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Abstract 

 

The growing importance of geospatial databases has made it essential to perform 

complex spatial queries efficiently. To achieve acceptable performance levels, database systems 

have been increasingly required to make use of parallelism. The spatial join is a computationally 

expensive operator. Efficient implementation of the join operator is, thus, desirable.  The work 

presented in this document attempts to improve the performance of spatial join queries by 

distributing the data set across several nodes of a cluster and executing queries across these 

nodes in parallel.  

 

This document discusses a new parallel algorithm that implements the spatial join in an 

efficient manner. This algorithm is compared to an existing parallel spatial-join algorithm, the 

clone join. Both algorithms have been implemented on a Beowulf cluster and compared using 

real datasets. An extensive experimental analysis reveals that the proposed algorithm exhibits 

superior performance both in declustering time as well as in the execution time of the join query. 
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Chapter 1 Introduction 
 

 

The use of geospatial data arises in many applications including Cartography, Computer 

Aided Design (CAD), Computer Vision, and Robotics to name but a few. Geospatial data sets 

are often large and are being constantly gathered by numerous satellites and other data collection 

devices.  In order for the data collected to be useful, it needs to be processed and analyzed.  This 

data is typically stored in a spatial database to facilitate processing and analysis.  However, due 

to the massive amount of data being stored, several problems can arise.  The ability to store and 

query this enormous amount of data is critical but may lead to performance degradation.  

Therefore, faster data retrieval and computation mechanisms are now required. 

 

Performance problems with large databases have been widely documented by researchers 

and several techniques [3, 4, 13, 15, 16, 17, 18, 20, 23, 25] have been devised to cope with this.  

Indeed, traditional database management architectures have difficulty meeting the I/O and 

compute performance levels needed to handle large volumes of geospatial data.  To achieve 

acceptable performance levels, database systems have been increasingly required to make use of 

Parallelism [8].  One form of parallelism involves the use of compute clusters. 

 

A cluster is simply a collection of compute nodes interconnected via some sort of 

network.  Clusters can improve the performance of geospatial queries by exploiting parallelism.  

The most popular type of compute clusters in use today is based on the Beowulf paradigm.  

Beowulf compute clusters are shared nothing machines in which all of the compute nodes, which 
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are called slave nodes, are isolated on a high-speed private network that is not directly visible to 

the outside world.  A single computer connected to the outside world (called the master node) 

lets a user login to the cluster and submit jobs for processing i.e. by spawning processes that will 

execute on the slave nodes.  Beowulf clusters help speedup program execution time, which is 

made possible by splitting a task into several sub-tasks that can run in parallel on the slave nodes.  

As it pertains to database architectures, many schemes have been developed to distribute data 

across several databases (nodes).  Also, there are many algorithms that have been researched to 

perform the Spatial Join operation.  These schemes should theoretically improve the execution 

time of geospatial queries by performing program tasks in parallel.  Several schemes and their 

implementation details are discussed in this document. 

 

The work presented in this document attempts to improve the performance of spatial 

queries by distributing the data set across several nodes of a cluster and executing queries across 

these nodes in parallel (in particular, the work is aimed at reducing the time required for Spatial 

Join Queries).  The rest of this thesis is organized as follows. Chapter 2 provides an overview of 

spatial databases and distributed spatial databases. Chapter 3 discusses the hardware used 

(including the Beowulf cluster), software used, and the test data used.  Chapter 4 describes the 

entire process of distributing, querying and visualizing the spatial data; it also describes the user 

interface developed for performing these operations.  Chapter 5 discusses the various 

declustering techniques, Join algorithms, and rendering operations.  Chapter 6 describes the 

experiments performed and also discusses the results.  Chapter 7 concludes with suggestions for 

future work. 
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Chapter 2 Overview of Parallel Spatial Databases & Survey of 

Previous Work 

 

 

This chapter reviews spatial databases and discusses the need for parallel spatial 

databases.  Also surveyed are various declustering algorithms and join algorithms.  The first 

section gives a brief overview of spatial databases, spatial data types, spatial queries, and spatial 

indexing.  The second section discusses the need for parallel spatial databases and describes the 

methodology used to deploy parallel spatial databases.  The third section surveys declustering 

and join algorithms. 

 

2.1 Overview of Spatial Databases 

 

2.1.1 Spatial Database 

 

A spatial database [11, 12] describes the location and shape of geographic features. A 

spatial database system is a database system with additional capabilities for handling spatial data.  

In particular, a spatial database system provides spatial data types in its data model and query 

language.  Spatial indexing capabilities are also provided. 
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2.1.2 Spatial SQL 

 

SQL is a standard query language for Relational DBMSs.  In this case, it has been 

extended with spatial types to create spatial SQL.  Databases have also been extended to support 

these new spatial data types.  Current ORDBMSs support user defined data types, including 

spatial types. 

 

The Open GIS Consortium [21] was founded by various software vendors to formulate 

industry-wide standards related to GIS interoperability.  The OGIS standard recommends a set of 

spatial data types and functions which are crucial for spatial data querying.  In this work, 

PostgreSQL/PostGIS is the spatial database system used. PostgreSQL [2] is an ORDBMS that is 

extended to support spatial data types.  PostGIS is an extension to PostgreSQL which allows GIS 

(Geographic Information Systems) objects to be stored in the database.  PostGIS also includes 

support for GiST-based R-Tree spatial indexes, and functions for analysis and processing of GIS 

objects.  The GIS objects supported by PostGIS are a superset of the "Simple Features" defined 

by the OpenGIS Consortium (OGC).  The latest version of PostGIS supports all the objects and 

functions specified in the OGC "Simple Features for SQL" specification [21].  

 

2.1.3 Spatial Data Types 

 

The GIS objects supported by PostGIS are a superset of the Simple Features defined by 

the OGC.  The following are the spatial types supported by the PostGIS [1] Database: 
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Point: Discrete location represented as a coordinate pair.  For example, a city may be 

represented as a point in a large geographic area.  E.g.: (0 0)   

LineString: Set of ordered coordinates represented by a string of coordinates.  Examples could 

be rail road tracks and streams.  E.g.: (0 0, 1 1, 1 2)   

Polygon: Closed feature whose boundary encloses a homogeneous area represented by a closed 

string of coordinates which encompass an area.  Examples could be land use areas and lakes.  

E.g.: (0 0, 4 0, 4 4, 0 4, 0 0) 

MultiLineString: Collection of Lines.  E.g.: ((0 0, 1 1, 1 2), (2 3, 3 2, 5 4)) 

MultiPoint: Collection of Point Objects.  E.g.: (0 0, 2 3) 

MultiPolygon: Collection of a set of polygons.  E.g.: (((0 0, 4 0, 4 4, 0 4, 0 0), (1 1, 2 1, 2 2, 1 2, 

1 1)), ((-1 -1,-1 -2,-2 -2,-2 -1,-1 -1))) 

GeometryCollection: Collection of different objects.  E.g.: (POINT (2 3), LINESTRING ((2 3, 

3 4))) 

 

The objects in space have to be represented by a spatial database system.  These could be 

represented as any of the above data types.  For example, the objects in space could be thought of 

as cities, streams, buildings, etc. 

 

2.1.4 Types of Spatial Queries 

 

In general, spatial queries can be classified as single scan and multi scan queries: 

1. Single Scan: Single scan queries usually necessitate a single scan through the relation 

they operate on.  Therefore, the execution time is usually linear with respect to the number of 



 6

objects stored in the corresponding relation.  Window & distance queries are examples of single 

scan queries. 

 

“Find all the features within a Bounding Box” is an example of a window query.  For a 

distance query, it is possible to express queries such as “return all features within 100 units of a 

particular point”.  The above queries in PostGIS are as follows: 

Window Query:  SELECT gid, the_geom FROM <table_name> WHERE the_geom 

&& GeometryFromText (`BOX3D (X1 Y1, X2 Y2) `:: box3d, -1) 

Distance Query: SELECT gid, the_geom FROM <table_name> WHERE distance 

(the_geom, GeometryFromText (`POINT(X Y) `, -1)) < 100 

 

The first query is a bounding box query – it specifies that all features that lie within the 

specified bounding box should be returned.  The second query specifies that the feature ids and 

features that lie within 100 units from a given point should be returned. 

 

2. Multi Scan: Multi scan queries involve instances where objects have to be accessed 

several times.  Therefore, execution time is generally not linear but super linear with respect to 

the number of objects.  For example, a spatial join operation in a relational database system is a 

multi scan query.  A spatial join is a join which compares any two objects through a predicate on 

their spatial attribute values. 

 

Consider two relations hydrolin and rail.  Each of these relations has the geometry 

column: the_geom of type: MULTILINESTRING.  “Find all the railways which are going across 
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a river” is an example of a spatial Join.  In this example, we are using a spatial distance function 

as the join condition. 

Spatial Join:  SELECT h.gid, r.gid FROM hydrolin as h, rail as r WHERE 

distance (h.the_geom, r.the_geom) = 0 

 

Again, consider two relations bc_roads and bc_municipality.  The query “What is the 

length of the roads contained within each municipality?” is an example of a spatial join. In this 

example, a spatial interaction condition “contains” is used as the join condition. 

Spatial Join:  SELECT m.name, sum (length (r.the_geom))/1000 as roads_km 

FROM bc_roads AS r, bc_municipality AS m WHERE overlaps 

(r.the_geom, the_geom) AND contains (m.the_geom, r.the_geom) 

GROUP BY m.name ORDER BY roads_km 

 

The spatial join is a computationally intensive operator to implement.  The efficient 

implementation of the spatial join operator is, thus, desirable.  Spatial Joins are usually 

performed in two steps: Filter step & refinement step.  In the filter step, an approximation of the 

spatial object, for example the minimum bounding rectangle, is used to remove the features 

which are not part of the result, and produce candidates that are a superset of the actual result.  In 

the refinement step, each candidate is examined to check if it is part of the result – this is a CPU-

intensive operation.  This check requires running a CPU-intensive computational geometry 

algorithm, and consumes most of the time involved in a join operation. 
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2.1.5 Spatial Indexing 

 

Spatial indexing enables efficient access to the data.  There are two major trends for 

indexing spatial data.  The first trend uses space-driven structures; these are indices based on 

partitioning of the embedding 2D space into rectangular cells, independent of the distribution of 

objects.  The most popular space-driven structure is the Quadtree and its variants.  The second 

trend uses data-driven structures; these indices are based on partitioning the set of objects 

independent of the space.  Examples of data-driven structures are the R-tree and its variants.  R-

trees are more popular than Quadtree’s.  This is because unlike the Quadtree, an R-tree adapts to 

data distribution while keeping the tree balanced.  Therefore, the body of work focuses only on 

the R-tree and its derivatives.  

