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                                                        Abstract 

 

 

Studies have documented spatially and temporally variable rates of surface subsidence 

across the Mississippi River delta plain of Louisiana.  Variations in patterns and rates of delta 

plain subsidence may reflect subsurface distribution of compaction-prone lithosomes.  

This research investigates historical changes in the surface geomorphology of the Caillou Bay 

headland in relation to the distribution of subsurface lithosomes.  The stratigraphic framework 

was developed for the headland, and lithosomes were identified to establish the distribution of 

different sedimentary units.  The geomorphic evolution as indicated by maps was then evaluated 

in order to locate patterns of shoreline change and wetland loss for the headland.  Land loss maps 

developed were overlain on lithosome contour maps to calculate amounts of land loss overlying 

each lithosome contour interval.  Analysis of results revealed that land loss was not uniform 

throughout the headland and that land loss patterns for several time periods varied as a function 

of the thickness of compaction-prone lithosomes. 
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Chapter 1 
 
Introduction 
 
  
 The modern Mississippi River delta plain of southern Louisiana has been built 

throughout the last 6,000 years by the deposition of sediments from the Mississippi River 

and its associated distributaries (Frazier, 1967).  During this time the delta plain was 

deposited as multiple temporally and spatially distinct deltaic progradational events 

occurred.  These progradations successively expanded the deltaic plain and the Holocene 

sedimentary package.  As each delta lobe prograded, the river gradient decreased.  

Through time this would force the river distributary to avulse and relocate, occupying 

another channel with a higher basinward gradient. This delta switching cycle created four 

distinct deltaic complexes, each one consisting of multiple overlapping delta lobes 

(Penland et al., 1987) (Fig. 1.1).  Each of the lobes within a deltaic complex consisted of 

a network of distributaries that were flanked by natural levees, interdistributary bays, 

crevasse splays, subdeltas, marsh platforms, and swamps.  Progradation is the 

fundamental process contributing toward the formation of a deltaic headland; once 

abandoned these headlands became sites of transgressive reworking and are modified by 

marine processes such as tides and waves.  Although some of the processes involved in 

headland formation and evolution are understood reasonably well (e.g. progradation and 

marine reworking) there are other contributing factors, such as compaction-driven 

subsidence, that remain poorly qualified.   Previous researchers have suggested that some 

trends in land loss and change are the result of the distribution of these compactable 

lithosomes (Roberts et al., 1994).   
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Figure 1.1 – Highlighted area on state map shows the study area for this project.  The 
major ancestral Mississippi River distributaries are shown.  Relict shorelines from 
Penland et al., 1987 and the extent of delta lobe 14 from Frazier, 1967. 
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The intent of this research is to investigate the role of shallow subsurface 

compaction in headland geomorphic evolution.  The study area for this research is the 

Caillou Bay headland, located in south-central Louisiana (Figure 1.1).  The main 

objectives of this research are to: 1) determine the patterns of erosion along the southern 

most extent of the Caillou Bay Headland and, 2) compare these patterns of geomorphic 

change to the distribution of shallow, subsurface sedimentary bodies.   

 
Significance  

 The stratigraphic framework and distribution of lithosomes within deltaic 

headlands reflects variability in the distribution of deltaic subenvironments that are 

formed during progradation.  Because lithosomes may exhibit variation in their 

sedimentology the expectation is that they will be susceptible to different rates of 

compaction during burial and dewatering.  Conceptually, this implies that areas of the 

headland may subside at different rates, leading to different rates of relative sea-level 

rise, inundation, reworking, and the ultimate conversion of marsh platform to open water.    

Applied Considerations 

  Coastal land loss across the delta plain is an issue of particular concern in 

southeastern Louisiana (Barras et al., 2003).  This loss is a result of naturally occurring 

geologic processes, such as subsidence and sea-level rise, as well as substantial 

anthropogenic modifications, such as access canal and levee construction.  Interior marsh 

platform loss and shoreline change are both recorded as land loss.  Interior marsh 

platform loss is thought to be due primarily to subsidence and anthropogenic 

modifications, whereas shoreline change has primarily occurred as a function of sea level 

rise and subsidence (Roberts, 1994).  Current estimates for land loss rates as high as 62 
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km2 per year along some sections of the coastal zone have been presented (Barras et al., 

2003).  Rates of land loss have not remained temporally constant nor are they spatially 

uniform along the coast (Britsch and Dunbar, 1993).  This variability has made 

determining patterns of erosion difficult.  The goal of the work is to provide needed 

insight into the extent that differential compaction of lithosomes, with varying degrees of 

compaction potential, influence the geomorphic evolution of a delta headland.  A 

thorough understanding of this has both theoretical and applied importance. 

One important aspect of this research is to develop an understanding of the 

stratigraphic architecture underlying the Caillou Bay Headland.  Developing the 

stratigraphic framework of the headland will aid in determining its transgressive history 

and evolution.  Subsequently, this can help in predicting how coastal restoration projects 

may perform over time.  Differential compaction is one of several variables that affect the 

evolution of the headland.  The utility of establishing a better understanding between the 

subsurface geology and the surficial geomorphology is that an understanding of the 

overall transgressive development of the headland will be developed.  This will then aid 

in the development of models that predict future coastal land lost in terms of the nature, 

rate, and location of headland retreat. 

Theoretical Considerations 

Determining the distribution of these facies is significant in discerning the 

influence of delta lithosome distribution on subsequent deltaic sedimentation.   For 

example, Fisk (1955) suggested that variability in thickness, extent, and stratigraphy of 

deltaic depocenters is influenced by water depths in which deltaic progradation takes 

place.  Limited water depths, or accommodation space, contribute toward the 
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development of thin, laterally extensive deltaic depocenters.  Alternatively, more 

substantial accommodation space will result in a more laterally restricted but potentially 

overall thicker depocenter.   Because of the overlapping nature of deltaic lobes 

stratigraphically higher deltaic deposits may have been influenced by the topography of 

underlying depocenters.   Topography of the subjacent depocenter partially develops in 

response to compaction, which is in turn influenced by the composition of the 

stratigraphy within the underlying deposit.   Consequently, specific knowledge of the 

processes that control the generation of accommodation space can assist in determining 

the likely location of subsequent delta depocenters.  Developing a detailed picture of the 

shallow stratigraphy of a deltaic headland may provide insight as to how complex 

reservoir systems form in response to differential rates of compaction. 

    

Study Focus and Goals 

 This study investigates the question of whether variable compaction of different 

sedimentary bodies within the Caillou Bay Headland has influenced the post-

progradational evolution of the headland.   

Two primary datasets, a subsurface framework geology evaluation and an 

evaluation of the geomorphic evolution of the headland will be assembled.  The first 

dataset consists of previously acquired cores within a large database of archived core data 

at UNO, as well as cores that were collected specifically for this study.  Collectively, 

these cores will be used to create cross sections for a variety of locations on the headland 

and aid in the identification of primary lithosomes.  Lithosomes are identified as 

sedimentary units of uniform character that are bounded by units of distinctly different 
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character.  These characteristics include grain size and distribution, sediment color, and 

the style of bedding.  The intent is to identify the various sedimentary types in order to 

determine the distribution of compactable lithosomes.  These sedimentary units will be 

used to develop isopach maps depicting unit thickness.   

The second dataset is a collection of maps for the time period 1863 to present.  

The utility of these maps is that they provide a historical record of the headland size and 

geomorphology; comparison of these maps to one another allows for an evaluation of the 

geomorphic evolution of the Caillou Bay headland and documentation of the distribution 

and rate of headland evolution within the historic record that is available.  The results 

constitute a primary component of this research and the ability to identify areas of 

significant land loss in the study area.  The intent is to use these two datasets in 

conjunction with one another and evaluate whether any correlation exists between the 

subsurface sediment distributions, as indicated by the core dataset, and the historical 

geomorphologic evolution that is provided by the comparison of the historic maps. 
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Chapter 2 
 
Background 
 

This study of the Caillou Bay headland focuses on defining the relationship 

between the stratigraphic framework and the historical (1895 to 2002) geomorphic 

evolution.  The two main components of the research consist of developing a 

stratigraphic framework of the headland and compiling a quantitative evaluation of land 

loss through time across the entirety of the headland. 

