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                                            Abstract 

 

Nanomaterials such as gold nanowires and gold nanoparticles were self-assembled with 

several peptides derived from beta-amyloid peptide. The peptides propensity to form 

fibrilar structures was exploited. The products obtained by aggregation of the peptides 

with the nano materials were studied using HPLC, UV-vis spectroscopy, TEM and 

optical light microscopy. 
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                                 Chapter 1  

                                     Introduction  

1.1  Nanoscale assembly  

The nanomaterials field has emerged lately as a very promising research area, 

with applications in nanotechnology, biotechnology, medicine, etc. Nanoscale structured 

materials have dimensions of nanometer order (0.1-100 nm), and their properties depend 

strongly on their microstructure (the arrangement of the atoms and the chemical 

composition).  

Two approaches are commonly used to construct nanomaterials: the “top-down” 

approach, where large building blocks are manipulated to afford smaller size building 

blocks that can be further assembled. Photolithography makes use of this approach to 

obtain two-dimensional structured materials. The other way to manufacture-synthesize 

nanomaterials is the “bottom-up” approach, where molecular entities are assembled to 

afford materials with nanometer length scale and with an ordered structure. The 

molecular self-assembly process is driven by spontaneous association of the building 

blocks, also known as “Brownian assembly”. Various organic molecules such as thiols, 

can spontaneously attach to substrates like gold to form ordered layer [1], this process 

being a self-assembling one. 

Molecules can be designed to self assemble in a controlled manner to create a 

structure with predictable properties. Nanobuilding blocks with various shapes have been 

synthesized to date. Nanospheres [2], nanorods [3], nanocubes [4], nanoplates [5] are 

synthesized to be used in areas like photonics, electronics, chemical and biological 
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sensors, and their manipulation into functional materials and devices is a permanent 

challenge for nanotechnology. 

1.2 Nanoscale Assembly Importance 

Very often molecular self assemblies are inspired by nature. The living cells are 

perfect examples for how proteins and lipids are assembled to perform special functions 

and to respond to various stimuli. Proteins and peptides are intensively studied, and 

knowing their functions, folding and properties helps in using them as building blocks in 

a “bottom-up” manner. Another advantage of using proteins or peptides as self-

assembling entities is that the bulk properties of the material obtained in this fashion are 

similar to the properties of the individual component blocks. The self-assembling process 

is a dynamic process driven by weak noncovalent interactions (hydrogen bonding, 

electrostatic and/or hydrophobic interactions) and/or metal coordination. 

De novo design of proteins and peptides aims to self-assemble proteinaceous 

monomeric blocks of small size that may have, besides their affinity to self-assemble, 

functional groups incorporated. Current research is exploring the fabrication of 

nanostructures with applications in medicine [8, 29] or areas such as photonics and 

electronics [30], chemical and biological sensors, energy storage [31], and catalysis [32]. 

1.3 Progress Made Toward Obtaining Nanoscale Materials through Self-assembling 

Processes 

Naturally occurring proteins with known assembling properties are used as 

starting points to synthesize structures with different morphologies. Self-assembling of 

biological materials with inorganic compounds is called biomineralization. The 

Hartgerink group [6] self assembled a fibril forming peptide into nanofibers which were 
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reversibly cross linked and then, by direct mineralization with hydroxyapatite and 

varying the pH, the long axes of the fibers were aligned with the crystallographic axes of 

the hydroxyapatite in a manner similar to the alignment of the collagen fibrils and 

hydroxyapatite crystals in bone. 

The chemical synthesis of peptides can be very easily performed and the peptides 

can be designed to have a desired pattern or it is possible to attach in specific points 

amino acids or molecules with functional groups that  will allow a further attachment or 

assembly. Peptides can be synthesized to adopt well defined supramolecular structures 

such as nanotubes [7]. Metallization of peptide nanotubes [8] can be achieved and then, by 

enzymatic means, the peptide that served as a scaffold can be eliminated to obtain 

nanowires with smaller diameters than the peptide used to drive the metal wires 

formation.  

In spite of the advantages of using proteins and peptides as building blocks, a 

major draw-back is their fragility when exposed to environmental conditions, such as 

highly acidic or basic conditions, high temperature, etc. The enzymatic degradation is 

also a continuous challenge for “in vivo” applications, but, by carefully controlling it, it 

can be encompassed [9].  

Our hypothesis is that nanoscale assembly can be driven by biological systems. In 

this project, the synthesized peptides are linked to nanowires or gold nanoparticles with 

different sizes by Au-S covalent bonds. The rate of beta-amyloid peptides aggregation 

with the gold nanowires was observed using HPLC and Transmission Electron 

Microscope. The rate of beta amyloid peptides aggregation with the gold nanoparticles 
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was monitored by kinetic spectrophotometric measurements and the products were 

visualized by TEM and optical light microscopy. 
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   Chapter 2 

                               Beta-amyloid Peptides  

2.1 Introduction 

Amyloid related diseases, such as Alzheimer’s disease, Huntington’s disease, type 

2 diabetes, prion diseases, are a result of protein misfolding. In all stages of these 

diseases, amyloid fibrils are formed as a result of a self-assembly process. It is known 

that protein folding into fibrils is dictated by the protein sequence but, the appearance of 

the self assembled amyloid fibrils might be also influenced by other factors, like the 

interaction with cellular components (apolipoprotein E, glycoproteins, glycans, etc.) or 

metals (Ca, Zn)[27]. 

