
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

5-20-2005

Design and Implementation of an Universal Lattice Decoder on Design and Implementation of an Universal Lattice Decoder on

FPGA FPGA

Swapna Kura
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Kura, Swapna, "Design and Implementation of an Universal Lattice Decoder on FPGA" (2005). University of
New Orleans Theses and Dissertations. 236.
https://scholarworks.uno.edu/td/236

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of New Orleans

https://core.ac.uk/display/216835204?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F236&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/236?utm_source=scholarworks.uno.edu%2Ftd%2F236&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

DESIGN AND IMPLEMENTATION OF AN UNIVERSAL LATTICE DECODER ON FPGA

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Master of Science
in

The Department of Electrical Engineering

by

Swapna Kura

B.Tech J.N.T.U, 2001

May 2005

 ii

ACKNOWLEDGEMENTS

 I would like to express my special thanks to Dr. Jing Ma for being my advisor throughout

my thesis research. I appreciate her patience, guidance and supervision of my work which helped

me in progressing in right path.

 I acknowledge Dr. Bhaskar Kura for his support throughout my graduate program

without which it would have been impossible for me to get thru my master’s degree. His

patience, guidance and insight served as invaluable assets in both my personal and academic

lives.

 I would also express my sincere thanks to Dr. Xinming Huang and Dr. Edit Bourgeois for

their willingness to serve as members in my thesis committee.

 I would express my heartfelt thanks to my parents and all family members. Their

blessings and love were always with me and encouraged me in stepping forward in life.

 I would thank my colleagues for being eager and prompt enough to help me when I

needed them. Finally, I would like to thank all my friends and cousins for their encouragement

and motivation.

 iii

GLOSSARY OF ABBREVIATIONS

MIMO – Multiple Input Multiple Output

FPGA – Field Programmable Gate Arrays

PLD – Programmable Logic Device

ASIC – Application Specific Integrated Circuit

IC – Integrated Chip

SOC – System-On-Chip

FSM – Finite State Machine

AWGN – Additive White Gaussian Noise

PAM – Pulse Amplitude Modulation

BER – Bit Error Rate

ML – Maximum Likelihood

DSP – Digital Signal Processor

VHDL – Very High speed integrated Description Language

RTL – Register Transfer Level

ISE – Integrated Software Environment

 iv

TABLE OF CONTENTS

LIST OF FIGURES...vi
LIST OF TABLES………………………………………………………………………………vii
ABSTRACT………...viii

1 INTRODUCTION.. 1

1.1 Motivations and Background... 1

1.2 Research Objective .. 4

1.3 Contribution of Thesis ... 4

1.4 Organization of Thesis... 5

2 FPGAs and MIMO Channels ... 6

2.1 MIMO Channels .. 6

2.2 Field Programmable Gate Array (FPGA).. 8

3 Sphere Decoding Algorithm... 11

3.1 The Sphere Decoder .. 11
3.1.1 Maximum-Likelihood Criterion.. 12
3.1.2 ML Decoding In Sphere Decoder ... 13

3.2 Flow-Chart... 14
3.2.1 Pre-Processing... 15
3.2.2 Decoding ... 15

3.3 Decoding Procedure .. 18

3.4 High Level Simulation of the Sphere Decoding Algorithm.. 19

3.5 Decoder Architecture Scheduling.. 20
3.5.1 Data Flow of the Algorithm.. 22
3.5.2 FSM Design .. 25

3.6 Simulation Results... 27
3.6.1 Non-Restoring Square Root Algorithm .. 27

4 Improved Sphere Decoding Algorithm.. 30

4.1 Improved Sphere Decoding Algorithm ... 30
4.1.1 Derivation of Modifications.. 31
4.1.2 Flow-Chart .. 35

4.2 Decoding Procedure .. 36

4.3 High Level Description of the improved Sphere decoder ... 37

4.4 Decode Architecture Scheduling... 38

4.5 Hardware-Software Scenario... 41

 v

4.6 Simulation Results... 42

4.7 Data Dependency... 43

5 FPGA Based Architecture Design.. 46

5.1 Lattice Decoder Architecture... 46

5.2 Parallel Structure ... 47

5.3 VLSI Design Flow... 52

5.4 Design Optimization.. 54

6 RESULTS... 57

6.1 Experimental Setup.. 57

6.2 Pre-Processing Results .. 57

6.3 Decoding Results... 58
6.3.1 Simulation Results .. 58
6.3.2 Synthesis Results .. 60
6.3.3 Decoding Rate... 62
6.3.4 BER Performance ... 67
6.3.5 Comparison between FPGA and DSP Implementations .. 68