 
Study Area 
 

The Caillou Bay headland is located in south-central Louisiana, approximately 75 

km south of Houma, Louisiana (Figure 1.1).  The study area is bounded along the north 

by the northern shore of Caillou Lake, in the south by the Isle Dernieres, on the west by 

the mouth of Oyster Bayou, and along the east by the eastern edge of Timbalier Island.  A 

generally north-to-south network of active and semi-active bayous trend across the study 

area.  Several of these are thought to have been active for at least the last 3,000 yrs BP 

(Penland et al., 1988), although more recently carrying substantially less flow than at 

previous times. 

  
Late Holocene Mississippi River Delta Plain Development 
 
 The late Holocene Mississippi River delta plain developed during the current sea 

level high-stand, approximately 6,000 years B.P. (Fisk, 1944; Frazier, 1967; Penland et 

al., 1988).  The delta plain consists of five major delta complexes composed of multiple 

delta lobes that represent the depocenters of temporally and spatially separate 

progradational episodes driven by avulsion and delta switching events of the Mississippi 
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River.  The five distinct delta complexes, in order of decreasing age are: Maringouin –

Teche, St. Bernard, Lafourche, Plaquemines-Balize, and Atchafalaya complexes (Frazier, 

1967). 

Caillou Bay Headland Development 
 
The Caillou Bay headland is the third lobe of the Lafourche delta complex and 

was active between approximately 910 to 420 years B.P. (Penland et al., 1987).  The 

headland was built by deposition from four primary distributaries: Bayou Grand Caillou, 

Bayou Chauvin, Four Point Bayou, and Bayou Sale (Penland et al., 1987).  In general, a 

deltaic headland consists of a complex assemblage of facies constructed during 

progradation (Frazier, 1967) (Figure 1.2).  Several factors influence deltaic progradation.  

The sediment load of the river, rates and patterns of subsidence, and sea-level change 

influence the overall thickness and lateral extent of facies within the headland. 

Transgressive reworking due to sea level rise and subsidence can alter the sediment 

distribution post deposition. 

Deltaic Cycle 

In general the Caillou Bay headland developed within the conceptual framework 

known as the delta cycle. The delta cycle describes the progradation and subsequent 

reworking of a deltaic headland that becomes abandoned and starved of river supplied 

sediment.  Delta lobe progradation begins with the entrainment of a distributary system 

between levees built through time during episodes of river flooding.  Progradation 

proceeds as deltaic facies accumulate on the shelf.  Thick units of prodelta silts and clays, 

at the distal edge of the progradational site, accumulate and compact where the finer 

grained sediments are present.  As compaction decreases, sediment begins to accrete 
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vertically.  A complex network of bayous, natural levees, swamps, and marsh develop 

through time.  Sediment continues to accrete and the vertical gradient decreases.  When 

the gradient decreases sufficiently the river avulses and changes geographic position to 

where the gradient is steeper, resulting in the initiation of a new delta cycle (Fisk, 1944; 

Kolb and Van Lopik, 1958, Coleman and Gagliano, 1964).  During the Holocene 

repeated occurrence of these processes has resulted in the formation of the modern 

Mississippi River delta plain.  

Figure 1.2 – Satellite image (2002) with Frazier’s Lafourche delta lobes plotted to show 
the extent of deposition associated with the progradation of the deltas. Most of the project 
area is within the area covered by lobe 14, thought to have been deposited between 900-
100 B.P. (Frazier, 1967). 
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Deltaic Depositional Environments   

The action of the deltaic cycle has resulted in the construction of the modern 

Mississippi River delta plain.  A cycle is composed of several sedimentary units: prodelta 

silts and clays, shelf shell and clay beds, delta front silts and clays, interdistributary bay 

clays and silty clays, natural levee silty clays and sands, and swampy organic clays and 

peats (Coleman and Gagliano, 1964).   

Various researchers have identified and described prodelta deposits.  They have 

been described as silty clays similar to those found within a deltaic-plain complex and 

form thick, widespread units around the front of the deltaic-plain facies (Fisk and 

McFarlan, 1955).  They have also been described as thick silty clays with burrowed and 

nonburrowed zones containing rhythmic laminations of silt and clay and colors (Coleman 

and Gagliano, 1964), and as homogenous fat clay sequence from fine to coarse (Kolb and 

Van Lopik, 1958).   

Interdistributary deposits have been identified and described as bay clays and silty 

clays with storm debris inclusions, shell fragments, burrows, and plant remains (Coleman 

and Gagliano, 1964).  They have also been described as mostly inorganic fat clays and 

silt (Kolb and Van Lopik, 1958). 

Natural levee deposits are identified and described as silts and clays (Fisk and 

McFarlan, 1955).  They have also been described as fat clay and silt accumulations 

oxidized to a tan or reddish (Kolb and Van Lopik, 1958), and as silty clays (Coleman and 

Gagliano, 1964). 
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Marsh deposits are identified and described as both organic and nonorganic.  The 

organic component has been described as containing high organic content with roots and 

wood fragments (Fisk and McFarlan, 1955), as highly organic clays and peats (Coleman 

and Gagliano, 1964), and as brown to black fibrous or felty masses of partly decomposed 

remains of plant material and organic float material from hurricane deposits (Kolb and 

Van Lopik, 1958).  The inorganic component of the marsh deposit has been described as 

largely silty clays (Fisk and McFarlan, 1955), and as clays silts and fine sands (Kolb and 

Van Lopik, 1958). 

Mississippi River Delta Plain Barrier Island Formation 

 Barrier island formation within the Mississippi River delta plain initiates with 

distributary abandonment and subsequent reworking of the abandoned headland by 

marine processes.  The model for barrier island formation is a three-step process; (1) the 

erosion of the headland and the formation of flanking barriers, (2) the development of a 

transgressive barrier island arc, (3) and the formation of an inner-shelf shoal (Penland et 

al., 1988).   

In the first stage, marine processes begin to rework the abandoned deltaic 

headland.  Main distributary deposition ceases so there is limited sediment to fill in the 

accommodation space created by the subsiding headland.  At this stage the transgressive 

headland consists of several components; an erosional headland, a beach, flanking spits 

and barrier islands, tidal inlets and deltas, restricted interdistributary bays, and a 

transgressive sand sheet (Penland et al., 1988).  Longshore currents and tides transport 

sand that augments the flanking barrier islands.  Sediment on the seaward fringe of the 

headland is reworked and winnowed to form a beach.  There is also the formation of 
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restricted interdistributary bays in response to the initial rapid subsidence (Penland et al., 

1988).  Tidal inlets and associated tidal delta deposits form as barrier breaching occurs.  

Increasing bay-area causes an increasing number of tidal prisms to form inlets which 

allow these bays to remain open (Penland et al., 1988). 

The second stage of the process consists of continued transgressive reworking of 

the erosional headland, and mainland detachment forming a barrier island arc, tidal inlets, 

lagoons, and an inner-shelf sand sheet (Penland et al., 1988).  The erosional headland and 

flanking barrier islands constructed during stage one detach and form a transgressive 

barrier island arc.  Storm events cut through the islands forming tidal inlets.  The 

restricted interdistributary bay area opens up with the detachment of the barrier islands 

and tidal exchange with the gulf becomes a dominant process.  Sand eroding away from 

the shoreline and the barrier islands is deposited on the shoreface to form transgressive 

inner shelf sand sheet (Penland et al., 1988). 

The third and final stage of the process consists of the development of inner shelf 

shoals.  As a result of RSL and marine reworking the barrier island is inundated.  The 

components comprising this stage include shoal crest, shoal front, shoal base, sand sheet, 

and maximum shoreline (Penland et al., 1988).  The shoal crest, front, and base are all 

reworked remnants of the barrier island arc.  Reworking and landward migration of the 

shoal continues after submergence (Penland et al., 1988). 

 Raccoon Island, Whiskey Island, and Trinity Island of the Isles Dernieres island 

arc (stage 2) of Penland et al., (1988) are the primary barrier islands located in the study 

area (Figure 1.11). 

Delta Plain Subsidence 
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 The Mississippi River delta plain is actively subsiding as a result of numerous 

contributing mechanisms (e.g. compaction, faulting, regional isostatic adjustment) 

(Figure 1.3) (Roberts et al., 1993; Kulp et al., 2002).  Subsidence rates have been 

previously determined using age-depth relationships of radiocarbon-dated peat deposits 

located in the subsurface of the study area.  These data yield subsidence rates that range 

between approximately 33.4cm/100 yr to 39.6 cm/100 yrs (Roberts et al., 1994).  Roberts 

et al. (1994) also noted that subsidence patterns closely follow the distribution of 

Holocene deposit thickness; the highest subsidence rates are located above the thickest 

Holocene strata because of greater compaction potential in the thick, highly compactable 

sediments of the Holocene interval. 