The amyloid fibril forming process is termed amyloidosis and it generally 

describes the aggregation of proteins or peptides in the brain or body. These aggregates 

can be soluble or insoluble and the accumulation of the insoluble fibers or fibrils 

generates the insoluble amyloid plaques. Several peptides and proteins with diverse 

amino acid sequences exhibit this property [28]. Two of the peptides responsible for these 

deposits which were intensively studied because their involvement in protein misfolding 

diseases are a 40- and a 42- amino acids residue peptide called beta-amyloid [27]. The 

beta-amyloid peptides have the following sequences: 

a) The 40 amino acid sequence 

NH2- DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV-COOH 

b) The 42 amino acid sequence 

NH2- DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA-COOH 
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The beta-amyloid peptide showed, when studied by transmission electron 

microscope, its ability to form fibrils with distinct morphologies (twisted or parallel 

assemblies of smaller scale fibrils, proto-fibrils). Recently, by using electron microscopy 

and solid state NMR techniques, R. Tykco group [10] demonstrated that the predominant 

structure of the formed fibrils can be controlled by variations in fibril growth conditions 

and moreover, that the molecular structure and the morphology of the fibrils are self-

propagating when the fibrils grow from preformed seeds. They showed also that different 

morphologies of the fibrils have different toxicities in neuronal cell cultures, results that 

emphasize, once more, the importance of understanding the mechanism of amyloid fibrils 

formation. 

2.2 Beta-amyloid Short Sequences 

In order to understand what drives the beta-amyloid fibrils formation, the 1-40 

and 1-42 sequences were studied truncated, using various techniques and approaches. It 

was determined by Tjernberg L. [11] that the shortest fragment of 1-40/42 peptide 

influencing the binding abilities of beta amyloid is the sequence 16-20 (KLVFF). This 

fragment was found to be soluble, unable to form fibrils by itself, but it showed a 

pronounced ability to influence fibril formation by binding to longer sequences derived 

from beta amyloid peptide. 

Segments of beta-amyloid fibrils forming peptides derived from the beta-amyloid 

1-42 peptide were studied by several groups, such as: Tycko [12], Langen [13], Nordstedt 

[14], Nussinov [15], Thirumalai [16]. The sequence 16-22 (KLVFFAE) was given a special 

attention because its importance in the amyloid fibrils genesis. The sequence 16-22 is the 
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shortest sequence that forms fibrils. Moreover, it was shown that mutations within this 

sequence determine the loss of the peptide ability to form fibrils [16]. 

In our experiments we tried to exploit the tendency of sequence 16-22 to form 

amyloid fibrils and we attached cysteine at the N-terminus at two of the sequences. The 

cysteine was attached to enable the binding to various gold containing nanoparticles and 

nanowires. We synthesized the sequences: 

a) beta-amyloid 16-20 (bamc16-20)      C-K-L-V-F-F  

b) beta-amyloid 16-22 (bam 16-22)    K-L-V-F-F-A-E 

c) beta-amyloid 16-22  (bamc16-22)  C-K-L-V-F-F-A-E 

The letters correspond to:  

C- cysteine; K- lysine; L- leucine; V- valine; F- phenylalanine; A- alanine; E- 

glutamic acid. 

The sequences are fragments from the beta-amyloid peptide containing the amino 

acids between position 16 through 20 and 22 respectively. To allow a reaction with the 

gold nanoparticles we attached a cysteine amino acid in position 15. The sequences were 

chosen because the first one is known to enhance the fibril formation. The second 

sequence is the shortest amyloid fibrils forming peptide derived from the 1-42 beta-

amyloid peptide. The third sequence differs from the second one with only an additional 

cysteine that will function as a linker between the peptide and the gold nanoparticles. 

2.2.1 Synthesis of Beta-amyloid Short Sequences 

The peptides were synthesized using an Fmoc procedure (Fmoc stands for 9-

fluorenylmethoxycarbonyl) [17]. The peptide chain is constructed on an insoluble solid 

support, the resin, which enables the separation of the intermediate peptides from the 
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soluble reagents and solvents, by filtration. After the filtration of the resin from the 

soluble reagents, the intermediate peptide can be washed to prepare it for the next steps, 

the cleavage and the purification. 

The C terminal amino acid of the target peptide is attached to the resin via the 

carboxyl group. The functional groups of each amino acid side chains are protected with 

permanent protecting groups which are called permanent because they are resistant to the 

basic reactions conditions involved during peptide chain assembly. Besides the 

permanent side chain protecting groups each amino acid is temporary protected before 

entering the coupling reaction with the resin (for the first amino acid attached on the C 

terminus) or with the next amino acid that couples. The Fmoc strategy is based on using 

two types of protecting groups:  

a) The N-Fmoc group, which is the temporary protecting group and it can be 

removed under basic conditions and  

b) The side chain permanent protecting groups and the linkage between the 

resin and the growing peptide chain, which are removable under acidic conditions. 

In our synthesis of the beta amyloid peptide sequences the permanent protecting 

groups of the amino acids used were t-butyl and trityl, both of them being easily 

removable using TFA (trifluoroacetic acid, CF3CO2H).  

The synthesis process is performed automatically and it follows three steps: 

• N-Fmoc deprotection  

• Activation of the carboxylic group of the amino acid 

• Coupling step 
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The deprotection of the N-Fmoc group is done under basic conditions (20-50% 

v/v piperidine in DMF). In the first step the resin reacts with the first amino acid. If sites 

on the resin are not reacted in this loading process, they can be reacted during the next 

steps, generating C-terminus truncated by-products. 

The resin used was a Rink resin (2-chlorotritylchloride resin) and it was chosen to 

give an amidated peptide, and because the coupling process is free from 

enantiomerization or dipeptide formation [17]. 

To test the resin deprotection before the first amino acid attachment, the ninhydirn 

(or Kaiser) test was used, following a standard protocol [26]. Several resin beads were 

removed from the reaction block and washed three times with ethanol. Then a mixture of 

ninhydrin (in EtOH)/ phenol (in EtOH)/ KCN (in piridine) in equal volumes was used to 

treat the beads. The solution is mixed well and heated at 1200C for 4-6 minutes. If the 

color of the solution and the beads are dark blue, the deprotection was achieved, if not, 

the amino protecting groups are still attached to the resin and the coupling will not be 

efficient. 

