volatility specifications are still expected to remain important subjects of future 

research to further improve the empirical fits of actual returns and option data.   



 116

References 

Ait-Sahalia, Y., 2004, Disentangling Diffusion from Jumps, Journal of Financial Economics 74, 

487-528. 

Bailey, David H., and Paul N. Swarztrauber, 1994, A Fast Method for the Numerical Evaluation 

of Continuous Fourier and Laplace Transform, SIAM Journal on Scientific Computing 15, 

1105-1110. 

Bakshi, G., and D.B. Madan, 2000, Spanning and Derivative-Security Valuation, Journal of 

Financial Economics 55, 205-238. 

Bakshi, Gurdip, Charles Cao, and Zhiwu Chen, 1997, Empirical Performance of Alternative 

Option Pricing Models, The Journal of Finance 52, 2003-2049. 

Bakshi, Gurdip, Charles Cao, and Zhiwu Chen, 2000, Pricing and hedging long-term options, 

Journal of Econometrics 94, 277-318. 

Barndorff-Nielson, O.E., 1998, Processes of Normal Inverse Gaussian type, Finance and 

Stochastics 2, 41-68. 

Barone-Adesi, G., R. Engle, and L. Mancini, 2004, GARCH Options in Incomplete Markets, 

Working Paper, New York University. 

Bates, D., 1996, Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche 

Mark Options, Review of Financial Studies 9, 69-107. 

Bates, D., 2000, Post-'87 Crash fears in the S&P 500 Futures Options Market, Journal of 

Econometrics 94. 

Bates, D., 2003, Empirical Option Pricing: A Retrospection, Journal of Econometrics 116, 387-

404. 



 117

Belledin, Michael, and Christian Schlag, 1999, An Empirical Comparison of Alternative 

Stochastic Volatility Models, Working Paper, Goethe University. 

Carr, P., H. Geman, D. Madan, and M. Yor, 2002, The Fine Structure of Asset Returns: An 

Empirical Investigation, Journal of Business 75, 305-332. 

Carr, P., and D.B. Madan, 1999, Option Valuation using the Fast Fourier Transform, Journal of 

Computational Finance 2, 61-73. 

Carr, Peter, Helyette Geman, Dilip Madan, and Marc Yor, 2003, Stochstic Volatility for Lévy 

Processes, Mathematical Finance 13, 345-382. 

Carr, Peter, and Liuren Wu, 2003, The Finite Moment Log Stable Process and Option Pricing, 

The Journal of Finance 58, 753-777. 

Carr, Peter, and Liuren Wu, 2003, What Type of Process Underlies Options?: A Simple Robust 

Test, The Journal of Finance 58, 2581-2610. 

Carr, Peter, and Liuren Wu, 2004, Time-changed Lévy processes and option pricing, Journal of 

Financial Economics 71, 113-141. 

Chernov, Mikhail, Ronald Gallant, Eric Ghysels, and George Tauchen, 1999, A New Class of 

Stochastic Volatility Models with Jumps: Theory and Estimation, Working Paper, 

CIRANO. 

Chernov, Mikhail, Ronald Gallant, Eric Ghysels, and George Tauchen, 2003, Alternative models 

for stock price dynamics, Journal of Econometrics 116, 225-257. 

Chourdakis, Kyriakos, 2005, Option Pricing Using the Fractional FFT, Journal of Computational 

Finance 8, 1-18. 

Chu, Shin-Herng, and Steven Freund, 1996, Volatility Estimation for Stock Index Options: A 

GARCH Approach, The Quarterly Review of Economics and Finance 36, 431-450. 



 118

Cont, Rama, and Peter Tankov, 2004, Financial Modelling with Jump Processes, Chapman & 

Hall/CRC Financial Mathematics Series. 

Daal, Elton, and Dilip Madan, 2005, An Empirical Examination of the Variance-Gamma Model 

for Foreign Currency Options, Journal of Business 78, Forthcoming. 

Das, S. R., and R. K. Sundaram, 1999, Of Smiles and Smirks: A Term Structure Perspective, 

Journal of Financial and Quantitative Analysis 34, 211-239. 

Duffie, D., J. Pan, and K. Singleton, 2000, Transform Analysis and Asset Pricing for Affine 

Jump Diffusions, Econometrica 68, 1343-1376. 

Eberlein, E., U. Keller, and K. Prause, 1998, New Insights into Smile, Mispricing, and Value at 

Risk: the Hyperbolic Model, Journal of Business 71, 371-406. 

Eraker, Bj�rn, 2004, Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and 

Option Prices, The Journal of Finance 59, 1367-1403. 

Fofana, N., and B. Brorsen, 2001, GARCH Option Pricing with Implied Volatility, Applied 

Economics Letters 8, 335-340. 

Garcia, René, Eric Ghysels, and Éric Renault, 2004, The Econometrics of Option Pricing, 

Working Paper, CIRANO. 

Heston, S., 1993, A Closed-Form Solution for Opitons with Stochastic Volatility with 

Applications to Bond and Currency Options, Review of Financial Studies 6, 327-343. 