Compaction Studies 

 In this study, the compaction of sediment is considered to be the most significant 

component of marsh-platform subsidence in the study area (Figure 1.3). 

 The most widely accepted theory of one-dimensional consolidation was 

developed by Terzaghi (1943).  Terzaghi recognized that when sediments are 

compressed, water is released and pore space diminishes (Clayton et al., 1995).  Under 

natural conditions compaction occurs because of sediment dewatering that occurs as 

strata are buried by overlying sediment. 

Compaction can be simply defined as a “change in sediment dimensions during 

burial (Giles et al., 1998).  Initial compaction is the result of sediment loading, which 

leads to a vertical reduction in sediment volume (Giles et al., 1998).  Thus as sediment 

accumulates and becomes buried, water flows out of the sediment, pore space is reduced, 

and the sediment compacts.  Sediment size and distribution has been related to  
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Figure 1.3 - Soil subsidence potential map showing the distribution of subsidence 
likelihood across a portion of the south-central coastal zone (adapted from Louisiana 
State Planning Office, 1976).  The box outlines the study area of this project.  Note:  the 
soils of the study area are mapped as high compaction potential if drained, soils in this 
area consist of more than 130-cm thick organic material. 
 

compaction.  Coarser grained sediments such as sand have been observed to be more 

resistant to compaction than finer grained sediments such as clay (Holbrook, 2002).     

 The compaction rate of sediments is highly variable, so previously determined 

rates in the study area were used for comparison in this study.  Keucher (1994) 
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determined compaction indices for various deltaic facies in the Terrebonne region.  

Keucher (1994) found that the most compactable facies were finer-grained, such as peats 

and clays; he found that the least compactable facies were coarse-grained such as silt. 

 
Land Loss in the Caillou Bay Headland Area 

  
 Land Loss on the Mississippi River delta plain is a topic of particular concern to 

those living and working in Southeastern Louisiana.  Current estimates place land loss in 

some areas as high as 62 km2 per year (Barras et al., 2003).  This land loss has both 

natural and anthropogenic origins.  The natural causes include subsidence, herbivory, and 

storm and wave action (Kindinger et al., 2002).  Anthropogenic causes include direct 

removal of land for the purpose of channel and pond construction, borrow pits, and 

altered hydrology (Kindinger et al., 2002)  

 A significant amount of research has evaluated land loss on the Mississippi River 

delta plain (Barras et al., 2003; Britsch and Dunbar, 1993; Gagliano et al., 1981).  In a 

recent study (Barras et al., 2003) several land loss trends were noted.  From 1956-1978 

large areas of marsh have converted to open water, and from 1978-1990 this trend 

continued at a less rapid rate (Barras et al., 2003).  During the last decade, however, the 

primary mode of land loss has been the formation of small ponds in the interior marsh 

and shoreline erosion.  In the Terrebonne region, where this study was conducted,  

significant erosion continues for the 1990–2000 interval.  Most of the recent loss is 

occurring in areas that have already undergone the most significant land loss (Barras et 

al., 2003).  Shoreline erosion and interior marsh pond formation are the most significant 

impact on the area, but there is also erosion of the fringe marsh platform (Barras et al., 
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2004).  Observed land gain can possibly be attributed to the movement of detached, or 

floating marshes (Barras et al., 2003).   
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Chapter 3 

 
Methods 
  
 Stratigraphic Framework 
 
 A primary objective of this investigation is to establish the fundamental 

stratigraphic framework of the Caillou Bay Headland.  The goal is to identify and map 

the primary subsurface lithofacies.  The UNO Coastal Research Laboratory (UNO CRL) 

core database and a United States Army Corp of Engineers (USACE) database were 

searched to determine whether any cores had been previously obtained within the study 

area.  For each core the database contains a physical description sheet, and in many 

instances grain size analysis data and core photography.  A total of ten cores from the 

UNO database and thirteen cores from the USACE database were identified as having 

potential value to the project.  The cores were loaded into a GIS platform and plotted to 

visualize the distribution of the cores.   

The distribution of the preexisting cores was used to develop a strategy for 

obtaining new cores, thereby avoiding redundancy, obtaining data where cores were 

missing and increasing the overall number of cores available for a stratigraphic analysis 

of the headland.  For this purpose a team of field geologists, as part of a larger project on 

delta plain subsidence collected a total of 26 cores within the study area (Figure 1.4).  

Core locations were located by plotting target sites on a base map of the area.  Slight 

adjustments, generally less than 25 m offset, to the locations of cores were made in the 

field when obstacles such as oil and gas pipelines, and private property, or other 

obstructions were encountered.   
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Figure 1.4 – Basemap showing the locations of cores and cross sections used in this study to characterize the framework stratigraphy 
of the Caillou Bay headland. 
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Two distinctly different vibracoring rigs were used to obtain the cores during the 

2003 summer field season.  A field team on the UNO R/V Greenhead acquired 13 cores 

located in areas where the water was less than 1.5 m deep.  In locations where the water 

depth exceeded 1.5 m the USGS R/V Gilbert was used as a vibracoring platform, 

resulting in the acquisition of an additional 13 cores.  Vibracore sites were reached using 

the geographic coordinates acquired from the core database and recorded in a logbook.  

 

R/V Greenhead Vibracore Platform 

The vibracoring system used by the UNO CRL consists of a tripod mounted to a 

flat bottom boat.  The tripod is positioned over a moon pool in the hull of the R/V 

Greenhead, which allows for access to the water below.  A 9-meter long aluminum tube 

with an approximately 7.5 cm diameter is inserted vertically into the center of the tripod.  

A weighted vibracore head is attached to the aluminum pipe and tightened in place.  A 

cable to a gas-powered combustion engine that powers the system is connected to the 

head.  The motor speed is adjusted until a vibration frequency is attained that liquefies the 

underlying sediments and allows the aluminum tubing to penetrate into the subsurface.  

The vibration frequency must be adjusted when the tubing encounters strata that are 

compositionally different or have undergone different degrees of compaction.  

Vibracoring continues until a depth is reached at which further penetration cannot be 

made, even when additional pressure is applied and when the frequency of vibration is 

altered by varying the engine speed.  Penetration can be interrupted when coarser units 

such as sand or shell lag are encountered.  Care was used when additional pressure was 

applied to avoid compaction of the sediment as a product of the vibracoring process.   



 20

A metric tape measure was used to record water depth at the site and the depth to 

the top of the sediment water interface inside the penetrated core.  This information was 

used later to calculate the magnitude of sediment column compaction that occurred 

during the vibracoring process.  This value is important when constructing cross sections 

to accurately determine the original thickness of sediment units.  It is crucial to determine 

if the core extracted replicates the strata, or if excess compaction must be accounted for.  

After these measurements have been made any excess tubing is cut off and properly 

discarded.  In order to extract the core intact and within the tubing, water is poured into 

the top of the core barrel and a plug is inserted and tightened in the top of the tubing to 

create a vacuum within the tube above the sediment section retained within the core 

barrel.  A hook attached to a steel cable is fastened to the barrel and a hand winch is used 

to extract from the ground the aluminum tube containing the core.  After the core barrel 

has been removed from the subsurface, the top and bottom of the core is sealed with a 

plastic cap and taped at both ends to hold the sediment sample in place within the core.  

The total core length is then measured, the core is labeled, and the top and bottom of the 

core is clearly marked before being transported back to a laboratory for analysis. 

 

R/V Gilbert Vibracoring Platform 

The USGS vibracoring system operates off the R/V Gilbert and is capable of 

obtaining cores in as much as 37 meters of water depth.  A Global Positioning System 

(GPS) was used to position the rig at the preselected core sites and the core locations 

were recorded in a logbook.  The R/V Gilbert vibracoring system consists of a 

reciprocating head that is mounted to a platform.  The platform slides down a 22-ft 
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stationary aluminum mast attached to a 400-lb rectangular frame. Two electric 

compressors drive a 6-meter long aluminum tube with an approximately 7.5 cm diameter 

into the subsurface. A check-ball valve is located on the vibracore head and is attached to 

the top of the core to act as a vacuum seal.  This is combined with a core catcher 

consisting of collapsible brass at the base of the core.  This helps to retain the sediment in 

the core when it is extracted from the seabed.  The core is extracted using an electric 

winch that pulls a braided wire cable attached to the vibracore head.  Similar to the 

procedure used on the R/V Greenhead, the core was sealed with a plastic cap and tape at 

both ends.  The core was then measured, labeled, and the top and bottom of the core 

clearly marked before being transported back to a UNO laboratory for analysis.   