The coupling step in which the amide bond is formed involves the chemical 

activation of the carboxy component. Mild activating methods and reagents are preferred, 

mostly based on “in situ” generated active esters. In our synthesis we used as coupling 

reagents: HBTU (N-[(1H-benzotriazol-1-yl)(dimethylamino)methylene]-N-

methylmethanaminium hexafluorophosphate N-oxide), HOBt (1-hydroxybenzotriazole) 

and DIPEA (diisopropyl ethylamine).  
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2.2.2 Post Synthesis Treatments of the Peptides 

After the synthesis, the resulting peptide is still attached to the resin and each 

amino acid residue has the permanent protecting groups onto it. The permanent 

protecting groups attached to the amino acids are stable to the basic conditions during the 

peptide synthesis process, but they can be removed by cleavage under acidic conditions. 

Two other steps will follow:  

a) The cleavage reaction 

b) The purification of the crude peptide. 

a) The cleavage reaction is performed under acidic conditions, which enable the 

removal of the permanent side chain protecting groups. Before starting the cleavage 

procedure, the resin should be dried for several hours on a lyophilizer to remove the 

water and volatile salts. 

 The cleavage reaction is done with TFA. Because of the cysteine presence in the 

sequences ethane dithiol was added to the cleavage cocktail. The role of ethane dithiol is 

to assist in the removal of the trityl protecting group from cysteine [33].  The typical 

cleavage cocktail is a mixture of TFA, ethane dithiol, distilled water and 

triisopropylsylane in a proportion of 94 /2.5 /2.5 /1 % v/v.  This cocktail is poured onto 

the resin loaded with the peptide, and the resulted solution is stirred with a magnetic bar 

for several hours (2-4 hours). For the sequences synthesized, bamc16-20, bamc16-22, and 

bam16-22, the color of the resin beads changed right after adding the cleavage cocktail 

from pale yellow (the color of the dried resin beads) to red-pink, deep orange and deep 

yellow respectively. At the end of the cleavage reaction the beads had a similar color with 

their color before the synthesis (very pale yellow). 
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b) Purification of the crude peptide is necessary because the synthesis and the 

cleavage steps will yield a mixture of various peptides and byproducts beside the desired 

peptide. The purification is done by reverse phase liquid chromatography using an 

analytical column or a semiprep column, if larger amounts of peptides are purified. For 

purification of the peptides different methods were used. The methods were optimized to 

obtain a better resolution of the peaks and to afford a shorter elution time. For the 

analytical column the flow rate employed was 0.5 mL/min and 2 mL/min for the 

semiprep column. 

The instruments used for peptide purification and study was a System Gold High 

Performance Liquid Chromatography (HPLC) System from Beckman Coulter, equipped 

with a 168 nm diode array detector and chromatographic software (32 Karat). The 

samples were delivered with a 200 µL injection loop. 

 The columns employed in our experiments were produced by Beckman-Coulter: 

analytical and semiprep, and both of them had the packing material composed of silica 

particles reacted with organochlorosilane which coats the particles surfaces with 

hydrocarbon chains that makes the particle surface hydrophobic. The particle diameter 

was 5 µm and the pores were 80 Å. The length of the columns was 250 mm, and the 

internal diameter was 4.6 mm for the analytical column, and 10 mm for the semiprep 

column.  

Typical solvents were used for the RP-HPLC: water/acetonitrile. The composition 

of solvents was: A-99.9% HPLC grade water; 0.1% trifluoro acetic acid (Sigma Aldrich) 

and B-99.9% HPLC grade acetonitrile (Alfa Aesar) and 0.1% trifluoroacetic acid.  
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For purification of the peptides different methods were used. The methods were 

optimized to obtain a better resolution of the peaks and to afford a shorter elution time. 

The gradients varied between 2%ACN per minute and 4% ACN per minute, and after the 

peptide elution, the collected solution was frozen with liquid nitrogen and dried on the 

lyophilizer to be stored for further experiments.  

The cysteine attachment in two of the peptides synthesized made necessary the 

use of a specific reagent to test its presence in the product, Ellman’s reagent 5, 5’-

dithiobis (2nitrobenzoic acid). The Ellman’s reagent was purchased from Aldrich. A 

fresh solution of Ellman’s reagent was prepared by dissolving 4 mg 5, 5’-dithiobis 

(2nitrobenzoic acid) in 1 ml phosphate buffer 0.1 M (pH 8.0). The peptide sample was 

dissolved in 200 µL phosphate buffer and 20 µL Ellman’s reagent solution previously 

prepared was added. The mixture was allowed to react for 15 minutes at room 

temperature. The reaction between the peptide and the Ellman’s reagent was monitored at 

415 nm, checking the absorbance of the product on HPLC. 

 2.3 Experimental Section 

            2.3.1 Peptide Synthesis 

The peptide synthesis was done with a Synergy Personal Peptide Synthesizer 

from Applied Biosystem. The amino acids and the resin were purchased from Nova 

Biochem and they were used as received. The solvents were purchased from Alfa Aesar 

and they were used as received. The amino acids are protected with permanent protecting 

groups and with temporary protecting groups (Fmoc). 

The amounts of amino acids and of resin that were loaded into the empty columns 

were calculated with the formula provided by Synergy kit: 
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-The amino acids: 

Derivative Molecular Weight (mg/mmol) X 0.075mmol = Derivative Weight (mg) 

-The resin: 

=
×

)/(sin
1000025.0

gmmolonsubstitutire
mmol  Resin Weight (mg) 

The resin used had a 0.059 mmol/g substitution and the maximum load was 0.03 

mmol. The yields obtained varied between 60-70%. 

For the synthesis we used for each amino acid entering the coupling reaction: 

 42.3 mg Rink resin, 43.90 mg cysteine (C) 35,14 mg lysine (K), 26.50 mg leucine (L), 

25.45 mg valine (V), 29.05 mg phenylalanine (F), 23.34 mg alanine (A) and 31.9 mg 

glutamic acid (E). 

