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Glossary of Abbreviations

FPGA — Field Programmable Gate Arrays
PLD — Programmable Logic Device

ASIC — Application Specific Integrated Circuit
FSM — Finite State Machine

DSP — Digital Signal Processor

VHDL — Very High speed integrated Description Language
ISE — Integrated Software Environment

DSF — Directional Smoothing Filter

LB — Logic Block

LUT — Look up Table
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Abstract

Smoothing filters have been extensively used for noise removal and image restoration.
Directional filters are widely used in computer vision and image processing tasks such as motion
analysis, edge detection, line parameter estimation and texture analysis. It is practically
impossible to tune the filters to all possible positions and orientations in real time due to huge
computation requirement. The efficient way is to design a few basis filters, and express the
output of a directional filter as a weighted sum of the basis filter outputs. Directional filters
having these properties are called “Steerable Filters”. This thesis work emphasis is on the
implementation of proposed computationally efficient separable and steerable Gaussian
smoothers on a Xilinx Virtexll Pro FPGA platform. FPGAs are Field Programmable Gate Arrays
which consist of a collection of logic blocks including lookup tables, flip flops and some amount
of Random Access Memory. All blocks are wired together using an array of interconnects. The
proposed technique [2] is implemented on a FPGA hardware taking the advantage of parallelism

and pipelining.

Keywords

Field Programmable Gate Arrays (FPGAs), Parallel Image Processing, Directional Smoothing

Filters, Steerable Filters, Gaussian Mask, Separable Convolution.



CHAPTER 1

Introduction

1.1 Introduction

Current developments of computer systems tend to reduce the size of the hardware. This is a
conclusion drawn from Moore’s law [1]. The hardware specifications and capabilities of a small
laptop ten years ago are comparable to today’s mobile devices, such as the IPhone 3GS. As a
result, embedded computer systems are also becoming increasingly pervasive. For instance,
today’s cars include embedded systems to monitor a wide range of multi-media features such as
audio, video, voice control, and navigation [22]. Another area where embedded systems play an
important role is digital image processing with applications such as automated surveillance
systems [23], traffic light controller systems [24]. In earlier times, those systems were mostly
built with Application Specific Integrated Circuits (ASICs) which are not reprogrammable (or
reconfigurable). A malfunction in one ASIC often results in a complete replacement of the faulty
component. The ASICs lack of flexibility to be reprogrammed is promoting their counterpart,

namely the FPGA (Field Programmable Gate Array) chips.

Recently, FPGA technology has become a viable target for the implementation of algorithms in
image processing applications [18], [19]. FPGA’s generally consist of a logic block based
system, which usually includes lookup tables, flip-flops and some amount of Random Access
Memory (RAM), all wired together using an array of interconnects. All of the logic in an FPGA
can be reconfigured with a different design as often as the designer likes. This type of

architecture allows a large variety of logic designs dependent on the processor’s resources.



Today, FPGAs can be developed to implement parallel design methodologies, which is not
possible in dedicated DSP designs. ASICs were traditionally preferred over FPGAs because of
their speed, lower power consumption, and higher functionality. However, the improvements on
FPGA technology in recent years have almost closed this gap. ASIC design methods can also be
used for FPGA design, facilitating gate level implementations, thereby decreasing development
time and time-to-market. However, engineers usually use a hardware language, which allows for
a design methodology similar to software design. Maintenance can be performed when an error
is found in the implemented design, since the FPGA fabric can always be reconfigured. This
software view of hardware design allows for a lower overall support requirements, lower cost,

and design abstraction.

The key advantages of FPGAs when compared to DSP implementations include performance,
integration and customization using parallel and pipeline design techniques. Due to the support
of parallelism, FPGAs may be able to achieve huge gains in performance compared to DSP

implementations.

1.2 Research Objectives

The main objective of this thesis is to develop an efficient architecture for directional Gaussian
smoothers simulated in VHDL and prototyped on device technology of XILINX VirtexII-Pro
FPGA platform. Implementation on the target device takes the advantage of parallelism of FPGA

and ensures high throughput.



1.3  Scope of Thesis

The main contribution in this thesis is the design and implementation of directional Gaussian
smoothers [2] on FPGA. Firstly, derivations are presented to show that Gaussian filters are
separable. Secondly, in [13], it was shown that these filters can also be made approximately
steerable. The inferred equations are also derived and presented here for completeness. The
functionality of directional (or steerable) Gaussian smoothers is examined using Matlab
simulations. Then, a VHDL model is developed for a test image of 7x7 and a Gaussian mask of
3x3. Based on the simulation results and logic utilization, we implemented the convolution
operation similar to the techniques presented in [15], [17]. Furthermore, additional techniques
were implemented to improve logic utilization and processing speed for performing convolution.
All the hardware architectural models are prototyped on XC2VP30FFG896, a device technology
of Xilinx Virtexll-Pro FPGA platform. For all methods implemented on the target device,
comparisons are made using logic utilization (in terms of number of flip-flops and slice count)

and number of clock cycles per pixel.

1.4 Organization of Thesis

Chapter 2 describes FPGAs in detail and an overview of XILINX VirtexIl Pro Development
Board. Chapter 3 describes the language used and the software tool used for programming
FPGAs. Chapter 4 describes the concepts of convolution, Gaussian filters, and the steerability
concept for Gaussian smoothers. Chapter 5 describes the hardware implementation and design

methodology. Chapter 6 includes conclusions, limitations, and future work.



CHAPTER 2

FPGA and Xilinx Virtexll Pro Board

2.1 Field Programmable Gate Array (FPGA)

An FPGA is a chip that allows the user to control and reprogram the functionality of its logic
circuits. All FPGAs consist of three major components, namely Logic Blocks (LB), 1/0 Blocks,

and Programmable Routing or Interconnect as shown in figure 2.1 [3].

/O Block

B/D L]
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Figure 2.1: Architecture of a generic FPGA [3]



In order to implement a circuit on an FPGA, each LB is programmed to perform a small part of
the logic and each 1/O block is programmed to act as input or output, as required by the circuit.
The programmable routing is also configured to make all necessary connections between LBs

and from LBs to 1/0 blocks.

The processing power of an FPGA is directly proportional to the processing capabilities of its
LBs and the total number of LBs available in the array. Currently, most of the commercial
FPGAs use LBs that contain one or more Look-up Tables (LUTS), typically a 4-input LUT. A 4-
input LUT can implement any binary function of 4 logic inputs. The architecture of a simple LB

containing one 4-input LUT and one flip-flop for storage is shown in figure 2.2 [3].

—» (Ot

yry
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Figure 2.2: Architecture of Logic Block with one 4-input LUT [3]



Modern FPGAs also contain blocks of on-chip memory as well. For example, the target FPGA
device XU2VP30 used in this thesis work contains 136 blocks of 4Kbits of RAM, 13696 slices,
27392 LUTs, 136 18x%18 embedded multipliers and 556 bonded IOB’s. An overview and detailed

explanation of target device used is presented in next subheading.

2.2 Xilinx VirtexIl Pro FPGA Platform

The XU2VP30-FFG896 is a Xilinx manufactured Virtex-2 Evaluation Board with an advanced
hardware platform that consists of high performance Virtexll Pro Platform FPGA [9],
surrounded by peripheral components that can be used to create a complex system. Main features

of the platform are the following:

e Virtex®-Il Pro FPGA with PowerPC® 405 cores

e Maximum 2 GB of Double Data Rate (DDR) SDRAM
e Compact Flash connector

e Embedded Platform Cable USB configuration port

e Programmable Configuration PROM

e On-board 10/100 Ethernet PHY device

e RS-232 DB9 serial port

e Two PS-2 serial ports

e Four LEDs connected to Virtex-1l Pro 1/0 pins

e Four switches connected to Virtex-11 Pro 1/0 pins

e Five push buttons connected to Virtex-11 Pro 1/O pins
e Six expansion connectors joined to 80 Virtex-11 Pro 1/0 pins

e High-speed expansion connector joined to 40 Virtex-11 Pro I/O pins



e AC-97 audio CODEC with audio amplifier and speaker/headphone output
e Microphone and line level audio input

e On-board XSGA output, up to 1200 x 1600 at 70 Hz refresh

e Three Serial ATA ports, two Host ports and one Target port

e Off-board expansion MGT link, with user-supplied clock

e 100 MHz system clock, 75 MHz SATA clock

e Provision for user-supplied clock

e On-board power supplies

e Power-on reset circuitry

e PowerPC 405 reset circuitry

The block diagram of the board is shown in figure 2.3.

External Power - <= ACa7 Audio CODEC & Stereo Amp
Internal Power Supplies ——I XSGA Video Qutput
45-5.5V 3.3V
— ——-I User LEDs (4
18V g -—l User Switchas (4)

<—| User Push-button Switches (8)

| cPu Debug Port - |Virtex-ll Pro <] 10/100 Ethernet PHY

FPGA

«—=| Rs-232 & PS/2 Ports (2)

[ 100 MHz System Clock

.—-1 Serial ATA Ports (3)

L)

| 75 MHz SATA Clock

| User Clocks (2) - -—-l Multi-Gigabit Transceiver Port

-——-I 2 GB DDR SDRAM DIMM Module

| Platform Flash Configurations (2) I_-.
| Compact Flash Configurations (8) |_.. -—-l 5V Tolerant Expansion Headers
| USB2 High Speed Configuration |_., -—-l High Speed Expansion Port

Figure 2.3: Block Diagram of XUP Virtexll Pro FPGA Board [8]



The picture of the board can be seen in figure 2.4 below.
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Figure 2.4: Picture of XUP VirtexIl Pro Board [8]



CHAPTER 3

Design Language & Software Tools

3.1 Design Language

There are several differences between the traditional software design flow and the established
Verilog/VHDL design flow for FPGAs. After designing the circuit, there is a multistage process
to go through before the design can be used in an FPGA. The first stage is synthesis, which takes
HDL code and translates it into a netlist. A netlist is a textual description of a circuit diagram or
schematic. Next, simulation may be used to verify that the design specified in the netlist
functions correctly. Once verified, the netlist is converted into binary format. More specifically,
the components and connections that the netlist defines are mapped to CLBs (map), and the
design is placed and routed to fit onto the target FPGA (place and route). A second simulation
(post, place and route simulation) is performed to help establish how well the design has been
placed and routed. Finally, a “*.bit” file is generated to load the design onto the FPGA. A “*.bit”
file is a configuration file that is used to program all of the resources within the FPGA. Using
tools such as Xilinx Chipscope is then possible to verify and debug the design while it is running
on the FPGA. In hardware, it is very important to establish that a design is functionality correct
prior to implementation as a broken design could take a day or more to place and route and could
potentially cause damage to system components. Figures 3.1 and 3.2 [6] illustrate the differences

between software and hardware design flows.
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VHDL Code
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Figure 3.1: Hardware Design Flow [6]
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Design Implement
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Edit

Debug

Figure 3.2: Software Design Flow

The following subsections discuss the two common high level hardware design languages

(HDLs) in which FPGA algorithms are designed.

