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ABSTRACT 

 
The Gulf of Mexico (GOM) represents a challenge for exploration and production. Most of 

the sediments coming from North America has bypassed the shelf margin into Deep Water. 

In an Attempt to attack this challenge this thesis pretends to break the GOM’s false bottom, 

mainly comprised by diverse salt structures and growth fault families. In this attempt, 

geological and geophysical data are integrated to find clues to potential hydrocarbons 

indicator (PHI) that could be of Reservoir Quality (RQ). 3D Pre stack depth migrated data 

comprised of Mississippi Canyon blocks, were interpreted: Top and base of salt, leading to 

the identification of a PHI represented by a consistent Amplitude Anomaly (AA) below and 

towards a salt structure. This AA may be of RQ and feasibility evaluation for further 

decisions may be taken. Following the structural sequences that Govern central GOM 

during Oligocene through out Miocene was important to support the results. 
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CHAPTER 1: INTRODUCTION 
 
The Gulf of Mexico (GOM) is a simple semicircular and overfilled basin that has been 

supplied by sediments from North America. It is lying in between the North American 

plate and the Yucatan Block. Beyond the believe that the GOM is a mature province 

from where all the oil and gas in the basin have been discovered, major deep water 

discoveries has thrown that this is not a yet mature province and that subsurface 

geology studies from deep water settings has had to be the new direction on GOM 

exploration. A description of the Paleocene-Miocene section in the GOM set the 

geologic context to sequences deposited during a time period where sediments 

bypassed the shelf and slope into deep water accommodation space created mostly 

during the Cenozoic. 

 

This project intends to explore Central GOM, deep water, Mississippi canyon subdivion 

area, throughout the integration of well information, 3D depth seismic data and 

paleographic reports. The procedure followed was the interpretation of seismic lines and 

cross lines across the MC area, producing a seismic map view grid with the Top and 

Base of salt interpreted, being this structure the prevailing one in the subdivision. This 

interpretations where controlled with paleogeographic reports from wells. By identifying 

the specific age of events recognized in wells already integrated in the Depth migrated 

data, it is possible to interpret the age of the horizons interpreted.  After the 

interpretation of top and base of salt, an amplitude anomaly (AA) consistent in all 

directions in the data was identified toward one of the salt structures.  

 

This project intends to improve the understanding of Middle Miocene subsalt strata, and 

intend to identify amplitude anomalies that could be of reservoir quality. The salt 

interpretation could be used for data enhancement purposes.  

 

The way that this work will develop will go from a general review about central GOM 

structural features and stratigraphy pointing to the Deep water challenge. After this the 
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Methods used to produced the results are presented as well as the hypothesis and 

conclusions. 

 
1.1. Area Overview 

 
The GOM basin is a relatively simple, roughly circular structural basin, approximately 

1,500 Km in diameter, fills in its deeper part with 10 to 15 Km of sedimentary rocks that 

range in age from late Triassic to Holocene (Salvador, 1991). (Figure 1).  

 

Sediment supply from the North American continent has filled nearly one half of the 

basin since its inception, primarily by offlap of the northern and northwestern margins. 

The marine basin was initiated and deepened during the Mesozoic creating a broad 

abyssal plain that extended north beneath the present continental shelf to and beyond 

the local coastline. Onto this abyssal plain, depositional loading and continental margin 

offlap, beginning in the early Cenozoic and continuing through the Holocene, depressed 

the crust to its current 10-16 Km below sea level  (Galloway, et al; 2004).   

 

The GOM is an overfilled basin, consisting on offlapping, sigmoidal sedimentary 

sequences deposited by a succession of depositional episodes as shown in figure 3.  

More than two thirds of the sediments entering the Gulf has bypassed the shelf margin 

into deep water during most of the Cenozoic, because that is where the ultimate 

accommodation space was located. Deep water accommodation has been the rule not 

the exception (Galloway, et al; 2004).  

 

Superimposed on the basin are second-order structural features. One group of 

structures are salt diapirs and related structures, formed from flow of Jurassic salt that 

lies at the base of the sediment column. Different original salt thickness and different 

loading histories have created distinct salt diapirs provinces characterized by their style 

and age of diapirism. (Salvador, 1991). The structural framework of the GOM can be 

subdivided into major structural provinces.  The northwestern progradational margin, 

which is subdivided into  
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Figure1. Location of the most important geographic features in the Gulf of Mexico. Figure 
modified from Salvador et al, 1991. The Gulf of Mexico Basin: Boulder, Colorado, Geological 
Society of America, v. J, p. 1-11.  
 
 

Interior zone and coastal zone. The coastal zone, characterized by Mesozoic strata 

buried beneath a thick wedge of upper cretaceous and Cenozoic coarse clastic 

sediments, which have prograded the shelf margin hundred of kilometers seaward and 

generated growth faults systems and coastal and offshore salt diapirs provinces 

(Salvador, 1991). 

 

The combination of basin-flooring Louann salt, rapid sediment loading and offlap of 

high-relief, continental margin has resulted in mass transfer of salt up-section and 

basinward throughout the gulf’s history. (Rowan et al., 1999). 

 

Gulf of Mexico 
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The structures that result from salt mass transfer are described by Galloway et al., 2004 

and summarized in table I. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table I. Panoply of structures and related features in the GOM. 
 