         2.3.2 Peptide cleavage  

The cleavage reaction was performed using a standard TFA protocol. The 

reagents trifluoroacetic acid (TFA), triisopropylsilane (TIS) and ethanedithiol (EDT) 

were purchased from Aldrich and used as received. The cleavage cocktail is a mixture of 

TFA, ethane dithiol, distilled water and triisopropylsylane in a proportion of 94 /2.5 /2.5 

/1 % v/v. We used 1880 µL TFA, 50 µL EDT, 50 µL distilled water and 20 µL TIS. This 

cocktail was poured onto the preweighed resin, stirred with a magnetic bar, and the vial 

was capped. The cleavage reaction was followed by the precipitation of the peptide with 

cold ether (6 mL) [33]. After the precipitation, the peptide was extracted with distilled 

water (6-8 mL). Then, the crude peptide was frozen with liquid nitrogen and dried 

overnight on a lyophilizer. After the freeze-dry process the products were obtained with 

yields varying between 30-60%, and were stored for future utilization.  
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         2.3.3 Peptide purification  

The dried peptides were suspended in distilled water and purified by HPLC 

Beckman-Coulter 168 nm detector using a semiprep column. For the purification of the 

crude peptide, each time 1mg dried peptide was dissolved in 1ml distilled water. 

The purification method used for the beta -amyloid (bam16-22) sequence was: 

3%ACN/ min, over 30 minutes with a flow rate of 2 mL/ min. The injection loop was 200 

µL volume and the peptide load was 200 µg/ µL for each injection. For the peptide 

purification a semiprep column was used. The retention time was 27.5 min. The major 

peak was collected, frozen and lyophilized.  

The purification method used for the beta-amyloid (bamc16-20) sequence was: 

2%ACN/ min, over 30 minutes with a flow rate of 2 mL/ min. The injection loop was 200 

µL volume and the peptide load was 200 µg/ µL for each injection. It was used a 

semiprep column. The retention time was 25.3 min. The major peak was collected, frozen 

and lyophilized.  

For the beta amyloid sequence with cysteine in position 15, bamc16-22 the 

method was 4%ACN/ min, over 30 minutes, with a flow rate of 2 mL/min. The retention 

time was 21.0 min. 

To check the cysteine presence in the sequences Ellman’s reagent was used and 

the reaction with the thiol group was monitored by HPLC using the analytical column 

and a flow rate of 0.5 mL/min. The detection was performed at 215 nm and at 420 nm.  
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                                          Chapter 3 

        Nanowires Assembly with Beta-amyloid Peptides 

3.1 Gold Nanowires 

One dimensional nano structures such as metal nanowires are expected to play an 

important role as building blocks for nano-assembled materials and devices. Their 

synthesis is difficult, mostly because at this scale it is complicated to control the 

morphology, the purity and the chemical composition. Nanowires are obtained through 

electrochemical deposition, using templates that allow obtaining nanowires with 

predetermined length and diameter. Some of the templates that have been used include
 

biological macromolecules such as DNA strains or rod-shaped viruses [18]. 

The nanowires used in our experiments were obtained through electro-deposition 

and were synthesized in Dr. Wiley’s lab (UNO, Department of Chemistry) by Ran Liu. 

To study the self assembly of the beta amyloid peptides (bamc16-20 and bam16-22) with 

nanowires, two types of nanowires were employed: pure gold nanowires (Figure 1), and 

symmetrical wires (Figure 2), composed by nickel and gold. 

 

 

Figure 1 Gold nanowires                          Figure 2     Symmetrical gold-nickel nanowires 

The gold nanowires reactions with the peptides bamc16-20 and bam16-22 were 

monitored using HPLC techniques.  
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3.2 Studying the Interactions between Beta-amyloid Short Sequences Peptides and 

Gold Nanowires – Experimental Design 

In order to test our hypothesis that bio-systems can be self-assembled with gold 

nanowires we designed our experiments to follow the chart-flow presented in Figure 3.  

Bamc16-20 

Au/Ni Au 

Bam 16-22 Bam 16-22 

TEM TEM 

HPLC HPLC 

 

Figure 3 Experimental design for studying the self-assembly of gold nanowires with    the 

peptides bamc16-20 and bam16-22 

 We studied using HPLC, the aggregation of bamc16-20 peptide as a function of 

time to have a control experiment. We monitored the adsorption process of the peptide 

bamc16-20 onto the nanowires by HPLC using an analytical column and a 0.5 mL 

/minute flow rate. Then, the wires with the bamc16-20 peptide were treated with the fibril 

forming peptide bam16-22 (KLVFF) and the result was studied with the TEM. 

 From the two types of wires (stored in methanol) 50 µL wires containing solution 

was taken and transferred into separated eppendorfs, combined with 50 µL distilled 

water, then frozen and lyophilized, to obtain the wires only. To the 4 eppendorfs 
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containing the wires (which are magnetically active) was added a solution of the bamc 

16-20 sequence. The solution was obtained diluting the peptide samples purified (one at 

the time) with 50 µL distilled water. After this step the 4 eppendorfs containing the wires 

and the peptide bamc16-20 solution were sonicated for 30 seconds. After the sonication 

step, the wires with the peptide adsorbed onto them were separated from the peptide 

bamc16-20 solution with the help of a magnet. The solution of the peptide was pipetted 

out of the eppendorfs, and the wires with the peptide adsorbed onto them are found at the 

bottom of the eppendorfs. The bam 16-22 (the fibril forming peptide) was added to the 

wires and the resulted product was analyzed in a time-course experiment with the TEM. 

Transmission electron micrographs (TEM) and electron diffraction patterns were 

obtained using a JEOL 2010 TEM operating at 120 V. The samples were prepared by 

mounting small aliquots of the peptides/wires solution on TEM copper grid and dried 

overnight, then, directly loaded in TEM for observation. 

 
 3.3 Characterization of Beta-amyloid Short Sequences Peptides Interaction with Gold 

Nanowires Using HPLC Techniques 

The aggregation of beta amyloid peptides bamc16-20 was monitored with HPLC 

in the absence of the gold nanowires as a control experiment and the result is presented in 

Figure 4. It can be seen that the aggregation process occurred in less than five hours. The 

peak area from each chromatogram performed was measured and the result was plotted 

as a function of time. 
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 Figure 4 Aggregation of bamc16-20 monitored for 26 hours.  