3.1.1 Verilog Hardware Design Language

Verilog can be used for synthesis of hardware designs and is supported in a wide variety of
software tools. It is similar to other HDLs, but its adoption rate is decreasing in favor of the more
open standard of VHDL. Still, many designers favor Verilog over VHDL for hardware design,

and some design departments use only Verilog. Therefore, as a hardware designer, it is important

to at least be aware of Verilog.
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3.1.2 VHSIC Hardware Design Language (VHDL)

In Recent years, VHSIC (Very High Speed Integrated Circuit) Hardware Design Language
(VHDL) has become an open IEEE standard [11]; it is supported by a large variety of design
tools and is quite interchangeable between different vendors’ tools. The first version of VHDL,
IEEE 1076-87, appeared in 1987 and has since undergone an update in 1993, appropriately titled
IEEE 1076-93. It is high level language similar to the computer programming language Ada,

which is intended to support the design, verification, synthesis and testing of hardware designs.

It is very straightward to simulate simple logic designs such as D flip-flop. However it is
surprisingly difficult to implement it in hardware as we have to take into account of 1/0O issues,
access to resources external to FPGA such as memory, push-buttons, DIP switches and etc. If
you want to retrieve a value from main memory and use it on FPGA then you need to instantiate

a memory controller [31].

3.2 Software Tools

Xilinx is one of the leading largest producers of Xilinx boards and tools which provide fully
functional VHDL and Verilog development environment with full range of editing, synthesis,
simulation and implementation tools. The Xilinx tools are relatively user friendly and tools
required for our basic design are free to download. In my thesis I have used ISE 10.1.03 [7] and
ISIM is used as simulation tool. Matlab 9.1 version is used for verification of obtained results, to
check the functionality of concepts such as convolution, separability, steerability and to create
“.coe” file [31] which is used to load any data into BRAM of FPGA board. Details about

“.coe”file are explained in chapter 5.

12



3.3  Other languages and tools

A list of other available languages and tools are given below:-

SystemC - Open SystemC Initiative (OSCI) - http://www.systemc.org/

Catapult C - Mentor Graphics - http://www.mentor.com/products/c-based_design/
Impulse C - Impulse Accelerated Technologies - http://www.impulsec.com/

Carte - SRC Computers - http://www.srccomp.com/CarteProgEnv.htm

Streams C - Los Alamos National Laboratory - http://www.streams-c.lanl.gov/
AccelChip - MATLAB DSP Synthesis - http://www.accelchip.com/

Starbridge - VIVA - http://www.starbridgesystems.com/

NAPA-C - National Semiconductor - http://portal.acm.org/citation.cfm?id=795813
SA-C - Colorado State University - //www.cs.colostate.edu/cameron/compiler.html
CoreFire - Annapolis Micro Systems - http://www.annapmicro.com/

Trident compiler - Los Alamos National Laboratory - http://trident.sourceforge.net/

Reconfigurable Computing Toolbox - DSPlogic - www.dsplogic.com/home/products

Details of a number of these FPGA programming tools can be found on the University of

Florida’s

High Performance Computing and simulation Research Centre web pages

http://docs.hcs.ufl.edu/xd1/app_mappers .

13



CHAPTER 4

Convolution & Steerable Gaussian Smoothing Filters

4.1 Convolution

Convolution is a common image processing operation that filters an image by calculating the
sum of products between the input image and a smaller image like array called the “convolution
kernel or convolution filter”. A convolution operation can achieve blurring, sharpening, noise
reduction, edge detection and other useful imaging operations depending on the selection of

values in the convolution kernel.

Mathematically, a two dimensional convolution on image can be represented by the following

equation.

Rim,m) = ST S GO0 1) FOM = (1= ) e (1)

where f is the input image, g is the filter and h is the output image

In the above equation, the function f represents the input image and g represents the convolution
kernel. The double summation is based on the width and height of the convolution kernel. A
convolution operation is computed by aligning the center of the convolution kernel with the pixel
at the same position in the input image. Multiplying the values of input image pixels with the
pixels covered by the convolution kernel and then summing the results provide the value of the

particular pixel in the output image.

14



For instance, a two dimensional convolution using a 3x3 input image and 3x3 kernel would look

like as follows:

Mask center

P1 P2 P3 @ M2 M3 0OP1

P4 PS P6 * M4 M5 Mé >
P7 P8 P9 M7 M8 M9
Input Image Pixel Window Convolution Mask

Output Image Pixel window

OP1=PIMI1+P2M2+P3M3+P4M4+P5SM5+P6M6+PTMT7+PEMS

Figure 4.1: 2D Convolution Operation

In order to calculate an output pixel for a given mask of size mxn, mn multiplications and mn-1
additions are required. The Gaussian mask and one of its important properties, namely

separability, are presented with more details in the following section.

15



4.2 Gaussian Mask

The Gaussian distribution in 1D has the following form:

1 —x2
glx) = oo B0 (2
In 2D, a circularly symmetric Gaussian has the form
~(x?4y?)
glx,y) = B 207 i e e e te et e re e te e e e eneanes (3)

2no?

where g is the gaussian kernel weight at the location with coordinates x and y. The ¢ parameter is

the standard deviation of the Gaussian distribution which determines the sharpness or

1

2no?

smoothness of the Gaussian function. The term is normalization constant.

The idea of Gaussian convolution is to use this 2D envelope as a point spread function. The
degree of smoothing is determined by the standard deviation ¢ of the Gaussian. Since the image
is stored as a collection of discrete pixels, a discrete approximation to the Gaussian function is
required to perform the convolution. The Gaussian mask weights fall off to almost zeros at the

mask edges. A general 2D Gaussian is shown below:-

16



Figure 4.2: A 2D Gaussian Mask

The greatest advantage of the Gaussian filters of equation (3) is that they are separable. In
particular, the product of two 1D Gaussian functions gives a higher dimensional Gaussian

function and this can be represented mathematically as follows:-

GOOY) = GUA)G(Y) et enes 4)

An important application of separability is that convolution with a 2D Gaussian kernel can be
replaced by a cascade of 1D Gaussian kernels, making the whole convolution process much
more efficient with fewer number of multiplications. Therefore convolution using separable filter
is performed in two steps. The input or original image is convolved with a filter of size Nx1,
while the result is convolved with a filter of size 1xN. Hence in this case of separable
convolution, a total of 2N multiplications and 2N—2 additions are required which is significantly

less compared to the non-separable case, particularly for large-scale filters.

17



4.3  Steerable & Separable Gaussian Smoothing Filters

Directional or orientation filters are widely used in computer vision and image processing, such
as motion analysis, edge detection and texture analysis. In general, the shifts, edges and lines can
be characterized by a set of parameters including position, orientation, width or size. In order to
obtain the response of a filter at any arbitrary position and orientation it is very important to tune
the filters to all possible positions and orientations in real time. However, huge computations are
required in this way. The efficient way is to design a family of filters so that any filter in this
family can be represented by few basis filters. Therefore, the output of a filter can be expressed

as a weighted sum of basis filter outputs. Such filters are called “steerable filters”.

Steerability implies that the output Oe (X, y) of a filtering operation using a filter oriented at an

angle 8 can be computed as the linear combination of a finite set of M outputs { Oeg (X, ¥), Oe1

[0/ Y) TSR , Oon-1 (X, y) } obtained by applying the same filter oriented at directions 6 ¢, 6 1
s e eeeee e, B, respectively. A 2D separable and steerable filter can be written as:
go(x,y) = TR _p giso(x —1c05(0),y — 7SIN(0)) GIP(T) wvorvvveivrrveireineriaeriseriseennns (5)

where it was assumed that the size of g'P(r) is equal to 2R+1.

The filter described in (5) can be applied to an image I (x, y) in two steps. In the first step, the

filter giso(x, v) is applied to the image.

Liso(, ¥) = 1(2, 7)) * Giso(X, ) ceeereeesese et (6)
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In the second step, the following operation is applied to the image iso(x, y).
Ie(x,y) = YR__» Iiso(x —rcos(0),y — rsin(@))gm(r) ............................................... @)

The operation described in (6) and (7) is equivalent to the operation where the input image I1(x, y)
is filtered by a Gaussian directional smoothing filter (DSF) oriented at direction 6. The function
Jiso(x, y) describes a separable filter and can thus be implemented in an efficient manner. More

specifically, giso(x, y) can be expressed as giso(x,y) = gx(x)gy(y) where

gx(x) = 2

2mo Y

e /(203 ang, gy(y)=e—y2/(za§)_

Hence, giso(x,y) can be applied to I (x, y) by first filtering I (x, y) in a horizontal manner using
gx(x) and then by filtering the result in vertical manner using gy(y). Equation (7) describes a
linear combination of shifted versions of the image Iiso(x — rcos(8),y — rsin()), which
depend on the filtering directiond. The coefficients of the linear combination are equal to the
values of g'°(r). Image Iiso(x —rcos(6),y — rsin(@)) can be represented as the convolution

between the input image | (x, y) and the filter giso(x —rcos(0),y — rsin(@)).

Thus, the proposed implementation is steerable in the sense that the final output Iy(x, y) can be
expressed as a linear combination of the filtering operation outputs Iiso(x —rcos(0),y —
rsin(6)) of a set of 2R+1 fundamental filters giso(x — rcos(8),y — rsin(6)), parameterized by

r, applied on the input image I (x, y).
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The isotropic filter giso(x, y) is low pass and almost 100% of the energy of the filter is included
within the frequency band [—3/0x, 3/0x]. Therefore, the output giso(x,y) obtained by the
filtering the input image | (x, y) with giso(x, y) is band limited within the frequency range (-, 7]

in any direction 8 Thus, equation (7) can be modified without introducing significant aliasing.

lo(x,y) = ECR:/E)[%/D] Iiso(x — kDcos(8),y — kDsin(6))gP(kD) ....ccouveemrrenrrernerennee. (8)
1 —(kD)?
where giP(r) = g(kD) = ———=—=22077-01D) e, 9)

2n(oy2—ox?)

D= ”‘3”‘, is @ down SAMPING FACLOT ...........ovuevveeeeeveseeeeeeee e (10)

[R/D] equals to the integer part of [R/D]. Since the range of unique frequencies in discrete
signals is (-rr, ], D can be as large as the largest integer not greater that wo«/3, so that aliasing
does not occur. The goal of introducing a down sampling factor is to further reduce the

computational complexity of the filtering operation.
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CHAPTER 5

Hardware Implementation & Design Methodology

5.1 Hardware Implementation

This chapter explains in detail the reconfigurable hardware implementations of image processing
algorithms discussed in chapter 4, on a Xilinx Virtexll-Pro FPGA platform. The algorithms

implemented are:

e General two dimensional convolution method

e Separable convolution method 1 (using multiple BRAMs)

e Separable convolution method 2 (using FIFO)

e Steerable method
Convolution is one of the basic and common operations on images. It uses a sliding window
operator as discussed in section 4.2 of chapter 4. Based on the convolution operation, the
weighted sum of the input pixels within the window, considering that the window is centered at
pixel (x, y) is equal to the output at location (x, y). The weights are the values of the filter

assigned to every pixel of the window.

Convolution requires a significant amount of computational power. In order to calculate an
output pixel for a given mask of size mxn, mn multiplications and mn-1 additions are required.
Therefore, in order to perform a two dimensional convolution on a 256x256 gray scale image

and 3x3 mask a total of 589,824 multiplications and 65,535 additions are required.
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A single multiplication requires significant hardware resources and produces long delays. In
order to improve the performance of the convolution operation, it is necessary to reduce the
number of multiplications. Different techniques of performing multiplication on hardware are
explained in [20], [21]. Hence in the approach presented in this thesis, the algorithms are
developed by paying special attention to reducing the number of multiplications, thereby
decreasing the number of hardware resources while maintaining a satisfactory throughput in

terms of clock cycles.