 

Core Preparation    
  
 Cores acquired in the field were then brought back to the UNO-Chevron Earth 

Science laboratory and prepared for visual description, sampling, and photography.  In 

the laboratory the cores were marked in two-meter increments along the length and cut 

into more manageable sections at these marks. The exposed ends where then resealed 

with a plastic cap and tape.  A circular saw was used to make two opposing cuts 

vertically along the length of the cores.  A thin wire was then run down the center of the 

cores along these length-wise cuts and the cores were split into two even halves.  The half 

with the least amount of wire marks was designated the archival half of the core, whereas 

the other half was designated the work half.  The work half was set aside for grain size 

sampling and the collection of material, such as peat and shells that could be radiocarbon 

dated.  To obtain a fresh and even surface on the archival half an osmotic knife was used 
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to remove the top layer of sediment that may have been smeared by the wire.  Core 

halves that had been smoothed were then visually described.   

 
Core Description Technique 
  
 A visual description was completed on each core (individual description sheets 

are included in Appendix A).  Standard templates designed by Coastal Research 

Laboratory (CRL) researchers were used to record the data.  The cores were described 

from top to bottom.  The approach employed in this study was to first make note of major 

sedimentary units by looking for changes in lithology, erosional surfaces, significant 

change in sediment color, or changes in sedimentary structures.  These individual units 

were then described in detail to provide an in depth description of the core.   

The approach was to first determine the textural classification of the sediments.  

For this the Udden-Wentworth scale was relied upon.  The classifications used for the 

cores described were clay (<1/256 mm), silt (1/256 to 1/16 mm), fine sand (1/8 to 1/4 

mm), medium sand (1/4 to 1/2 mm), and coarse sand (1 to 2 mm) (Wentworth, 1922).  

Percent sand was then identified, from zero to one hundred percent.  Additional physical 

characteristics that were described for each previously determined sedimentary interval 

were color, style of bedding, bed thickness, percent shell material, percent organic 

material, and percent bioturbation.  Stratification types that were noted included wavy, 

flaser, lenticular, massive bed, inclined, and horizontally laminated.  A detailed physical 

description sheet was completed and the information entered into the CRL core database. 
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Photography  
 
 Upon completion of the core description, photographs were taken of each core.  

These pictures are archived at UNO within the CRL core database.  For the first set of 

photographs, the two-meter increments of each core were photographed in 40-cm 

increments.  A cardboard template with a scale and project title was created and placed 

over each increment.  These detailed photographs are helpful when cross checking the 

core description sheets after the original cores have aged and desiccated.  The two-meter 

core sections were then cut into one-meter sections and placed on a rack with a scale in 

order to obtain a whole-core photograph.   

 

Radiocarbon Dating 

 
Four peat samples and two whole Rangia cuneata shell specimens were sent to 

the University of Arizona (UA) Isotope Geochemistry Laboratory for radiocarbon dating 

to aid with stratigraphic analysis.  Before the samples were sent to UA they were 

prepared by drying them in an oven at 30° C for 36 hours as requested by the UA 

laboratory.  The peats and whole shells were then weighed and this information was 

recorded on a data sheet that was additionally submitted with each sample that was sent 

to UA.   

Peat samples were chosen from cores with thick continuous peat deposits that 

contained negligible amounts of clastic material so enough organic material would be 

present in the sample to accurately date.  Whole articulated shells were chosen because 
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they are not likely to be reworked and thus are assumed in situ.  The samples were 

wrapped in aluminum foil as specified by the UA laboratory, labeled, and each placed in 

individual sealed bags with their corresponding data sheet.  They were then shipped to 

UA for analysis.   

 Each sample was dated using the liquid scintillation counting technique. This 

process included stable carbon isotopic analysis and calibration. The calibration process 

corrects for fluctuations in the amount of radiocarbon present in the atmosphere 

throughout time (Stuiver et al., 1998).   UA’s calibration curve is based on the known age 

of tree rings, corals (independently dated by U-Th) and annually laminated sediments 

(Stuiver et al., 1998). 

 

Results 

Stratigraphic Framework 
 
 A total of 26 new vibracores (Appendix A) were described and incorporated into 

the UNO core database.  From these cores a total of five stratigraphic cross-sections were 

constructed across the Caillou Bay headland to aid in depicting the subsurface geology 

(Figure 1.1).  The cross sections are constrained by sea level at the top and the Teche 

Ravinement surface at the base of the section as defined by Penland et al., (1987).  

 The sedimentary units identified in the cores were peat, clay, silty clay, sandy 

clay, clayey sand, and sand.  Peat units were defined when the organic content of the unit 

was greater than 50% organic material, and clays and silty clays were sometimes 

interbedded with the organic material.  Clay units were defined when the unit was 

composed of clay. 
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Stratigraphic cross section A-A’ 

Stratigraphic cross section A-A’ trends from the North East to the South West 

from Moncleuse Bay to South of Oyster Bayou (Figure 1.5).  A peat unit tapers from 1.0 

meter in thickness at Moncleuse Bay to 0.50 m thick at the southern portion of Caillou 

Lake and pinches out over Bayou Grand Caillou.  The peat unit contains numerous roots 

throughout and has shell fragments near Moncleuse Bay.  The peat overlies a clay unit 

2.0 m thick that tapers to 1.25 m at the southern portion of Caillou Lake and pinches out.  

The clay unit shows horizontal lamination and some organic fragments where it pinches 

out.  The clay overlies a sandy clay unit that is a 1.0 m thick at Moncleuse Bay and 

thickens to 3.0 m where it ends at the southern portion of Caillou Lake.  A 4.0-m thick 

silty clay unit begins where the clay and sandy clay units end laterally.  The silty clay unit 

thins to 1.0 m at Caillou Bay and is overlain by a 0.25 m thick silt unit.  The silty clay 

then thickens to 2.0 m south of Oyster Bayou.  The silty clay unit has shell fragments 

throughout, and burrow tubes where it is overlain by the silt unit.  The silty clay overlies 

a clay unit that is 25 cm thick at Bayou Grand Caillou and thickens to 2.0 m south of 

Oyster Bayou.  The clay unit has shell and organic fragments throughout.  Three samples 

were obtained from the cores in the cross section for radiocarbon dating, two peat 

samples and one articulated shell.
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Figure 1.5 – Stratigraphic cross section through the study area to show the lateral and vertical relationships of primary lithosomes discussed in the text. 
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Stratigraphic cross section B-B’ 

 

Stratigraphic cross section B-B’ trends from the North to the South from 

Moncleuse Bay to South West of Bay Wilson (Figure 1.6).  A 1.0 m thick peat unit 

stretches from Moncleuse Bay to Grand Pass Ilettes.  The peat thickens to 2.0 m at 

Hackberry Lake then thins again until it pinches out at the seaward extent of the 

headland.  The peat overlies a clay unit approximately 2.0-m thick that extends across the 

entire section.  The peat has rooting throughout and some shell fragments at the northern 

end of the section.  The clay thickens to 4.5 m west of Bay Wilson and is overlain by a 50 

cm thick silt deposit.  It then thins to 2.0 m and is overlain by a clayey sand lens.  The 

clay is horizontally laminated and there are numerous shell fragments and burrow tubes 

west and southwest of Bay Wilson.  The clay overlies a sandy clay unit that thickens 

from 1.0 m to 2.0 m at Hackberry Lake and thickens again to 3.0 m southwest of Bay 

Wilson.  The sandy clay is horizontally laminated throughout and there are numerous 

shell fragments west and southwest of Bay Wilson. 

Stratigraphic cross section C-C’ 
 

Stratigraphic cross section C-C’ trends from the north to south from Dulac, LA to 

Whiskey Pass (Figure 1.7).  A 1.0 m thick peat unit extends the entire length of the 

section.  The peat unit has abundant rooting.  The peat overlies a 2.0-meter thick clay unit 

that extends to Charleys Lake where it ends.  The there are infrequent organic fragments 

and some rooting.  The clay overlies a 1.0 m thick sandy clay unit that gradually 

increases to 2.0 m then tapers to 1.0 m where it ends at Charleys Lake.  There are few 

shell and organic fragments present.  A 1.0 m thick silty clay unit underlies the sandy  
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Figure 1.6 – Stratigraphic cross section consisting of cores from the USACE and summer 2003 fieldwork conducted for this study.  
The Teche Ravinement surface was projected onto cross section from Penland et al., 1987. 
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clay at core sites FC-2 and ww-5032z.  The sandy and silty clay overlies a clay unit that 

is 4.0 m thick and gradually tapers to approximately 3.0 m southwest of Charleys Lake 

and abruptly ends.  The clay is horizontally laminated and a few shell fragments are 

present in the unit.  There are three 25 cm sand lenses in the clay unit, one at core site 

FC-2, one at FPB-10, and one at CH03.  South of Charleys Lake a silty clay unit 

underlies the peat unit.  The silty clay unit starts at 3.0 m thick and gradually increases to 

6.0 m at Whiskey Pass.  The unit is horizontally laminated and has sparse shell 

fragments.  Three samples were obtained from the cores in the cross section for 

radiocarbon dating, two peat samples and one articulated shell (Table 1.2).   