The adsorption of the bamc16-20 peptide onto the gold/nickel nanowires was 

observed by HPLC and the results are presented in Figure 5. The peak area was measured 

for each chromatogram performed during a 26 hours time period and the results were 

plotted as a function of time. To compare the aggregation of the peptide bamc16-20 in the 

presence of Au/Ni nanowires and the aggregation of the peptide by itself, the results for 

these two experiments were plotted as a function of time on the same graph (Figure 5). 
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Figure 5 Comparison of aggregation rate of bamc16-20 by itself and with the Au/Ni nanowires. 
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To compare the results of the time-course experiments with the gold nanowires and 

gold/nickel nanowires, we plotted on the same graph the peak area for each 

chromatogram and the results are presented in Figure 6.  
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The reproducibility of the experiments performed to study the self-assemble of 

the two types of nanowires used was checked several times, and the results of these 

experiments are presented in Figure 7. For each time-course experiment performed, the 

area of the peak resulted from the chromatogram was plotted as a function of time

Figure 6 Comparison for bamc16-20 aggregation in time in presence of the nanowires 
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Figure 7 Comparison of the results for time-course experiments for the aggregation of 

bamc16-20 peptide in the presence of gold nanowires. 
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The results obtained from the time-course experiments performed using HPLC 

suggested that the aggregation of bamc16-20 peptide in the presence of the gold 

nanowires occurs very fast, and the use of HPLC to analyze the aggregation process is 

inefficient for this study.  

3.4 Characterization of Beta-amyloid Short Sequences Peptides Interaction with Gold 

Nanowires Using TEM 

The TEM images were taken from the samples of bamc16-20 adsorbed onto the 

gold nanowires and Au/Ni nanowires, which were then treated with bam16-22 fibril 

forming peptide. The images revealed the formation of fibrils with different shapes, and 

different dimensions. The nanowires were not observed in these samples. The nanowires 

used had dimensions of 5 µm and there is the possibility that during the sonication step 

they were broken in smaller pieces. In Figure 8 the magnification used was 25 K and the 

fibril has a length of 3 µm and a width of 0.6 µm. We believe the darker spots that can be 

seen inside are, probably, fragments of the nanowires which were coated with the 

peptide. In Figure 9, Figure 10, Figure 11 and Figure 12 are images of the peptides fibrils 

formed by aggregation with the fragments of the nanowires.  
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Figure 9 Fibrils of bamc16-20 /bam16-22 

aggregated in the presence of gold nanowires   

Figure 8 Fibrils of bamc16-20 /bam16-22 

aggregated in the presence of gold nanowires   

                             

     

Figure 10 Fibrils of bamc16-20 /bam16-22 

aggregated in the presence of gold nanowires   

  Figure 11 Fibrils of bamc16-20 /bam16-22 

aggregated in the presence of gold nanowires  
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                                             Figure 12 Fibrils of bamc16-20 /bam16-22 

aggregated in the presence of gold nanowires    

 

3.5 Conclusions 

Gold nanowires were treated with the peptide bamc16-20 and bam16-22, and the 

assembling process was monitored using HPLC techniques and TEM. The experiment 

was not reproducible, probably due to the fact that the nanowires were broken during the 

lyophilization or the sonication steps. The nanowires used to be self-assembled with the 

beta-amyloid short sequences peptides were about 5 µm length and they were much 

larger than the peptides. The difference in the scales of the nanowires and the peptides 

lead us to the idea to self-assemble the short sequence of beta-amyloid peptide with 

smaller nano-materials.  
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                      Chapter 4  

   Gold Nanoparticles Self-assembly with Beta-amyloid Short Sequence 

Peptide  

4.1 Introduction 

Colloidal gold is well known for several hundred years [20], but their use as 

investigational solution has emerged only in the last century when their synthesis 

methods were improved, which allowed a better understanding of the colloidal processes 

in general. Colloids are stable dispersion of a phase (solid- Au particles) in another 

(liquid- the solution in which the gold particles are suspended). The composition of 

colloidal gold particles consists of an elemental gold core surrounded by a double layer of 

charges: a negative inner layer (AuCl-
2

 ions adsorbed on the surface of the crystalline 

gold core) and a positive outer layer (H+ ions).  

Au

 

      Figure 13 Double layers of charges surrounding the gold particle in colloidal 

solutions.  

The surface layer surrounding the gold crystalline core is responsible for the 

negative charge of the colloidal gold and its stability with respect to aggregation. The 

negative charge layer arising from the residual negative ions in solution is called the zeta 

potential and provides the means for the gold particles to repel one another and to stay in 

suspension indefinitely [20].  
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Gold colloids are synthesized using various methods to obtain particles with 

diameters ranging on a scale from 0.5 nm to 60-80 nm [21]. In most of the synthetic 

methods, the tetrachloroauric acid is reduced under various conditions. The reducing 

agents can be: thiocyanate (NaSCN), white phosphorus, borohydride or sodium citrate 

and tannic acid. The dimensions of the gold nanoparticles that result depend on the type 

of the reducing agent used. When the reducing agent is added, the gold ions in solution 

are oxidized from the ionic form to gold atoms. As the reducer is added a rise in gold 

atom content in the solution appears until a saturation level is reached, followed by a 

supersaturation. Aggregation then occurs, in a process called nucleation, to form central 

icosahedral gold cores of 11 atoms at nucleation sites. The formation of nucleation sites, 

in order to reduce the supersaturation of gold atoms in solution, occurs extremely 

quickly. After the saturation level is achieved, the remaining gold atoms in solution 

continue to bind to the nucleation sites until all atoms are removed from solution 

(supersaturation).   

The number of nuclei formed initially determines how many particles finally 

grow in the solution. This number, in turn, depends on the amount of reducing agent 

added. A large amount of reducer produces a large number of nucleation sites and so, a 

large number of gold particles are produced. The larger the number of nucleation sites for 

a given amount of gold chloride in solution, the smaller will be the final size of each gold 

particle. Particle size can be carefully controlled by the amount of reducer added. If the 

manufacturing conditions are optimized, the nucleation sites will be formed 

instantaneously and simultaneously, and all gold particles will grow to exactly the same 

size. This is a very difficult task to accomplish and, most manufacturing methods can not 
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achieve instantaneous reduction and formation of nucleation sites, resulting in uneven 

growth of the colloidal gold particles. The interaction of gold nanoparticles with proteins 

or peptides is achieved by bonding formed between the sulfur atoms (thiol groups) 

present in the peptides and the gold atoms [25].  