5.2  Proposed Design Methodology

The main goal of this thesis is to implement steerable filtering techniques on FPGA efficiently.
The task is divided into steps which facilitate the building of the basic blocks. As described in
section 4.3 of chapter 4, the particular steerable filtering technique requires that the image is first
smoothed. This is achieved by convolving the original image with a Gaussian mask. This
convolution component is possibly the most important building block. Optimizing and pipelining

at this stage improves the implementation efficiency.

First, a small test image of 7x7 and a Gaussian mask of 3x3 were chosen for performing the
convolution operation. The two dimensional convolution operation was implemented using three

different approaches which are listed below:-

1) General two dimensional convolution Method
2) Separable convolution method 1 (using multiple BRAMS)

3) Separable convolution method 2 (using FIFO)
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A detailed explanation of each method, their performances and the associated logic utilization
along with algorithmic state diagrams are presented in the following subsections. For all methods
explained below, a test 7x7 image and a 3x3 Gaussian mask derived using equation (3) with
mean = 0 and standard deviation = 1and normalizing factor N = 0.0016 are considered. Each test
image pixel is represented using 16 bits and each mask value is also represented using 16 bits. A

7x7 test image and a 3x3 Gaussian mask are shown below:-

1 2 3 4 5 0 0
6 7 8 9 10 0 0
11 12 13 14 15 0 0
16 17 18 19 20 0 0
21 22 23 24 25 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Table 5.1: A 7x7 Test Image

37 61 8
61 100 14
8 14 2

Table 5.2; A 3x3 Gaussian Mask with Mean =0, s =1 and N = 0.0016
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5.2.1 General two dimensional convolution method

In this method, BRAM is used to store a 7x7 test image using .coe file [31] which is generated
with Matlab. The Matlab program used for generating .coe file is available in the appendix. An
image controller is designed as a Finite State Machine (FSM) using VHDL to access the stored
image in the BRAM. VHDL code for image read/write controller is available in the appendix.
The obtained image pixels and mask pixels are controlled using pixel and mask controller
blocks. A multiplier is designed using the Intellectual Property (IP) core [32]. The inputs to the
multiplier are obtained from the pixel and mask controller blocks. The multiplier block generates
an output which is represented using 2n-1bits. The multiplier inputs are represented using n bits.
In this thesis work n was set equal to 16. The multiplier outputs are then given to an adder which
provides a 34 bit output. The adder output is the two dimensional convolution result between the
7x7 test image and the 3x3 Gaussian mask. The block diagram representation of two

dimensional convolution is shown below:-

.coeimage file
using Matlab

l

Image stored in Image controller Pixel & Mask
Block EAM » toreadimage » read controller
(BRAN) from BRAM
L 4
Adder Multiplier

2D convolution
results

Figure 5.1: Block Diagram of Two Dimensional Convolution Method
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In the schematic diagram below, the block named as “topmodule” is the image and mask
controller. The module that stores the image in BRAM, and the image controller which reads the
image from BRAM are embedded in the topmodule block. The outputs of topmodule are
connected to 9 multipliers. The outputs of the 9 multipliers are finally connected to a 32 bit adder
named as “adder 32”. A 34 bit result obtained from adder 32 is the two dimensional
convolution between the 7x7 test image and the 3x3 Gaussian mask. A complete schematic

diagram of general two dimensional convolution method is shown below:-

Multiplierl L
®
Multiplier6
®
- opmode I Multiplier?
] b+ 4 -
. — - ol
. Multiplier7
. A
e L
n.'-l- A - p- = I
e Multiplier3 l
e -
- - 2d convolution results
-ae
-aa M
. Multiplier8
e e ol
) ) ) o 1
- I Multiplier4 Has
J— 11,
Multiplier9
——
)
Multipliers
Pixel and mask
controller T

Figure 5.2: Schematic Diagram of Two Dimensional Convolution Method
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The schematic design is simulated using Xilinx ISIM simulator for verification purpose. In the
simulation diagram below, the reader may observe at the annotations, the image pixel controller
outputs and the mask controller outputs, the multiplier outputs, and finally, the two dimensional
convolution results. The simulation results are verified with Matlab and are provided in the

appendix. The simulation results of two dimensional convolution are shown below:-

2D
Convolution

Results { 8 BHgenc resulf3ag)| 365!

Multiplier
Outputs

Image o
Pixeland b 2
Mask <

Controller
Outputs

Figure 5.3: Simulation Results of Two Dimensional Convolution Method
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Finally, the overall design is simulated using Xilinx XST Synthesizer to obtain the logic or
hardware resource utilization on the target device. The design summary of the two dimensional

convolution method is shown below:-

Device Utilization Summary (estimated values) [1
Logic Utilization Used Available Utilization
Number of Slices 414 13696 3%
Number of Slice Flip Flops 596 27392 2%
Number of 4 input LUTs 306 27392 1%
Number of bonded |OBs 36 556 6%
Number of BRAMs 1 136 0%
Number of MULT18X18s 9 136 6%
Number of GCLKs 2 16 12%

Table 5.3: Device Utilization Summary of Two Dimensional Convolution Method

In the simulation results, it can be observed that the total number of clock cycles required to
complete a two dimensional convolution between a 7x7 test image and a 3x3 Gaussian mask is
equal to 148. Hence the two dimensional convolution performance for the direct method is

approximately 3 clocks per pixel.

27



5.2.2 Separable convolution method 1(using multiple BRAMS)

As discussed in section 4.2 of chapter 4, a Gaussian mask is separable. The separable Gaussian
mask is derived using equations [3] and [4] with mean equal to zero, ¢ equal to zero and

normalizing factor N = 0.0016 are shown below:-

61 100 14

Table 5.4: Horizontal Gaussian Mask with Mean =0, c =1 and N = 0.0016

61

100

14

Table 5.5: Vertical Gaussian Mask with Mean =0, c =1 and N = 0.0016

Similar to the regular convolution approach presented in section 5.2.1, BRAM is used to store a
7x7 test image using .coe file [31] and an image controller is designed to access the stored image
in the BRAM. The obtained image pixels and mask pixels are controlled using pixel and mask
controller block. A multiplier is designed using the IP core [32]. The inputs to the multiplier are
obtained from the pixel and mask controller blocks. The multiplier block generates an output
which is represented using 2n-1bits. The multiplier inputs are represented using n bits. In this
thesis work n was set equal to 16. The multiplier outputs are then given to an adder which
provides a 34 bit output. The adder output is the vertical (intermediate) convolution result

between the 7x7 test image and the 3x1 vertical Gaussian mask.
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A write and read controller is designed as a FSM using VHDL for writing the vertical (or
intermediate) convolution result into the BRAM, and a read controller to read the intermediate
convolution results. At pixel and mask controller block, the vertical Gaussian mask pixels (34
bits) and the vertical convolution result pixels (34 bits) are accessed and given to multiplier and
adder block. The 70 bit output obtained is the final result of separable convolution using method
1 between the 7x7 test image and the 1x3 horizontal Gaussian mask. The block diagram

representation of separable convolution method 1 (using multiple BRAMS) is shown below:-

.coe image file
using Matlab

A4

method 1 results

Image stored in Image controller Pixel & Mask Multiplier &
Block RAM | toreadimage »| read controller » Adder
(BRAM) from BRAM
v
Pixel & Mask ICR write & Intermediate Intermediate
controller read controller convolution (IC) Convolution
results stored in (IC) results
BRAM
Multiplier & Separable
Adder convolution

Figure 5.4: Block Diagram of Separable Convolution Method 1 (using multiple BRAMS)




In the schematic diagram below, the block named “topmodule2” is the intermediate convolution
results write and read controller. The modules that store the image in BRAM and the image
controller which reads the image from BRAM are embedded in topmodule2 block. The outputs
of topmodule2 are connected to customfifo2. Customfifo2 access the required vertical
convolution results and horizontal mask pixels, which are then connected to the three multipliers.
The multiplier outputs are connected to an adder which provides a 70 bit output. The adder
output is the separable convolution between the 7x7 test image and the separable Gaussian
masks 3x1 & 1x3. A complete schematic diagram of separable convolution method 1 (using

multiple BRAMS) is shown below:-

Multiplier 1

T Multiplier 2
Pixel and mask
controller

Separable

Intermediate PP PP PR PR JETON I convolution .
Convolution s method 1
results write results

& read
controller

}....................
- Multiplier 3

Figure 5.5: Schematic Diagram of Separable Convolution Method 1 (using multiple BRAMS)
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The schematic design is simulated using Xilinx ISIM simulator for verification purpose. In the
simulation diagram below, the reader may observe at the annotations, the image pixel controller
outputs and mask controller outputs, the multiplier outputs and finally the separable convolution
method 1 results. The simulation results are compared with Matlab, and are provided in the

appendix. The simulation results of separable convolution method 1 are shown below:-

Current Si
Time: 1

Separable
Convolution
Method 1

Results

Image
Pixeland
Mask
Controller
Outputs

Multiplier
Outputs

Figure 5.6: Simulation Results of Separable Convolution Method 1 (using multiple BRAMS)
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Finally, the overall design is simulated using Xilinx XST Synthesizer to obtain the logic or

hardware resource utilization on the target device. The design summary of the separable

convolution method 1 is shown below:-

Device Utilization Summary [

Logic Utilization Used Available Utilization Note(s)
Number of Slice Flip Flops 553 27,392 2%
Number of 4 input LUTs 711 27,392 2%
Logic Distribution
Number of occupied Slices 579 13,696 4%

Number of Slices containing only related logic 579 579 100%

Number of Slices containing unrelated logic 0 579 0%
Total Number of 4 input LUTs 729 27,392 2%
Number of bonded 10Bs 72 556 12%
Number of RAMB16s 2 136 1%
Number of MULT18X18s 15 136 1%
Number of BUFGMUXs 2 16 12%

Table 5.6: Device Utilization Summary of Separable Convolution Method 1

In the simulation results, it can be observed that the total number of clock cycles required for
completing the separable convolution between a 7x7 test image and a 3x1 & 1x3 Gaussian
masks using the method of multiple BRAMs is equal to 108. Hence the separable convolution

method1 (using multiple BRAMS) is approximately 2 clocks per pixel.
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5.2.3 Separable convolution method 2 (using FIFO)