 

R-trees [26], introduced by Guttman, are an extension of the B-tree designed for efficient 

indexing of multidimensional objects with spatial extent.  An R-tree is a height balanced tree.  A 

leaf node contains an array of entries, [MBR, OID] where MBR is the Minimum Bounding 

Rectangle of the object in the database and OID is the Object identifier.   A non leaf node 

contains an array of entries of the form [MBR, child pointer] where child pointer is the address 

of a lower node in the R-tree and MBR covers all the MBRs in the lower node’s entries.  An 

example of a R-tree is shown in Figure 2.1. 
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Figure 2.1 Example of a R-tree 

 

The insertion algorithm for an R-tree will place a new entry E in the leaf node whose 

MBR needs the least enlargement to include E.  During a node overflow, the split algorithm will 

split the node that overflows into two nodes.  Then, the algorithm selects two entries which are 

the most distant ones.  These entries are the first entries of two nodes.  The remaining entries are 

assigned using as the criterion the minimum area required to cover the new entry. 

 

The R*-tree [5] was introduced by Beckmann.  The insertion algorithm follows the nodes 

in which the MBR has the minimum increase of overlap.  The R*-tree’s split algorithm chooses a 

split that results in a minimum overlap between the MBRs, whereas the R-trees’s split algorithm 

chooses the split that results in the least enlargement of the MBRs.  The reinsertion algorithm 

increases storage utilization and improves the quality of the partition making it almost 

independent of the sequence of insertions.  The R*-tree method minimizes both the coverage (for 

intermediate nodes) and the overlap (for leaf nodes). 
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2.2 Parallel Spatial Databases 

 

2.2.1 Why Parallel Spatial Databases 

 

With the rapid increase in the availability of spatial data from a wide variety of sources 

like satellite images, mapping agencies, etc., there is an increasing demand for systems that can 

store and effectively manipulate such large spatial data sets.  Spatial database systems are the 

solution of choice.  The ability to store and query this enormous amount of data is critical but 

may lead to performance degradation.  The performance problems associated with large 

databases have been widely documented by researchers for many years and several techniques 

have been devised to cope with this.  One of the techniques that have gained popularity in recent 

years is parallel processing of spatial database operations.  Spatial database operations are often 

time-consuming and can involve a large amount of data, so they can generally benefit from 

parallel processing. Parallelism improves the response time of spatial queries.  The design of 

parallel database systems [13] often provides an impressive speedup when processing spatial 

queries.  Data partitioning allows parallel database systems to exploit the I/O bandwidth of 

multiple disks by reading and writing them in parallel. 

 

2.2.2 How it works 

 

With parallel database systems, the assumption is that there are multiple CPUs and multiple 

disks available.  In such a scenario, each CPU and disk combination is called a compute node of the 

system.  This shared nothing architecture is well suited for parallel database systems.  Beowulf 
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compute clusters are probably the best-known example of shared nothing machines in existence today.  

Each node of the cluster has a processor and disk and each node also holds a database instance stored 

on its local disk.  The spatial data is declustered into fragments, which are then distributed to the 

compute nodes.  The process of data distribution across multiple disks is called declustering.  This 

multi-processor architecture is used for executing the query in parallel; spatial queries are ideally 

suited for parallel execution.  After declustering the data, any query issued through the master node 

will be invoked on the slave nodes (in parallel) and these nodes will return the results of the query 

back to the master node.  This parallel technique of querying a spatial database will make the spatial 

queries execute faster. 

 

2.3 Survey of Declustering Algorithms and Join Algorithms 

 

2.3.1 Survey of Declustering Algorithms 

 

Parallel database systems employ partitioning strategies to distribute database relations 

across multiple processing nodes.  It has been shown in [13] that the data can be distributed using 

round-robin, hash, and range partitioning schemes.  There are many other methods proposed for 

declustering data.  J.M. Patel and D.J.DeWitt in [3] propose a tiling scheme to partition the data.  

This scheme is the spatial analog of virtual processor round-robin partitioning for handling 

skews in parallel joins which was proposed in [14]. The tiling scheme proposed splits the 

universe (which is the MBR of all the spatial features in a relation) into tiles.  Features in a tile 

are stored on the disk corresponding to the file.  A mapping function like round-robin is used to 

map the tiles to disks. The problem with this scheme is that it risks data skew.  This problem 
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could be reduced by increasing the number of tiles.  A similar method for declustering has been 

proposed for redundancy based declustering of spatial objects in a parallel spatial database in 

[15]. In [15], the number of tiles is always equal to the number of partitions.  The data is 

synthetically generated and uniformly distributed, so data skew is not considered at all.  A 

declustering algorithm based on tiles is proposed in [4], in which it creates partial spatial 

surrogates (approximation of the spatial feature) when the spatial features overlaps tiles that are 

mapped to multiple nodes.  This scheme reduces the disk overhead.  It has been shown in [16] 

that a space filling Hilbert curve could be used for declustering Cartesian product files with 

multiple attributes; this approach could be applied to distribute data across processors for queries 

which involve only one attribute. 

 

In [18], it has been seen that a good declustering could be achieved by using a variation 

of the Hilbert based declustering method [16], as applied in the Hilbert packed R-trees [19].  In 

this method, the data is sorted on the Hilbert values of the centers of their rectangles and then 

packed into R-tree leaf nodes.  These leaves are assigned to the nodes in a round-robin fashion.  

In [17], declustering algorithms for parallel spatial Joins are proposed.  Different declustering 

schemes are proposed using R*-trees [5].  R*-trees are used to perform a spatial join in a shared-

disk environment.  Two R*-trees are built on the two relations on which the Join is performed, 

the leaves of the R*-tree are distributed, and different schemes decide when and on which nodes 

the leaves are distributed.   

 

In this work, a new Join Algorithm which uses R*-tree declustering is proposed.  The R*-

tree structure of one relation is used to decluster both the join inputs, where as in the scheme 
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proposed in [17], two R*-tree structures are used to decluster the join inputs.  In [17], a spatial 

Join is performed in a shared disk architecture; this is in contrast to our new Join algorithm 

which is performed in a shared nothing architecture. 

 

2.3.2 Survey of Join Algorithms 

 

Various spatial join algorithms have been proposed for evaluating spatial joins.  Most of 

the algorithms proposed decluster the relations into a number of fragments.  The join is then 

performed by pair-wise joining of these small fragments.  The declustering algorithms proposed 

for parallel spatial join algorithms generally fall into two categories: dynamic partitioning 

function & static partitioning function.  A Dynamic partitioning function inserts spatial features 

into a spatial index, like an R-tree and distributes the leaves of the spatial index to nodes.  A 

static partitioning function divides the space into regions and maps the regions to nodes.  The 

spatial join algorithm proposed in [3], uses a static partitioning function.  The work in [20] 

examined the data partitioning mechanism for parallel spatial joins, in which it uses a static 

partitioning function as well.  In [4], two declustering functions are employed, namely 

declustering using replication and partial spatial surrogates (approximation of spatial features).  

The authors designed two Join algorithms: shadow join and clone join.  Shadow join uses only 

the approximation of spatial features when declustering and clone join uses the exact spatial 

features.  The shadow join is similar to the parallel spatial Join in [20], except that in [20] the 

MBR of the entire feature is used while declustering.  Spatial join processing in [25] is based on 

grid representation of spatial objects.  In [25], spatial data is decomposed by superimposing a 

grid on the universe.  Each element of the grid is transformed into z-values by applying z-order 
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transforms.  The z-values are then used to perform the spatial join.  In [23, 24], Seeded trees are 

used to create an index and then perform a tree join algorithm.  In [17], R*-trees are used to 

perform the spatial join in parallel and the algorithm uses two R*-trees to distribute data.  
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Chapter 3 Hardware and Software Tools Used 

 

 

This chapter describes the hardware and software tools used for the experiments 

presented in this thesis.  A detailed overview of the Beowulf cluster, programming environment, 

and the spatial databases used is provided.  In addition, the datasets used for testing are also 

described. 

 

3.1 Beowulf Cluster: 

 

The vehicle utilized for parallel processing of spatial queries is a Beowulf cluster.  The 

Beowulf cluster housed at the Department of Computer Science at the University of New 

Orleans consists of 72 compute nodes, 1 login/submit node, and 1 file server.  63 of the slave 

nodes are 2.2 GHz Intel Pentium IV systems with 1 GB of memory, 20 GB of local disk storage, 

and Fast Ethernet networking; the remaining 9 nodes are 2.4 GHz Intel Pentium IV systems with 

1GB of memory, 20 GB of local disk storage, and Gigabit Ethernet networking.  The file server 

is a dual 1.4 GHz SMP Intel Xeon system with 2 GB of memory, 500 GB of disk storage, and 

Gigabit Ethernet networking.  Last, but not least, is the master node, which is a dual 2.2 GHz 

SMP Intel Xeon system with 2 GB of memory, 300GB of disk storage, and 2 Ethernet interfaces.  

The interface that links the cluster with the private Beowulf network is Gigabit Ethernet; the 

external interface is 100BaseTX.  All of the systems in the cluster are networked together by a 

Cisco Catalyst 4000 series switch with 10/100/1000 auto-sensing ports and a 12-Gbps backplane.  

Debian GNU/Linux (2.4.26 kernel version) is the operating system for all nodes in the cluster. 
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This cluster was recently benchmarked using HPL 1.0, a portable, freely available 

implementation of the standard High Performance Computing Linpack Benchmark.  HPL solves 

a random, dense linear system in double precision (64 bits) arithmetic on distributed memory 

computers [9].  Benchmarking yielded a “theoretical peak” performance of approximately 63 

Gigaflops.  The amount of raw computing capacity provided is therefore quite substantial.  

Figure 1 provides a broad overview of the cluster architecture. 