6.4 Conclusions ... 70

REFERENCES...………………………………………………………………………………...72
VITA……………………………………………………………………………………………..74

 vi

LIST OF FIGURES

Figure 2.1: A MIMO system. (a) MIMO Transmitter. (b) MIMO receiver 7
Figure 2.2: Virtex-II FPGA architecture [Chris] .. 10
Figure 3.1: Flowchart of a Sphere decoding algorithm [Viterbo 1999] 14
Figure 3.2: Flowchart of a Sphere decoding algorithm showing states.. 22
Figure 3.3: Input and Output pins for original sphere decoder... 24
Figure 3.4: The FSM diagram of Sphere decoding algorithm.. 26
Figure 4.1: Flow chart of improved algorithm... 35
Figure 4.2: Flow chart of an improved algorithm showing states .. 39
Figure 4.3: Input and Output pins for improved sphere decoder.. 40
Figure 4.4: Overview of the complete system .. 42
Figure 4.5: Dependency graph of the Sphere decoding algorithm ... 43
Figure 5.1: The hardware architecture of improved sphere decoding algorithm.......................... 46
Figure 5.2: The hardware architecture of parallel-pipeline improved sphere decoding algorithm

... 48
Figure 5.3: An example of improved sphere decoding algorithm (a) Sequential implementation

(b) Parallel-Pipeline implementation .. 49
Figure 5.4: Design flow for an FPGA... 52
Figure 5.5: Workspace of Project Navigator .. 53
Figure 5.6: RTL schematic of parallel-pipeline implemented sphere decoder generated by Xilinx

ISE 6.2i ... 56
Figure 6.1: Bar chart showing the simulations times of each states in both algorithms............... 59
Figure 6.2: Xilinx Virtex-II 1000 FPGA Device Description .. 61
Figure 6.3: BER vs. Eb/No (dB) for an uncoded system using original and improved algorithms

... 67

 vii

LIST OF TABLES

Table 3.1: Pin descriptions for the decoder controller of the original sphere decoding algorithm
... 25

Table 3.1: Simulation Times of each state in original algorithm... 27
Table 4.1: Pin descriptions for the decoder controller of the improved sphere decoding algorithm

... 41
Table 4.2: Simulation Times of each state in improved algorithm .. 43
Table 5.1: Sequence of states for an example of improved algorithm at 6dB SNR..................... 48
Table 6.1: Average number of state visits in sequential implementation at 20 dB...................... 60
Table 6.2: Average number of state visits in parallel-pipeline implementation at 20 dB............ 60
Table 6.3: Synthesis results of m=n=4 MIMO system .. 61
Table 6.4: Sequence of state in Sequential procedure.. 63
Table 6.5: Sequence of state in Parallel-Pipeline procedure.. 64
Table 6.6: Comparison of decoding rate at 20 dB.. 65
Table 6.7: Comparison between FPGA and DSP implementation at 20 dB................................ 68

 viii

ABSTRACT

 In wireless communication, MIMO (multiple input multiple output) is one of the

promising technologies which improves the range and performance of transmission without

increasing the bandwidth, while providing high rates. High speed hardware MIMO decoders are

one of the keys to apply this technology in applications. In order to support the high data rates,

the underlying hardware must have significant processing capabilities. FPGA improves the speed

of signal processing using parallelism and reconfigurability advantages.

 The objective of this thesis is to develop an efficient hardware architectural model for the

universal lattice decoder and prototype it on FPGA. The original algorithm is modified to ensure

the high data rate via taking the advantage of FPGA features. The simulation results of software,

hardware are verified and the BER performance of both the algorithms is estimated. The system

prototype of the decoder with 4-transmit and 4-receive antennas using a 4-PAM (Pulse amplitude

modulation) supports 6.32 Mbit/s data rate for parallel-pipeline implementation on FPGA

platform, which is about two orders of magnitude faster than its DSP implementation.