Multi-tiered salt systems in the GOM present an abundant and diverse array of sub salt 

exploration opportunities to the hydrocarbon industry. The Mad Dog, Atlantis and crazy 

horse sub salt discoveries demonstrate the large hydrocarbon potential of the play and 

have given importance to sub salt drilling activity in the deep water fold belt and turtle 

inversion play fairways. Recent deep water drilling disappointments emphasize that 
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there is involved substantial technical and financial risks. The benefits of advanced 

seismic techniques not withstanding, inaccurate trap assessments remain the primary 

cause of sub salt exploration failure. Therefore, the accurate assessment of traps 

attributes remains a primary determinant of sub salt exploration success. GOM 3D 

seismic datasets, subsalt well results, and kinematic models have been integrated into a 

calibrated methodology for assessing sub salt geometry and prospectivity (Hart et al., 

2001). 

 

Decollement zones, allochthonous salt bodies and welds have created a “false bottom” 

to the Gulf basin sedimentary “suitcase”. Stratigraphy and structure bellow such 

structural discontinuities are unrelated to that above and must be imaged and 

interpreted in their own context. The complexity of the shallow and mid-depth structure 

and the great depth of the target section represent great difficulties in seismic imaging 

of the deeper structure, stratigraphy and fluids. More recent ultra deep and sub salt 

drilling has confirmed that the late Paleocene upper Wilcox, Oligocene Frio/Vicksburg, 

and Miocene sequences are sand prone in the deep slope and abyssal plain systems 

comprising the reservoir system associations that lie bellow the “False bottom” created 

by weld, canopy, and decollement zones. They are potentially high-volume reservoir 

systems, characterized by thick, aggradational gravity flow transport deposits. Those 

lower slope abyssal plain reservoirs within the Paleocene, Oligocene, and Miocene are 

the next great frontier for northern GOM exploration . (Galloway et al., 2004). 

 

Galloway mentions the apparent gap existing in the central and northern GOM where 

more exploration efforts are made in the lower slope and abyssal plain reservoirs within 

the Paleocene, Oligocene and Miocene, the challenge is the location of preferred 

sequences and places where high hydrocarbon indicators can be located (Galloway et 

al., 2004).  

 

Salt is one of the most effective agents in nature for trapping oil and gas. Salt flows 

when overlying sediment’s density exceeds that of salt. And differential stresses allow 

salt moves, another driver for salt to flow is related to differential sediment loading over 
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salt or to gravitational forces due to surface slope (Nelson et al., 1991). As a ductile 

material, salt can move and deform surrounding sediments, creating traps. Salt is also 

impermeable to hydrocarbons and acts as a seal.  

 

Within the complex salt systems of the northern GOM, subsalt strata geometries are 

highly variable. Narrow, three ribbon truncation closures and steep strata dips pose 

generic exploration risks, while trap prospectivity may greatly improved where subsalt 

strata have been counter rotated, inverted, and or downwardly flexed. Structural 

elements that enhance or destroy subsalt trap viability evolve with the deformation of 

ubiquitous, deeper allochthonous and autochthonous salt (Hart et al., 2001). 

 

1.1.1 Location 
 

The Mississippi canyon area is located 257.5 km south-east from New Orleans at depth 

water of approximately 2000 Ft. (Figure 2). The study area includes 15 Mississippi 

canyon blocks (Figure 3). The main sands developed in the area depend on the salt 

movement, and an understanding of the salt top and bottom resulting very helpful in 

determining the real thickness of sediments. Also it is necessary to understand the 

deposition history and sequences during the Miocene in the Mississippi canyon 

subdivision to be integrated with the structure interpretation in the area and come up 

with stratigraphy inferences of the horizons mapped. 
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  Figure 2. Location of the study area.  
 

To achieve the best geologic interpretation in deep water exploration it is important to 

count on 3D and 2D seismic data as well as well logs and paleogeographic reports. 

 

Advances in seismic-reflection imaging have arguably been the most important element 

in allowing companies to explore deepwater, because seismic imaging often reduces 

geological risk to acceptable levels (Rudolph, 2001). Prestack depth migration (PSDM) 

has become critical for imaging deepwater traps, particularly along steeply dipping salt 

flanks and underneath salt. (Weimer et al., 2004).  
 

 

Mississippi Canyon

New Orleans 

40 60mi 20 0 

40 80Km 20 0 60 
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Figure 3. Blocks studied in the Mississippi Canyon area. 

 

Part of the new frontier that is being reached in the GOM includes the interpretation of 

deep basins and subsalt horizons. Deepwater discoveries and deep wells require three 

main and general aspects: 

 

• Development of appropriate facilities where deep drilling can be achieved 

followed by the best completion technology. 

 

• Development and management of reservoir dimensions and properties. 

 

• Development of the geologic model that best fits the reservoir dynamics and for 

sure that guarantee an accurate approach to subsurface earth geometry. 

 

40 60mi200

40 80Km200 60

Mississippi

28o N

New 
Orleans

1000 m 

2000 
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This last statement requires of the integration of acquisition design technology and data 

processing in order to provide the interpreter of the data with the real subsurface 

signatures. This is why Oil companies spend lots of resources to generate subsurface 

maps, keeping those confidential.  

 

This thesis provides the salt interpretation of 15 blocks of MC subdivision, the 

generation of subsalt deep horizon in the lower middle Miocene with amplitude 

extraction map and the interpretation of a shallower horizon pertaining to the Upper 

middle Miocene. 

1.2 Thesis Objective 
 

The objective of this thesis is to interpret the salt in the area and its effect on 

subsalt horizons and in one of the main sands. This will lead to a better understanding 

of hydrocarbon traps by integrating geological and geophysical data within the area. 

The results are presented in the salt top and bottom interpretation grid, Lower to Middle 

Miocene subsalt unexplored horizon structure map accompanied by the amplitude 

extraction map. 