As discussed in section 4.2 of chapter 4, a Gaussian Mask is separable. Separable Gaussian mask
is derived using equations [3] and [4] with mean equal to zero, ¢ equal to 1 and normalizing

factor N = 0.0016 are shown below:-

61 100 14

Table 5.7: Horizontal Gaussian Mask with Mean =0, c =1 and N = 0.0016

61

100

14

Table 5.8: Vertical Gaussian Mask with Mean =0, c =1 and N = 0.0016

Similar to the regular convolution approach presented in section 5.2.1, BRAM is used to store a
7x7 test image using .coe file [31] and an image controller is designed to access the stored image
in the BRAM. The obtained image pixels and mask pixels are controlled using the pixel and
mask controller blocks. A multiplier is designed using IP core [32]. The inputs to multiplier are
obtained from the pixel and mask controller blocks. The multiplier block generates an output
which is represented using 2n-1bits. The multiplier inputs are represented using n bits. In this
thesis work n was set equal to 16. The multiplier outputs are then given to an adder which
provides a 34 bit output. The adder output is the vertical (intermediate) convolution result
between the 7x7 test image and the 3x1 vertical Gaussian mask. Instead of writing the vertical

convolution results into BRAM we save few rows and columns of vertical convolution result (i.e.
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7 rows and 3 columns) in a 2D array vector. Parallelism is implemented, which yields in
obtaining final convolution result in parallel with the vertical or intermediate convolution result.
A read controller is designed to read the intermediate results saved in 2 dimensional arrays. At
pixel and mask controller block, vertical Gaussian mask pixels (34 bits) and vertical convolution
result pixels (34 bits) are accessed and given to multiplier and adder block. The 70 bit output
obtained is the final result of separable convolution using method 2 between the 7x7 test image
and the 1x3 horizontal Gaussian mask. The block diagram representation of separable

convolution method 2 (using FIFO) is shown below:-

.coe image file
using Matlab
Image stored in Image controller Pixel & Mask Multiplier &
BlockRAM »| toread image »| readcontroller »| Adder
(BRAM) from BRAM
h 4

Pixel & Mask 2D array write IC results Intermediate
controller P & read < stored in 2D < convolution

controller array (IC) results
Multiplier & Separable
Adder » convolution

method 2 results

Figure 5.7: Block Diagram of Separable Convolution Method 2 (using FIFO)
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In the schematic diagram below, the block named with “topmodulel” is the “intermediate
convolution results write and read controller”. The modules that store the image in BRAM and
the image controller which reads the image from BRAM are embedded in topmodule2 block.
The outputs of topmodulel are connected to the separable2_controller. Separable2_controller
access required vertical convolution results and horizontal mask pixels which are then connected
to 3 multipliers. The multiplier outputs are connected to an adder which provides a 70 bit output.
The adder output is the separable convolution between the 7x7 test image and the separable
Gaussian masks 3x1 & 1x3. A complete schematic diagram of separable convolution method 2

(using FIFO) is shown below:-

Multiplier 1

Multiplier 2

Separable i
convolution
method 2
results

Intermediate
Convolution
results write
& read
controller

Multiplier 3

Figure 5.8: Schematic Diagram of Separable Convolution Method 2 (using FIFO)
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The schematic design is simulated using Xilinx ISIM simulator for verification purpose. In the
simulation diagram below, the reader may observe at the annotations, the image pixel controller
outputs and mask controller outputs, the multiplier outputs and finally the separable convolution
method 2 results. The above obtained simulation results are verified with Matlab and are
provided in the appendix. The simulation results of separable convolution method 2 are shown

below:-

Separable
Convolution

Method 2 { :
Results

[mage
Pixeland
Mak <
Controller
Qutputs

ader 68

clk In

Multiplier
Qutputs

Figure 5.9: Simulation Results of Separable Convolution Method 2 (using FIFO)

36



Finally, the overall design is simulated using Xilinx XST Synthesizer to obtain the logic or
hardware resource utilization on the target device. The design summary of separable convolution

method 2 is shown below:-

Device Utilization Summary (estimated values) [1
Logic Utilization Used Available Utilization
Number of Slices 1389 13696 10%
Number of Slice Flip Flops A 1073 27392 3%
Number of 4 input LUTs 2379 27392 8%
Number of bonded |0Bs 12 556 12%
Number of BRAMs 1 136 0%
Number of MULT18X18s 15 136 1%
Number of GCLKs 1 16 6%

Table 5.9: Device Utilization Summary of Separable Convolution Method 2

In the simulation results, it can be observed that the total number of clock cycles required for
completing the separable convolution between a 7x7 test image and a 3x1 & 1x3 Gaussian
masks using the method of FIFO is equal to 62. Hence the separable convolution method 2

(using multiple BRAMS) is approximately 1 clock per pixel.
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5.2.4 Comparisons of convolution methods

For comparisons, we used a 7x7 test image and 3x3 Gaussian mask with both pixels represented
using 16 bits and the target device is XU2VP30-FFG896(-7). A comparison table is presented

below to explain which method is more feasible for applying steerability.

Methods Slices Slice flip | 4 input Bonded | BRA | Multipli | Clock
(7x7 image and | [13696] | flops LUT’s IOBs Ms ers S per
3x3 Gaussian [27392] [27392] [556] [136] | [136] pixel
mask)

Two 414 (2%) | 596(2%) | 306(1%) | 36(6%) | 1(0%) | 9(6%) ~3
Dimensional

convolution

Separable 579(4%) | 553(2%) | 729(2%) | 72(12%) | 2(1%) | 15(11%) | ~2
Convolution

Method 1

Separable 1389(10) | 1073(3%) | 2379(8%) | 72(12%) | 1(0%) | 15(11%) | ~1
Convolution

Method 2

Table 5.10: Comparison of Convolution Methods

From the above comparisons, two dimensional convolution method is preferable as it uses few
resources with satisfactory performance. Practically, implementation might not be possible if we
go for larger mask sizes as it requires 3 clocks per pixel and more number of multipliers. Hence
the separable convolution method 2 is most favorable in terms of performance for larger mask
sizes, as it requires only 1 clock per pixel and less number of multipliers when compared with

two dimensional convolution.
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5.2.5 Extension of separable convolution method 2 (using FIFO)

The chosen convolution method i.e. separable convolution method 2 (using FIFO) is extended
for a larger image of 48x48 and a separable Gaussian masks of 1x9 and 9x1. A Matlab program
was used for generating 48x48 gray scale image is provided in the appendix. Image pixels are
represented using 8 bits. Separable Gaussian masks of 1x9 and 9x1 derived using equation [3] &

[4] with mean equal to zero, o equal to 1 and normalizing factor N = 0.0016 are shown below:-

100 61 14 1 0 0 0 0 0

Table 5.11: Horizontal Gaussian Mask with Mean =0, c =1 and N = 0.0016

100

61

14

Table 5.12: Vertical Gaussian Mask with Mean =0, c =1 and N = 0.0016
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A complete schematic diagram of separable convolution method 2 extended to a larger image of

48x48 and separable Gaussian masks of 9x1 and 1x9 is shown below:-

»  smultiplierl ik
gt pOITD
paireny.
o —s  smultiplier7
el ™
topmodule2
CEly L . smultiplier?
[ | adder 36
) Fiofiess .
T @ . . —
o 1+ smultiplier3 1 smutiphe 0%
|n:._.: e
ll L. smultipliert o
A - - - Separable
= S = ' o convolution
smultiplierd method 2
T results
Pixel and mask smultiplierd
controller
+  smultiplier§

Figure 5.10: Schematic Diagram of Separable Convolution Method 2 extended to a 48x48 image

and Gaussian masks of 9x1 and 1x9
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The schematic design is simulated using Xilinx ISIM simulator for verification. In the simulation
diagram below, the reader may observe at the annotations, the image pixel controller outputs and
mask controller outputs, the multiplier outputs and finally the separable convolution method 2
results. The above obtained simulation results are verified with Matlab. The simulation results of
separable convolution method 2 extended to a larger image of 48x48 and separable Gaussian

masks of 9x1 and 1x9 is shown below:-

Separable —
Convolution 1 n; o
Method 2
Results

Image
Pixel and
Mask
Controller
Qutputs

Multiplier
Outputs

Figure 5.11: Simulation results of Separable Convolution Method 2 extended to a 48x48 image

and Gaussian masks of 9x1 and 1x9
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The design summary of separable convolution method 2 extended to a 48%48 image size and

Gaussian mask of 9x1 and 1x9 are shown below:-

Logic Utilization Used Available Utilization

Number of Slices 10813 13696 78%
Number of Slice Flip Flops 7198 27392 26%
Number of 4 input LUTs 18906 27392 69%
Number of bonded I0Bs 40 556 7%
Number of BRAMs 2 136 1%
Number of MULT18X18s 45 136 33%
Number of GCLKs 1 16 6%

Table 5.13: Device Utilization Summary of Separable Convolution Method 2 extended to 48x48

image size and Gaussian mask of 9x1 and 1x9

In the simulation results, it can be observed that the total number of clock cycles required for

completing the separable convolution between a 48x48 test image and a 9x1 & 1x9 Gaussian

masks using the method of FIFO is equal to 2130. Hence the separable convolution method 2

(using FIFO) is approximately 1 clock per pixel.

After ensuring successful working of separable convolution method 2(using FIFO), concept of

steerability is applied on the above obtained final results which is explained in next section.
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6.3 Proposed Steerable Concept Implementation
Steerability is applied on the obtained results of separable convolution (method 2) between the
48x48 image and the Gaussian masks of 9x1 and 1x9. For applying steerability, a steerable

Gaussian mask is derived using equation (9) and decimation factor using the equation (10).

The derived steerable Gaussian masks of 7x1 and 1x7 for mean =0, ox = 3, oy = 5, Normalizing

factor N = 0.001and decimation factor D = 3 are shown below:-

8 33 76 100 76 33 8

Table 5.14: Horizontal Gaussian Mask with Mean =0, 6x= 3, 6y=5, N = 0.001

33

76

100

76

33

Table 5.15: Vertical Gaussian Mask with Mean = 0, ox=3, o,=5, N =0.001
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In the steerable concept, we access pixels in different directions depending on the decimation
factor. Then, the pixels are multiplied with the weights of Gaussian mask and finally given to
adder to obtain final steerable results in a particular direction. For example, the decimation factor
used here is D = 3. The pixels are accessed in different directions such as horizontal, vertical,
diagonal and etc which are at a distance of 3 from each other and this is continued till the end of
the image. The final results obtained in each particular direction are our required steerable
results. The block diagram representation of implementing steerable concept on the results of

separable convolution method 2 in horizontal and vertical direction is shown below:-

Separable SC results stored
convolution (SC) in BE.AMI
results using >
method 2
L 4 b 4
SC results read SC results read

controller in horizontal controller in vertical

direction direction

b Y

Figure 5.12: Block Diagram of Steerable Implementation

Pixel and Mask
Controller

Pixel and Mask
Controller

Multiplier & Adder

Multiplier & Adder

Steerable SC Eesult
in Horizontal

Direction

Steerable SC Fesult
in Vertical Direction
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A complete schematic diagram of steerable implementation on 48x48 image using Gaussian

mask of 7x1 and 1x7 in horizontal, vertical and diagonal directions is shown below:-
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Figure 5.13: Schematic Diagram of Steerable Implementation
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The design summary of steerable implementation on 48%48 image using Gaussian mask of 7x1

and 1x7 in horizontal, vertical and diagonal directions is obtained for a Xilinx Virtex4 shown

below:-

Device Utilization Summary (estimated values) [-]
Logic Utilization Used Available Utilization
Number of Slices 36358 49152 73%
Number of Slice Flip Flops 24868 98304 25%
Number of 4 input LUTs 68079 98304 69%
Number of bonded IOBs 236 768 30%
Number of FIFO16/RAMB16s 24 240 10%
Number of GCLKs 1 32 3%

Table 5.16: Device Utilization summary of steerable implementation on a virtex4 board.

Due to limited number of resources on the target device Xilinx Virtex 2 pro, device utilization
summary of steerable implementation is obtained for Xilinx Virtex 4 board which has more
number of resources. From the obtained simulation results, the performance of implementing
steerable concept on a 48x48 image and 1x7, 7x1 Gaussian mask in horizontal, vertical and

diagonal directions is achieved in 2 clocks per pixel.
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CHAPTER 6

Conclusions & Future Work

6.1 Summary & Conclusions

The following summary and conclusions were drawn based on implementation and

experimentation:-

1. Three different techniques of convolution are developed and an assessment of these
methods is prepared by considering device resource utilization and performance in
terms of clocks per pixel.