 1

1 INTRODUCTION

1.1 Motivations and Background

Although wireless technologies have been around for a while, there has been a recent and

rapid surge in the evolution of new standards that enable and accelerate the convergence of

telecommunications and IP networking to provide new multimedia services. To keep up with the

demands of wireless network services, the capacities of systems are increased. The most brute-

force approach to increasing wireless data rate is to use more frequency channels to increase

modulation rate [Jones 2003]. This "channel bonding" approach will not meet the needs of

wireless network consumers for the following reasons: First, while channel bonding increases

data rate, it decreases the transmission range for the same transmit power. Second, channel

bonding robs channels from other systems that operate nearby.

 MIMO (multiple input multiple output) antenna technology is considered as one of the

solutions to support the wireless network services. It essentially multiplies data throughput, with

a simultaneous increase in range and reliability, without consuming any extra frequency

spectrum [Jones 2003]. The multi-antenna wireless communication systems are capable of

providing data transmission at potentially very high rates. Furthermore, to secure high reliability

of the data transmission, special attention has to be given to the receiver design. The data streams

are separated at the receiver using algorithms that rely on estimates of all channels between each

transmitter and each receiver. The low complexity suboptimal detection algorithm for MIMO

signals was the Vertical Bell Labs Layered Space-Time (VBLAST) algorithm. This is an

iterative cancellation method that depends on computing a matrix inverse to solve the zero-

 2

forcing function [Jones 2003]. While the iterative detection can increase receiver sensitivity,

there are substantial problems with a real implementation.

 The optimal detection strategy for a MIMO receiver is to perform a maximum-likelihood

search over all possible transmitted symbol sets. ML decoding is equivalent to finding the closest

lattice point to the received point in a lattice constellation. ML detection at the receiver becomes

an essential part in high-performance MIMO communication systems [Burg 2004]. Thus, ML

decoding algorithms and their architecture are active research areas in wireless communication

that motivated the research in MIMO systems.

 For decoding the lattices with no regular structure at the receiver follows two main

branches. Pohst [Pohst 1981] in 1981 examined lattice points lying inside a hyper sphere,

whereas Kannan in 1983 used a rectangular parallelepiped. Both methods later appeared in

revised and extended versions. Pohst method is intended as practical tool while Kannan’s is a

theoretical tool. In [Viterbo 1999], a technique referred to as the "sphere decoding" (based on the

Fincke-Pohst algorithm) was proposed for lattice code decoding [Eriksson 2002]. This performs

a bounded distance search among the lattice points falling inside the sphere centered at the

received point.

 The sphere decoder provides the maximum-likelihood estimate of the transmitted signal

sequence with complexity comparable, at high signal-to-noise ratios (SNRs), to VBLAST

nulling/canceling algorithm [Bertrand 2003]. It is later stated that sphere decoding often

significantly outperforms heuristic nulling and canceling. Developing an efficient sphere decoder

with reduced complexity has received significant attention due to its applications to wireless

communications as in [Viterbo 1999]. However, most modifications suggested are well suited for

implementations using DSPs, for example BLAST system [Adjoudani 2003]. In the VBLAST

 3

algorithm the front end of the receiver is implemented on FPGA whereas actual decoder function

is implemented on a DSP processor.

 As the performance requirements of today’s communication systems are outstripping the

capabilities of general-purpose DSP processors, the need for DSP implementations to seek

hardware solution arises [Dan 2004]. FPGAs provide an ideal platform for DSP implementation,

combining the reprogrammability, architectural flexibility, and support of parallelism. FPGA-

based hardware platforms also meet the critical requirements such as processing speed, time-to-

market, system integration etc. Due to the significant processing capabilities of FPGAs, high data

rates are ensured for signal processing applications implemented on FPGAs. With advanced

FPGA architectures such as the Xilinx Virtex-II devices, a new hardware alternative is available

for DSP implementations combining all the benefits of DSP processors with the performance

advantages of ASICs [Dan 2004].

 The key advantages of FPGAs when compared to DSP implementations include

performance, integration, and customization. Because of this, an FPGA-based solution of a high-

performance DSP system will typically have fewer devices than a processor-based one resulting

in less power consumption, lower overall cost, and significantly less board area [Kevin 2003].