1.3 Thesis Significance 
 

The significance benefits of this study are to enrich our understanding of the 

geological history of deep water Mississippi canyon study area (Medusa field) providing 

an interpretation of the Lower to Miocene subsalt horizon and of Middle to Miocene 

horizon accompanied by a complete interpretation of top and salt bottom. The result of 

this study can provide clues to potential prospect and leads in the area. The provided 

data can also be used for seismic attribute analysis and quality enhancement. 

1.4. Previous Work 
 
I needed to understand the tools used to interpret subsalt images in seismic data, where 

velocity error increases and imaging problem becomes a problem. In this direction it 

was found a study In December 2001, William Hart published a paper on GCSSEPM 

Foundation 21st Annual Research conference of the Deep water Basins entitled “ 
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Subsalt Trap archetype Classification: A diagnostic Tool for predicting and prioritization 

GOM Subsalt traps”. Hart and Colleagues exposed a calibrated methodology for 

assessing subsalt trap geometry and prospectivity, very useful in the complex salt 

structures governing the Northern GOM, including the North of Mississippi Canyon.  

This paper explains that a way to reveal the predictable influence of common salt styles 

on specific trap attributes is by grouping subsalt traps into archetype families. These 

archetype families can be ranked for exploration value according to their inherent trap 

risks, forming a basis for evaluating the prospectivity of even poorly imaged subsalt 

objectives, which is a challenge for deep water horizons exploration. To achieved the 

trap risk values. Hart and Colleagues defined three kinematically root types. These 

three root types are a tool to predict subsalt strata geometry that allow the interpreter to 

predict trap attributes that has been obscured by the overlying salt. This prediction is 

based in empirical observations and the integration of 3D seismic datasets, subsalt well 

results and kinematic models. The used of vertical linkage as a concept is utilized by 

Hart and describes the relationship between deep salt movement and the magnitude 

and mode of subsalt trap deformation.  

Hart and colleagues through this paper offer a method very useful to address a long-

standing need to characterize subsalt traps obscured by overlying salt, sometimes this 

imaging problem occurs in well processed 3D data. This paper is designed for 

exploration application by inferring subsalt attributes that can improve or diminish the 

prospectivity. 

 

E.A. Diegel and colleagues published on 2001 a paper entitled “Cenozoic Structural 

evolution and tectono-stratigraphy framework of the northern Gulf Coast Continental 

Margin”. They numerated the factors that affected the wide variety of structural styles in 

the northern GOM as well as explained the tectono-stratigraphic provinces that describe 

regions of contrasting structural styles and ages. They worked on the need of 

understanding Cenozoic tectonics in the northern GOM.  They changed the view of the 

northern GOM continental margin from a passive margin with vertical rooted salt stocks 

and massifs with intervening steep growth faults, to a complex mosaic of diachronous 

detachment fault systems and variously deformed allochthonous salt sheets. 
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In June 2001 AAPG published a paper by Marc Rowan and colleagues called 

“Emplacement and evolution of Mahogany salt body, central Louisiana outer shelf, 

northern Gulf of Mexico”. As one of the objectives of this study is to interpret the 

Northern Mississippi Canyon salt body, it has been useful to study the Mahogany salt 

body as a case study of the northem GOM outer shelf. This is an excellent case study 

where 2D and 3D seismic data, well and stratigraphy constrain were used to create the 

history of emplacement and subsequent modification of the Mahogany salt body. The 

results suggested the value and limitations of published simple models for allochthon 

salt and the reconstruction of the salt body yields to as William Harts and colleagues will 

call in their paper, the vertical linkage in between the salt deformation style and the 

sedimentation. The results of this study specifically suggest that the Mahogany salt 

body did not influence the trap style of the subsalt field or hydrocarbon migration into 

the pay sands, but it did affect sediment transport pathways and, or a lesser degree, 

reservoir facies distribution.  

 

Thomas Nelson in 1991 published a paper in the Geological society of America called 

“Salt tectonics and listric normal faulting”. He describes the mechanism by which salt 

structures and listric normal faults form. This has been important to understand the 

characteristics of the northern Mississippi canyon salt body. He concludes that the GOM 

basin region contains structural features that, for the most part, have been created by 

gravity acting on an unstable substrate in a nonorogenic environment. The salt tectonic 

and listric normal faults are interacting with each other, and this interaction creates a 

wide variety of features. 

Thomas Nelson in his paper exposes that in the GOM the salt needed to produce 

structures of the scale observed is deposited in sill basins where a physical barrier (The 

sill) between the basin and the open oceans restricts water circulation, and arid climatic 

conditions created a high rate of surface evaporation. Such basins are product of 

continental break up.  Salt deposition in the GOM occurred in the late Triassic and 

Jurassic, resulted in salt deposition over a wide geographic area. Here is where salt 

provinces are distinguished in the interior basin and in the coastal and offshore basins. 
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The interior basin includes a small isolated bid of salt in onshore south Texas, plus the 

extensive salt basins of northeast Texas, North Louisiana, southernmost Arkansas, 

Mississippi, Alabama, the Florida Panhandle and the northeast GOM. The coastal and 

offshore basins lie to the south of the early cretaceous shelf margin and include areas of 

onshore Louisiana and southeast Texas, and almost all of the Louisiana and Texas 

shelf and slope. He explains mechanisms that cause the salt deformation as well as the 

different salt stages which I summarize in Table II. 

 
Table II. Models that drive salt flow and Salt stages summarized from Thomas Nelson paper. 
 
Nelson, also mention the salt sheets. An experiment that simulates salt with overlaying 

sediments that represent nature was established to understand salt mobilization through 

sediments. Under a strong gravitational force imposed on the model by the centrifuge, 

the salt, driven by the load of the more dense overburden, rises diapirically toward the 

surface. Because the materials are viscous, that portion of the diapir which penetrates 

the shallow, low density layer is laterally unconstrained, as a result salt in this part of the 

diapir flows outward, intruding the encasing section. The intrusion occurs when the 

outward stress acting on the salt is greatest. 