Huang, Jingzhi, and Liuren Wu, 2004, Specification Analysis of Option Pricing Models based on 

Time-changed Lévy processes, The Journal of Finance 59, 1405-1439. 

Hull, J, and A. White, 1987, The Pricing of Options on Assets with Stochastic Volatilities, The 

Journal of Finance 42, 281-300. 



 119

Kim, In Joon, and Sol Kim, 2004, Empirical comparison of alternative stochasticvolatility option 

pricing models: Evidence fromKorean KOSPI 200 index options market, Pacific-Basin 

Finance Journal 12, 117–142. 

Kou, S.G., 2002, A Jump-Diffusion Model for Option Pricing, Management Science 48, 1086-

1101. 

Lehar, A., M. Scheicher, and C. Schittenkopf, 2002, GARCH vs. Stochastic Volatility: Option 

Pricing and Risk Management, Journal of Banking & Finance 26, 323-345. 

Lehnert, Thorsten, 2003, Explaining Smiles: GARCH Option Pricing with Conditional 

Leptokurtosis and Skewness, Journal of Derivatives 10, 27-39. 

Lewis, A., 2000, Option Valuation under Stochastic Volatility with Mathematica Code, Finance 

Press: Newport Beach, CA. 

Madan, D.B., P. Carr, and E. Chang, 1998, The Variance Gamma Process and Option Pricing, 

European Finance Review 2, 79-105. 

Madan, D.B., and F. Milne, 1991, Option Pricing with VG Martingale Components, 

Mathematical Finance 1, 39-56. 

Madan, D.B., and E. Seneta, 1990, The Variance Gamma (VG) Model for Share Market Returns, 

Journal of Business 63, 511-524. 

Matsuda, Kazuhisa, 2004, Introduction to Option Pricing with Fourier Transform: Option Pricing 

with Exponential Lévy Models, Working Paper, The City University of New York. 

Merton, R.C., 1976, Option Pricing when Underlying Stock Returns are Discontinuous, Journal 

of Financial Economics 3, 125-144. 

Sarwar, Ghulam, and Timothy Krehbiel, 2000, Empirical Performance of Alternative Pricing 

Models of Currency Options, The Journal of Futures Markets 20, 265–291. 



 120

Schöbel, Rainer, and Jianwei Zhu, 1999, Stochastic Volatility with an Ornstein-Uhlenbeck 

Process: An Extension, European Finance Review 3, 23-46. 

Schoutens, Wim, 2003, Lévy Processes in Finance: Pricing Financial Derivatives, Wiley Series 

in Probability and Statistics. 

Schoutens, Wim, Erwin Simons, and Jurgen Tistaert, 2004, A perfect calibration: Now what?, 

Wilmott Magazine March, 66-78. 

 

 
 

 



 121

Vita 

 

Jung-Suk Yu was born in Seoul, Korea on September 18, 1972.  He studied finance, 

economics, mathematics, and statistics as a student at the Department of Economics, Seoul 

National University, and obtained a B.A. in Economics in February 1999.  Jung-Suk started his 

graduate studies in the U.S. to become a financial economist.  He obtained M.A. in Economics at 

Duke University in May 2002, M.S. in Financial Economics at the University of New Orleans in 

May 2005, and Ph.D. in Financial Economics at the University of New Orleans in May 2006. 

During his graduate studies at the University of New Orleans, Jung-Suk has served as an 

instructor and teaching assistant for the undergraduate and MBA courses in Finance and 

Economics (International Finance and Investments) as well as a research assistant for Professors 

Elton Daal, Atsuyuki Naka, and M. Kabir Hassan.  Jung-Suk presented his research at numerous 

academic conferences, including such major ones as Financial Management Association, 

Midwest Finance Association, Southwestern Finance Association, and Academy of International 

Business, Southwest United States. 

One of his research papers has been published in the Proceedings of the Southwestern 

Finance Association, 2005, pp. 84 – 103, while others are at various stages of review in 

prestigious academic journals such as The Journal of Banking and Finance and The Quarterly 

Review of Economics and Finance.  He is a recipient of the 2006 McGraw-Hill / Irwin 

Distinguished Paper Award at AIB-SW Conference in Oklahoma City and Travel Grant ($1,250) 

for 2005 American Financial Association conference held in Philadelphia.  He is also a recipient 

of Toussaint Hocevar Memorial Award for Outstanding Ph.D. Candidate in Financial Economics 



 122

and an active member of Beta Gamma Sigma, the highest honor society in business schools 

accredited by AACSB International. 

Jung-Suk has served as a referee for The Global Journal of Finance and Economics and a 

discussant and review committee member at 2006 Midwest Finance Association (MFA) in 

Chicago and 2006 AIB-SW conference in Oklahoma City.  Jung-Suk’s research and teaching 

interests include Financial Markets, International Finance, Financial Econometrics, Derivatives, 

and Risk Managements. 

 


	Essays on Fine Structure of Asset Returns, Jumps, and Stochastic Volatility
	Recommended Citation

	tmp.1312983455.pdf.Npozx