 

 

 

Figure 3.1 Overview of 72-node Beowulf Cluster 
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There are 3 broad classes of parallel machines: shared memory systems, shared disk systems, 

and shared nothing systems.  In a shared nothing architecture, each processor has its own local 

memory and disk − nothing is shared and all communication between the processors is 

accomplished via the communication network.  The shared nothing architecture is the most 

widely used design for building systems to support high performance databases, primarily due to 

its relatively low cost and flexible design. 

 

Beowulf compute clusters are probably the best-known example of shared nothing 

machines in existence today.  A number of factors can be attributed to this including the 

emergence of relatively inexpensive but powerful off-the-shelf desktop computers, fast 

interconnect networks such as Fast Ethernet and Gigabit Ethernet, and the rise of the GNU/Linux 

operating system.  A compute cluster, for all intents and purposes, can be defined as a Pile of 

Processors [7] interconnected via some sort of network.  Each node in the cluster usually has its 

own processor, memory, and optionally an I/O device such as a disk.  However, it is important to 

note that a cluster is not simply a network of workstations (NOWs) – in a cluster, the compute 

nodes are delegated only for cluster usage and nodes typically have a dedicated, “cluster-only” 

interconnect linking them.  In the Beowulf paradigm, all of the compute nodes (also called slave 

nodes) are isolated on a high-speed private network that is not directly visible to the outside 

world.  A single computer called the “master” or “head-end” provides a single entry point to the 

cluster from the external network.  This machine is sometimes referred to as the login or submit 

node.  Essentially, the master node is a system with 2 network interfaces – one connected to the 

private Beowulf network and the other connected to the regular LAN.  Users of the cluster will 

typically log in only to the master node.  From here, they can spawn processes that will execute 
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on the slave nodes.  Beowulf clusters are typically applicable to any area of research where a 

speedup in program execution time is possible by splitting a large job into several sub-tasks that 

can run concurrently on the compute nodes.  This capability provides an intriguing setting for 

evaluating the use of such a cluster for hosting large GIS databases, where there is an ever-

increasing need for greater computing power to process and query the massive amounts of 

information being stored. 

 

3.2 Spatial Databases: PostgreSQL/ PostGIS 

 

PostgreSQL [2] is an object-relational database management system (ORDBMS) based 

on POSTGRES, Version 4.2, developed at the University of California at Berkeley Computer 

Science Department.  PostgreSQL has a spatial extension called PostGIS that follows the 

OpenGIS Consortium’s “Simple Features Specification for SQL” [21], a proposed specification 

to define a standard SQL schema that supports storage, retrieval, query, and update of simple 

geospatial feature collections via the ODBC API. 

 

PostGIS [1] allows GIS (Geographic Information Systems) objects to be stored in a 

PostgreSQL database and includes functions for analysis and processing of GIS objects.  Point, 

Line, Polygon, Multipoint, Multiline, MultiPolygon, and GeometryCollection object types can be 

stored in PostGIS.   These are specified in the Open GIS well known Text Format. 
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PostgreSQL is a good choice for use on a GNU/Linux system (such as our Beowulf 

cluster) because of the robust, native support that it provides on this platform.  Each of the nodes 

in the Beowulf cluster executes the PostgreSQL server engine and has its own database instance 

stored on its local disk; the file server is not used because of the potential performance penalty 

associated with a large number of nodes accessing a shared file system simultaneously.   Data 

will instead be distributed evenly across the slave nodes and the user interface will be executed 

on the master node.  Any query issued through the master node will be invoked on the slave 

nodes and the slave nodes will return the results of the query back to the master node.  

 

3.3 Programming Environment: 

 

The data visualization component has been programmed in Java using the Geotools [6] 

Package, which is a leading open source Java library for developing OpenGIS [21] solutions and 

has been in existence since 1996.  As a result, Geotools has been used to develop the interface 

for viewing geospatial data since it provides a rich set of graphics and rendering methods. 

 

To decluster data across several nodes and to query the databases on all the nodes, Java 

threads are used to make the queries run concurrently (in parallel) on the nodes.  A Java program 

is run on the master node, which creates threads to connect to the slave nodes, execute the 

request, and get back the output to the master node.  The PostgreSQL JDBC driver is used to 

connect to the PostGIS database.  JFreeChart [10] (a free Java library) is used to generate graphs 

depicting query performance. 
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3.4 Datasets used for Testing: 

 

Two collections of datasets were used for testing.  Each collection has two datasets. The 

first collection’s two geospatial data sets were obtained from the Bureau of Transportation 

Statistics (BTS) [22]: the 2002 National Transportation Data Hydrographic and Railway network 

Features of a collection of adjacent States (Louisiana, Kansas, Mississippi, Arkansas, Texas, 

Oklahoma, and Missouri).  Two datasets from the second collection were obtained from BTS as 

well: the 2002 National Transportation Data Hydrographic Features of Louisiana State and the 

2002 National Transportation Data Railway network of Louisiana State.  

 

The Rail Network is a comprehensive database of the nation's railway system at the 

1:100,000 scale.  The hydrographic features are a state-by-state database of both important and 

navigable water features.  The Hydrography features include rivers, canals, etc. and the Rail 

features represent railroads. 

 

The first collection of datasets was for Louisiana State.  The Hydrography dataset 

contains data of Louisiana State.  The spatial domain of this data set is west: -94.043189, East: -

88.758388, North: 33.019359 and South: 28.855127.  The Rail dataset contains data of Louisiana 

State as well.  The spatial domain of this data set is west: -94.042735, East: -89.534031, North: 

33.019180 and South: 29.376390.  The second collection of datasets was for a collection of 

adjacent states: Louisiana, Kansas, Mississippi, Arkansas, Texas, Oklahoma, and Missouri.  The 

spatial domain of the Hydrography data set is west: -105.676612, East: -88.098426, North: 
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40.613582and South: 25.837376.  The spatial domain of the Rail dataset is west: -106.606615, 

East: -88.111893, North: 40.590972and South: 25.891600. 

 

These datasets are obtained as compressed ESRI Shapefile format.  When imported into a 

PostGIS database, the sizes of these datasets are given in Table 3.1 and Table 3.2. 

 

Join queries are performed on each collection of datasets.  The Join query joined the Rail 

dataset with the Hydrography dataset.  The query “find all the railways which are going across a 

river” is a spatial join on Rail and Hydrography.  Here, the spatial predicate is whether a railway 

intersects a river.  

 

When the Shapefiles are imported into PostGIS, each relation contains a feature-id, a few 

columns describing the data, and the feature-geometry itself.  The feature type of the feature-

geometry may be one of 7 different types specified by the “Simple Features” specification of the 

OpenGIS Consortium: point, linestring, polygon, multipoint, multilinestring, multipolygon, and 

geometrycollection.  The geometry of the features in these data sets is represented as type 

MULTILINESTRING.  This feature is represented in the database as a set of coordinates, which 

may be either 2-dimensional or 3-dimensional.  The features in these datasets are 2-dimensional. 

Datasets  # of features Total Size Type of Features 

Hydrography 31400 20.1MB MULTILINESTRING 

Rail  3543 1.8MB MULTILINESTRING 

 

Table 3.1 Louisiana TIGER Data Information 
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Datasets  # of features Total Size Type of Features 

Hydrography 99737 65MB MULTILINESTRING 

Rail 35492 19MB MULTILINESTRING 

 
 
Table 3.2 TIGER data of a collection of adjacent States (Louisiana, Kansas, Mississippi, 

Arkansas, Texas, Oklahoma, and Missouri) in the US 

 

The datasets are rendered and displayed in the following Figures: Figure 3.2.a and Figure 

3.2.b display the hydrographic and railway data of a few states. Figure 3.3.a and Figure 3.3.b 

display the data of Louisiana State. 

 

                             
 
Figure 3.2a Hydro Dataset of a Figure 3.2b Rail Dataset of a collection collection of 
Sates.of States



23 

                           

 Figure 3.3a Hydro Dataset of Louisiana     Figure 3.3b Rail Dataset of Louisiana 
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Chapter 4 Methodology 

 

 

This chapter describes the processes involved in the efficient parallel processing 

of geospatial data. The different processes are declustering, querying, and visualization of 

the spatial data. The user interface developed for visualization and the user interface that 

was developed for executing commands across several nodes in parallel are also detailed 

in this chapter. 

 

The first section gives a pictorial representation of the process of declustering, 

querying, and visualization of spatial data. This is followed by a description of each of 

the processes in different sections. The last section deals with the user interface 

developed for declustering the spatial data, and performing the parallel join operation. 

 

4.1 Diagrammatic Representation of the Parallel Processing of Spatial 

Data 

 

The following are the main processes that are involved in performing a Join in 

parallel. They are: 

1. Declustering 

2. Query Execution in Parallel 

3. Merge the Results from the Nodes 

4. Visualization of the data 
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Declustering is the process of distributing data across several nodes. Query 

Execution is done in parallel on the nodes. The results of the query are returned to the 

master node, which merges the results to get the overall result for the query. The result 

obtained from merging is visualized using a custom Geospatial Data Viewer.     

 

A program runs on the master node which distributes data from the master node to 

several slave nodes. After this preparation step, a query can be issued to the master node. 

This query is then sent to all slave nodes i.e. the query execution is done in parallel across 

the nodes. This design makes good use of the independent disk and memory subsystems 

of each slave node. The results from the nodes are then sent back to the master node 

which merges the result. The result of the query is visualized in the Viewer, a user 

interface to view spatial data. The steps described previously are shown in Figure 4.1.  
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Figure 4.1 Parallel Processing of Spatial Data. 

 

4.2 Declustering 

 

Declustering is the process of distributing data across several nodes. A good 

declustering technique distributes data such that,  

1. There is nearly the same amount of data on each node (reduced data skew). 

2. There is minimum replication of data on the nodes. 

3. Parallel processing of a spatial join is done efficiently without the need for inter-

slave data exchange. 
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The master node distributes data to several slave nodes. Each slave node has a 

fragment of the data stored in its database. There are many distribution (partition) 

techniques available. Some of them are basic round-robin, Tiling [3], Hilbert Curve [16], 

Hilbert packed R-trees [18], Seeded Trees [23, 24] and Z-order [25] declustering 

techniques.  

 

The data is partitioned using a partitioning technique. A spatial partitioning 

function divides both the join inputs into smaller partitions. The join is then performed by 

pair wise joining of the smaller partitions. Spatial partitioning functions for spatial join 

algorithms are usually categorized into two types: static and dynamic declustering 

techniques. 