 

Ricardo I. et al, published a paper on AAPG on march 2006. The paper title is “ 

Depositional and structural evolution of the middle Miocene depositional episode, east-

central GOM”. As in my study I am pursuing interpretation of horizons that belong to the 

upper and middle Miocene this study helped me to understand the different depositional 

episodes and genetic cycles that occurred during the middle Miocene. Also they relate 

Driving Models of Salt flow 

1. Salt flow driven by gravity acting on a upper
sediment surface. 

2. Salt flow driven by differential loading related to
surface deposition. Salt flow in the less loading weigh
direction. 
 
3. Salt flow driven by differential loading when
sediments on top of salt are horizontally stratified.
Flow direction of the salt is dependant on the density
of stratified sediments column.  

Salt Stages

• Active piercement: Refers to a diapir in
its early stage. Its characteristics
include: 

• Thick prediapiric sediments overlying the
salt. 

• A major normal fault bounding one side
of the rising salt body. 

• The asymmetric nature of the overall
structure. 

• Passive state of piercement: 
• Top of the salt will remain at or above

the level of the surrounding sea floor. 
• Symmetry shape. 
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the paleo with eustatic sea level changes which I could directly relate to my area and 

have a regional understanding of Mississippi canyon paleogeografy. 
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CHAPTER 2: METHODOLOGY 

 

2.1 Study of the Area 
 
Interpreters of seismic data need to understand the area they are going to analyze. 

When the interpretation is in deep water, the interpreter must use all the data available, 

but in this environment, data quality can be poor to come up with some qualitative 

interpretations of the structure and stratigraphy of the area. Papers that helped in 

understanding the salt evolution in the area and its relationship with subsalt strata 

where image problems are imperative were used. William Hart et al., 2001 and Thomas 

Nelson et al., 1991 , helped enormously to understand some of the mechanism that 

support salt mobilization and the concept of vertical linkage to predict the subsalt strata 

settings in order to prioritize subsalt trap prediction risks. Also an understanding of the 

salt features in the northern GOM and its history in terms of deep water exploration was 

needed  in order to improve the interpretations of the area.  

 

The Methodology  followed will include: 

 

• Data Preparation. 

• Salt interpretation in the seismic volume. 

• Subsalt horizon interpretation at a regional scale. 

• Amplitude extrapolation for the subsalt horizon. 

• Structure map and Cross section of a shallower Late Middle Miocene horizon. 

2.2. Geological Interpretation 
 
2.2.1 Data Collection and Preparation 
 
Murphy Oil and exploration provided me with fifteen blocks of prestack migrated depth 

data pertaining to Mississippi canyon area. This area contains Medusa field as well as 

Zia Field and South Medusa. Medusa area is uplifted by salt and contains wells that 

contain production data, perforations, sands, reservoir, etc. This is a deep water 
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discovery that has been developed in an uplift created by  salt mobility.  See figure 4 for 

Location of Medusa field. 

       Figure 4. Location of Medusa Field. Courtesy of Murphy Oil and Exploration. 
 

It can be observed in table III the visualization scheme used in this project. Also in table 

IV, is summarized the recommended procedure followed to persue the 3D seismic 

interpretation. 
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Table III. Visualization plan to be implemented on the data volume. 
 

 
Recommended Procedure 

1. Preview the data on composite displays and movies. 
2. Horizon identification at wells. Assessment of data phase and polarity. 
3. Fault framework by tying together with horizontal sections. 
4. Revision of horizons and faults, and rerun of auto tracking. 
5. Final depth structure maps and horizons slices with chosen amounts of 

griddling or smoothing. 
6. Detailed reservoir studies. 

 
Table IV recommended procedure for 3D data interpretation1. 

 
 
Two data sheet tables were also generated which allowed to have well control in the 

area. See Table V and VI. 

 

The hard copy of the well logs that I required for the area that covered my fifteen blocks 

was facilitated by Murphy oil exploration team. In this way I could work in the regional 

scale part of my project.  

 

                                                 
1 Table adapted from Allistais Brown. 3D Seismic Interpretation. 5th Edition. AAPG, Memoir 42.  
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Mariela Mejias
Medusa Middle - Late Miocene

# Block Well API
Paleo/T and 

 sands Chron
Depth

 MD (ft) 
580 EEX 580 1 608174080900 Cat Mex Paleo Middle upper Mio. 16,600
580 EEX 580 1 608174080900 Disc Prepenta Middle upper Mio. 17,530
580 EEX 580 1 608174080900 Disc Bollii Middle upper Mio. 18,640
580 EEX 580 1 608174080900 bol thalm Middle upper Mio. 17,650
580 EEX 580 1 608174080900 Disc. Ham Middle upper Mio. 19,390
667 RME 667 4 608074062600 Rob. E. Middle Upper Mio. 12,370
667 RME 667 4 608074062600 Disc loeb Middle Upper Mio. 13,000
667 RME 667 4 608074062600 Miny con Middle Upper Mio. 13450
667 RME 667 4 608074062600 Bol. Thalm Middle Upper Mio. 13,660
667 RME 667 4 608074062600 Disc Prepenta Middle Upper Mio. 13,750
667 RME 667 4 608074062600 Disc Bollii Middle Upper Mio. 14,320
627 CHE 627 1 608174045500 Rob. E. Middle upper Mio. 12,461
627 CHE 627 1 608174045500 cris K Middle upper Mio. 16,111
627 CHE 627 1 608174045500 Disc 12 Middle upper Mio. 16,260
582 MUR 582 1 608174085200 Glob. Dehis Middle upper Mio. 16,110
582 MUR 582 1 608174085200 Disc loeb Middle upper Mio. 16,230
582 MUR 582 1 608174085200 Cat Mex Paleo Middle upper Mio. 16,350
582 MUR 582 1 608174085200 Disc Prepenta Middle upper Mio. 16,500
582 MUR 582 1 608174085200 Disc Prepenta Middle upper Mio. 16,500
496 1ST2 Shell 608174081700 Disc Prepenta Middle upper Mio. 14,200
496 1ST2 Shell 608174081700 Glob leng Middle Upper Mio. 17260-17290
496 1ST2 Shell 608174081700 Glob desh Middle Upper Mio. 21730-21760
493 MUR 493 1 608174101700 Glob desh Middle Upper Mio. 13,440