Due to the support of parallelism, FPGAs achieve huge gains in performance compared to DSP

implementations. The computational throughput is also at least an order of magnitude higher

with FPGA platforms.

 Comparing to ASICs, FPGAs are reprogrammable and when combined with HDL design

flow can greatly reduce the design and verification cycle. In addition to this, increased time-to-

market demands, low FPGA development costs, and FPGA capacities well in excess of million

gates are increasing the number of applications of FPGAs in programmable form [ED 2000].

 4

1.2 Research Objective

 The main objective of this thesis is to develop an efficient architecture of a sphere

decoder simulated in VHDL and prototype it on device technology of XILINX VirtexII-1000

FPGA platform. The architectural model deploys the parallelism offered by FPGA and ensures

the high data rate of the MIMO system.

1.3 Contribution of Thesis

 The main contribution in this thesis is the design and implementation of an universal

lattice decoder on FPGA. Firstly, the functionality of original sphere decoding algorithm is

examined using Matlab simulations. Then a VHDL model is developed for core decoder function

and simulated at RTL level of abstraction using Mentor Graphics’ Modelsim SE 5.8a. Based on

the simulation results, we observed that the original sphere decoder is not feasible for parallel-

pipeline implementation. Modifications are applied to the original algorithm and as a result an

improved form of universal lattice decoder is proposed. Functionality testing procedure similar

to that of original algorithm is carried out for the improved algorithm. Based on the data

dependency analysis, a parallel-pipeline architectural model is developed for the improved

sphere decoding algorithm. Both sequential and parallel-pipeline architectural models are

developed in VHDL and are simulated at RTL level of abstraction. All the hardware

architectural models are prototyped on a XC2V1000-6FF896C, a device technology of Xilinx

VirtexII-1000 FPGA platform. BER performance of original and improved sphere decoding

algorithms is compared for both fixed point and floating point simulations. For a 4-transmit and

4-receive antennas system using 4-PAM transmitted signals, a decoding throughput of 6.32

 5

Mbits/s is achieved. The performances of FPGA and DSP implementations are compared. The

details of the results are presented in Chapter 6.

1.4 Organization of Thesis

 Chapter 2 introduces FPGA and MIMO channels. Their concepts and features are

explained in detail. Chapter 3 describes the original sphere decoding algorithm. It also discusses

the data flow path by partitioning the algorithm into various states. Eventually the Finite state

machine (FSM) design is proposed, state transitions are discussed and simulation times for each

state are also presented. Chapter 4 presents the modifications applied to the original algorithm by

avoiding square root. Thus, an improved sphere decoding algorithm is developed. In addition,

data dependency analysis of the improved sphere decoder is discussed. Chapter 5 gives the detail

description of the FSM design for the improved sphere decoder. Also, the parallel-pipeline

structure of sphere decoding algorithm is described, and the design optimization techniques are

presented. Finally Chapter 6 gives the experimental results obtained during the thesis research.

 6

2 FPGAs and MIMO Channels

 This chapter gives a brief introduction of FPGA and MIMO channel. A detail description

explaining the basic concept, features is also given.

2.1 MIMO Channels

 The ever increasing demands of multimedia services have led to high speed wireless

communications with much higher data rates. Multiple transmit and receive antennas are most

likely the dominant solution in future broadband wireless communication systems as they are the

key technology to produce high rates.

 MIMO systems consist of an array of transmit and receive antennas combined in such a

way that the quality (bit error rate) or the rate (Bit/sec) of the communication is improved

[Gesbert 2005]. Use of multiple transmit and/or receive antennas produce enormous gain in

spectral efficiency by exploiting a rich multi-path fading environment and increased the system

capacity without requiring an increase in the transmit power or bandwidth of the system. These

channels also provide radio-link reliable communication when multiple users are sharing the

spectrum by reducing the fading environments which is sometimes possible through the use of

diversity technique. The spatial diversity in the MIMO systems is to send the signals that carry

the same data through different paths. Due to this multiple independently faded replicas of the

same data symbol can be obtained at the receiver end and hence more reliable reception is

achieved. If the path gains between individual transmit-receive antenna pairs fade independently,

the channel matrix well conditioned with high probability such that multiple parallel spatial

channels are created [Zheng 2003]. The spatial multiplexing of the MIMO system which helps in

achieving high data rates is to split a single data stream into multiple sub-streams, and each of