 

In the static declustering technique, the space is initially decomposed into regions. 

Each region is mapped to a disk and the features inside a region are stored on the disk the 

region corresponds to. The tiling technique of [3] is an example of a static declustering 

technique. In the dynamic declustering technique, the features are inserted into a spatial 

index. The leaves of the spatial index are mapped to disks. In this method, the space is 

decomposed into regions recursively. There are a minimum and maximum number of 

features a region can have. Once a region exceeds the number of features than specified, 

the region is split and the features are re-assigned to the two new regions. This process is 

done recursively until all the features are inserted into a spatial index. In [17], a dynamic 

declustering technique based on the R*-tree is proposed in a shared disk environment. It 

is noted that an index is built for each of the two join relations. The algorithm starts from 
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the roots of both trees and traverses both trees in a depth first order. For each intersecting 

pair of directory rectangles (minimum bounding rectangle of the data rectangles in the 

corresponding subtrees), the algorithm follows the corresponding references to the nodes 

in the lower level of the trees. Results are found when the leaf level is reached. The 

leaves are then assigned to the disks by one of these mapping functions: a plane sweep 

order, a round robin assignment or a dynamic assignment.  

 

Figure 4.2 represents the declustering technique. The master node distributes data 

using a declustering algorithm. After partitioning the data into fragments, a hashing 

function is used to map the fragments to the nodes. In the case of the tiling scheme [3], 

the data is divided into a set of tiles. Each tile is then mapped to a node by using a hash 

function.  

 

To distribute the data, the master node starts server socket programs on each of 

the slave nodes. The role of this server socket is to receive data from the master node and 

insert the data received into the database. Once the entire data set is distributed, the server 

sockets are closed. 
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Figure 4.2 Declustering 

 

4.3 Parallel Execution of the Query 

 

Each slave node has its own database instance. Once the data from the master 

node is distributed, the query is executed. The query execution is done in parallel on each 

slave node. Figure 4.3 illustrates the execution of the query. 
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The result of the query is 
sent back to the master 

node.

Query is sent to the 
nodes

Merges Results from queries 
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Databases

Node 1   Node 2   Node n

Query issued to 
the master node
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Figure 4.3 Parallel Execution of the Query 

 

The sequence of steps performed is as follows: 

1. Query is issued at the master node. 

2. The master node spawns several threads which connect to the slave nodes. Each 

thread connects to a slave node and executes the query on the node. Each query is 

executed in parallel across the nodes in the cluster that contains fragments of the 

spatial data. 
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3. After each query execution, each thread returns the result to the master node. 

4. The master node merges the results from all the slave nodes and outputs the 

overall result. 

 

The result obtained is in textual format. However, the result obtained could also 

be visualized in the Viewer, which is a user interface to view the spatial data. This is 

explained in Section 4.4 below. 

 

4.4 Viewing 

 

The output from the execution of the query is in textual format. To view the 

geographical output, the data is rendered in the viewer. The master node merges the 

query results from all the slave nodes and renders the overall result in the developed 

Viewer, pictured in Figure 4.4. 

 

The viewer is a user interface developed for viewing spatial data. The Viewer 

provides a number of tools to operate on the map. These tools are zooming, panning, 

print, adding layers from Shapefiles and adding layers from PostGIS [1]. The Geotools 

[6] library is used to build this interface. Figure 4.4 shows the viewer developed for 

viewing the geospatial data. Figure 4.5 shows the adding layers from Shapefiles option in 

the viewer. Figure 4.6 shows the adding layers from PostGIS option in the viewer. 
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Figure 4.4 Viewer 

 

 

Figure 4.5 Adding Layers from Shapefile 
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The algorithm to render a Shapefile is given in Section 5.4.1. The algorithm to 

render data from PostGIS is given in Section 5.4.2. The form and the color of the 

geometry are specified by the user (see Figure 4.5 & Figure 4.6). 

 

 

Figure 4.6 Adding Layers from PostGIS 

 

4.5 User Interface 

 

The user interface provides for the loading of spatial data into the master node. It 

also provides the capability for distributing, querying and updating of the spatial data to 

multiple compute nodes in a cluster. The user interface enables the creation of tables and 

databases before distributing the data to the nodes. This interface also lets the user send 

commands to the nodes for execution. For example, to start a database server on all the 

nodes, a command is sent through this interface. Parallel spatial join algorithms work on 
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fragments of spatial data stored on the nodes. These algorithms are executed using this 

interface. 

 

The User Interface developed for the above mentioned processes is seen in Figure 

4.7. There are many options in the Menu bar: to create tables and databases, to start the 

database server (PostgreSQL [2] server), to perform the parallel join algorithms, and to 

decluster geospatial data. SQL queries, when given in the SQL Query Text Area in the 

interface, can be executed on the nodes as needed. The number of nodes on which the 

desired process is executed on is selected using this interface as well. 

 

Figure 4.7 shows the interface developed. Figure 4.8 shows the Table option in 

the interface which enables the creation of tables in a database.  
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Figure 4.7 User Interface 
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Figure 4.8 Table Option in the Interface 
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Chapter 5 Discussion of Algorithms 

 

 

In [4], the two inputs to be joined are declustered using a static declustering 

technique. The space is divided into a set of tiles and each tile is mapped to a disk. Each 

of the two join relations is declustered using this technique. In [17], the join inputs are 

declustered using a dynamic declustering technique. Two R*-tree structures are used to 

decluster the data. The algorithm starts from the roots of both trees and traverses both of 

the trees in a depth first order. For each intersecting pair of directory rectangles 

(minimum bounding rectangle of the data rectangles in the corresponding subtrees), the 

algorithm follows the corresponding references to the nodes in the lower level of the 

trees. Results are found when the leaf level is reached. The leaves are then assigned to the 

disks by either of these: a plane sweep order, a round robin assignment or a dynamic 

assignment.  

 

In this chapter, a parallel join algorithm based on a semi-dynamic declustering 

technique is proposed. The proposed algorithm uses an R*-tree to decluster the first 

relation. The second relation is declustered statically using a tiling like approach. The 

leaves of the R*-tree, built on the first relation, is used to decluster the second relation. 

The features of the second relation that intersect with a leaf are stored on the node that 

the leaf corresponds to.  
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The proposed algorithm is compared with two different versions of the clone join 

algorithm proposed in [3]. It is noted that the clone join is a parallel join algorithm that 

makes use of a static declustering technique based on tiling. The comparison of our 

algorithm with the tiling based clone join is motivated by the well-established fact that 

static declustering techniques perform better [20] than their dynamic counterparts. 

 

The first section describes the spatial declustering techniques. Tiling scheme [3] 

and the R*-tree based semi-dynamic approach are described. Implementation details of 

these techniques are also provided. The second section reviews parallel spatial joins in 

general. The third section discusses the join algorithms used. The fourth section describes 

how the Geotools classes were used to render Shapefiles and data from the PostGIS 

databases. This section also highlights the other features of the viewer. 

 

5.1 Spatial Declustering Techniques 

 

Two different techniques are implemented. The first one is the tiling technique 

described in [4]. The second one is the proposed semi-dynamic approach which uses a 

single R*-tree to decluster the data from both the join inputs. 
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5.1.1 Tiling Technique (Declustering using Replication) 

 

The tiling technique implemented in this chapter was originally proposed by Patel 

& DeWitt in [4]. This technique is implemented to compare it with the new algorithm 

presented in this work. 

 

5.1.1.1 Declustering Algorithm using the Tiling technique 

 

The universe of a relation is defined as the Minimum Bounding Rectangle that 

covers all the spatial attributes of the relation. The universe of the relation to be 

distributed is divided into a number of tiles of the same size. Each tile is mapped to a 

node according to some hash function; to test this algorithm, a round robin function is 

used. Spatial objects that are within a tile are stored on the node it is mapped to. Spatial 

objects which overlap multiple tiles are stored on the nodes that correspond to these tiles. 

So, the spatial objects that are within the first tile would be stored on the node it 

corresponds to, and the objects that are within second tile will be stored on the node it is 

mapped to and so on. If a spatial object overlaps more than one tile, it is stored in both 

the nodes that map to these tiles. The number of tiles chosen should be no less than the 

number of nodes. 

 

This scheme presents two disadvantages, namely: 

1. Data distribution skew 

2. Replication 
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Data fragments stored on the various nodes may vary greatly in size, resulting in data 

distribution skew. Also, because a spatial object could be stored on more than one node, 

this results in replication of the same object.  

 

 The universe is a rectangle that covers all the features in a relation. It may 

contain some regions where there are very few features. So, if the universe is divided into 

a smaller number of tiles, then more data may be inserted on a node compared to the 

other nodes as shown in Figure 5.1. One solution is to decrease the inequalities between 

the nodes by increasing the number of tiles. As the number of tiles increases, the data 

distribution skew reduces. However, because the universe is divided into more tiles, 

many features may overlap more than one tile resulting in increased replication. Spatial 

objects, which overlap more than one tile, are replicated in many nodes. So, when the 

number of tiles increases, the percentage of replication grows. 

 

 

 

 

 

 

 

 

Figure 5.1 Data Distribution Skew 

Node 0 Node1

Node 2 Node 3

Features
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The universe is divided into tiles i.e., it’s divided into a number of rows and 

columns. A hash function is usually utilized to map tiles onto nodes. An example of a 

hash function is round robin. Given c columns and n compute nodes, a round robin 

function will map the tile with the column number i and row number j onto node (i+j*c) 

mod n. 

 

The example of Figure 5.2 assumes 5 nodes and the universe composed of 16 

tiles. A relation is being declustered across 5 nodes using 16 tiles. In the Figure, 1, 2, 3, 4 

& 5 are the first 5 features of the relation.  Feature 1 is stored on both Node 0 and Node1. 

Feature 2 is also stored on both Node 0 and Node1. Feature 3 is stored on Node 2. 

Feature 4 is stored on Node 0, Node 1, Node 3, and Node 4. Feature 5 is stored on Node 

3. 
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Figure 5.2 Declustering Tiling Technique. 

 

As it can be seen from Figure 5.2, there is both data replication and data 

distribution skew. Feature 4 is stored on Nodes 0, 3 & 4. Also Feature 1 is stored on 

Node 0 and Node 1, which shows a feature is replicated on more than one node. Also, 

Node 0 has three features whereas Node 2 has just one feature which shows Data 

Distribution Skew. This is listed in Table 5.1. 