PALEO CONTROL 

 
Table V. Paleo control of Medusa field and surrounded area. 
 

2.3 Geophysical and Geological Integration 
 
Tying wells to seismic data and tracking main sands may help us to find seismic 

reflections that corresponds to geological formations. The two Methods used are: 

 

• Using Check shot data which are time-Depth pairs. 

• Using Synthetic seismograms. 

 

In this case I used wells downloaded already in the depth data, in this way I didn’t have 

to do the time-depth conversions. In the other hand on the well logs the paleontological 

data for the main sands, as well as water depths to assure that the picks were on right 

position. To do this it was used enter pick function on seisworks and well data 

management.  
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Table VI. Well control in Medusa Field. 

 
 

2.3.1 Salt Interpretation and Map Generation 
 
Starting with the salt picking was important, for considering it the main structure that 

governs the area. Following the procedure contained in table IV. The salt top and 

bottom of the salt body in the fifteen blocks pertaining to Mississippi Canyon were 

interpreted (see figure 4). In 3D seismic data the interpreter has the opportunity of 

generating accurate subsurface structure maps. This can be achieved only by 

managing also data available. If a better understanding of the salt structure in the area 

will help in analyzing possible quality traps is wondered. This part of this study has been 

important to develop the ability of understanding seismic signatures for salt recognition 

and its effect on sub salt and underlying strata. Also if it is planed to go from a regional 

scale to a local scale for sands recognition in an area of Mississippi Canyon 

6/14/2005 Mariela Mejias
Medusa Project
Mississippi Canyon
Depths ft

# Well Name Block
Count 
Well API Lease TVD MD TD Date Satus Sand

Top 
tvd

Base 
tvd

Gross 
Sand
 TVD

Net 
Pay (FT)

Fluid  
Type

Count
Oil

Count
O/W

Count
w

1 MC0582 582 1 608174094400 G16623 10,118 13,200 11/4/2001 COM
2 MC0582#2BP1 582 1 608174094101 G16623 13,704 15,789 9/9/2001 COM
3 MC0582#2 (A5) 582 1 608174094100 G16623 13,411 15,410 9/1/2001 ST
4 MC0582#1 (A21) 582 1 608174085200 G16623 15,950 16,950 10/17/1999 ST T0B 8827 8936 109 0 W 1

MC0582#1 (A21) 582 608174085200 G16623 15,950 16,950 10/17/1999 ST T0C 9200 9254 54 0 W 1
MC0582#1 (A21) 582 608174085200 G16623 15,950 16,950 10/17/1999 ST T0D 9348 9394 46 0 W 1
MC0582#1 (A21) 582 608174085200 G16623 15,950 16,950 10/17/1999 ST T1A 9715 9737 22 13 O 1
MC0582#1 (A21) 582 608174085200 G16623 15,950 16,950 10/17/1999 ST T1B 9853 9895 42 38 O 1
MC0582#1 (A21) 582 608174085200 G16623 15,950 16,950 10/17/1999 ST T4A 13125 13145 20 6 O/W 1
MC0582#1 (A21) 582 608174085200 G16623 15,950 16,950 10/17/1999 ST T4B 13293 13355 62 57 O 1
MC0582#1 (A21) 582 608174085200 G16623 15,950 16,950 10/17/1999 ST T4C 13816 13865 49 0 W 1

5 MC0582#5 (A6) 582 1 608174097800 G16623 13,547 14,000 3/15/2002 COM
6 MC0582#1ST2 (A2) 582 1 608174085204 G16623 10,929 12,750 1/2/2000 ST T1A 10519 10555 36 8 O 1

MC0582#1ST2 (A2) 582 608174085204 G16623 10,929 12,750 1/2/2000 ST T1B 10714 10761 47 28 O 1
MC0582#1ST2 (A2) 582 608174085204 G16623 10,929 12,750 1/2/2000 ST T1B 10788 10847 59 31 O 1

7 MC0582#1ST1 (A2) 582 1 608174085203 G16623 11,050 12,982 12/24/1999 ST T0A 9051 9159 108 0 W 1
MC0582#1ST1 (A2) 582 608174085203 G16623 11,050 12,982 12/24/1999 ST T0B 9258 9504 246 0 W 1
MC0582#1ST1 (A2) 582 608174085203 G16623 11,050 12,982 12/24/1999 ST T0C 9572 9716 144 0 W 1
MC0582#1ST1 (A2) 582 608174085203 G16623 11,050 12,982 12/24/1999 ST T0D 9763 9942 179 0 W 1
MC0582#1ST1 (A2) 582 608174085203 G16623 11,050 12,982 12/24/1999 ST T1A 10542 10550 8 5 O 1
MC0582#1ST1 (A2) 582 608174085203 G16623 11,050 12,982 12/24/1999 ST T1B 10825 10898 73 35 O/W 1