 7

Serial
to

parallel
converter

RF
Frontend

Baseband
Processor

Decoder

these independent sub-streams is transmitted in parallel through those spatial channels with same

frequency. In wireless channels the data streams transmitted from multiple transmit antennas can

be separated, thus leading to the parallel data paths. Under these conditions, the capacity of the

radio channel grows linearly with the number of antennas used either at the transmitter or

receiver. The scattering of signals, which interferes with one another in a single-antenna system,

if exploited properly can enhance, rather than degrade the transmission accuracy and huge

channel capacities are intended to achieve [Garrett 2002]. Multi-path propagations can make the

output of receiver antenna to be equal to a linear combination of the multiple transmitted data

streams. Thus with sophisticated coding at the transmitter and substantial signal processing at the

receiver, the MIMO channel can be provisioned for higher data rates [Love 2004].

(a)

(b)

Figure 2.1: A MIMO system. (a) MIMO Transmitter. (b) MIMO receiver

Data Processing

Data Processing

Data Processing

Data Processing

 8

 Figure 2.1 shows a schematic representation of this multiple input multiple output

(MIMO) system [Adjoudani 2003]. The complexity of the MIMO systems is involved in

designing an optimal receiver for the system. The optimal receiver is a maximum-likelihood

sequence detector and is computationally complex due to system parameters like number of

antennas and type of constellation used. Therefore the optimal detection strategy is to equivalent

to performing a maximum-likelihood search over all possible transmitted symbol vectors. When

there is a perfect knowledge of channel state information at the receiver the sphere decoding

algorithm is considered as the maximum likelihood decoder.

 There are two typical lattice decoding algorithms. One is the Pohst strategy based

algorithm [Viterbo 1999]. This tries to find lattice points inside a sphere of given radius. Another

is the Schnorr-Euchner strategy based algorithm [Eriksson 2002]. This method divides the lattice

into hyper-planes and starts the search for the closet point in the nearest hyper-plane.

2.2 Field Programmable Gate Array (FPGA)

 FPGA is an integrated circuit that contains configurable (programmable) logic blocks and

interconnects between these blocks. In other words, it is a general purpose chip which can be

reconfigured any number of times to carry out specific hardware functions. It provides an

opportunity of instantaneous changes in designing and debugging. It allows for system reuse,

parallel design and SOC design. This is the result of combinatorial features of PLD and ASIC.

PLD is a digital IC that can be programmed by the user to perform a wide variety of logical

operations. ASIC is an IC product customized to perform specific functions to a particular

system or application. Like PLD, FPGA is completely prefabricated and contain special features

for customization. FPGA is subclass of ASIC which can be reprogrammable. Designs started in

 9

FPGA can be migrated to ASICs. A comparison between ASIC, FPGA, and DSP

implementations of the any decoder shows that the performance of FPGA-based designs lean

more toward that of ASICs but retain flexibility more like DSP [Gregory 1999]. ASICs provide

the most optimized hardware implementation of an algorithm. Using a dedicated ASIC for each

mode of radio leads to a very large silicon area. DSPs have excellent programmability but cannot

handle the complex algorithms at the required speeds with reasonable power consumption.

FPGAs on the other hand use hardware reconfiguration, which allows implementation of

complex high-speed algorithms [Srikanteswara 2003]. Compared to FPGA implementation, DSP

implementations require low cost and less development time. But once an efficient architecture is

developed and the parallelism of the algorithm is explored, FPGAs can be used to significantly

improve the speed of the signal processing or wireless communication systems. Thus, FPGA is

considered as an ideal platform for performing the computationally complex operations for

reasons of performance, power consumption and configurability. Compared to DSP chip,

parallelism is an additional feature in FPGA. The architecture of the Xilinx Virtex-II FPGA is

shown in Figure 2.2. The device is organized as an array of logic elements and programmable

routing resources used to provide the connectivity between the logic elements, FPGA I/O pins

and other resources such as on-chip memory, delay lock loops and embedded hardware

multipliers.