Stratigraphic cross section D-D’ 

Stratigraphic cross section D-D’ trends from the north to south from Bay Sale to 

Trinity Island (Figure 1.8).  A 1.0 meter thick peat unit extends from Bay Sale to Trinity 

Island and gradually thickens to 2.0 m.  The peat overlies a 1.5 m thick silty clay unit that 

ends at Pass la Poule.  The unit has sparse organic and shell fragments.  The silty clay 

overlies a 4.5 m thick clay unit that extends from Bay Sale to Trinity Island and gradually 

thins to 3.0 m.  The clay unit is horizontally laminated.  A 3.0 m thick sand unit overlies 

the clay unit at Trinity Island. 

Stratigraphic cross section E-E’ 

Stratigraphic cross section E-E’ trends from the northwest to the southeast from 

Cocodrie, LA to Timbalier Island (Figure 1.9).  An approximately 2.0 m thick peat unit 

extends from Cocodrie to Timbalier Bay, except where it is absent under Bay Chaland.  

The peat shows sporadic rooting in the northwest portion of the section.  The clay 

overlies a 1.0 m thick sand unit at core number 7270.  The peat and sand overlie a 5.0 m  
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clay at core sites FC-2 and ww-5032z.  The sandy and silty clay overlies a clay unit that 

is 4.0 m thick and gradually tapers to approximately 3.0 m southwest of Charleys Lake 

and abruptly ends.  The clay is horizontally laminated and a few shell fragments are 

present in the unit.  There are three 25 cm sand lenses in the clay unit, one at core site 

FC-2, one at FPB-10, and one at CH03.  South of Charleys Lake a silty clay unit 

underlies the peat unit.  The silty clay unit starts at 3.0 m thick and gradually increases to 

6.0 m at Whiskey Pass.  The unit is horizontally laminated and has sparse shell 

fragments.  Three samples were obtained from the cores in the cross section for 

radiocarbon dating, two peat samples and one articulated shell (Table 1.2).   

Stratigraphic cross section D-D’ 

Stratigraphic cross section D-D’ trends from the north to south from Bay Sale to 

Trinity Island (Figure 1.8).  A 1.0 meter thick peat unit extends from Bay Sale to Trinity 

Island and gradually thickens to 2.0 m.  The peat overlies a 1.5 m thick silty clay unit that 

ends at Pass la Poule.  The unit has sparse organic and shell fragments.  The silty clay 

overlies a 4.5 m thick clay unit that extends from Bay Sale to Trinity Island and gradually 

thins to 3.0 m.  The clay unit is horizontally laminated.  A 3.0 m thick sand unit overlies 

the clay unit at Trinity Island. 

Stratigraphic cross section E-E’ 

Stratigraphic cross section E-E’ trends from the northwest to the southeast from 

Cocodrie, LA to Timbalier Island (Figure 1.9).  An approximately 2.0 m thick peat unit 

extends from Cocodrie to Timbalier Bay, except where it is absent under Bay Chaland.  

The peat shows sporadic rooting in the northwest portion of the section.  The clay 

overlies a 1.0 m thick sand unit at core number 7270.  The peat and sand overlie a 5.0 m  
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Figure 1.7 – Stratigraphic cross section consisting of cores from the USACE database, summer fieldwork 2003, and Penland et.al. 
1987.  The cross section shows the lateral and vertical relationship of primary lithosomes discussed in the text.   
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thick clay unit that thickens gradually to 7.0 m at Bay Chaland.  The clay abruptly thins 

back to 5.0 m, and then tapers to 1.5 m at Timbalier Island.  The clay is horizontally 

laminated and contains numerous shell fragments south of Bay Chaland.  A 2.0 m thick 

silty clay unit begins at Bay Chaland and gradually thickens to 3.5 m.  The silty clay unit 

is horizontally laminated and numerous shell fragments and shell lags are present north of 

Timbalier Island.  Two clayey sand lenses containing organic and shell fragments are 

present in the silty clay unit at core numbers SCC0206 and SCC0204.   

 

Lithosome Contour Maps 

Four contour maps were constructed using the sedimentological data for each 

lithosome.  Sedimentary units described from the cores were grouped into four lithosome 

categories; peat, clay, silty clay, and sandy clay.  The contour maps were constructed in 

order to evaluate the extent of subsurface lithosomes identified from the cross sections.  

The interpolate to raster function within ArcGis 8.3 was used to construct contour maps 

with interval values based on lithosome thickness.  ArcGis 8.3 provides a variety of 

contouring algorithms and each one has a particular use depending upon the character of 

the data being contoured.  In this case inverse distance weighted (IDW) was chosen.  Arc 

GIS 8.3 provides three contouring operations, and the IDW best fit the data set 

assembled.  The Z value chosen was unit thickness, the power selected was four, the 

search radius was variable, and the output cell size was designated as three pixels to 

match the land loss map cell size.   
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Figure 1.8 – Cross section includes cores from the USACE database, summer fieldwork 
2003, and Penland et.al. 1987. 
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Figure 1.9 – The Stratigraphic cross section consists of cores from USACE database, summer 2003 fieldwork, and a Louisiana 
Geologic Society initiative.  The cross section shows the lateral and vertical relationship of primary lithosomes discussed in the text.  
The Teche Ravinement surface was projected onto the cross section from Penland et al., 1987. 
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Discussion 

 Five transects were constructed across the headland in order to capture the 

stratigraphic framework.  Identifying the major lithosomes was necessary in order to 

determine were the units of varying compatibility are located.   

 

Stratigraphic cross section A-A’ 

 This section transects Caillou Lake and the seaward marginal marshes southwest 

of the lake (Figure 1.10).  Underlying Caillou Lake the stratigraphic architecture is 

simple, marsh deposit overlying clay that overlies sandy clay.  This has been interpreted 

to be an interdistributary fill deposit.  Towards the seaward marshes however this deposit 

abuts a deposit that is interpreted as reworked interdistributary bay clays and silty clays, 

due to the presences of several shell lags and organic fragments at depth.   

 

Stratigraphic cross section B-B’ 

 This section is comprised of a simple stratigraphic arrangement of sedimentary 

units (Figure 1.11).  It lies between Bayou Grand Caillou and Pass de Ilettes.  The marsh 

deposit extends to the seaward extent of the headland where it pinches out.  The marsh 

unit overlies a thick clay unit and a thick sandy clay unit.  The clay and silty clay units 

are interpreted as interdistributary bay fill deposits. 

 
Stratigraphic cross section C-C’ 

 This section transects the center of the headland and ends just north of the Isles 

Dernieres (Figure 1.12).  In this section two distinct thick clay strata were observed.  

They possibly represent two overlapping delta lobes, as they are separated by 
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interdistributary bay fill.  This interval is overlain by marsh platform and appears to abut 

the same sedimentary package as cross section A-A’.  The silty sand here has preserved 

horizontal laminations and only shows reworking near the marsh platform contact, and is 

interpreted to be prodelta silty clays. 

  
 

Stratigraphic cross section D-D’ 

 This section transects the eastern edge of the headland and the western edge of 

Terrebonne Bay (Figure 1.13).  The base is massively bedded clay and is interpreted as a 

prodelta deposit.  It is overlain by a silty clay package that is interpreted as 

interdistributary bay fill.  The section is overlain by subsided marsh platform until it 

bisects the Isle Derniers, where a thick barrier island sand interval is observed. 