8 MC538#1 538 1 608174085201 G16614 8,394 8,980 10/28/1999 ST
9 MC538#1BP1 538 1 608174085202 G16614 10,446 12,115 11/14/1999 ST T0A 8833 8965 132 0 W 1

MC538#1BP1 538 608174085202 G16615 10,446 12,115 11/14/1999 ST T0B 9087 9217 130 0 W 1
MC538#1BP1 538 608174085202 G16616 10,446 12,115 11/14/1999 ST T0C 9323 9418 95 0 W 1
MC538#1BP1 538 608174085202 G16616 10,446 12,115 11/14/1999 ST T0D 9442 9553 111 0 W 1
MC538#1BP1 538 608174085202 G16616 10,446 12,115 11/14/1999 ST T1A 9975 10010 35 13 O 1

10 MC538#1ST4 538 1 608174085205 G16614 12,301 15,562 7/2/2001 COM
11 MC538#3 A4 538 1 608174094300 G16614 10,546 17,580 1/11/2002 COM
12 MC538#2BP4 538 1 608174087404 G16614 12,400 14,100 4/23/2000 COM T4A 11207 11229 22 7 O/W 1

MC538#2BP4 538 608174087404 G16614 12,400 14,100 4/23/2000 COM T4B 11642 11784 142 141 O 1
13 MC538#2BP2 538 1 608174087402 G16614 9,800 10,971 3/29/2000 ST T1A 9321 9354 33 6 O/W 1

MC538#2BP3 538 608174087402 G16615 9,800 10,971 3/29/2000 ST T1B 9436 9507 71 61 O 1
14 MC538#2BP3 538 1 608174087403 G16614 9,511 10,587 4/8/2000 ST
15 MC538#2BP1 538 1 608174087404 G16614 9,300 10,293 2/24/2000 ST T0A 8557 8671 114 24 O/W 1

MC538#2BP1 538 608174087404 G16614 9,300 10,293 2/24/2000 ST T0B 8728 8741 13 11 O/W 1
MC538#2BP1 538 608174087404 G16614 9,300 10,293 2/24/2000 ST T0C 8837 8893 56 0 W 1
MC538#2BP1 538 608174087404 G16614 9,300 10,293 2/24/2000 ST T0D 8937 8999 62 0 W 1

16 MC538#2 538 1 608174087400 G16614 6,851 7,229 1/28/2000 ST
T 16 10 6 14
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surrounding the main Medusa Field, where data is scarce, a few but important aspects 

have to be understood. 

Interpretation of seismic reflections terminations against salt is a very important matter 

because many hydrocarbon traps are found in this structural position (Allistair Brown, 

1999). 

 

2.3.2 Deep Horizon Picking 
 
The data pertaining to sub salt horizons was scarce in the area. There was a well in 

south Medusa that reached Middle Lower Miocene and a subsalt well that went into the 

Middle Miocene Top, RME 667 and CHE 627 respectively (See Figure 4 and 5). The 

only purpose was to generate an Isochron to predict the age of a sub-salt horizon 

identified (See figure 4 and 5).  

 

2.3.3. Event Tracking 
 

The recognition of an amplitude anomaly (AA), consistent in different directions in the 

seismic view, represented a subsalt horizon that I tracked using the procedure in table 

IV. In the stratigraphy chart on figure 5 on the red spot we can see the location. On 

figure 4 is the map view. 

 
2.3.3.1. The Amplitude Extraction of AA Event. 
 
After tracking the subsalt event. Zap function was applied on openwork window. Also 

Amp function was activated to extract the maximum amplitude from the seismic map.  

Everything under seisworks, landmark product. 
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Figure 5. Stratigraphy Column of Wells MC581, MC627 and MC667. Estimating Sub-salt event age. 
Courtesy of Murphy Oil and Exploration.  
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CHAPTER 3: RESULTS AND ANALYSIS 
 
This study includes data analyzed at both: a regional to a local scale. The reason I 

decided to start with the interpretation of the salt body was because I do believe that the 

interpretations have to be done in the following order: 

1. Salt. 

2. Faults and horizons. 

In addition, the salt in northern GOM represents a false bottom because of the 

difficulties in producing good images bellow it. (Galloway et al., 2004). 

 

Results are presented and discussed in as follow: 

 

3.1. Salt interpretation 
 

Using the 3-D seismic data in depth. It was possible to track the top and bottom of 

the salt structure comprising the study area, see figure 8 and 9. 

 

 

 

 

 

 

 

 

 
Figure 6.  Aerial Depth slice. View of salt in the study area. 

 

The first map produced was the top of salt by picking the first strong positive 

reflection (pick). To achieve this I formulated the next logic way of interpreting salt 

was formulated, this logic way is under ideal conditions. Which are: Perfectly 

processed data, with perfect migration and perfect velocity model that fit the 3  

Dimensional earth. 
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Figure 7. Draw of proposed Logic way to interpret a salt model for exploration effects. 
 

3.1.1. Top and Base of Salt 
 

In this section the map seismic view from the top and base of salt are presented. 

 

 

Figure 16. Top of Salt. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Figure 8. Top of salt 
 

A

•Establish a point called “A” in the center 
of the apparent salt structure in a place 
that keep the geometry as asymmetric as 
possible. 

•Go from A following axial directions in 
all directions until encountering the 
stronger reflection. 

•In this case the stronger reflection is 
the yellow line. Then I decide if it is going 
to be a trough or a pick or base or top of 
salt. 

N
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Figure 9. Base of salt. 

 

The salt body in the study area is located in the north east of Mississippi Canyon 

block in deep water GOM. I will discuss a few aspects from the observations of 

this structure. The data used is a data processed by TGS and provided by 

Murphy oil and Exploration for study purposes. There are three basic 

observations about the data. 