 
Nodes Features 

0 1,2,4 

1 1,2 

2 3 

3 4,5 

4 4 

 

Table 5.1 Tiling Scheme Data Distribution 

 

5.1.1.2 Implementation Details 

 

Using PostGIS [1] && (Overlaps operator) and the PostGIS [1] extent function, 

the declustering algorithm for the tiling technique is implemented in Java. Suppose A, B 

are two features. If A's bounding box overlaps B's bounding box, then the && operator 
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returns true. The extent function takes a geometry column as an argument and will return 

a BOX3D giving the maximum extend of all features in the table. The above mentioned 

algorithm is implemented as follows: 

 

• Get the universe of the table to be distributed using the extent function in PostGIS 

[1]. Then use the xmin (Box3D), ymin (Box3D), xmax (Box3D) and ymax 

(Box3D) functions in PostGIS [1] which gives xmin, ymin xmax, ymax points. 

• Given these points, the universe (Minimum Bounding Rectangle of all features) is 

divided into a number (# of rows * # of columns) of tiles. 

• Make a Bounding Box, Box3D representation of each tile. 

• For each bounding box use the && Overlaps operator in PostGIS [1] and get all 

the spatial objects overlapping this bounding box and store the obtained 

geometries in the node corresponding to that tile using the hash function described 

above. 

 

The above steps are performed for declustering one relation. For a spatial join, 

two tables have to be declustered. This algorithm is used for spatial join because the same 

algorithm could be applied to two different tables without any difficulties. In that case, 

the universe should now be the Minimum Bounding Rectangle that covers all the spatial 

features of both the relations.  

 

5.1.2 R*-tree based Semi-Dynamic Approach 
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This is a new algorithm proposed in this paper. The spatial data is declustered 

using an R*-tree. The mapping of leaves to compute nodes is done via one of the two 

hash functions we propose. Each of the two hash functions has its distinct advantages as 

explained below.  

 

5.1.2.1 Declustering algorithm using the R*-tree based Semi-Dynamic 

approach 

 

Using this algorithm, the problem of data replication and distribution skew are 

reduced. An R*-tree [5] is built on the relation to be declustered. The R*-tree is an 

indexing scheme for spatial data. The leaves of this tree are treated as tiles and are 

distributed across various nodes. Each leaf of the R*-tree is mapped to a node according 

to some hash function. The leaves of the tree are numbered from the left to the right. 

There are two hash functions that have been used. The features within the leaves are 

stored on the node the leaf is mapped to.  

 

For the first hash function, k (where k = ┌Total leaves/ # of Nodes┐) successive 

leaves are taken and are stored on each node. Consider an R*-tree built on a relation 

which has total leaves as 21. The number of nodes the data has to be distributed onto is 3. 

Then k =7 successive leaves are stored on each node. 
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For the second hash function, each leaf is stored on a node in a round robin 

fashion. For example, leaf number p is stored on the node p mod n, where n is the number 

of nodes. 

 

5.1.2.2 Implementation Details 

 

The semi-dynamic R*-tree based declustering algorithm is implemented in Java. 

xmin (feature), ymin (feature), xmax (feature) and ymax (feature) functions in PostGIS [1] 

are used. These functions return the coordinates of the bounding box of the feature.  

1. An external R*-tree is built on the relation to be distributed. The entries in this 

R*-tree are the Minimum Bounding Rectangle (MBR) of the features in the 

relation. To find the MBRs, the above mentioned functions of PostGIS are used. 

2. Each leaf of the R*-tree is mapped to a node; the features that are inside a leaf are 

located by querying the R*-tree for the entries in the leaf. These features are 

inserted into the node the leaf corresponds to, which is determined by the hashing 

function used. 

 

The above mentioned approach is to decluster one relation. For a spatial join, two 

relations have to be declustered using the R*-tree structure of usually the smallest 

relation and is described below. 

 

For the join algorithm, an R*-tree is built on one of the two relations (usually the 

smallest) on which the join is being performed. The leaves of this R*-tree are distributed 
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as described above for the first relation. The features of the second relation are distributed 

statically using the tiling like approach. The leaves of the R*-tree built on the first 

relation are assumed as tiles, and thus, the features of the second relation which overlap 

the leaves are stored on the nodes corresponding to the leaves. Since the leaves of the R*-

tree do not overlap, there would not be any replication for the first relation, though there 

would be some replication for the second relation. The second relation is not completely 

declustered in this approach; only the features overlapping the leaves of the R*-tree 

structure of the first relation are distributed since such features are only the candidates for 

the Join.  

 

The implementation details of the process of declustering the two relations for 

spatial join are given below. To decluster two relations in this approach, the first relation 

is declustered as explained in section 5.1.2.1, i.e. an R*-tree is built on it. So for every 

leaf of the R*-tree of the first relation, the features that are within the leaf are stored on 

the node the leaf correspond to. The features in the second relation which overlap this 

leaf are stored on the same node.  

 

The examples of Figure 5.3 & Figure5.4 assume Relation 1 has 8 features (1, 2, 3 

… 8), and Relation 2 has 7 features (1, 2, 3 …7). Figure 5.3 shows the R*-tree built on the 

first relation: it has 4 leaves: a, b, c and d. It also shows the features numbered from 1 

through 8. Each leaf is mapped to a node according to the hash functions as described 

above. 
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So for the first hash function, the features which are contained in leaves a and b 

are stored on the first node. The features contained in the leaves c and d are stored on the 

second node. For the second hash function, the features in leaves a and c are stored on the 

first node and the features which are stored on leaves b and d are stored on the second 

node. 

 

The R*-tree structure of the first relation is used to decluster the second relation. 

According to the first hash function, the features which overlap the leaves a and b are 

stored on the first node and the features which overlap leaves c and d are stored on the 

second node. For the second hash function, features which overlap a and c are stored on 

first node and features which overlap b and d are stored on second node. Figure 5.4 

illustrates the declustering for the second relation based on the R*-tree built on the first 

relation. 
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Figure 5.3 R*-tree built on the first relation 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 5.4 Declustering Second Relation based on the R*-tree Structure of the First 

Relation 

 

As it is seen from Figures 5.4 & 5.5 above, the features of the two relations are 

distributed among two nodes as shown in Tables 5.2 and 5.3. 

 

Relation/ Node Node1 Node 2 

Relation 1 1, 3, 6, 8 2, 4, 5, 7 

Relation 2 1, 4, 5, 7 2, 3, 4 

Feature

Leaves 

1 

5 
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7 

3 

2 
6 
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b d
A
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Table 5.2 First Hash Function 

 

 

Relation/Node Node 1 Node 2 

Relation 1 1, 2, 3, 5 4, 6, 7, 8 

Relation 2 1, 3, 4, 5, 7 2, 5 

  

Table 5.3 Second Hash Function 

 

It can be observed from Tables 5.2 & 5.3 that there is no replication for the first 

relation, but there is replication for the second relation. Indeed for the second relation, in 

Table 5.3, feature 5 is stored on both node 1 and node 2.  Also for the second relation in 

Table 5.2, feature 4 is stored on both the nodes. 

 

The above two hashing methods each have advantages and disadvantages. With 

the first one, if the answers of the spatial join request are concentrated geographically on 

one part of the universe (say part A in Figure 5.3), then these answers will be computed 

by only one node (node 1 in our example). This leads to data distribution skew. This 

disadvantage is reduced with the second hashing function. The replication rate, using a 

real dataset (see Chapter 6), of the second relation which uses the R*-tree of the first 

relation is seen in table 5.4. With the first hash function, the replication of the second 
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relation is lower. But if the number of features a leaf can have is increased than the 

replication rate with both the hash functions is almost the same. 

 

 

 

Number of features 
(min/max) per leaf 

10/20  35/70 100/200  

Hashing func. 1  
(range hash) 

101.3 82.7 28.7 

Hashing func 2 
(round-robin) 

200.4 99.8 25.6 

 

Table 5.4 Replication Rate with the Two Hashing Functions. 

 

5.2 Spatial Joins  

 

5.2.1 Spatial Join Steps 

 

Spatial joins typically operate in two steps, shown in Figure 5.5: 

Filter Step: In this step, an approximation of each spatial object, the minimum bounding 

rectangle is used to eliminate those tuples that cannot be part of the result; this produces a 

set of candidate pairs for the spatial join. 

 

Refinement Step: In this step, each candidate is examined to check if it part of the result; 

this is a CPU-intensive algorithm since it has to be checked with the exact geometry. 
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 Refinement Step 

 Filter Step 

 

Figure 5.5: Spatial Join Operation 

 

5.2.2 Spatial Join in Parallel 

For Spatial Join in parallel, the following steps are usually performed:  

1. Declustering step 

2. Filter & Refinement steps  

 

Figure 5.6 Parallel Spatial Join Operation 
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The first step depends on the declustering algorithm used; both tiling as well as 

R*- tree declustering are used. The declustering algorithms are explained in section 5.1. 

Next, the filter and refinement steps are performed. Figure 5.6 shows the sequence of 

steps. 

 

Filter Step:  

This step is performed on each node. A plane sweep algorithm [12] runs on each 

node to perform this filter step: Let the two relations on which the join has to be 

preformed be R and S. This step is performed on the MBR’s of the features. This step 

eliminates the false hits, and gives the candidate pairs (the object identifier pairs (OID 

pairs)). All the features of R and S are sorted in ascending order according to the x values 

of their lower-left corners, xl of their MBR’s. The first feature in this set is picked; let it 

be from the relation R, r. We now have to search in the sorted list S for all the rectangles, 

looking for the ones whose lower x values, xl are smaller than the x values of upper-right 

corner, xu of r, until an MBR in S is such that it has its xl value greater than the xu value 

of r. The resulting pairs thus obtained are the ones which overlap with r along the x-axis. 