 

Stratigraphic cross section E-E’ 

 This section transects Terrebonne Bay to the eastern edge of Timbalier Island 

(Figure 1.14).  The entire section overlies massively bedded clays with few shell 

fragments.  This is interpreted as a shelf clay deposit.  It is overlain by the marsh platform 

and laterally abuts a silty clay deposit similar to the one seen in transect C-C’.  This silty 

clay deposit is again identified as prodelta silty clays. 
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Figure 1.10 – Stylized cross section including cores from the summer 2003 fieldwork. 
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Figure 1.11 Stylized cross section includes cores from the USACE database and the summer 2003 fieldwork.
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Figure 1.12 – Stylized cross section includes cores from the USACE database, summer fieldwork 2003, and Penland et.al. 1987. 
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Figure 1.13 Stylized cross section includes cores from the USACE database, a Louisiana 
Geologic Society Initiative and the summer 2003 fieldwork.
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Figure 1.14 – Cross section contains cores from USACE database, summer 2003 fieldwork, and a Louisiana Geologic Society 
initiative. 
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Chapter 4 
 
Methods 
 
 
 The second component of this research project consisted of analyzing a collection 

of historic maps in order to reconstruct the geomorphic evolution of the Caillou Bay 

headland.  A detailed record of wetland loss and shoreline change was sought in order to 

determine whether; 1) the loss was uniform across the study, 2) patterns of land loss were 

evident and, 3) there appeared to be any relative increase or decrease in the rates of 

change.  A detailed determination of where land has converted to water is necessary for 

comparison to the subsurface geologic framework dataset. 

 

Map Preparation 
 

In order to determine historical shoreline change and interior wetland loss, a 

collection of historical maps was assembled.  In order to document land surface change a 

series of maps were chosen in approximately 40-year increments spanning from 1863 to 

2002.  This increment of time was chosen because shorter intervals of time represented 

by the maps would not likely show significant changes in geomorphology and therefore 

historical headland evolution would be difficult to determine.  The intent was to analyze 

areas where land has converted to open water.  This is significant because conversion 

indicates where subsidence has occurred. 

In order to compare modern and historic maps, the historic maps were 

georeferenced to a modern coordinate system.  The georeferencing process assigns a map 

projection system to image data (Erdas, 2001).  This is done by either assigning 
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coordinates to specific points on the image, or by linking image data to a previously 

georeferenced map.  The coordinate system North American Datum 1983 (NAD83) was 

chosen for this project.  It is the geocentric datum and coordinate system most commonly 

used by geologists in North America (Kennedy and Kopp, 2002). In order to achieve the 

most accurate results 20 to 30 reference points are preferred in order keep the route mean 

square (RMS) error below 0.1%. The program automatically calculates the RMS error 

thereby decreasing the overall validity of any comparisons that are to be performed. 

When the error exceeds 0.1% RMS, distortions of the map can occur when the map is 

reprojected in the NAD83 coordinate system. After the maps undergo the georeferencing 

process, they can then be easily imported into all of the software packages used in this 

study. 

 The collected maps each presented unique challenges with regard to 

georeferencing.  Permanent features such as lighthouses, military forts, and railroads 

were necessary for assigning a coordinate system to a map.  These are numerous on the 

modern maps, and less frequent on the historic maps.  When the georeferencing of the 

maps was completed, they were integrated into a GIS database within which calculations 

of land loss could be performed and total changes in area of land and water could be 

quantified.   

Final map preparations consisted of producing an image with each pixel of the 

map coded as either water or land.  In this way changes in total land were assessed by 

calculating the number of pixels that had changed from water to land for a given time 

period represented by the maps under comparison.  The preparation for each map differs 

up until this point; and the specific methods of preparation are presented for each map in 
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the following sections.  In order to reach this point however, each paper map was 

scanned, georeferenced, land and water were demarcated, and each was coded as a 

separate value to provide a control for later calculations.  Erdas Imagine 8.6 software was 

used for this part of the map preparation.  The 2002 map was previously georeferenced, 

and was used as the control map for the project.       

 1863 Map 

 This map was located in the National Archives in Washington, D.C.  The Bureau 

of Topographic Engineers completed it in 1863 as part of reconnaissance work conducted 

by the Union army during the Civil War (Figure 1.15).  It was located in a section of the 

archives not available to the public and consequently could only be retrieved by an 

approved graphics company.  The one company able to scan the 24 x 22 map was Do-

You-Graphics in Frederick, Maryland.  They obtained and scanned the map at 300 dots 

per square inch (dpi), producing a digital image.  The image was saved to a compact disc 

and mailed to UNO.   

In order to georeference the 1863 map, a previously georeferenced map was 

required.  There were few permanent features on this map, and no latitude or longitude 

grid to assign coordinates too.  The map chosen to georeference the 1863 map was a 2002 

map (see below) was used as the source of coordinate points.  One lighthouse, six train 

stations, two forts, and eight natural features including intersecting waterways were used 

to reference this map.  This is less than optimal, but these were the only well known 

locations with a history of existence and known coordinates that enabled the comparison.  

For this process, 15 to 30 reference points would have been preferential.  The RMS value 

calculated was .21%.  The map was then reprojected using the reference points to assign 
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coordinate values to all points on the map.  This map was then clipped to the dimensions 

of the predefined study area.  The 1863 map and the 2002 map were overlain to 

determine the relative accuracy of the referencing process.  A visual examination of the 

maps revealed a misalignment of historic locations and significant distortion of the land 

area in the 1863 map.  The lack of permanent features hindered accurate georeferencing 

for this map. 

 This map did not show significant detail in the marsh, so polygons of land and 

water were selected with a drawing tool.  Within the software these polygons were filled 

with a uniform color and pixels representing water were coded as zero, whereas pixels 

representing land were coded as one.  Each feature was assigned a numerical value in 

order to analyze land loss when the 1863 map was compared to the other maps in the 

collection.            
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Figure 1.15 – A) Scanned image from a 1863 map created by the Bureau of Topographic 
Engineers.  B) Final image created using Imagine software.  The map in B was used as 
the input into the land change modeler. 
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1895 Map 

The 1895 map was completed by the Hardee’s map company and a copy is 

archived in the library in the Pontchatrain Institute for Environmental Studies (PIES), at 

the Center for Energy Resource Management on the UNO campus.  It was prepared in a 

similar fashion to the 1863 map except that canals were utilized in the georeferencing 

process instead of natural waterway features.  After completing the georeferencing 

process the RMS value was .09%. The map was then clipped to the study area, and 

overlain with the 1863 and 2002 map to determine the relative accuracy of the 

georeferencing.  Since the 1863 and 1895 maps did not show the same amount of detail 

that the later maps did, the only available feature that could be checked for positional 

accuracy were the major bayous on the headland, including Bayou Grand Caillou, Bayou 

du Large, Bayou Sale, and Bayou Petite Caillou.  

The 1895 map did not show fine details, such as minor breaks and small open 

water bodies in the marsh area, so polygons were drawn where the land and water was 

identified within the map.  The water pixels were coded as zero and the land pixels were 

coded as two.  Since the land pixels in the 1863 map were assigned a value of one, the 

land pixels on the 1895 map were assigned a value of two.  This was done to differentiate 

between land on the 1863 and the 1895 maps.  This was required to perform land loss 

calculations with the Imagine 8 software.  All following maps were assigned a new 

number accordingly.  The image was then ready to be used to calculate land change when 

compared to the other maps (Figure 1.16). 
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Figure 1.16 – A) Image from a scanned Hardees 1895 map.  B) Final image created using 
Imagine software.  This georeferenced and rasterized map was input into the land change 
modeler. 
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1956 Map 

The 1956 map used in this study was a U.S. Geodetic and Coastal Survey map 

archived in the PIES library on the UNO campus.  It was constructed using aerial 

photography and contained more detail than the previous maps.  Universal Transverse 

Mercator (UTM) tic marks were present on the map, so a grid was drawn across the map 

using these points as anchors. Coordinate points were then entered at grid nodes where 

the grid lines intersected. As with the map-to-map method, RMS error was automatically 

calculated; a total of 30 reference points were used and resulted in a RMS value of 

0.12%.  Similar to the other maps, the 1956 the map was clipped to the study area 

dimensions to visually test the compatibility to the 2002 map.  The 1956 map and the 

2002 map, however, did not fit perfectly.  Though the land area matched, a slight offset 

could be observed in the bayou and canal intersections.  A rubber sheeting method was 

then applied to correct for the small discrepancies observed between the two maps.  