4.2 Gold Nanoparticles Characterization using TEM and UV-Vis Spectroscopy 
 

 The gold nanoparticles used in our experiments were purchased from Sigma. The 

use of uneven gold nano particles can cause irreproducible results and unstable 

conjugates. Transmission electron microscopy examination is the only true way to 

determine the quality of colloid, to determine whether a colloid or conjugate contains 

fused, aggregated, or heterogeneous particles, or a mixed-size population. The TEM 

images of the gold nanoparticles (GNP) 5 nm and gold nanoparticles (GNP) 10 nm were 

taken to analyze the colloidal solutions before using them in experiments. In Figure 14 

and Figure 15 are presented TEM images of gold nanoparticles of 5 nm and 10 nm 

respectively, and it can be seen that the nanoparticles are relatively homogeneous with 

respect to their size and shape, and are not aggregated.  

                                          

     Figure 14 TEM image of GNP 5 nm.               Figure 15 TEM image of GNP 10 nm. 
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The UV-Vis spectrophotometrical measurements performed to establish

wavelength at which the maximum absorbance occurs were done by scanning the 

wavelength between 300 nm and 900 nm. For the 5 nm gold nanoparticles the 

wavelength was found at 517 nm. For the 10 nm gold nanoparticles, the wavelength at 

which the maximum absorbance occurred was found at 521.6 nm. The values ob

for the wavelength corresponding to the maximum absorption

 the 

tained 

 (λmax) are in agreement 

old nanoparticles [22]. 

4.3 Ex

ide we 

r the study of the self-assemble of the gold 

 

Figu

with values reported for similar gold nanoparticles sizes, smaller values of λmax 

corresponding to smaller sizes of the g

perimental Design to Study the Self-assemble of Gold Nanoparticles with Beta-

amyloid Short Sequence Bamc16-22 

 To study the self-assemble of the gold nanoparticles with bamc16-22 pept

used UV-vis absorption spectroscopy and TEM. 

The experiments performed fo

nanoparticles 5 nm are schematically shown in Figure 16. PHSB stands for phosphate 

saline buffer and CR for Congo Red. 

GNP5 nm
GNP 5 nm/PHSB GNP5 nm/PHSB/Bamc 16-22

GNP 5nm/Bamc16-22

UV-vis
TEM

UV-vis

UV-vis
TEM
CR

re 16 Experimental design to study the self-assemble of 5 nm gold nanoparticles 

(GNP 5 nm). 
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For the 10 nm gold nanoparticles the same experiments were performed and they 

are schematically shown in Figure 17.  

GNP 10 nm
GNP 10 nm/PHSB GNP 10 nm/PHSB/Bamc 16-22

GNP 10 nm/Bamc16-22

UV-vis
TEM

UV-

UV-
TEM
CR

 

Figure  

 

dded. The shift was observed for each of the 

dilutions scanned, but the larger shift was measured for the 1:1 volume dilution of the 

colloidal solution with phosphate buffer. 

17 Experimental design to study the self-assemble of 10 nm gold nanoparticles

(GNP 10 nm). 

We checked the behavior of the gold nanoparticles when diluted in 1:1, 1:10, 

1:100 and 1:1000 proportions with phosphate buffer with a physiological pH (7.4), and 

the orange color of the colloidal solution changed to light blue, a sign that aggregation of 

gold particles occurred. The change in the color of the gold colloids was also monitored 

with spectrophotometrical techniques for various dilutions. The results from the UV-Vis

measurements are presented in Table 1 for the 5 nm diameter gold nanoparticles. It can 

be observed from the UV-vis data that for the 5 nm gold nanoparticles a large red shift 

occurred when the phosphate buffer was a
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Gold 
Nanoparticles  
5nm 

GNP5nm GNP5nm/PHSB 
(1:1)dilution 

GNP5nm/PHSB 
(1:10) dilution 

GNP5nm/PHSB  
(1:100)dilution 

GNP5nm/PHSB  
(1:1000)dilution 

λmax (nm)   517.0        632.0        558.6        312.4       308.2 

Absorbance 
.u.) (a

  0.763        0.307        0.085        0.026       0.023 
 

  Table1 Dependence of the maximum wavelength on the dilution with phosphate saline 

buffer (PHSB) for the 5 nm diameter gold nanoparticles (GNP 5 nm) 

In the Table 2 are presented the results for the spectrophotometrical 

measurements performed for the10 nm diameter gold nanoparticles colloidal solutions 

diluted with phosphate saline buffer in various proportions. 

Gold 
Nanoparticles 
10nm 

GNP10nm GNP10nm/PHSB 
(1:1) dilution 

GNP10nm/PHSB
(1:10) dilution 

 GNP10nm/PHSB 
(1:100) dilution 

GNP10nm/PHSB 
(1:1000) dilution 

λmax (nm)    521.6        637.6        566.4       556.8     556.8 

Absorbance 
(a.u.) 

   0.691        0.194        0.070       0.028     0.021 

 
 

Table 2 Dependence of the maximum wavelength on the dilution with phosphate saline 

buffer (PHSB) for the 10 nm diameter gold nanoparticles (GNP10 nm) 

The shift measured for the 10 nm gold nanoparticles was larger than the shift 

observed for the 5 nm gold nanoparticles, suggesting that the aggregation was greater for 

the 10 nm particles than for the 5 nm particles.  

Images taken with TEM of the gold nanoparticles of 5 nm and 10 nm diameters 

after adding the phosphate saline buffer (PHSB) are presented in Figure 18 and Figure 

19. In both cases, the aggregation results obtained from the UV-Vis measurements for the 

gold nanoparticles were verified. 
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4

4.4 Studying Self-assembly of Beta-amyloid Bamc16-22 Peptide with Gold 

Nanoparticles Using UV-Vis Spectroscopy 

Figure 19 TEM image of GNP 10 nm 

aggregated in PHSB 

Figure 18 TEM image of GNP 5 nm 

aggregated in PHSB  

The colloids were diluted with phosphate saline buffer prepared in our lab (pH 

7.4) to check their behavior at a physiological pH.  