2. The second separable implementation presented in this thesis requires the smallest
number of clock cycles per pixels compared to the other implementations.

3. The concept of steerability is applied in horizontal, vertical and diagonal directions on
a 48x48 smoothed image. The smoothed image is obtained by convolving the original
image 48x48 with 1x9 & 9x1 Gaussian masks. Three 7x1 Gaussian masks were used
for the steerable outputs, which are acquired by convolving original using Gaussian
mask of 7x1. The steerable filtering technique is synthesized and its effectiveness is
confirmed using simulation results.

4. Due to the limitations of target device, Xilinx Virtex 2 Pro board, and software issues
or bugs related to ISE 10.3, the separable convolution using method 2 is put into
operation on the target device for smaller 1x3 and 3x1 Gaussian masks and the input

image of 48x48.
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6.2 Limitations

The following limitations are listed below:-
1. The target device Virtexll Pro is not supported for implementation by newer versions
of Xilinx ISE Design Suite Software (11 and higher versions).
2. The previous version i.e. ISE 10.3 has software bugs which does not provide proper

simulation and synthesis results when a large number of multipliers are used.

6.3 Future Work

The following work has to be performed in order to improve the efficiency of hardware
implementation of steerability concept.
1. An efficient way of accessing image pixels along different directions from block RAM in
less number of clock cycles.
2. Exploring an efficient way of representing image and mask pixels in less number of bits.
3. Efficient methods of dropping off the unused most significant bits before and after the

multiplier or adder stage thereby reducing resource utilization of multipliers.

4. Coding efficiently to improve parallelism and reducing longest path delays to improve

pipelining.
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Appendix

2D Convolution Method VHDL Source Files

-- filename: dualportram_image_controller.vhd

-- author: Arjun Joginipelly

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity dualportram_image_controller is
Port (clk_in:in STD_LOGIC;

douta:in STD_LOGIC_VECTOR (15 downto 0);

addra : out STD_LOGIC_VECTOR (5 downto 0);

dina:out STD_LOGIC_VECTOR (15 downto 0);

wea : out STD_LOGIC;

ena:out STD_LOGIC;
p0 : out std_logic_vector (15 downto 0);
pl:out std logic_vector (15 downto 0);
p2 : out std logic_vector (15 downto 0);
p3:out std logic_vector (15 downto 0);
p4 : out std logic_vector (15 downto 0);
p5 : out std logic_vector (15 downto 0);
p6 : out std logic_vector (15 downto 0);
p7 :out std_logic_vector (15 downto 0);
p8 : out std_logic_vector (15 downto 0);

mO : out std_logic_vector (15 downto 0);

ml : out std_logic_vector (15 downto 0);

m2 : out std_logic_vector (15 downto 0);

m3 : out std_logic_vector (15 downto 0);

m4 : out std_logic_vector (15 downto 0);

m5 : out std_logic_vector (15 downto 0);

mé : out std_logic_vector (15 downto 0);

m7 : out std_logic_vector (15 downto 0);

m8 : out std_logic_vector (15 downto 0);
clk_out:out STD_LOGIC);
end dualportram_image_controller;

architecture Behavioral of dualportram_image_controller is
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type state_reg_type is (initialstate,statel,state2,state3,state4,
stateb,state6,state7,state8,state9, halt);
signal sreg:state_reg_type:=initialstate;

signal acount:std_logic_vector(5 downto 0):="000000";
signal addra_sig:std_logic_vector(5 downto 0):="000000";
signal data_present:std_logic:='0";

signal pO_sig:std_logic_vector(15 downto 0):=(others=>'0");
signal p1_sig:std_logic_vector(15 downto 0):=(others=>'0");
signal p2_sig:std_logic_vector(15 downto 0):=(others=>'0");
signal p3_sig:std_logic_vector(15 downto 0):=(others=>'0");
signal p4_sig:std_logic_vector(15 downto 0):=(others=>'0");
signal p5_sig:std_logic_vector(15 downto 0):=(others=>'0");
signal p6_sig:std_logic_vector(15 downto 0):=(others=>'0";
signal p7_sig:std_logic_vector(15 downto 0):=(others=>'0");
signal p8_sig:std_logic_vector(15 downto 0):=(others=>'0");

begin
clk_out<=clk_in;

process(clk_in)

begin

if(clk_in'event and clk_in<='0") then

case sreg is
when initialstate=> wea<="0";
ena<='1"

sreg<=statel,

when statel=> data_present<="'0";
p0_sig<=douta;
addra_sig<=addra_sig+1;
sreg<=state2;

when state2=> pl_sig<=douta;
addra_sig<=addra_sig+1;
sreg<=state3;

when state3=> p2_sig<=douta;
addra_sig<=addra_sig+5;

sreg<=state4,

when state4=> p3_sig<=douta;
addra_sig<=addra_sig+1;
sreg<=state5;

when state5=> p4_sig<=douta;
addra_sig<=addra_sig+1;
sreg<=state6;

when state6=> p5_sig<=douta;
addra_sig<=addra_sig+5;
sreg<=state7,

when state7=> p6_sig<=douta;
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end if;

end process;

process(data_present)
begin

if(data_present'event and data_present="1") then

end if;
end process;

addra<=addra_sig;
m0<=x"0064";

ml<=x"003D";

m2<=x"000E";

m3<=x"003D";
m4<=x"0025";
mb5<=x"0008";
m6<=x"000E";
m7<=x"0008";
m8<=x"0002";

end Behavioral;

when state8=> p7_sig<=douta;

when state9=> p8_sig<=douta;

addra_sig<=acount;

when halt=> wea<='0";

end case;

p0<=p0_sig;
pl<=pl_sig;
p2<=p2_sig;
p3<=p3_sig;
p4<=p4_sig;
p5<=p5_sig;
p6<=p6_sig;
p7<=p7_sig;
p8<=p8_sig;
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addra_sig<=addra_sig+1;
acount<=acount+1;
sreg<=state8;

addra_sig<=addra_sig+1;
sreg<=state9;

data_present<='1";
if(acount=50) then
sreg<=halt;
else
sreg<=statel,
end if;

ena<='0";



-- filename: multiplier.vhd

-- author: Arjun Joginipelly

LIBRARY ieee;
USE ieee.std_logic 1164.ALL;
-- synthesis translate_off
Library XilinxCoreL.ib;
-- synthesis translate_on
ENTITY multiplier IS
port (
clk: IN std_logic;
a: IN std_logic_ VECTOR(15 downto 0);
b: IN std_logic VECTOR(15 downto 0);

ce: IN std_logic;
p: OUT std_logic VECTOR(31 downto 0));
END multiplier;

ARCHITECTURE multiplier_a OF multiplier IS
-- synthesis translate_off
component wrapped_multiplier
port (
clk: IN std_logic;
a: IN std_logic_ VECTOR(15 downto 0);
b: IN std_logic VECTOR(15 downto 0);
ce: IN std_logic;
p: OUT std_logic VECTOR(31 downto 0));
end component;

-- Configuration specification
for all : wrapped_multiplier use entity XilinxCoreLib.mult_gen v10_1(behavioral)
generic map(
c_a width => 16,
c_b_type=>1,
c_ce_overrides_sclr => 0,
c_has_sclr =>0,
c_round_pt =>0,
c_model_type => 0,
c_out_high => 31,
c_verbosity => 0,
c_mult_type => 1,
c_ccm_imp =>0,
c_latency => 1,
c_has _ce=>1,
c_has_zero_detect => 0,
¢_round_output => 0,
c_optimize_goal => 1,
c_xdevicefamily => "virtex2p",
c_a_type=>1,
c_out_low => 0,
c_b_width => 16,
c_b_value =>"10000001");
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-- synthesis translate_on
BEGIN
-- synthesis translate_off
U0 : wrapped_multiplier
port map (
clk => clk,
a=>a,
b =>b,
ce => Ce,
p=>p);
-- synthesis translate_on

END multiplier_a;

-- filename: adder.vhd

-- author: Arjun Joginipelly

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity adder_32 is
Port (clk_in:in STD_LOGIC;

X0 :in STD_LOGIC_VECTOR (31 downto 0);
x1:in STD_LOGIC_VECTOR (31 downto 0);
X2 :in STD_LOGIC_VECTOR (31 downto 0);
x3:in STD_LOGIC_VECTOR (31 downto 0);
x4 :in STD_LOGIC_VECTOR (31 downto 0);
x5 :in STD_LOGIC_VECTOR (31 downto 0);
X6 :in STD_LOGIC_VECTOR (31 downto 0);
X7 :in STD_LOGIC_VECTOR (31 downto 0);
x8:in STD_LOGIC_VECTOR (31 downto 0);
genc_result : out STD_LOGIC_VECTOR (33 downto 0));

end adder_32;

architecture Behavioral of adder_32 is

signal x0_sig:std_logic_vector(33 downto 0);
signal x1_sig:std_logic_vector(33 downto 0);
signal x2_sig:std_logic_vector(33 downto 0);
signal x3_sig:std_logic_vector(33 downto 0);
signal x4_sig:std_logic_vector(33 downto 0);
signal x5_sig:std_logic_vector(33 downto 0);
signal x6_sig:std_logic_vector(33 downto 0);
signal x7_sig:std_logic_vector(33 downto 0);
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signal x8_sig:std_logic_vector(33 downto 0);

begin
process(clk_in,x0,x1,x2,x3,x4,x5,x6,x7,x8)
begin
x0_sig<="00" & x0;
x1_sig<="00" & X1,
x2_sig<="00" & X2;
x3_sig<="00" & x3;
x4_sig<="00" & x4;
x5_sig<="00" & X5;
x6_sig<="00" & X6;
X7_sig<="00" & X7;
x8_sig<="00" & X8;
genc_result<=x0_sig+x1_sig+x2_sig+x3_sig+x4_sig+x5_sig+x6_sig+x7_sig
+x8_sig;

end process;

end Behavioral;

-- filename: resultmodule.vhd

-- author: Arjun Joginipelly

library ieee;

use ieee.std_logic_1164.ALL;
use ieee.numeric_std.ALL,;
library UNISIM;

use UNISIM.Vcomponents.ALL;

entity resultmodule is
port ( ce :in  std_logic;
clk_in  :in std_logic;
genc_result : out std_logic_vector (33 downto 0));
end resultmodule;

architecture BEHAVIORAL of resultmodule is
signal XLXN_3  :std logic_vector (15 downto 0);
signal XLXN_6  :std logic_vector (15 downto 0);
signal XLXN_7  :std logic_vector (15 downto 0);
signal XLXN_8  :std logic_vector (15 downto 0);
signal XLXN_9  :std logic_vector (15 downto 0);
signal XLXN_10 :std_logic_vector (15 downto 0);
signal XLXN_11 :std_logic_vector (15 downto 0);
signal XLXN_12 :std_logic_vector (15 downto 0);
signal XLXN_13 :std_logic_vector (15 downto 0);
signal XLXN_14 :std_logic_vector (15 downto 0);
signal XLXN_15 :std_logic_vector (15 downto 0);
signal XLXN_16 :std_logic_vector (15 downto 0);
signal XLXN_17 :std_logic_vector (15 downto 0);
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signal XLXN_19
signal XLXN_20
signal XLXN_21
signal XLXN_22
signal XLXN_23
signal XLXN_39
signal XLXN_40
signal XLXN_41
signal XLXN_42
signal XLXN_43
signal XLXN_44
signal XLXN_45
signal XLXN_46
signal XLXN_47