These pairs are checked to see if they actually intersect, by checking to see if they 

overlap along the y axis. If they do overlap then the pairs are added to the result of the 

filter step. ‘r’ is marked as done and removed from the sorted set, and the processing 

continues with the next element in the sorted set. A sweep line is assumed to move 

though the sorted set. This process continues until one of the relations has been fully 

processed.  
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Figure 5.7 gives a plane sweeping example. This example assumes there are 5 

features in R, and 4 features in S. Let the features in R be {R1, R2, R3, R4, R5} and in S 

be {S1, S2, S3, S4}; 

 

 

 

 

Y-axis 

 

 

 

 

 

                 

Figure 5.7 Plane Sweep Algorithm for the Filter Step 

 

The entries are first sorted according to the xl values:  

Sorted Set: {R2, R3, S1, S2, R1, S4, R4, S3, R5}  

 

The process starts off with the first feature from the Sorted Set. In this case, R2 is 

selected initially to begin the process: 

R2 
 

R3 

              S1 

S2 

R4 

S3 

R5 

          S4 

R1 
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1. R2 is checked with each element in the set {S1, S2, S4, S3} until it reaches an S 

whose xl value is greater than xu value of R2. In this case, it stops at S2.  

2. The pairs generated so far are checked along the y axis for intersection. In this 

case the pair (R2, S1) is checked along the y-axis. It does overlap so it is added to 

the result of the filter step. 

3. The algorithm continues with the next entry in the Sorted Set. 

 

So for this example: the resulting pairs would be: {(R2, S1), (R3, S2), (R4, S3)}. 

This algorithm is performed on the data contained in each node. 

 

Refinement Step: 

In this step, each candidate pair is examined to check if the features actually 

intersect. This check requires running a CPU-intensive computational geometry 

algorithm, and is the part of the overall algorithm which takes the most time. To know if 

two features are really overlapping, the distance function of PostGIS [1] could be used. 

The distance function takes two geometry features as arguments and returns the 

Euclidean distance between two geometries in projected units. If the distance is zero, we 

can say that the two features are intersecting. Otherwise, the two features are disjoint. 

The result of filter step is a set of OID pairs in the form (OID-R1, OID-R2), such that the 

MBR of the feature corresponding to the OID-R1 overlaps with the MBR of the feature 

corresponding to OID-R2. The refinement steps checks the features corresponding to 

these OIDs if they really overlap by using the distance function.  
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The refinement step gives the result as Object Identifier (OID) pairs in text which 

has the form (OID-R1, OID-R2). Each OID pair contains the Object Identifier (Feature-

id) of the feature in the first relation and the OID of the feature in the second relation. To 

view the data, features are fetched from the relations stored on the main node. The data is 

first fetched from the first relation. To make this process faster, OID pairs are sorted 

according to the OID of the first relation. These OID pairs are sorted and the features are 

fetched from the first relation. When the features are being fetched from the second 

relation, the OID pairs are sorted according to the OID of the second relation. The data 

fetched is stored in temporary tables and viewed using the Viewer described in section 

4.4. 

 

5.3 Join Algorithms 

 

5.3.1 Join Algorithm for Tiling Technique 

 

The clone join algorithm [4] uses the tiling technique (described previously) to 

perform spatial join. The two join inputs are declustered using the tiling technique, and 

then the filter and refinement steps are applied as explained in the previous sections. Two 

variants of the clone join algorithm [4] are investigated. 
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5.3.1.1 Clone Join Algorithm, Variant 1 (CJAV 1) 

 

This method is a version of the clone join algorithm [4]. The master node 

distributes the data to the nodes according to the tiling technique described previously. 

The filter step is performed on each node. The output of the filter step is a set of OID 

pairs. Each OID pair contains the Object Identifier (Feature-id) of the feature in the first 

relation and the OID of the feature in the second relation. This output is sent to the master 

node which removes the duplicate OID pairs. The duplicate OID pairs are removed from 

all the nodes which have the OID pair, except from one node. On which node the OID 

pair should be retained is picked randomly. The resulting OID pairs which are retained on 

each node after removing the duplicates are sent back to the respective node to perform 

the refinement step. 

 

The refinement step is performed on each node. The refinement step removes the 

false hits. The output which is again a set of OID pairs is sent to the master node.  The 

master node sorts OID pairs according to the OID of the first relation, so that when the 

features are fetched from the first relation, it would be faster. This sequence of steps is 

illustrated in Figure 5.8 below. 
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In this method, before the refinement step, the master node has to remove the 

duplicate OID pairs in the nodes and send back the remaining OID pairs to the respective 

nodes. Therefore, the master node should maintain information about which OID pair 

belongs to which node.  
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The resulting candidate pairs from all 
the nodes are obtained to remove the 
duplicates., After this process, the 
candidate pairs are sent back to their 
corresponding nodes.

1 . OID pairs are sorted
according to the OID of the 
first relation of the two join 
inputs

2 . Refinement Step

Node 1 Node 2 Node n

Master 
Node

Filter Step

Node 1 Node 2 Node n

Master 
Node

; Sort the 

. 

Output in the form of 
OID pairs

 

 

Merge the resulting 
OID pairs
OID pairs according 

relation
to the OID of the first 

 

Figure 5.8 Clone Join Algorithm, Variant 1 (CJAV1). 

5.3.1.2 Clone Join Algorithm, Variant 2 (CJAV2) 

 

In this method, the master node distributes the data to the nodes using the tiling 

technique described previously. The filter step is run on each node. The output of the 

filter step is a set of OID pairs. Each OID pair contains the Object Identifier (Feature-id) 
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of the first join input and the OID of the second join input. The refinement step is 

performed on each node, and then the resulting candidate pairs are sent to the master 

node which removes the duplicates and sorts the OID pairs according OID’s of the first 

relation. The output would be a set of OID pairs which are the result of the join. These 

steps are illustrated in Figure 5.9 below. 

 

In this method, the master node doesn’t have to remember which OID pair 

belongs to which node, but the problem with this method is that the Refinement step is 

performed on all the OID pairs prior to removing duplicates.    

 

Figure 5.9 Clone Join Algorithm, Variant 2(CJAV2) 
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The above two variants are now compared. CJAV1 is more useful if the 

replication rate is high. CJAV1 removes duplicate OID pairs before performing the 

refinement step. So, CJAV1 reduces the OID pairs for the refinement, which could make 

the execution faster. On the other hand, if the replication rate is not that high, then 

sending the OID pairs to and from the master node would add communication overhead. 

In this case, CJAV2 would seem to be more appropriate to use. 

 

 

5.3.2 Join Algorithm Based on Semi-Dynamic Approach 
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Node 1 Node 2 Node n

Output in the form 
of OID pairs

Filter & 
Refinement Steps

Decluster 
R*-tree

Merge Results & 
Remove Duplicates. 
Sort the OID pairs 
according to OID of 
first relation .

Master 
Node

. . . . . . . .

 

Figure 5.10 Join Algorithm based on Semi-Dynamic Approach 

 

The data is first distributed using the R*-tree based Semi-Dynamic declustering 

scheme described previously. Then, the join algorithm is applied on each node. The join 

algorithm performs the filter and Refinement steps on each node. On each node, the result 

is a set of OID pairs. The resulting pairs from all the nodes are merged by the master 

node. The duplicates are removed and the OID pairs are sorted to give the overall result. 

Figure 5.10 shows the sequence of steps involved. The difference between the proposed 
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algorithm and the CJAV2 is that the declustering scheme used is different. This is 

observed from Figure 5.11.  

 

An extensive experimental comparative analysis of the proposed algorithm with 

the two variants (CJAV1 & CJAV2) of the clone join algorithm is performed in  

Chapter 6. 

 

 

 

Figure 5.11 Difference between Join Algorithm Based on Semi-Dynamic Approach 

and CJAV2 

 

5.4 Rendering 

 

Geospatial data exists is many different formats. A Shapefile is a geospatial data 

format that is widely used. Geospatial data could be contained in a database as well. This 

section discusses rendering of the data from the above mentioned sources, Shapefiles & 

PostGIS databases.  
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The data obtained from the Join algorithms discussed above is in textual format; 

the output is a set of OID pairs. This data has to be rendered in order to view the result 

graphically. One way to view the data would be to store the features corresponding to the 

OID’s in PostGIS, and render it using the Geotools [6] library as explained in section 

5.4.2 below.  

 

The steps needed to render data using the Geotools library can be summarized as 

follows:  

1. Collect the features to be rendered. The first step would depend on whether the 

data is stored in a Shapefile or PostGIS. 

2. Prepare Styles for the features. This step specifies the form and color data has to 

be rendered in. 

3. Create a layer consisting of the features and the styles that have to be applied to 

these features. 

4. Add the layer to the map and display the map in a graphical user interface. 

 

The section below elaborates on how to render the data using the classes of the 

Geotools library. 
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5.4.1 Rendering a Shapefile 

 

The Geotools library is used to render the data from a Shapefile. The features are 

obtained from the Shapefile itself. 

 

To get the features from the Shapefile, the following has to be done: 

• Create a ShapefileDataStore instance by passing it the path where the Shapefile 

exists. 

• Create a FeatureSource object from this datastore.  

 

To render the features in some form and color, the styles for the features need to 

be prepared.  

• Prepare Styles for the features to be drawn. Depending on whether a Line or Point 

has to be drawn, the LineSymbolizer or PointSymbolizer classes could be used. 

 

Next, a layer consisting of the features and the styles that have to be applied to the 

features need to be made: 

• Build the map, i.e. create a MapContext and add a layer consisting of the feature 

source and style instances, using its addLayer method. 
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Finally the map is displayed: 

• Show the map by creating the StyledMapPane and JFrame instances and setting 

the pane with the correct MapContext.  Then create a scroll pane for this mapPane 

in the Frame to enable scrolling of large maps. 

 

5.4.2 Rendering from PostGIS 

 

The data in the database can also be viewed using the Geotools library. The 

features are obtained from a relation in the PostGIS database. To get the features from the 

PostGIS database the following has to be done: 

• Connect to the PostGIS database by using the PostgisConnectionFactory class, 

and then use the getConnectionPool method to get the ConnectionPool instance. 

• Create the PostgisDataStore by passing the connection pool instance. Create a 

FeatureSource object from this datastore instance. 

 

After obtaining the features, styles can be applied to these features and rendered 

as explained in the Section 5.4.1. 

 

5.4.3 Viewer 

 

There are many tools that can be used on the map: zooming, panning, printing, 

and adding layers from Shapefiles and PostGIS data sources. Using the Geotools library, 

an interface was developed in Java which has the capability to perform all the operations 



66 

mentioned above on a map. This interface is the Viewer which allows viewing of the data 

and the ability to apply various operations on the displayed map. 

 

The following operations could be performed on the map: 

1. Zooming: lets the user to zoom in and zoom out of the map. 

For this task, the user has to click on the map. 

a. Zoom In to Point: zooms in on the view and centers on clicked point.  

b. Zoom Out From Point: zooms out and centers on the clicked point.  