 10

Figure 2.2: Virtex-II FPGA architecture [Chris]

 The FPGA resources of particular interest to the signal processing engineer are

configurable dual-port block memories, distributed memory, and the multiplier array [Xilinx

2003]. The multiplier array is composed of 18x18-bit precision multipliers for addressing

advanced sign al processing applications. The smallest Virtex-II device provides a modest 4

multipliers while the largest supplies an impressive 192 multipliers [Chris].

 11

3 Sphere Decoding Algorithm

 This chapter describes the Pohst’s lattice point enumeration algorithm [Viterbo 1999]

widely known as sphere decoding, and also called universal lattice decoding. The data flow path

and state transition details are elaborated. High level description of the algorithm and decoder

architecture scheduling are also elucidated. The FSM diagram is shown. The table showing the

processing time taken by each state is presented.

3.1 The Sphere Decoder

 In digital communications, lattice codes generate signal constellations for high rate

transmission. The high-rate data streams and spatial multiplexing leave MIMO technology as the

most desirable option in communication systems. The complexity of MIMO systems is involved

in designing a MIMO receiver. For designing a MIMO receiver, a ML decoding is employed.

ML decoding of a arbitrary lattice code used over an additive white Gaussian noise (AWGN)

channel is equivalent to finding the closest lattice point to the received point. To reduce the

complexity of an exhaustive search procedure, the bounded distance search among the lattice

points is formulated. Therefore, for decoding the optimal receiver output of these MIMO

systems, Pohst’s enumeration based sphere decoding algorithm searches for the closest lattice

point to the received point within the sphere with radius C . The center point i.e., the signal or

vector at the receiver is known before hand. The choice of C is very crucial to the speed of the

algorithm. In practice the choice of C can be adjusted according to the noise variance so that the

probability of a decoding failure reported is negligible. The complexity of the algorithm is

independent of the lattice dimension size, which is very useful for high data rate transmission

[Viterbo 1999]. Pohst first proposed the strategy for enumerating all the lattice points within the

 12

sphere with a certain radius in [Pohst 1985]. Then it was introduced into the field of digital

communications for the first time in [Viterbo 1993] and further analyzed in [Viterbo 1999].

3.1.1 Maximum-Likelihood Criterion

 Considering a MIMO system with m transmit and n receive antennas, and a perfect

knowledge of channel state information is known at the receiver then the maximum likelihood

decoding requires minimization of metric

∑
=

−
n

i
ii xr

1

2|||| ∀ valid lattice points. Equation (3-1)

Where, VuMr += , the received vector. When the data streams interfere with each other in the

channel and is distorted by an AWGN component V then, the resultant is the received vector.

u is the transmitted signal.

M is the channel matrix which generates the lattice.

V is the AWGN noise vector with zero mean and 0N variance.

x is the information symbol vector mapped into the output vector which is the received vector r.

Thus x is considered as one of the transmitted lattice code points.

The representation of lattice points is given as { }uMx = where },....,{ 21 nuuuu = is the integer

component vector, and M is the channel transfer matrix which generates the lattice Λ structure.

Any lattice Λ is given as the combination of set of basis vectors represented by }....,{ 21 nvvvv =

 If)....,(21 ibiii vvvv = , i = 1………n, and b is the dimension of the lattice then the generator

matrix M of the lattice Λ is defined as

=

nbn

b

vv

vv
M

K

MM

L

1

111

 13

The same lattice structure Λ can have any number of generator matrices. For example the matrix

of the form TMM =' , where T is an integer orthogonal matrix)1)(det(±=T , is also the

generator matrix of the latticeΛ . Assuming matrix M to be non-singular square matrix

i.e., bn = , the Gram matrix of the lattice Λ is given by

==

bbb

b
T

gg

gg
MMG

L

MM

L

1

111

The elements of the matrix G are the Euclidean square products of the pairs of vectors of the

lattice basis.

3.1.2 ML Decoding In Sphere Decoder

 The lattice decoding algorithm attempts to minimize the metric in Equation (3-1) but

employs the bounded distance search procedure. Thus it searches through the points of lattice

that are falling inside the sphere of radius C and centre at the received point.