:std_logic_vector (15 downto 0);
:std_logic_vector (15 downto 0);
:std_logic_vector (15 downto 0);
2 std_logic_vector (15 downto 0);
2 std_logic_vector (15 downto 0);
2 std_logic_vector (31 downto 0);
> std_logic_vector (31 downto 0);
2 std_logic_vector (31 downto 0);
2 std_logic_vector (31 downto 0);
:std_logic_vector (31 downto 0);
: std_logic_vector (31 downto 0);
: std_logic_vector (31 downto 0);
:std_logic_vector (31 downto 0);
:std_logic_vector (31 downto 0);

attribute box_type:string;
component topmodule

port (clk_in :in
p0 :out
pl :out
p2 :out
p3 :out
p4 :out
p5 :out
p6 :out
p7 :out
p8 :out
m0 :out
ml :out
m2 :out
m3 :out
m4  :out
m5 :out
mé :out
m7 :out
m8 :out

end component;

component multip

std_logic;
std_logic_vector (15 downto 0);
std_logic_vector (15 downto 0);
std_logic_vector (15 downto 0);
std_logic_vector (15 downto 0);
std_logic_vector (15 downto 0);
std_logic_vector (15 downto 0);
std_logic_vector (15 downto 0);
std_logic_vector (15 downto 0);
std_logic_vector (15 downto 0);
std_logic_vector (15 downto 0);
std_logic_vector (15 downto 0);
std_logic_vector (15 downto 0);
std_logic_vector (15 downto 0);
std_logic_vector (15 downto 0);
std_logic_vector (15 downto 0);
std_logic_vector (15 downto 0);
std_logic_vector (15 downto 0);
std_logic_vector (15 downto 0));

lier

port (a :in std_logic_ vector (15 downto 0);
b :in std_logic_vector (15 downto 0);
clk:in std_logic;
ce :in std_logic;

p :out std logic vector (31 downto 0));

end component;

component adder_32

port (clk_in
x0 1in
x1 1in
X2 1in
X3 1in
x4 1in
x5 1in
X6 1in
X7 1in
x8 1in

1in  std_logic;
std_logic_vector (31 downto 0);
std_logic_vector (31 downto 0);
std_logic_vector (31 downto 0);
std_logic_vector (31 downto 0);
std_logic_vector (31 downto 0);
std_logic_vector (31 downto 0);
std_logic_vector (31 downto 0);
std_logic_vector (31 downto 0);
std_logic_vector (31 downto 0);
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genc_result ; out std_logic_vector (33 downto 0));
end component;
attribute box_type of multiplier : component is "black_box";

begin
XLXI_1 : topmodule
port map (clk_in=>clk_in,

mO(15 downto 0)=>XLXN_23(15 downto 0),
m1(15 downto 0)=>XLXN_22(15 downto 0),
m2(15 downto 0)=>XLXN_21(15 downto 0),
m3(15 downto 0)=>XLXN_20(15 downto 0),
m4(15 downto 0)=>XLXN_19(15 downto 0),
m5(15 downto 0)=>XLXN_17(15 downto 0),
m6(15 downto 0)=>XLXN_16(15 downto 0),
m7(15 downto 0)=>XLXN_15(15 downto 0),
m8(15 downto 0)=>XLXN_14(15 downto 0),
p0(15 downto 0)=>XLXN_3(15 downto 0),
p1(15 downto 0)=>XLXN_6(15 downto 0),
p2(15 downto 0)=>XLXN_7(15 downto 0),
p3(15 downto 0)=>XLXN_8(15 downto 0),
p4(15 downto 0)=>XLXN_9(15 downto 0),
p5(15 downto 0)=>XLXN_10(15 downto 0),
p6(15 downto 0)=>XLXN_11(15 downto 0),
p7(15 downto 0)=>XLXN_12(15 downto 0),
p8(15 downto 0)=>XLXN_13(15 downto 0));

XLXI_2 : multiplier
port map (a(15 downto 0)=>XLXN_3(15 downto 0),
b(15 downto 0)=>XLXN_14(15 downto 0),
ce=>ce,
clk=>clk_in,
p(31 downto 0)=>XLXN_39(31 downto 0));

XLXI_3 : multiplier
port map (a(15 downto 0)=>XLXN_6(15 downto 0),
b(15 downto 0)=>XLXN_15(15 downto 0),
ce=>ce,
clk=>clk_in,
p(31 downto 0)=>XLXN_40(31 downto 0));

XLXI_4 : multiplier
port map (a(15 downto 0)=>XLXN_7(15 downto 0),
b(15 downto 0)=>XLXN_16(15 downto 0),
ce=>ce,
clk=>clk_in,
p(31 downto 0)=>XLXN_41(31 downto 0));

XLXI_5 : multiplier
port map (a(15 downto 0)=>XLXN_8(15 downto 0),
b(15 downto 0)=>XLXN_17(15 downto 0),
ce=>ce,
clk=>clk _in,
p(31 downto 0)=>XLXN_42(31 downto 0));

XLXI_6 : multiplier
port map (a(15 downto 0)=>XLXN_9(15 downto 0),
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b(15 downto 0)=>XLXN_19(15 downto 0),
ce=>ce,

clk=>clk _in,

p(31 downto 0)=>XLXN_43(31 downto 0));

XLXI_7 : multiplier
port map (a(15 downto 0)=>XLXN_10(15 downto 0),
b(15 downto 0)=>XLXN_20(15 downto 0),
ce=>ce,
clk=>clk _in,
p(31 downto 0)=>XLXN_44(31 downto 0));

XLXI_8 : multiplier
port map (a(15 downto 0)=>XLXN_11(15 downto 0),
b(15 downto 0)=>XLXN_21(15 downto 0),
ce=>ce,
clk=>clk_in,
p(31 downto 0)=>XLXN_45(31 downto 0));

XLXI_9 : multiplier
port map (a(15 downto 0)=>XLXN_12(15 downto 0),
b(15 downto 0)=>XLXN_22(15 downto 0),
ce=>ce,
clk=>clk_in,
p(31 downto 0)=>XLXN_46(31 downto 0));

XLXI_10 : multiplier
port map (a(15 downto 0)=>XLXN_13(15 downto 0),
b(15 downto 0)=>XLXN_23(15 downto 0),
ce=>ce,
clk=>clk_in,
p(31 downto 0)=>XLXN_47(31 downto 0));

XLXI_11 : adder_32
port map (clk_in=>clk_in,
x0(31 downto 0)=>XLXN_39(31 downto 0),
x1(31 downto 0)=>XLXN_40(31 downto 0),
x2(31 downto 0)=>XLXN_41(31 downto 0),
x3(31 downto 0)=>XLXN_42(31 downto 0),
x4(31 downto 0)=>XLXN_43(31 downto 0),
x5(31 downto 0)=>XLXN_44(31 downto 0),
x6(31 downto 0)=>XLXN_45(31 downto 0),
X7(31 downto 0)=>XLXN_46(31 downto 0),
x8(31 downto 0)=>XLXN_47(31 downto 0),

genc_result(33 downto 0)=>genc_result(33 downto 0));

end BEHAVIORAL;
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Separable Convolution Method 1 VHDL Source Files

-- filename: customfifol.vhd

-- author: Arjun Joginipelly

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity customfifol is
Port (clk_in:in STD_LOGIC;

dout:in STD_LOGIC_VECTOR (15 downto 0);

i0:out std_logic_vector(15 downto 0);
i1:out std_logic_vector(15 downto 0);
i2:out std_logic_vector(15 downto 0);
vmO:out std_logic_vector (15 downto 0);
vm1l:out std_logic_vector (15 downto 0);
vm2:out std_logic_vector (15 downto 0));

end customfifol;

architecture Behavioral of customfifol is

signal i0_sig:std_logic_vector(15 downto 0):="0000000000000000";
signal i1_sig:std_logic_vector(15 downto 0):="0000000000000000";
signal i2_sig:std_logic_vector(15 downto 0):="0000000000000000";

begin
process(clk_in)
begin
if(clk_in'event and clk_in="0") then
i0_sig<=il_sig;
i1_sig<=i2_sig;
i2_sig<=dout;
end if;
end process;

i0<=i0_sig;
il<=il_sig;
i2<=i2_sig;
vmO0<=x"0064";
vml<=x"003D";
vm2<=x"000E";

end Behavioral;
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-- filename: image_controller.vhd

-- author: Arjun Joginipelly

entity image_controller is
Port ( clk_in:in STD_LOGIC;
douta :in STD_LOGIC_VECTOR (15 downto 0);
clk_out:out STD_LOGIC;
dina: out STD_LOGIC_VECTOR (15 downto 0);
wea : out STD_LOGIC,;
ena:out STD_LOGIC;
addra : out STD_LOGIC_VECTOR (7 downto 0);
dout: out STD_LOGIC_VECTOR (15 downto 0));
end image_controller;

architecture Behavioral of image_controller is

signal addra_sig:std_logic_vector(7 downto 0):="00000000";
signal acount:std_logic_vector(7 downto 0):="00000000";
signal rcount:std_logic_vector(7 downto 0):="00000000";
signal ccount:std_logic_vector(7 downto 0):="00000000";

type state_reg_type is (initialstate,rd_state,halt);
signal sreg:state_reg_type:=initialstate;
begin
clk_out<=clk_in;
process(clk_in)

begin

if(clk_in'event and clk_in<='0") then
case sreg is

when initialstate=> wea<='0";

when rd_state=> addra_sig<=acount;

sreg<=rd_state;
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end if;

ena<='1"
ccount<="00000001";
sreg<=rd_state;

rcount<=rcount+1;

acount<=acount+7;

if(rcount=6) then
rcount<="00000000";
ccount<=ccount+1;
acount<=ccount;
if(ccount=7) then

sreg<=halt;

else

end if;
else
sreg<=rd_state;



when halt=> wea<='0";
ena<='0";

end case;
end if;
end process;
addra<=addra_sig;
dout<=douta;

end Behavioral;

-- filename: topmodule3.vhd

-- author: Arjun Joginipelly

library ieee;

use ieee.std_logic_1164.ALL;
use ieee.numeric_std.ALL;
library UNISIM;

use UNISIM.Vcomponents.ALL;

entity topmodule3 is
port (clk_in  :in std_logic;
finalresult : out std_logic_vector (69 downto 0));
end topmodule3;

architecture BEHAVIORAL of topmodule3 is
signal XLXN_3  :std logic_vector (33 downto 0);
signal XLXN_5  :std logic_vector (67 downto 0);
signal XLXN_6  :std logic_vector (67 downto 0);
signal XLXN_7  :std logic_vector (67 downto 0);
component topmodule2
port (clk_in:in std_logic;

douta : out std_logic_vector (33 downto 0));

end component;

component customfifo2
port (clk_in:in std_logic;
douta :in std_logic_vector (33 downto 0);
fO :out std_logic_vector (67 downto 0);
fl  :out std_logic_vector (67 downto 0);
f2 :out std_logic_vector (67 downto 0));
end component;

component adder_68
port (clk_in  :in std_logic;

fo »in  std_logic_vector (67 downto 0);
fl »in  std_logic_vector (67 downto 0);
2 »in  std_logic_vector (67 downto 0);
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finalresult : out std logic_vector (69 downto 0));
end component;

begin
XLXI_1 : topmodule2
port map (clk_in=>clk_in,
douta(33 downto 0)=>XLXN_3(33 downto 0));