2. Panning: moves the view to the left, right, up, and down. These options are added 

to the viewer. 

3. Reset: sets the visible area to the full extent of the layers.  

4. Print: Open a print dialog to print the map. 

5. Add Layers from Shapefile: The user specifies the Shapefile to be rendered and 

also the style; this creates a layer and adds it to the GUI.  

6. Add layers from PostGIS: The user specifies the table and the database from 

which the data has to be rendered as well as the style; this creates a layer and adds 

it to the GUI. 

 

The data obtained from the Join algorithms discussed above is in textual format; the 

output is a set of OID pairs. The output of the Join algorithm could be viewed using the 

developed Viewer. 
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Chapter 6 Results and Discussion of Results 

 

 

This chapter discusses the experiments conducted and analyses the results 

obtained. The first section contains the results obtained using the tiling scheme. It 

discusses the declustering results as well as the results of the two versions of clone join 

algorithms. The second section contains the results of a R*-tree based semi-dynamic join 

algorithm. Finally, the two declustering techniques are compared. 

 

6.1 Tiling Scheme 

 

The two collections of datasets mentioned in Chapter 3 were used for testing. 

Both datasets (dataset1 & dataset2) contain Hydrography and Rail information. Dataset1 

is limited to the state of Louisiana, while Dataset2 is much larger and includes the 

following adjacent states: Louisiana, Kansas, Mississippi, and Arkansas, Texas, 

Oklahoma, and Missouri states. When these datasets are imported into the PostGIS 

database, the relations are named as hydrolin and rail. 

 

6.1.1 Results on Declustering 

 

This scheme as discussed in section 5.1 presents two disadvantages, namely 

replication and data distribution skew. A spatial object could be stored on more than one 

node, which results in replication of the same object i.e. data replication. Also, data 
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fragments stored on the various nodes may vary greatly in size, resulting in data 

distribution skew. A good spatial declustering scheme would be one that assigns nearly 

an equal number of features to each node and, would consequently, have a coefficient of 

variation close to zero. 

 

The ratio of the standard deviation and the mean is called the Coefficient of 

Variation. This reflects the variability of the data on several nodes when the data is 

distributed. A good declustering method is expected to have a low coefficient of variation 

(CV) of the features per node as well as a low percentage of replication of the features. 

 

The two data sets were distributed onto various nodes with different test 

parameters. In the tiling scheme, the universe is divided into tiles and these tiles are 

distributed across various nodes. For dataset1 the number of tiles is varied from 50 to 

5,000. For dataset2 the number of tiles is varied from 50 to 7,200.  

 

Both Figures 6.1 and 6.2 show the coefficient of variation of the number of 

features per node versus the number of tiles. The x-axis represents the number of tiles, 

and the y-axis represents the coefficient of variation. In both figures, each curve 

represents the graph generated for a specified set of compute nodes. Each curve 

represents the number of nodes the data was distributed across. Nodes-4 means that the 

result was taken when the number of nodes selected was 4. 
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When the number of tiles is low, the CV is high reflecting the fact that data on 

different nodes varies greatly in size. As the number of tiles increases, the distribution 

becomes nearly uniform. Figure 6.1 and Figure 6.2 shows the CV of features per node for 

dataset1 and dataset2 respectively. Both Figures use the coefficient of variation of the 

distribution of the features in each node as a metric. These Figures illustrate the fact that 

the coefficient of variation of features per node decreases as the number of tiles increases. 

These observations are in line with results obtained in [3,4] using different datasets. 

 

 

Figure 6.1 Co-efficient of Variation vs. Tiles for dataset1 
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Figure 6.2 Co-efficient of Variation vs. Tiles for dataset2 

 

For a fixed number of tiles, it is observed from Figure 6.1 and 6.2 that the coefficient 

of variation is less when fewer compute nodes are used. This is because the 

distribution of tiles that cover dense regions is better with a smaller number of nodes.  

Also, it is seen that the curves generated are not smooth. The irregularities on the 

curve were due to the limitations of the round-robin hashing function used. Indeed, 

when the number of columns was a multiple of the number of nodes, all tiles which 

have the same column number were stored on the same node; this is equivalent to 

having less tiles. These irregularities are also observed in [3,4]. 
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Figure 6.3 and Figure 6.4 below show the percentage of replication of the features 

when the number of tiles increases for dataset1 and datset2 respectively. The x-axis 

represents the number of tiles, and the y-axis represents the percentage of replication. 

When the number of tiles increases, spatial features, which overlap many tiles, are 

replicated on many nodes. So, when the number of tiles increases, the percentage of 

replication grows. The irregularities in the curves of Figure 6.3 and Figure 6.4 are due 

to the same reason explained previously for Figures 6.1 and 6.2.  

 

 

Figure 6.3 Replication vs. Tiles for dataset1 
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Figure 6.4 Replication vs. Tiles for dataset2 

 

6.1.2 Results of Join Algorithm for Tiling Scheme 

 

The two versions of Clone Join algorithms (CJAV1, CJAV2) introduced 

previously in section 5.3 are tested. The performance of these algorithms is tested using 

dataset1 and dataset2. The spatial join is performed on the Hydrolin and the Rail 

relations. 
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6.1.2.1 Variation of the Number of Tiles 

 

The two relations were declustered using the Tiling Technique on 16 nodes with a 

varying number of tiles. Figure 6.5 shows the result obtained. The execution time of the 

Join Operation was taken using the CJAV2 algorithm. 

 

     

Figure 6.5a Time vs. # of Tiles for 

dataset1. CJAV2 using 16 nodes 

Figure 6.5b Time vs. # of Tiles for 

dataset2. CJAV2 using 16 nodes. 

 

From Figures 6.5a & 6.5b, it is seen that the time taken for the Join of Hydrolin 

and Rail starts decreasing as the number of tiles increase. This is due to a decrease in the 

coefficient of variation. The time then starts increasing as the number of tiles gets much 



74 

higher, which is due to an increase in replication. The CJAV1 algorithm exhibits the 

same behavior. 

 

6.1.2.2 Variation of the Number of Nodes 

 

Both dataset1 and dataset2 were declustered using tiling. The number of tiles was 

kept constant (3,600 & 8,100 for Dataset1 & Dataset2) respectively.  The Join query was 

tested under five different cluster configurations: 4, 8, 16, 32 and 64 slave nodes for both 

dataset1 & dataset2. The datasets were also loaded onto one slave node (reference 

system) and tested.  

Figures 6.6 & 6.7 summarize the result for dataset1 and dataset2 respectively. 
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Figure 6.6 Time(ms) vs. Nodes for dataset1 (3,600 tiles) 

 

Nodes/Time CJAV2(sec) CJAV1(sec) 

1 390.3 399.7 

4 41.1 44.6 

8 18.1 28.0 

16 11.8 23.1 

32 11.6 28.4 

64 20.4 67.3 
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From Figure 6.6, it is observed that with Dataset1 CJAV2 outperforms CJAV1. 

The performance gain becomes more pronounced as the number of compute nodes is 

increased. The performance of CJAV2/ (CJAV1) shows a gain up to 32/ (16) nodes; 

beyond this number, a degradation of performance is observed. This is probably due to an 

increase in communication overhead when more nodes are involved in the querying. That 

is, network communication overhead caused by a large number of nodes returning query 

results to the master node mitigates any processing gains achieved by having more 

processors and disks. However, the use of a greater number of nodes is expected to be 

beneficial for much larger datasets. 
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Nodes/Time (sec) CJAV2 CJAV1 

1 6,797.7 6,804.6 

4 554.3 567.1 

8 158 177 

16 56 76 

32 26 59 

64 20 62 

 

Figure: 6.7 Time (ms) vs. Nodes for dataset2 (8,100 tiles) 
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Figure 6.7, shows the same experiment with the larger dataset, dataset2. A similar 

trend is observed except that the performance gain of CJAV2 over CJAV1 is higher with 

this larger dataset. It is also observed that the scalability of CJAV2 is improved with this 

larger dataset. 

 

 

6.1.2.3 Comparison of the Two Clone Join Algorithms 

 

The two join algorithms are compared, as seen in Figure 6.7. The Join query was 

tested with five different cluster configurations: 1, 8, 16, 32 and 64 slave nodes. 

 

It is noted that for the CJAV2 algorithm, the filter and refinement steps of the 

spatial join are performed on the nodes without sending the filter result to the master 

node. In contrast, for the CJAV1 algorithm, the Filter step output is sent back to the 

master node which removes duplicates, and sends back the resulting output to the nodes 

for the refinement step. As a result, in the case of algorithm CJAV1, the master node 

receives OID pairs from each node and then performs a duplicate removal operation. 

Afterwards, the master node distributes the duplicate free set of OID pairs back to the 

nodes they originated from. These steps introduce additional communication and 

processing overhead. This overhead is more pronounced when the replication percentage 

is low. 
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However, CJAV1 may be useful with very large datasets that generate a larger 

number of duplicates. In this case, it may be beneficial to remove the duplicate OID pairs 

before proceeding with the refinement step. 

 

6.2 R*-tree based Semi-Dynamic Approach 

 

6.2.1 Declustering Results of a single relation  

 

With R*-tree based declustering, there is no duplication of the features as the 

leaves of the R*-tree do not overlap. Using this approach the CV of features per node is 

reduced compared to the tiling technique. An R*-tree with varying fan out (M) is built on 

the hydrolin relation (for both dataset1 & dataset2).  

 

 

Figure 6.8 CV vs. M (R*-tree on hydrolin) 

using dataset1 

 

Figure 6.9 CV vs. M (R*-tree on hydrolin) 

using dataset2.
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It is observed from Figures 6.8 & 6.9, that the coefficient of variation is lower for 

the R*-tree based semi-dynamic declustering. This is verified by comparing the above 

Figures with Figures 6.1 & 6.2. For dataset1, CV ranges from 0.01 to 0.07 which 

indicates that the data distribution is nearly even among the nodes. The same is observed 

when dataset2 is used to build an R*-tree on hydrolin.  

 

It is noted that a similar trend (lower CV) is also observed when an R*-tree is 

built on the rail relation. 

 

6.2.2 Declustering Results of two relations for a Join 

 

The declustering of two relations was performed for different parameter values to 

choose the best fan out to perform the join. 