Rubber sheeting is a term that refers to a process that is conceptually similar to the map-

to-map georeferencing process, but the points are used to refine the projection, not to 

reproject the map entirely.  For example, a point with the incorrect coordinates is chosen 

on the 1956 map, and the correct location on the 2002 map is then chosen.  The software 

program created a file that listed the incorrect 1956 coordinates linked to the new correct 

2002 coordinates.  40 points were collected in order to realign the map.  The map was 

reprojected using the corrected points in the file, and the 1956 map corresponded on the 

basis of visual inspection with the 2002 map. 
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There were significant color differences and breaks in the land polygons on the 

map so the image was meticulously hand digitized using the drawing tool.  As in the 

previous maps, the fill for the water pixels was zero.  The pixel value for the land in the 

1895 map was two, so the land pixels in the 1956 map were designated three.  The image 

was then ready to be used for land change calculations (Figure 1.17). 
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Figure 1.17 – A) Image from a scanned a 1956 map (U.S. Coast and Geodetic survey).  
B) Final image created using Imagine software.  This georeferenced and rasterized map 
was input into the land change modeler. 
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1983 Map 

The 1983 map was scanned and available for download from the NOAA Office of 

Coast Survey.  This online map source has since been taken offline, and is now only 

available directly from the NOAA main office.  UTM tic marks were present on the map, 

so a grid was drawn using these points as anchors and coordinate points were entered at 

the grid nodes.  Twenty-five points were referenced using this method, and a RMS 

method of 0.13% was calculated.  The map was then clipped to the study area and 

overlain with the 2002 map.  The rubber sheeting method used on the 1956 map was also 

used to refine the projection of the 1983 map as well.  When the map was reprojected the 

1983 and the 2002 images matched. The land area, bayous, canals, and permanent 

features were in alignment.   

The image contained highly fragmented marsh that would have made manually 

defining the land and water polygons an extremely time consuming process.  Instead, the 

map was processed by a model developed by Louis Martinez at UNO’s PIES.  The 

modeler separates land from water in a raster image.   The process scans the map, one 

row of pixels at a time. The color range for water and land pixels was determined, and the 

model was able to identify land and water by the color value that each pixel had. The 

pixel value range associated with water was reassigned a value of zero, and the pixel 

value range associated with land was reassigned a value of four.  Areas such as text that 

are improperly classified as land are reassigned manually by drawing polygons around 

the text that are subsequently assigned the value denoting water (Figure 1.18). 
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Figure 1.18 – A) Image from a scanned 1983 map (U.S. Geodetic Survey).  B) Final 
image created using Imagine software.  This georeferenced and rasterized map was input 
into the land change modeler. 

N

0 10 20 Km

N
A

B

Symbols

Land

Water



 54

 

2002 Map 

This map was acquired as a georeferenced image and, as previously mentioned, 

served as the control map for this project.  The study area was clipped from the map and 

processed using the Martinez model.  Areas on the map that were misclassified because 

of map features such as text or coordinate lines were corrected by assigning appropriate 

values to manually designated polygons.  As before, pixels associated with water were 

classified as zero, and pixels associated with land classified as five (Figure 1.19).   
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Figure 1.19 – A) Image from a 2002 satellite imagery.  B) Final image created using 
Imagine software.  This georeferenced and rasterized map was input into the land change 
modeler. 
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Land Loss Map Production 
  
 The final step of the map preparation process was to produce maps that depict 

land loss during intervals of time represented by the temporal spread between the specific 

maps.  In order to conduct the analysis of sequential land changes the georectified and 

processed map images were loaded as pairs of two into a quantitative model designed 

using the Imagine 8 modeler to calculate land change.  As indicated in the previous 

discussion of each map, land for each image was classified as a different value for this 

process.  

 For images between 1863 and 1895, land was classified as a numerical value of 

one and two respectively.  They were imported into the model built in Imagine 8.  The 

model subtracted the 1863 map from the 1895.  The model searched for pixels classified 

as number one that were not overlain by number two pixels.  This absence of pixel 

overlap represented land loss.  This produced a map illustrating the total land loss 

amount.  This process was carried out with map couplets representing the time intervals 

1895 to 1956, 1956 to 1983, and 1983 to 2002.  This procedure allowed for the 

construction of four land loss maps.  Each one of these land change comparisons was 

constructed for the purpose of comparing the lithosome contour maps developed from the 

data collected for the framework geology portion of the study.  

 
Results 
 
 This component of the project resulted in land-loss calculations that included 

interior wetland loss (e.g. conversion to open water) and shoreline erosion.  These 

calculations and the resulting images provided an assessment of the geomorphic 

evolution that the Caillou Bay Headland has undergone within the time period 
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represented by the maps (1895-2002).  Land change was calculated for each of the three 

time intervals in order to develop and estimate rates and patterns of total land surface 

change within the study area. 

 
Land Loss Totals 
 
 Land versus water coverage maps were produced from the maps acquired for the 

project (Figures 5 figures).  These maps were used to produce land loss maps for three 

time intervals.  For time interval A (1895-1956) 62.6km2 was lost (Figure 1.20); for time 

interval B (1956-1983) 56.6km2 was lost (Figure 1.21); and for time interval B (1983-

2002) 57.1km2 was lost (Figure 1.22). 

 
Land Loss Determination  
 

The percent land loss over each contour interval was calculated with the following 

formula:  

[(T1 – T2)/(T1)] x 100 = Percent Land Loss 

where 

T1 = Total land for initial time period of each contour interval 

T2 = Total land for preceding time period of each contour interval 

The headland overlies contours of varying widths.  In order to account for this, the 

formula uses total land for a specific contour interval instead of total land loss.  In this 

way the percent land loss figures do not represent the surficial extent of a contour, but the 

actual percentage of land lost over a time interval. 
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Figure 1.20-Land loss from 1895 to 1956.  Land lost from 1895-1956 is shown in black, 
while extant land in 1956 is shown in gray. 
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Figure 1.21 – Land loss from 1956 to 1983.  Land lost from 1956-1983 is shown in black, 
while extant land in 1983 is shown in gray. 
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Figure 1.22 – Land loss from 1983-2002.  Land lost from 1983-2002 is shown in black, while extant land in 2002 is shown in gray. 
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Discussion 
 
Map Evaluation 
 
 The map database was used to develop a history of headland evolution for the 

Caillou Bay Headland throughout the last 150 years.  In the course of this study however, 

a variety of considerations emerged regarding the validity of results obtained from the 

analysis.  The intent was to determine rates and patterns of erosion of the interior 

wetlands and the coastal area.  One of the first factors that required consideration was the 

overall accuracy of the maps created before the 1900’s.  The 1863 map and the 1895 map 

both have coastlines, bayous, and major lakes that are reasonably mapped when 

compared to modern maps (Figures 1.15 and 1.16).  The problem arises in the lack of 

detail in the interior marshes.  Examination of the map from 1863 compared to 1956, for 

example, clearly indicates that a level of detail is absent in the early historic maps.  This 

reflects the status of the technology available at the time the map was constructed.  A key 

component to the study is to understand and quantify not just how much land was lost but 

specifically where the land changes took place.  Consequently, an examination of the 

potential problems associated with the successive change analysis is warranted.    

 

Comparison of change: 1863-1895 

 Comparison of the 1863 map to the 1895 map was conducted by overlaying them.  

The resulting was a land loss map and land change calculations that did not seem 

reasonable or realistic.  Across much of the area covered by the maps the shorelines and 

bayous matched in a geomorphic sense, but because there was little detail of land versus 

water indicated for the interior marsh on both maps, change data was insignificant.  These 
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maps provide and interesting opportunity to visually gauge the headland configurations 

as interpreted by the early map makers, but because of the limited detail have an 

extremely limited application for accurate quantification of geomorphic change.   

 

Comparison of change: 1895 –1956 

 As mentioned above, the 1895 map had reasonable shorelines and bayous but the 

details of the interior marsh geomorphology (e.g. tidal channels, small embayments) was 

not well constrained or depicted (Figure 1.20).  Comparison of this map to the 1956 map 

is difficult.  The 1956 map was created with modern mapping techniques including aerial 

photography.  The data results that were acquired when the two maps were overlain is 

more reliable than the 1863-1895 interval, but still has inaccuracies as a result of the 

earlier map making techniques used in 1863 relative to those of 1895. 

Comparison of change: 1956-1983 

 The 1956 and 1983 maps are both the product of good and substantially more 

advanced map-making techniques (e.g. aerial photography, satellite imagery, and 

geographical positioning systems) (Figure 1.21).  The geographical coverage of the 1956 

map is not as extensive as the 1983 map (Figure 1.18), so data could only be acquired for 

the area covered by the 1956 map. 

Comparison of Change: 1983-2002 

 The 1983 map was produced with the aid of aerial photography, and the 2002 

map is the product of satellite imagery (Figure 1.22).  The land loss map created when 

these maps were overlain was the most accurate and covered the largest amount of area.  