XLXI_2 : customfifo2
port map (clk_in=>clk_in,
douta(33 downto 0)=>XLXN_3(33 downto 0),
fO(67 downto 0)=>XLXN_5(67 downto 0),
f1(67 downto 0)=>XLXN_6(67 downto 0),
f2(67 downto 0)=>XLXN_7(67 downto 0));

XLXI_3: adder_68
port map (clk_in=>clk_in,
fO(67 downto 0)=>XLXN_5(67 downto 0),
f1(67 downto 0)=>XLXN_6(67 downto 0),
f2(67 downto 0)=>XLXN_7(67 downto 0),
finalresult(69 downto 0)=>finalresult(69 downto 0));

end BEHAVIORAL;

Separable Convolution Method 2 VHDL Source Files

-- filename: finalmodule.vhd

-- author: Arjun Joginipelly

library ieee;

use ieee.std_logic_1164.ALL;
use ieee.numeric_std.ALL,;
library UNISIM;

use UNISIM.Vcomponents.ALL,;

entity finalmodule is
port ( ce 1in std_logic;
clk_in :in std_logic;
hc_result : out std_logic_vector (37 downto 0));
end finalmodule;

architecture BEHAVIORAL of finalmodule is
signal XLXN_4 :std_logic_vector (17 downto 0);
signal XLXN_5 :std_logic_vector (17 downto 0);
signal XLXN_6 :std_logic_vector (35 downto 0);
signal XLXN_7 :std_logic_vector (17 downto 0);
signal XLXN_8 :std_logic_vector (17 downto 0);
signal XLXN_9 :std_logic_vector (17 downto 0);
signal XLXN_10 :std_logic_vector (17 downto 0);
signal XLXN_11 :std_logic_vector (17 downto 0);
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signal XLXN_12 :std_logic_vector (17 downto 0);
signal XLXN_13 :std_logic_vector (17 downto 0);
signal XLXN_14 :std_logic_vector (17 downto 0);
signal XLXN_15 :std_logic_vector (17 downto 0);
signal XLXN_16 :std_logic_vector (17 downto 0);
signal XLXN_17 :std_logic_vector (17 downto 0);
signal XLXN_18 :std_logic_vector (17 downto 0);
signal XLXN_19 :std_logic_vector (17 downto 0);
signal XLXN_20 :std_logic_vector (17 downto 0);
signal XLXN_21 :std_logic_vector (17 downto 0);
signal XLXN_22 :std_logic_vector (17 downto 0);
signal XLXN_23 :std_logic_vector (35 downto 0);
signal XLXN_24 :std_logic_vector (35 downto 0);
signal XLXN_25 :std_logic_vector (35 downto 0);
signal XLXN_26 : std_logic_vector (35 downto 0);
signal XLXN_27 :std_logic_vector (35 downto 0);
signal XLXN_28 :std_logic_vector (35 downto 0);
signal XLXN_29 :std_logic_vector (35 downto 0);
signal XLXN_30 :std_logic_vector (35 downto 0);
component topmodule2
port (clk_in:in std_logic;
ce :in std_logic;
hm8 :out std_logic_vector (17 downto 0);
hm7 :out std_logic_vector (17 downto 0);
hm6 :out std_logic_vector (17 downto 0);
hm5 :out std_logic_vector (17 downto 0);
hm4 :out std_logic_vector (17 downto 0);
hm3 :out std_logic_vector (17 downto 0);
hm2 :out std_logic_vector (17 downto 0);
hml :out std_logic_vector (17 downto 0);
hm0 :out std_logic_vector (17 downto 0);
i08 :out std logic_vector (17 downto 0);
i07 :out std_logic_vector (17 downto 0);
i06 :out std_logic_vector (17 downto 0);
i05 :out std_logic_vector (17 downto 0);
i04 :out std_logic_vector (17 downto 0);
i03 :out std_logic_vector (17 downto 0);
i02 :out std_logic_vector (17 downto 0);
i01 :out std logic vector (17 downto 0);
i00 :out std_logic_vector (17 downto 0));
end component;

component adder_36
port (clk_in :in std_logic;

m00  :in std_logic_vector (35 downto 0);
m01l  :in std_logic_vector (35 downto 0);
mQ02 »in  std_logic_vector (35 downto 0);
m03  :in std_logic_vector (35 downto 0);
m04  :in std_logic_vector (35 downto 0);
m05  :in std_logic_vector (35 downto 0);
m06  :in std_logic_vector (35 downto 0);
mQ7 ;in std_logic_vector (35 downto 0);
m08  :in std_logic_vector (35 downto 0);

hc_result : out std_logic_vector (37 downto 0));
end component;
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component smultipliers
port (a :in std logic vector (17 downto 0);
b :in std_logic_vector (17 downto 0);
clk:in std_logic;
ce :in std_logic;
p :out std_logic_vector (35 downto 0));
end component;

begin
XLXI_1 : topmodule2
port map (ce=>ce,
clk_in=>clk_in,
hmO(17 downto 0)=>XLXN_22(17 downto 0),
hm1(17 downto 0)=>XLXN_20(17 downto 0),
hm2(17 downto 0)=>XLXN_18(17 downto 0),
hm3(17 downto 0)=>XLXN_16(17 downto 0),
hm4(17 downto 0)=>XLXN_14(17 downto 0),
hm5(17 downto 0)=>XLXN_12(17 downto 0),
hm6(17 downto 0)=>XLXN_8(17 downto 0),
hm7(17 downto 0)=>XLXN_7(17 downto 0),
hm8(17 downto 0)=>XLXN_5(17 downto 0),
i00(17 downto 0)=>XLXN_4(17 downto 0),
i01(17 downto 0)=>XLXN_9(17 downto 0),
i02(17 downto 0)=>XLXN_10(17 downto 0),
i03(17 downto 0)=>XLXN_11(17 downto 0),
i04(17 downto 0)=>XLXN_13(17 downto 0),
i05(17 downto 0)=>XLXN_15(17 downto 0),
i06(17 downto 0)=>XLXN_17(17 downto 0),
i07(17 downto 0)=>XLXN_19(17 downto 0),
i08(17 downto 0)=>XLXN_21(17 downto 0));

XLXI_2 : adder_36
port map (clk_in=>clk_in,

mO00(35 downto 0)=>XLXN_6(35 downto 0),
m01(35 downto 0)=>XLXN_23(35 downto 0),
m02(35 downto 0)=>XLXN_24(35 downto 0),
m03(35 downto 0)=>XLXN_25(35 downto 0),
mO04(35 downto 0)=>XLXN_26(35 downto 0),
m05(35 downto 0)=>XLXN_27(35 downto 0),
mO06(35 downto 0)=>XLXN_28(35 downto 0),
m07(35 downto 0)=>XLXN_29(35 downto 0),
m08(35 downto 0)=>XLXN_30(35 downto 0),
hc_result(37 downto 0)=>hc_result(37 downto 0));

XLXI_3 : smultipliers
port map (a(17 downto 0)=>XLXN_4(17 downto 0),
b(17 downto 0)=>XLXN_5(17 downto 0),
ce=>ce,
clk=>clk_in,
p(35 downto 0)=>XLXN_6(35 downto 0));

XLXI_4 : smultipliers
port map (a(17 downto 0)=>XLXN_9(17 downto 0),
b(17 downto 0)=>XLXN_7(17 downto 0),
ce=>ce,
clk=>clk_in,
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p(35 downto 0)=>XLXN_23(35 downto 0));

XLXI_5 : smultipliers
port map (a(17 downto 0)=>XLXN_10(17 downto 0),
b(17 downto 0)=>XLXN_8(17 downto 0),
ce=>ce,
clk=>clk_in,
p(35 downto 0)=>XLXN_24(35 downto 0));

XLXI_6 : smultipliers
port map (a(17 downto 0)=>XLXN_11(17 downto 0),
b(17 downto 0)=>XLXN_12(17 downto 0),
ce=>ce,
clk=>clk _in,
p(35 downto 0)=>XLXN_25(35 downto 0));

XLXI_7 : smultipliers
port map (a(17 downto 0)=>XLXN_13(17 downto 0),
b(17 downto 0)=>XLXN_14(17 downto 0),
ce=>ce,
clk=>clk_in,
p(35 downto 0)=>XLXN_26(35 downto 0));

XLXI_8 : smultipliers
port map (a(17 downto 0)=>XLXN_15(17 downto 0),
b(17 downto 0)=>XLXN_16(17 downto 0),
ce=>ce,
clk=>clk_in,
p(35 downto 0)=>XLXN_27(35 downto 0));

XLXI_9 : smultipliers
port map (a(17 downto 0)=>XLXN_17(17 downto 0),
b(17 downto 0)=>XLXN_18(17 downto 0),
ce=>ce,
clk=>clk_in,
p(35 downto 0)=>XLXN_28(35 downto 0));

XLXI_10 : smultipliers
port map (a(17 downto 0)=>XLXN_19(17 downto 0),
b(17 downto 0)=>XLXN_20(17 downto 0),
ce=>ce,
clk=>clk_in,
p(35 downto 0)=>XLXN_29(35 downto 0));

XLXI_11 : smultipliers
port map (a(17 downto 0)=>XLXN_21(17 downto 0),
b(17 downto 0)=>XLXN_22(17 downto 0),
ce=>ce,
clk=>clk_in,
p(35 downto 0)=>XLXN_30(35 downto 0));

end BEHAVIORAL;
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Steerable Implementation VHDL Source Files

-- filename: her_wr_vert _rd_horz_controller.vhd

-- author: Arjun Joginipelly

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
use ieee.std_logic_unsigned.all;

use ieee.std_logic_arith.all;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity her_wr_vert_rd_horz_controller is
Port (clk_in:in STD_LOGIC;

hc_result:in STD_LOGIC_VECTOR (37 downto 0);
addra : out STD_LOGIC_VECTOR (11 downto 0);
ena:out STD_LOGIC;
dina:out STD_LOGIC_VECTOR (37 downto 0);
clk_out:out STD_LOGIC;
wea : out STD_LOGIC);

end her_wr_vert_rd_horz_controller;

architecture Behavioral of hcr_wr_vert_rd_horz_controller is

type state_reg_type is (vwr_initialstate,vwr_dummystate,vwr_state,
hrd_initialstate,hrd_state,halt);
signal sreg:state_reg_type:=vwr_initialstate;

sighal dummycount:std_logic_vector(8 downto 0):="000000000";
signal acount:std_logic_vector(11 downto 0):=(others=>'0");
signal ccount:std_logic_vector(11 downto 0):=(others=>'0");
signal rcount:std_logic_vector(11 downto 0):=(others=>'0");
signal addra_sig:std_logic_vector(11 downto 0):=(others=>'0");