The peptide bamc16-22 (0.2 mg) was dissolved in the colloidal solutions GNP 5 

(300 µL) or GNP 10 (300 µL) and the reaction was monitored by measuring the 

absorbance of the mixture periodically for 168 hours. The samples were then mounted on 

copper grids and studied by TEM.  

The gold colloids used were stable for the duration of the experiments and their 

stability was checked spectrophotometrically. After adding the phosphate buffer their 

color changed and a blue color and a deposit on the bottom of the eppendorf tubes was 

noticed, a sign that the aggregation of the particles occurred. The solutions of gold 
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nanoparticles 5nm (GNP5) and 10 nm (GNP10) mixed in proportion of 1:1 with 

phosphate buffer (v/v) were then monitored by UV-Vis. The results presented in Table 1 

and 2 showed an increase in the maximum wavelength observed for the colloidal solution 

from 517 nm for GNP5 to 632 nm for the 1:1 GNP5/phosphate buffer mixture and from 

521.6 nm for GNP10 to 637.6 nm for the 1:1 GNP10/phosphate buffer mixture.  

Three kinetic experiments were performed in order to observe the rate of gold 

deposition. The absorbance was monitored for a period of 16 hours and the results 

obtained from these kinetic experiments are shown below in Figure 20.   
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     Figure 20 Deposition of GNP 5 nm in presence of bamc16-22 and/or PHSB 

In the first experiment the 5 nm gold nanoparticles reacted only with the bamc16-

22 peptide (red curve). Through the course of the second experiment they were treated 

with the phosphate buffer (green curve), and in the third one the 5nm gold nanoparticles 

were treated with bamc16-22 dissolved in phosphate buffer (black curve). In second and 

third experiments, where the 5 nm gold nanoparticles were mixed with the phosphate 

buffer, the aggregation was fastest during the first 7 hours. Comparing the three curves in 

Figure 20 it can be seen that the aggregation process was slower for the solution 
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containing only the peptide and the gold nanoparticles, as opposed with the solutions 

containing the buffer or the buffer/ bamc16-22 mixture.  

In Figure 21 is presented a comparison between the behaviors of 10 nm gold 

nanoparticles when treated only with the beta amyloid peptide (red curve), with the 

phosphate buffer (green curve) and with the peptide dissolved in the phosphate buffer 

(blue curve). 
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    Figure 21 Deposition of GNP 10 nm in presence of bamc16-22 and/or PHSB 

The results for the kinetic experiments for the 10 nm gold nanoparticles suggest 

that the process was slower for the solution containing only the peptide. The existence of 

the two inflexions points in the case of GNP 10 nm /bamc16-22 solution suggests that the 

process has 2 steps: the first one, the aggregation of the gold nanoparticles with the 

peptide, and the second one, the settling of the aggregates from the solution. 

To compare the behavior of the two sizes of gold nanoparticles, 0.2 mg peptide 

bamc16-22 was mixed with 300 µL GNP 5 nm or GNP 10 nm colloidal solutions. The 
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two solutions were scanned for 100 hours and the wavelengths corresponding to the 

maximum absorbances observed were plotted as a function of time. The results are 

presented in Figure 22. 
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  Figure 22 Comparison of the wavelength variation for the deposition process of the 

bamc16-22 peptide and gold nanoparticles of 5 nm and 10 nm.  

The results for this experiment show that the increase in the wavelength values 

was larger for the 10 nm gold nanoparticles than for the 5 nm gold nanoparticles. The 

variation in the wavelength observed also suggests that the deposition process was 

complete after 10 hours for the 5 nm nanoparticles. For the 10 nm nanoparticles the 

increase in the wavelength value stopped after about 60 hours. The larger shift in the 

maximum wavelength observed for the 10 nm particles suggests a larger ability of this 

particles to react with the peptide bamc16-22 than the 5 nm gold nanoparticles. The 

longer reaction time for the 10 nm gold nanoparticles could be an indication that they 

form larger aggregates. 
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To study the structure of the gold nanoparticles assembled with the fibril forming 

peptide bamc16-22, samples of the peptide dissolved in the colloidal solutions were 

deposited onto copper grids and were dried overnight and observed with the TEM.  

4.5 Studying Self-assembly of Beta-amyloid 16-22 Peptide with Gold Nanoparticles 

Using Transmission Electron Microscopy 

The solutions for the TEM studies were obtained dissolving 0.2 mg bamc16-22 in 

300 µL gold nanoparticles solutions of 5 nm or 10 nm. The solutions were vortexed for 

30 seconds after the addition of the gold nanoparticles and kept at room temperature for 

seven days. After seven days, the solutions were mounted on the copper grids and dried 

overnight. The next figures represent the 5 nm gold nanoparticles reacted with the 

bamc16-22 peptide, and they are taken at various magnifications, at a voltage of 120V.  

Figure 23a presents an image of the 5 nm gold nanoparticles (the black dots) 

reacted with the peptide. We supposed that the bead-like arrangement of the gold 

nanoparticles occurs as a result of the reaction with the peptide because the TEM images 

obtained for the gold nanoparticles by themselves show a different ordering manner 

(Figure 23b). 

               

Figure 23a GNP 5 nm/bamc16-22                         Figure 23b TEM image of GNP 5 nm 
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In Figures 24 a)-c) 5 nm gold nanoparticles are assembled with the peptide. We 

believe the darker gray shape is the peptide sheet. It can be observed that the gold 

nanoparticles reside mostly on the outer edge of the sheet, only few of them can be found 

on the peptide sheet. In Figure 24d) only four particles are assembled with the peptide. 