The time frame within which these maps were acquired is also an interval of time when 
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the delta plain was most heavily impacted by anthropogenic activities such as the 

construction of access canals, the excavation of dredge holes, and placement of dredge 

spoil that artificially creates land.   



Chapter 5 
 
Discussion and Conclusions 
 
 This section examines the results of the comparison of the subsurface 

stratigraphic framework to the surficial geomorphic evolution of the headland.  The 

results of the comparison are evaluated in order to determine if patterns of land loss can 

be correlated to subsurface facies distribution. 

 
Percent Land Loss versus Lithosome Thickness 
 

The patterns of land loss indicated by the analysis of sequential map pairs appears 

to chronologically reflect transition from natural to anthropogenic influenced geomorphic 

change.  The natural land loss progression is difficult to gauge because of the limitations 

imposed by earlier maps; primarily the incompleteness of coverage and details in the 

marsh interior.  The progression of anthropogenic land loss is affected by hydrologic 

alterations from canal dredging, levee augmentation, and dredge and fill operations.  

These types of modifications create two distinct problems.  The first is the mechanical 

removal of land that can skew results, as this removal is not a reflection of natural 

processes such as compaction and the underlying mechanisms of change that are being 

tested.  There is also the altered hydrology that can result from this process and contribute 

to marsh degradation.  There is no way to absolutely determine the area of marsh 

platform eliminated by the effects of salt-water intrusion versus the area reduced to open 

water from subsidence; both are recorded as land loss in the change analysis performed 

for this study. 
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Comparison 1:  Percent Land Loss versus Lithosome Thickness – Time Interval A (1895-
1956) 
 
 
 Four land-loss versus thickness maps were constructed to evaluate patterns of 

land loss (Figure 1.23, 1.26, 1.23, and 1.32).  During time interval A, a distinct increase 

in land loss was identified in locations where the clay lithosome was 150 to 250-cm thick 

(Figure 1.36 box a).  This area of clay thickness is overlain by the seaward margin of the 

headland, at the current location of Lake Pelto.  Distally deposited distributary sediments 

support the marsh platform here.  This area serves to buffer the interior marsh from the 

erosive effects of wave and storm surge that impact the coast.  Despite the problems 

associated with interior marsh coverage on the early maps, significant land loss has been 

documented for the edge of the headland. 

 

Comparison 2:  Percent Land Loss versus Lithosome Thickness – Time Interval B (1956-
1983) 
 
 
 Four land-loss versus thickness maps were constructed to evaluate patterns of 

land loss for time interval B (1956-1983) (Figure 1.24, 1.27, 1.30, and 1.33).  During this 

time interval, two distinct areas of substantial land loss were documented.  Both areas 

overlie the silty clay lithosome from 500 to 550 cm (Figure 1.36, box b) and the sandy 

clay lithosome from 200 to 250 cm (Figure 1.36, box c).  The silty clay interval 500 to 

550 cm thick underlies the eastern margin of the headland.  There has been significant 

erosion to the marsh platform edge, resulting in the loss of protection to the marginal 

marshes with time.  Land lost on the sandy clay interval, ranging between 200 and 250 

cm thick, is located on the western central portion of the headland.  Land loss here is of a 
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more interior nature, but some loss is observed from the seaward margin.  As the seaward 

margin continues to lose marsh platform, the interior marsh becomes more susceptible. 

 

Comparison 3.  Percent Land Loss versus Lithosome Thickness – Time Interval C (1983-
2002) 
 

 Four land-loss versus thickness maps were constructed to evaluate patterns of 

land loss (Figure 1.25 1.28, 1.31, and 1.34).  During this time interval, two distinct areas 

show significant land loss and overlie the clay lithosome where it is 150 to 250 cm thick 

(Figure 1.34 box d) and the silty clay lithosome where it is 500 to 650 cm thick (Figure 

1.36, box e).  The land lost over the clay interval is located on the western interior of the 

headland.  Much of the marsh overlying the seaward margin was lost during time interval 

A and B leaving the interior marshes more vulnerable to coastal processes.  Also at this 

point anthropogenic influences appear to become a significant factor.  Alterations of 

hydrologic processes on the entire coast appear to impact the headland evenly, as canals 

have been excavated over the entire headland.  This increases the amount of interior land 

loss by direct removal.  The placement of canals is not a function of subsurface lithology, 

so land loss would be seen over every lithosome contour interval. 

  The land lost the silty clay interval is located at the southern extent of the 

headland.  The map record shows that this area has undergone the highest rates of land 

loss.  Presently stage there is little marsh platform left to protect the remaining marsh 

from coastal processes such as wave action, tides, and large storms.   
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Figure 1.23. Contour map illustrating peat thickness in the study area overlain by land 
loss from time interval A. 
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Figure 1.24. Contour map illustrating peat thickness in the study area overlain by land 
loss from time interval B. 
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Figure 1.25. Contour map illustrating peat thickness in the study area overlain by land 
loss from time interval C.  
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Figure 1.26. Contour map illustrating clay thickness in the study area by land loss from 
time interval A. 
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Figure 1.27. Contour map illustrating clay thickness in the study area overlain by land 
loss from time interval B.  
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Figure 1.28. Contour map illustrating clay thickness in the study area overlain by land 
loss from time interval C.  
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Figure 1.29. Contour map illustrating silty clay thickness in the study area overlain by 
land loss from time interval A.  
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Figure 1.30. Contour map illustrating silty clay thickness in the study area overlain by 
land loss from time interval B.  
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Figure 1.31. Contour map illustrating silty clay thickness in the study area overlain by 
land loss from time interval C.  
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Figure 1.32. Contour map illustrating sandy clay thickness in the study area overlain by 
land loss from time interval A.  
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Figure 1.33. Contour map illustrating sandy clay thickness in the study area overlain by 
land loss from time interval B.  
 

 77



Silty Clay Thickness (cm)Land Loss Time C (km   )2

Key

10.1

2.12

2.82

2.57

3.03

.73

.15

Figure 1.34. Contour map illustrating sandy clay thickness in the study area overlain by 
land loss from time interval C.  
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Percent land loss v. thickness (stratigraphic  tops) 
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Figure 1.35.  The graphs plot percent land loss versus the thickness of the lithosomes 
present in the study area. 
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Figure 1.36 – Map highlighting the areas of significant land loss. 
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Data acquired in this study was analyzed to determine whether a spatial 

lation exists between surficial land-loss patterns and the distribution of subsurface 

lithosomes within a deltaic headland.  Though no direct correlation was observed, several 

areas of significant land loss for each time interval investigated were identified.   

Overall a progression of marginal to interior headland land loss was documented 

with the historical map datasets.  The central portion of the headland underwent minimal 

land loss through time, and this may reflect the presence of natural levees.  Compared to 

most of the delta plain these geomorphic features consist of relatively coarse-grained 

sediment and are less susceptible to erosion.   

 Several problems were encountered in the development of a historical map 

database.  The historic maps (pre-1950) had well defined shorelines and bayous, but the 

interior marsh coverage did not contain much detail.  A major component of this project 

was to determine where land loss had taken place so that the geographic distribution of 

loss could be compared to the subsurface stratigraphic framework.  In the case of the pre-

1950 maps it was not possible to derive highly accurate land-loss patterns because of the 

limited accuracy of the early maps.  For the intervals of comparison that included p -

1950 maps it was impossible to fully assess the role of subsurface stratigraphy on 

surficial headland evolution. 

 A second major problem encountered involved the modern maps (post-1950).  

These maps were of a much greater accuracy pre-1950 maps, but contained a mu

substantial anthropogenic influence.  On these maps the existence of canals and “borrow 

pits” increased substantially as human occupation and utilization of the coastal zone 

re
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was difficult to differentiate between natural and 

ss within these. 

A final factor that likely influenced the results of this study was that the 

ediment distribution of the Caillou headland consisted of more homogenous 

ent than was expected.  Background research and core data indicated a 

e strata logged in cores for this study was 

ine-grained in nature.  In this sense the limited variability limited the 

 of possible surficial responses to subsurface compaction of stratigraphic units. 

There are several ways that a study similar to this project could be enhanced and 

eans of further investigating the linkage between subsurface units and 

eration would be to repeat this study in an area with 

were difficult to account for in the map 

less developed may help to better determine patterns of 

natural change.  Another possibility is to constrain the geomorphic evolution with a more 

robust map database, so that some of the anthropogenic effects can be more easily 

identified. Finally, the study could be repeated on a headland with a more heterogeneous 

e distribution to more effectively test the role of differential compaction on 
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