 

9 Geometry. 

 

9 The error related with sediment thickness. 

  

9 The effect of salt thickness change on the resolution of the subsalt image. 

Is  

 

The Salt structure is a concave toward the north or basinward in plan view. The 

salt body is apparently being emplaced  with a North West - South East direction 

(Figure 6). This direction in salt mobilization is activated by differential loading 

N
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mechanism where the density of sediments overlying the salt is higher than salt 

density, causing this to move to areas of less density. See figure 10. 

 

Also it is observed on figure 10 in salt geometry that as it is truth that differential 

loading is activated in an early diapirism stage on the pivot point showed in figure 

17, the salt body is not displacing as a sheet extending laterally in the North West 

- South east direction. It is observed that it is thickening toward the mobilization 

trend maybe encountering a salt body in the east side that caused the overhang 

and the detachment surface observed in the south western flank of the structure 

as shown in figure 10.  

 

The maximum and minimum thickness in the salt structure is calculated in Figure 

11 

 

The error related with sediment thickness was calculated in two different points 

where wells penetrated the structure. See Figure 12. 
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As can be observed there is a relationship in between the change in the salt 

thickness with the possible salt welds. As pointed in figure 12. 

Pivot Point

a) 

b) 

Figure 10. Differential Loading Mechanism a) Map view of the arbitrary line showing the
pivot point where differential loading mechanism is causing the salt displacement in
north west – south east direction, b) Also we notice the stage of early and active
diapirism that forms a normal fault in the right flank. As we can appreciate in the right
side of the body we notice an indication of an overlying salt that moving the arbitrary line
keeping the pivot point 30 degrees in a counter wise clock direction, the formation of an
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 Figure 11. Maximum and minimum salt thickness. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

           Figure 12. Error related with sediments thickness. 
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Figure 13. Observation of salt overhang and salt weld. We observed that where the salt overhang 
is happening it seems to appear as if bellow the structure there is a salt weld. If we observe how 
the layers deeps (on yellow) it is exactly the result of a fluid rising upward from a deepest source. 
It occurs where the overhang happens. 
 

The salt structure seems to be moving through out the middle to upper Miocene. 

Proceeding from the Oligocene. This is deduced from the subsalt and underlying salt 

paleos. 

 
3.2.Subsalt Horizon Interpretation and Discussion. 
 

Looking for subsalt closures. That could represent a subsalt trap of hydrocarbons; an 

amplitude anomaly consistent in different directions of the seismic data towards a salt 

body was noticed.  It could later be recognize two possibilities that this amplitude 



28 

anomaly (AA) could be or of reservoir quality (Figure 15) or the salt bottom reflected 

(Figure 16). 

 

3.3. Hypothesis 
 

Previous analysis pointed, it could be observed in the data a subsalt amplitude anomaly 

consistent in various directions and that seems to consist of a subsalt closure (see 

figure 14).  

 

As during the Middle to Miocene is when the primary mechanism to activate the salt is 

the differential loading2, it was during the Upper Miocene when the structures are 

compressed and shortened triggering rejuvenation of diapirs and turtle structures. In the 

entire structure it happens that there is an early stage of diapirism. This can be noticed 

in general by the asymmetric shape of the structure and a thick section of prediapiric 

sediments on top of the salt. On this base I suggest to study the possibility showed on 

figure 14. 

 

During Oligocene-Early Miocene, there was a sediment starvation period, the structures 

were symmetric because of the lack of triggered mechanisms, in this way what seems 

to be a dome structure resulted in the Oligocene. During Middle Miocene, deep water 

deposition created differential loading triggering the salt rising. During Late Miocene, 

there is the activation of gravity spreading and piercing, causing the entrapment of early 

Miocene sediments against the inclined sigmoid like salt body showed on figure 14. If 

this is truth an evaluation of any amplitude anomaly sustained across an structural 

prospective area should bring clue to future subsalt prospecting analysis. 

 

 
 
 

                                                 
2 See Appendix I. Schematic Profiles showing the structutural Evolution of the Mississippi Canyon (MC) Minibasin 
and MC fold belt. Adapted from Ricardo Combellas et al paper. 
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Figure 14. Hypothesis. 

 

I want to point something prior to the analysis of these two possibilities. 

 

1. As seen in the well chevron 627 # 1. The salt base corresponds with top Middle 

Miocene (Tex. X). Therefore the salt is moving through upper lower - middle Miocene. 

(See figures 5) 

2. The subsalt event mapped is in between the lower middle Miocene (Amp B) and 

Middle upper Miocene (chris K). (See figure 5). 

 

Examining figure 11. Salt is displacing in NW direction. As we said before, there is a 

clear area where differential loading is the mechanism that activates salt movement in 

that direction. If the displacement of salt activated by this mechanism is in its latest 

stage, or in other words if all the salt has already been displaced. What is remaining is a 

thin layer as a thin tail of a sigmoid structure. Another important point is that after 

mapping a horizon represented by Amp B, I can see that my AA subsalt event is a few 

N 
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Lateral  
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Subsalt event 
Lower Middle Miocene. Amp B. 
Oligocene 

Salt body 
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feet above this Amp B horizon, leading me to the possibility of being in the lower 

Miocene. If the salt is moving through the Middle Miocene to upper Miocene, then is 

possible that this AA subsalt event is not salt, which support theory number 1 on figure 

15. 

 

In the next figures 17 and 18 the maps obtained from the seismic are presented. 

 

 
Figure 15. Theory #1.  

 

 
Figure 16. theory #2. 
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Figure 17. Amplitude extraction of the subsalt horizon following theory #1.  
 