 

                                                                                    

                                        

a 
)

b 
)

d 
)

c 
)

The TEM images of the 5 nm gold nanoparticles seem to agree with the UV-Vis 

measurements previously performed. The smaller shift in the wavelength observed for the 

5 nm gold nanoparticles was an indication that the 5 nm gold nanoparticles did not react 

Figure 24 (a-d) GNP 5 nm attached to the bamc16-22 peptide beta sheets 
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in a very large extent with the bamc16-22, as compared to the 10 nm gold nanoparticles 

for which a larger shift in the wavelength was measured. 

The next figures represent TEM images of the 10 nm gold nanoparticles 

assembled with the bamc16-22 peptide, taken at various magnifications. Figure 25 a) and 

b) represents 10 nm gold nanoparticles ordered as beads.  

               

a b

Figure 25 (a and b) GNP10 nm/bamc16-22, ordered as beads 

                  

a b

 

Figure 26 (a and b), GNP10 nm/bamc16-22 assembled as sheets 
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a b

Figure 27 (a and b), GNP10 nm/bamc16-22 showing a ribbon-like assembly 

The TEM images presented in Figures 26 and 27 show beta-sheets assembled 

with the 10 nm gold nanoparticles. It can be seen from them, that assemblies have very 

distinct edges and almost all the 10 nm gold nanoparticles seem to be assembled.                               

The Figure 28 represent a TEM image of a structure formed by the peptide beta-

sheet assembled with the 10 nm gold nanoparticles.  

                  

Figure 28 Bamc16-22 self-assembled with 
GNP 10 nm 
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     Figure 29 (a and b), GNP10 nm/bamc16-22 fibrils 

The TEM images from Figure 29 a, b show fibrils formed from peptide bamc16-

22 beta-sheets self-assembled with the 10 nm gold nanoparticles. Comparing the TEM 

images acquired from the self-assemble of the 5 nm gold nanoparticles with the images 

taken for the 10 nm gold nanoparticles, it can be seen that the 10 nm gold nanoparticles 

self-assembled in a larger extent with the peptide than the 5 nm gold nanoparticles. The 

result was in agreement with the UV-Vis spectrophotometrical measurements performed 

previously, where we observed a larger red shift in the maximum wavelength measured 

for the 10 nm gold nanoparticles than the one measured for the 5 nm gold nanoparticles. 

The various structures (sheets, ribbons and fibrils) observed are in agreement with the 

literature [7, 12, 19]. The presence of the beta-sheet in the fibrils formed by self assembling 

the bamc16-22 peptide with the gold nano particles was checked using Optical Light 

Microscopy on the samples stained with Congo Red. 
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4.6 Studying the Presence of Beta-sheets in Beta-amyloid Bamc16-22 Peptide Fibrils 

Using Optical Light Microscopy 

We observed the fibrils formed by beta amyloid short sequence bamc16-22 

peptide using an optical microscope Olympus BX 60M and Congo red staining [22-24]. The 

first sample was prepared by dissolving 0.2 mg peptide bamc16-22 in 300 µL distilled 

water. The solution was kept at room temperature for 7 days, and then 10 µL solution of 

Congo red was added to 50 µL bamc16-22 sample. The Congo red solution was obtained 

from Aldrich and used as received. In Figures 30 a-f are presented images of the peptide 

bamc16-22 stained with Congo red, taken with the optical light microscope under 

polarized light. The images reveal similarities with the TEM images previously obtained 

in our experiments, with respect to the shape of the fibrils, as expected. 
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20 µm20 µm

  b)     

 

200µm200µm
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10µm10µm10µm10µm10µm
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10µm10µm

  e)       
20 µm20 µm

  f)                                     

Figure 30 a) - f) Beta amyloid 16-22 fibrils stained with Congo red and visualized by 

optical light microscope under polarized light. 

Two samples of the peptide bamc16-22 assembled with the 5 nm gold 

nanoparticles and the 10 nm ones were prepared by dissolving 0.2 mg bamc16-22 in 300 

µL colloidal solutions. After 7 days, the samples were stained by adding 10 µL Congo 

red solution to 50 µL solution of bamc16-22 and gold nanoparticles and visualized with 

the optical light microscope under polarized light in bright or in dark field. In Figure 28 

a-c are presented images taken from the samples of the peptide combined with the 5 nm 

gold nanoparticles in dark field, and a’-c’ represent the same images taken in bright field. 

100µm100µm
 

10µm10µm
 

10µm10µm

 

b ca

100µm100µm
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10µm10µm

 

b’ c’ a’

Figure 30 Fibrils of bamc16-22 combined with GNP 5 nm and stained with Congo red 

taken under polarized light in dark field (a-c), and in bright field (a’-c’). 
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In Figure 31 are presented images of the peptide fibrils obtained by combining the 

peptide with the 10 nm gold nanoparticles. The images a-c were taken under polarized 

light in dark field, and the images a’-c’ were taken in bright field. 
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100µm100µm
 

10µm10µm
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10µm10µm

 
100µm100µm

 
10µm10µm

 

b’a’ c’

Figure 31 Fibrils of bamc16-22 combined with GNP 10 nm and stained with Congo red 

taken in dark field (a-c) and in bright field (a’-c’). 

In all the cases the yellow-green birefringence specific to the beta-sheet presence 

was observed. The fibrils observed by optical light microscope resemble with the fibrils 

observed by transmission electron microscope. 

4.7 Conclusions 

Gold nanoparticles with 5 nm and 10 nm diameters were self-assembled to the 

fibril forming peptide bamc16-22 and their assembly was studied by TEM and UV-Vis 

measurements. The 10 nm GNP’s exhibited a larger propensity to bind to the peptide 

fibrils than the 5 nm GNP’s, as showed in the TEM images taken to characterize their 

assembly and the UV-vis measurements were in agreement with the results obtained by 

TEM. The TEM images reveal that the 10 nm gold nanoparticles attach to the peptide 

beta-sheets before the mature fibril formation. 
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 The staining with Congo red showed that the peptide exhibits the ability to form 

beta-sheets by itself. The fibrils formed in the presence of the 5 nm or 10 nm gold 

nanoparticles and stained with Congo red also consist of beta-sheets. 
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