 

To perform the Join using the R*-tree based semi-dynamic declustering 

(discussed in chapter 5), the R*-tree structure of one of the relations is used to decluster 

both the relations, such that there will be no replication on one of the relations. However, 

the other relation is subject to replication and data distribution skew. This occurs because 

this relation is declustered statically using a tiling like scheme. The leaves of the first 

relation’s R*-tree are treated as tiles for the second relation to be declustered. 

  

The join is performed on relations Hydrolin and rail. As discussed before, the 

main parameter used to build an R*-tree is the fan out, M. Best parameter values are 
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found such that the second relation declustered has minimum replication of data as well 

as a nearly even distribution of data.  

 

The R*-tree was built on the hydrolin, the larger of the two relations. This R*-tree 

structure was used to distribute the rail dataset. This approach was tested with various 

values for the R*-tree’s fanout to find the best distribution. The same process is repeated 

for the R*-tree on the rail, the smaller of the two relations. The two mapping functions 

used to map the leaves to disks are round robin and range hash, as described previously in 

section 5. For this purpose, each of the four variants was tested. It is observed from 

Figure 6.10 that building an R*-tree on the smaller relation, rail, reduces replication of 

data. In addition, the declustering time is reduced by building an R*-tree on the smaller 

relation.  

 

Based on the above discussion, the semi-dynamic join approach will be based on 

an R*-tree built on the rail relation. Two mapping functions (round robin and range 

mapping) were used to map features to compute nodes. The results of this algorithm are 

compared with CJAV2, as this algorithm performs better than CJAV1 for both dataset1 

and dataset2. 

 

The comparative analysis for both datasets is discussed below. CV and 

Replication values are noted for different parameters of the hydrolin relation. The best 

parameter is selected from these results and tested for the join query. 
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Results with dataset1 

From Figure 6.10, it is observed that the Replication is initially high for lower 

values of M, but exhibits a sharp decrease as M increases. The reason for this is explained 

below.  

 

In this case, hydrolin is declustered statically using a tiling like scheme. The same 

declustering pattern of the Tiling scheme is observed for this relation. The different tiles 

are leaves of the R*-tree. For smaller fanout (M) values, the universe is divided into a 

larger number of leaves. As M increases, the number of leaves decreases. Hence, 

replication is high for lower M and decreases as M is increased.  

 

From Figure 6.11, it is observed that the CV for the range hash function is greater 

than the round-robin. This occurs because some part of the map may have considerably 

less features, and hence data distribution skew will be more prevalent for the range hash 

function.  

 

M=40 & M=90 are selected for testing the Join query as the Replication and CV are both 

low for these two M values. 
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Figure 6.10 Replication vs. M (16 nodes) for 

dataset1       

Figure 6.11 CV vs. M (16 nodes) for dataset1 

 

Results with dataset2: 

In Figures 6.12 & 6.13 the fanout, M ranges from [20 to 300]. It is observed from 

figures 6.12a and 6.12b that the Replication is high for smaller M, and reduces as M 

increases. The reason for this is the same as explained in the case of dataset1.  

 

Also from Figures 6.12a and 6.12b, the behavior of the mapping functions is 

noted. Replication for round-robin starts off high. As M increases, the replication is 

almost the same for both mapping functions. For the range hash, a range of leaves is 

stored on a single node, which does not store the duplicates. For the round-robin hash 

function, since each leaf is distributed to a node in a round robin fashion, the features that 

overlap more than one leaf are stored in multiple nodes. Hence, initially the replication 

for round-robin is high. However as M increases, replication decreases. This occurs 

because for larger M, the number of leaves is reduced. Thus, replication is nearly same 

for both hash functions. 
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Figure 6.12a Replication vs. M for hydrolin 

(R*-tree on rail, 16 nodes)  

 

 

Figure 6.12b Replication vs. M for hydrolin 

(R*-tree on rail, 32 nodes)

Figure 6.12 Replication vs. M for R*-tree Based Semi-Dynamic Approach 

 

The results from Figures 6.13a, 6.13b demonstrate that CV of range-hash is high, 

illustrating the fact that this hash function is more subject to data skew. This is due to the 

same reason as explained previously for dataset1. 
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Figure 6.13a CV vs. M for hydrolin (R*-tree 

on rail, 16 nodes)  

 

Figure 6.13b CV vs. M for hydrolin (R*-tree 

on rail, 32 nodes)  

 

Figure 6.13 Coefficient of Variation vs. M for R*-tree Based Semi-Dynamic 

Approach 

 

It is observed from the above Figures that for fanout, M=280, both CV and replication 

are low for both the variants. The join query is performed using this value.  
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6.3 Comparison of the Declustering Techniques 

 

For both the declustering techniques used, the declustering time as well as the 

time for the join query is noted. The declustering time results are shown below. 

 

6.3.1 Comparison of the Declustering Times 

 

Table 6.1 Decluster Times of all Variants Using dataset1 

 

 

 

Time/Variants 

R*-tree based Semi-

Dynamic approach (R*-tree 

on rail, round-robin) 

 

M=280 

R*-tree based Semi-

Dynamic approach (R*-tree 

on rail, range-hash) 

 

M=280 

Tiling Technique 

 

 

 

Tiles=8,100 

Time(sec) 760.6 723.8 5,647.0 

 

Table 6.2 Decluster Times of all Variants Using dataset2 

 

R*-tree based Semi-Dynamic 

approach (R*-tree on rail, round-

robin) 

R*-tree based Semi-Dynamic 

approach (R*-tree on rail, range-

hash) 

Time/Variants 

 

M=40 

 

M=90 

 

M=40 

 

M=90 

Tiling 

Technique 

 

 

Tiles=3,600 

Time(sec) 116.7 128.7 151.4 152.3 816.8 
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From the above two Tables 6.1 & 6.2, it is observed that the tiling declustering 

technique takes considerably more time than the proposed R*-tree based semi-dynamic 

clustering techniques. The performance advantage of the proposed clustering technique 

becomes more pronounced as the size of the data set is increased. 

 

It should be noted that in the experiment, both algorithms (Tiling and the R*-tree-

based semi-dynamic declustering method) have been run under their most favorable 

parameter values. Indeed, as shown previously, the tiling method performs best when 

3600 (8100) tiles are used with dataset1 (dataset2). Similarly, the R*-tree based semi- 

dynamic approach performs best when rail is declustered using an R*-tree with a fan out 

of 40 (280) for Dataset1 (Dataset2). 

 

6.3.2 Comparison of the Join Results 

 

The comparative analysis below only shows the execution time of each of the two 

algorithms. It does not include the time to decluster the two relations (rail and hydrolin) 

to be spatially joined. The comparison of the declustering time of each of the two 

methods was performed in the previous section. 

 

Results using dataset1 

The spatial join query was tested under the following cluster configurations: 1, 4, 

8, 16, 32 and 64 slave nodes for each of the two datasets. As previously done, both 

algorithms were run under their most favorable parameters values. 
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R*-tree on rail, round-robin R*-tree on rail, range hash Nodes/ 

Variants M=40 M=40 

CJAV2 

 

3,600 tiles 

1 99.1 99.1 390.3 

4 19.2 17.7 41.1 

8 10.9 12.4 18.1 

16 11.7 11.8 11.8 

32 11.6 13.6 11.6 

64 19.7 19.7 20.4 

 

Table 6.3 Comparison of 2 Variants of R*-tree Based Semi-Dynamic Approach with 

CJAV2 using dataset1 

 

It is noted from Table 6.3 that the R*-tree based semi-dynamic approach 

outperforms CJAV2 for all cluster configurations. There is a tangible performance gain 

achieved as the number of compute nodes increase from 1 to 8. For a higher number of 

nodes, the gain in time is more modest. This is attributed mostly to the small size of the 

dataset. It is noted that for both algorithms the execution time using 64 nodes is more 

than that of 32; this is due to the communication overhead as explained previously for the 

clone join versions.  
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Results for Dataset2 

Nodes/ 

Variant 

R*-tree on rail, round-robin 

M=280 

R*-tree on rail, range hash 

M=280 

CJAV2 

8,100 tiles 

1 4,844.4 4,844.4 6,797.7 

4 403.8 409.2 554.3 

8 134.7 133.1 158.3 

16 46.5 50.0 55.7 

32 21.7 25.2 25.8 

64 18.6 23.1 19.6 

 

Table 6.4 Comparison of 2 Variants of R*-tree Based Semi-Dynamic Approach and 

CJAV2 using dataset2 

 

Table 6.4 tabulates the result for dataset2. A similar trend is also observed with 

this larger dataset. That is, the proposed method always outperforms CJAV2, but as the 

number of nodes increases, the performance gap tends to decrease. It is also observed that 

round-robin performs better than the range hash function in almost all cases. Higher CV 

is the most probable reason for this, as replication for a fanout of 280 is almost the same 

for both hash functions. 

 

The above extensive comparative experimental analysis confirms that the R*-tree 

based semi-dynamic approach is more efficient than the clone join algorithm (CJAV2). 

Its performance is superior both in declustering time as well as in the execution time of 

the spatial join query. 
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Chapter 7 Conclusion 

 

In this thesis, a new declustering strategy using a semi-dynamic approach was 

proposed. The proposed scheme builds an R*-tree on one of the two relations to be 

joined. The leaves of this R*-tree are mapped onto compute nodes. The features of the 

second relation are distributed statically using a tiling like approach. The leaves of the 

R*-tree built on the first relation are treated as tiles, and thus, the features of the second 

relation which overlap the leaves are stored on the nodes corresponding to the leaves. 

Based on this declustering strategy, a new R*-tree based semi-dynamic parallel join 

algorithm and two versions of the existing clone join algorithm were investigated. A 

comparative performance analysis of these algorithms was done using real datasets. 

These algorithms were implemented and run on a Beowulf cluster. The experimental 

results show that the proposed algorithm outperforms the clone join algorithm. Its 

performance is superior both in declustering time as well as in the execution time of the 

spatial Join query.  

 

Future work includes the design and implementation of adaptive parallel 

algorithms for both single scan and multiple scan spatial queries. These algorithms are 

expected to take into account the size of the datasets, the distribution of features, the main 

memory size of each slave node and other parameters (to be determined) to determine the 

best execution strategy.  These algorithms are expected to form the basis of an adaptive 

parallel query processor. 
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