 
 
Figure 18. Extraction Amplitude Map of the Subsalt horizon. The encircled area is the location of 
the amplitude anomaly mapped. 
 

N

NE SW 

AMP B Horizon

AA horizon 
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CHAPTER 4: CONCLUSIONS 

 
1. The allochtonous salt structure is displacing NW – SE direction through Middle to 

Late Miocene. During Middle Miocene the salt mobility was activated by 

Differential loading and during Late Miocene an active diapirism dominated the 

structures. 

 

2. It is important to recognize the nature of any salt weld interpretation. Determine 

the effects of salt thickness and geometry on sub-salt reflections is critical. 

 

3. The velocity utilized to process these data has to be corrected. There is 10% 

estimated error in overlying sediment thickness. 

 

4. The sub-salt map presented could represent theory #1, noted in the results. This 

could lead to a feasibility evaluation for further decisions. 

 

5. The salt structure below which there is the sub salt horizon is not connected to 

the main structure (Black dashed line on figure 17). 
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Appendix I: Schematic profiles showing the structural evolution of the MC Minibasin and Eastern MC Fan 
Fold Belt3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
5. Adapted from: Combellas Bigott Ricardo I., Galloway William E., 2006, Depositional and Structural evolution of the Middle 

Miocene Depositional Episode, East-Central Gulf of Mexico. AAPG Bulletin, v. 90, No. 3, p. 335-362. 

 

Mississippi Canyon Minibasin Province Mississippi Fan Fold Belt

Stage 1.

Late Jurassic – Early 
Cretaceous.

1. Early deformation of the Louann Salt during Late Jurassic- Early 
Cretaceous. 

Salt Massifs Short Wave length Symmetrical folds

2. Stabilization of relict salt massif associated with a widespread condensed 
section during Paleogene. 

Stage 2.

Middle Cretaceous –
Oligocene. Sediment 
starvation. 

Schematic Profiles showing the structural evolution of the Mississippi Canyon 
Minibasin and Eastern Mississippi Canyon Fold Belt Provinces. Redraw from 
original on Ricardo Combellas et al paper1

Salt

Basin

Upper Jurassic –
Early Cretaceous

1. Combellas Bigott Ricardo I., Galloway William E., 2006, Depositional and Structural evolution of the Middle Miocene Depositional Episode, East-Central Gulf of 
Mexico. AAPG Bulletin, v. 90, No. 3, p. 335-362.

3. Early Neogene Primary Minibasin formation driven by massive sediment 
deposition. 

Primary Minibasins Undeformed Submarine Fan System.

Stage 3.

Early Miocene –Middle 
Miocene. Differential 
Sediment Loading.

Symmetrical and Asymmetrical folds and 
thrusts.Rejuvenated Diapirs, Turtle structure

4. Compression Triggered rejuvenation of diapirs, turtle structure and the 
Mississippi fan fold belt during late Miocene.

Stage 4.

Late Miocene 

Compression and 
Shortening.

Salt

Basin

Upper Jurassic –
Early Cretaceous

Condensed section

Lower 
Miocene Middle 

Miocene

Late 
Miocene

Schematic Profiles showing the structural evolution of the Mississippi 
Canyon Minibasin and Eastern Mississippi Canyon Fold Belt Provinces. 
Redraw from original on Ricardo Combellas et al paper1

1. Combellas Bigott Ricardo I., Galloway William E., 2006, Depositional and Structural evolution of the Middle Miocene Depositional Episode, East-Central Gulf of 
Mexico. AAPG Bulletin, v. 90, No. 3, p. 335-362.
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Appendix II. Sediment deposition Analysis for Middle Miocene. 

 
The Discoaster B is a top upper Miocene paleo reflected in several wells that are 

producing from T4B sand. What I realized later Is that I have to look for the same 

depositional environment that contains sands as productive or better than T4B sands, 

finally I got to the conclusion of what is exploring and that what I am looking for is the 

same depositional environments where the structures facilitates me the localization of 

traps: seal, fluid and possibility of getting there. 

 

During the Middle Miocene a pronounced eastward migration of the ancestral 

Mississippi river depocenter occurred. Sediments are deposited east of the actual 

Mississippi delta. (Jesse L. Hunt et al). 

 

Amphistegina shale (Amp B), the ancestral Mississippi river prograded the 

paleoshoreline. Here a first evidence of Tennessee drainage system into the GOM is 

noticed. (Jesse L. Hunt et al). 

 

During the appearance of Cibides Optima, there is a cycle of great retreat and erosion 

of deltas, the Mississippi and Tennessee delta. The thickest deposition were in the 

eastern Mississippi canyon minibasin province. (Jesse L. Hunt et al). 

 

During Cristelaria I, Regional flooding event. The shore line retreated 16 Km with 

respect to genetic cycle 2. Here a prominent ancestral Tennessee delta fluvial, delta, 

delta fed apron system tract developed nourishing the growing radial Mississippi canyon 

Atwater valley fan system. (Jesse L. Hunt et al). 

 

Tex W, Extend from western to the east of the present Mississippi river delta. The 

earliest productive Progradational facies are contained are in offshore eastern 

Louisiana. The only aggradational facies with pay in the central GOM occur off the coast 

of Mississippi and Alabama. These facies were deposited by the ancestral Mobile River 

system.  No transgressive facies were observed in this chronozone. (Jesse L. Hunt et 

al). 
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During upper Miocene the ancestral Mississippi river depocenter began migrating to the 

west. Deposition extends basinward across the Louisiana OCS, especially during late 

upper Miocene. Submarine fan facies with associated hydrocarbons extend across 

Mississippi Canyon area and are observed in Green Canyon and Garden Banks areas. 

(Jesse L. Hunt et al). 
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