--signal dacount:std_logic_vector(11 downto 0):=(others=>'0");

begin
clk_out<=clk_in;
process(clk_in)
begin
if(clk_in'event and clk_in="1") then
case sreg is
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then

when vwr_initialstate=> wea<='1";
ena<='1"

ccount<="000000000001";

sreg<=vwr_dummystate;

when vwr_dummystate=> dummycount<=dummycount+1;

if(dummycount=445) then
dummycount<="000000000";

sreg<=vwr_state;

sreg<=vwr_dummystate;

when vwr_state=> addra_sig<=acount;

rcount<="000000000000";

ccount<=ccount+1;

sreg<=hrd_initialstate;

sreg<=vwr_state;

when hrd_initialstate=>  wea<='0";
ena<="1";
acount<="000000000000";
addra_sig<="000000000000";
ccount<="000000000000";
rcount<="000000000001";

sreg<=hrd_state;

when hrd_state=> addra_sig<=acount;
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else

end if;

dina<=hc_result;
rcount<=rcount+1;
acount<=acount+48;
if(rcount=47) then

else

end if;

acount<=ccount;
if(ccount=48)

else

end if;

sreg<=vwr_state;



acount<=acount+3;
if(acount=2304) then
sreg<=halt;
else
sreg<=hrd_state;
end if;

sreg<=hrd_state;

when halt=> wea<='0";
ena<='0";

end case;
end if;
end process;
addra<=addra_sig;

end Behavioral;

-- filename: diagonal_rd_controller.vhd

-- author: Arjun Joginipelly

entity diagonal_rd_controller is
Port (clk_in: in STD_LOGIC;
douta: in STD_LOGIC_vector(7 downto 0);

clk_out: out std_logic;
wea: out std_logic;
ena: out std_logic;
addra: out std_logic_vector(7 downto 0);
dina: out std_logic_vector( 7 downto 0);
dout: out std_logic_vector ( 7 downto 0) );

end diagonal_rd_controller;

architecture Behavioral of diagonal_rd_controller is

type state_reg_type is (initialstate,diagonalrdstate, halt);
signal sreg:state_reg_type:=initialstate;

signal acount:std_logic_vector( 7 downto 0):="00000000";
signal dacount:std_logic_vector(7 downto 0):="00000000";---dummycount;
signal addra_sig:std_logic_vector(7 downto 0):="00000000";

begin

clk_out<=clk_in;
process(clk_in)
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begin
if(clk_in'event and clk_in='0") then

case sreg is

when initialstate=> wea<='0";
ena<='1";

acount<="00000000";
dacount<="00000000";

sreg<=diagonalrdstate;
when diagonalrdstate=> addra_sig<=dacount;
dacount<=dacount+98;
if(dacount>=1960) then
if(acount<39) then
dacount<=acount+1;
acount<=acount+1,

end if;

if(acount=39) then
dacount<=acount+9;
acount<=acount+9;

end if;

if(acount>39) then
dacount<=acount+48;
acount<=acount+48;

end if;

if(acount>1920) then
sreg<=halt;
else

sreg<=diagonalrdstate;

end if;
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else
sreg<=diagonalrdstate;
end if;

when halt=> wea<='0";
ena<='0";

end case;
end if;
end process;
addra<=addra_sig;
dout<=douta;

end Behavioral;

Matlab M Files

%project? folder results verification with matlab

clc,clear all;

image=[12345;678910;1112 13 14 15;16 17 18 19 20;21 22 23 24 25];
gaussianmask=[100 61 14; 61 37 8 ; 14 8 2];

gc=1/628;

c=conv2(image,gaussianmask, full’);% required result to verify with vhdl simulation

%project8 folder results verification with matlab

clc,clear all;

image=[1 2 3 4 5 0 0;6 78 9 10 0 0;11 12 13 14 15 0 0;16 17 18 19 20 0 0;21
22 23 24 25 0 0;0 0 00O0O0O0;,000O0O0O0COQO01;

vgmask = [100; 61; 14];

constant=1/628;

ve=conv2 (image, vgmask, "full'); %$%%%%%%%% required vertical convolution result
to verify with vhdl simulation

imagel=[1480,1655,1830,2005,2180,0,0;2355,2530,2705,2880,3055,0,0;3230,3405,3
580,3755,3930,0,0;1505,1580,1655,1730,1805,0,0;,294,308,322,336,350,0,01;
hgmask=[100 61 14];

hc=conv2 (vc,hgmask, 'full'); %%%% required horizantal convolution result to
verify with vhdl simulation

hcl=conv2 (imagel, hgmask, "full'");

resultinhex=dec2hex (hcl"', 70);
resultinbin=dec2bin (hcl"', 70);
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%$In this project you generate a coe file for an image of 40*40 inorder to
%$load in to Block RAM of FPGA. Also final results are obtained for
verification

clear all;
clc;
I1 = imread('8.7pg'");
I1 = rgb2gray(Il);

I2 = zeros(40,8);

I3 = zeros(8,48);

hc = horzcat (I1,I2);
vc = vertcat (hc,I3);
final = vc;

[rows,coloumns]= size(final);

fp = fopen('projectl2file.coe.txt','w');
for i=l:rows
for j=l:coloumns
fprintf (fp, "%s, ',dec2hex(final(i,]j),8));
end
end
fclose (fp);

vgmask=[100;61;14;1
hgmask=[100 61 14 1

70;0;0;0;07];

00O0O0O01;
vcr=conv?2 (final, vgmask, 'full');
hcr=conv2 (vcr, hgmask, "full');

hcinhex=dec2hex (hcr, 38) ;
% steerable convolution results in horizantal,vertical,diagonal and
% reversediagonal directions.

hdmask=[8 33 76 100 76 33 8];
vdmask=[8;33;76;100;76;33;81];
hsteer result=conv2 (hcr,hdmask, 'full');
vsteer result=conv2 (hcr,vdmask, 'full');
dsteer result=conv2 (hcr,vdmask, 'full'")

rdsteer result=conv2 (hcr,vdmask, "full'

);
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“.coe” File Format

memory _initialization_radix=16;
memory_initialization_vector=00000002, 00000001, 00000001, 00000001, 00000001, 00000001, 00000001
00000001, 00000001, 00000001, 00000001, 00000001, 00000001, 00000002, 00000002, 00000001, 00000001,
00000002, 00000003, 00000003, 00000002, 00000002, 00000002, 00000001, 00000001, 00000001, 00000001,
00000001, 00000000, 00000000, 00000001, 00000001, 00000001, 00000002, 00000000, 00000000, 00000000,
00000000, 00000001, 00000002, 00000000, 00000000, 00000000, 00000000, 00000000, 00000000, 00000000,
00000000, 00000001, 00000001, 00000001, 00000001, 00000002, 00000004, 00000003, 00000003, 00000004,
00000005, 00000004, 00000004, 00000003, 00000003, 00000004, 00000005, 00000003, 00000003, 00000003,
00000003, 00000003, 00000003, 00000002, 00000002, 00000005, 00000004, 00000004, 00000003, 00000002,
00000002, 00000002, 00000002, 00000003, 00000005, 00000002, 00000000, 00000003, 00000001, 00000001,
00000001, 00000000, 00000000, 00000000, 00000000, 00000000, 00000000, 00000000, 00000000, 00000001,
00000001, 00000005, 00000009, 0000000C, 0000000D, 0000000D, 0000000D, 0000000F, 0000000E, 0000000E,
0000000E, 0000000D, 00000008, 0000000D, 0000000F, 0000000F, 0000000F, 0000000E, 0000000E, 0000000D,
0000000D, 0000000D, 0000000D, 0000000C, 0000000C, 0000000C, 0000000D, 0000000D, 0000000D,
0000000D, 0000000D, 0000000A, 0000000C, 0000000A, 00000008, 0000000A, 00000006, 00000001, 00000001,
00000000, 00000000, 00000000, 00000000, 00000000, 00000000, 00000000, 00000000, 00000001, 00000004,
0000000A, 00000011, 00000015, 00000017, 00000018, 00000017, 00000017, 00000018, 0000001A, 0000001D,
0000001D, 0000001C, 0000001B, 0000001C, 0000001B, 0000001B, 0000001B, 0000001B, 0000001B, 0000001A,
0000001A, 00000019, 00000017, 00000017, 00000018, 00000019, 00000019, 00000019, 00000019, 00000018,
00000013, 00000016, 00000013, 00000012, 00000013, 0000000C, 00000003, 00000001, 00000000, 00000000,
00000000, 00000000, 00000000, 00000000, 00000000, 00000000, 00000001, 00000004, 0000000B, 00000013,
00000019, 0000001C, 0000001D, 0000001D, 00000021, 00000023, 00000027, 0000002C, 00000030, 00000030
00000028, 00000026, 00000021, 00000022, 00000024, 00000025, 00000025, 00000024, 00000022, 00000021
00000022, 00000021, 00000021, 00000020, 0000001F, 0000001D, 0000001C, 0000001C, 0000001C, 0000001D,
0000001A, 00000018, 00000019, 00000011, 00000005, 00000001, 00000000, 00000000, 00000000, 00000000,
00000000, 00000000, 00000000, 00000000, 00000001, 00000004, 00000008, 00000014, 0000001B, 00000020,
00000023, 00000023, 0000002C, 00000030, 00000034, 00000039, 00000043, 00000048, 00000040, 00000032
0000002D, 0000002E, 00000030, 00000031, 00000031, 0000002F, 0000002D, 0000002C, 00000027, 00000027
00000026, 00000025, 00000025, 00000025, 00000025, 00000025, 00000022, 00000022, 0000001D, 00000018,
0000001B, 00000012, 00000005, 00000001, 00000000, 00000000, 00000000, 00000000, 00000000, 00000000,
00000000, 00000000, 00000001, 00000005, 0000000D, 00000016, 0000001E, 00000025, 0000002A, 0000002C,
00000031, 00000036, 00000038, 0000003E, 0000004F, 0000005C, 00000052, 0000003E, 0000003B, 0000003B,
0000003A, 0000003A, 00000039, 00000038, 00000037, 00000036, 00000030, 0000002F, 0000002D, 00000028,
0000002A, 0000002B, 0000002B, 0000002C, 00000028, 00000026, 0000001F, 0000001C, 0000001C, 00000014
00000005, 00000002, 00000000, 00000000, 00000000, 00000000, 00000000, 00000000, 00000000, 00000000
00000001, 00000004, 0000000C, 00000015, 0000001F, 00000027, 0000002D, 00000030, 0000002C, 00000032,
00000034, 0000003A, 00000050, 00000064, 00000058, 00000043, 0000003F, 0000003E, 0000003B, 00000039,
00000038, 00000037, 00000037, 00000037, 0000003B, 00000039, 00000034, 0000002F, 0000002B, 00000028
00000027, 00000027, 0000002C, 00000029, 00000021, 0000001D, 0000001E, 00000015, 00000008, 00000002
00000000, 00000000, 00000000, 00000000, 00000000, 00000000, 00000000, 00000000, 00000001, 00000007
00000010, 00000018, 00000021, 0000002B, 00000033, 00000034, 00000030, 00000031, 00000035, 0000003F,
0000004D, 00000056, 00000052, 00000048, 00000041, 0000003A, 00000039, 0000003C, 0000003B, 0000003B,
0000003B, 00000039, 00000039, 0000003B, 0000003E, 0000003C, 00000035, 0000002E, 0000002D, 00000031
0000002C, 0000002F, 0000002A, 00000022, 0000001E, 00000014, 00000006, 00000002, 00000000, 00000000
00000000, 00000000, 00000000, 00000000, 00000000, 00000000, 00000001, 00000006, 0000000F, 00000019
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