 Thus, sphere decoding problem is to solve

||||min||||min wxr
rwx ∆−∈∆∈

=− Equation (3-2)

So we search for the shortest vector w in the translated lattice Λ−r in the n-dimensional

Euclidean space nR . We write

uMx = with nzu∈

Mr ρ= with)...,(21 nρρρρ = nR∈

∑
=

==
n

i
iivMw

1

ξξ with)....(2,1 nξξξξ = nR∈ and niuiii ,....1, =−= ρξ

Where, ρ and ξ are real vectors.

 14

1−= rMρ i.e., ρ is equal to the matrix product of the received vector ,r and the inverse of

generator matrix 1−M . ξ defines the translated coordinated axes in sphere of the integer

component vectors u of the cubic lattice nZ

3.2 Flow-Chart

 The flow chart showing of a Lattice decoding algorithm [Viterbo 1999] or a Universal

lattice decoder is shown in Figure 3.1. The lattice decoding algorithm can be divided into two

parts (1) Pre-processing part (2) Decoding part.

Figure 3.1: Flowchart of a Sphere decoding algorithm [Viterbo 1999]

 15

3.2.1 Pre-Processing

 The pre-processing stage of the sphere decoding algorithm involves the complex

computations like Cholesky decomposition of the Gram matrix G, finding inverse and transpose

of generator matrix M. The resultant matrices are passed to the decoding part where they are

further exploited to carry on other computations, thereby reducing the complexity of the

decoding part. The variables and specialized functions used at this stage are described in detail

below.

 An inverse matrix of the lattice generator matrix is computed. Another important function

carried out in the preprocessing stage in the algorithm is the Cholesky factorization of the Gram

matrixG . Gram matrix is equal to the product of lattice generator matrix M and its transpose,

TMMG = yields RRG T= where, R is the upper triangular matrix.

 From the algorithm)(,kjq is the element of Cholesky factor matrix.

3.2.2 Decoding

 In the decoding part, the integer component of lattice point vector u closest to the

transmitted signal constellation x is found as an output when the Cholesky factor matrix)(,kjq ,

the square radius of the sphere C and the received vector with respect to lattice ρ are taken as

inputs.

 Considering the metric properties of the lattice, we can say that the minimum squared

Euclidean distance between any two points of lattice equals the minimum of the quadratic

form)(ξQ .

TTT MMGQ ξξξξξ ==)(Equation (3-2)

 16

If the lattice point being searched is within the sphere with square radius C and centered at the

received point then

∑∑
= =

≤===
n

i

n

j
jiij

TT CgMMQw
1 1

2)(ξξξξξ Equation (3-3)

Thus the sphere of square radius C and centered at the received point is transformed into an

ellipsoid centered at origin of the new coordinate system defined byξ .

 Cholesky factorization yields RRG T= , where R is an upper triangular matrix. By further

analyzing the above equations we get

∑ ∑
= +=

≤+===
n

i

n

ij
jijiii

TT CrrRRRQ
1

2

1

2)()(ξξξξξξ Equation (3-4)

Substituting 2
iiii rq = and iiijij rrq /= for i = 1,…, n, j = i + 1,…, n, we can write (3-4) as follows

∑ ∑
= +=

≤+=
n

i

n

ij
jijiii CqqQ

1

2

1
)()(ξξξ Equation (3-5)

 We find the equations of the border of the ellipsoid to estimate the upper and lower

bounds of the integer component value iu at the thi layer. Therefore the ranges for the integer

component value at thi layer are given by

 Equation (3-6)

 Thus the upper bound, iL and the index, iu are simplified as follows

 Equation (3-7)

 Equation (3-8)

++

+−

≤≤

++

+−−

∑∑ ∑

∑∑ ∑

+=+= +=

+=+= +=

n

ij
jiji

n

il

n

lj
jljlll

ii

i

n

ij
jiji

n

il

n

lj
jljlll

ii

qqqC
q

uqqqC
q

11 1

2

11

2

1

)(1

)(1

ξρξξ

ξρξξ

 1/

/

−+−=

+=

iiiii

iiiii

SqTu

SqTL

 17

Where, the variables iS and iT are written as

 lil

n

ilinlii qS ξρξξ
1

)......(
+=+ Σ+= Equation (3-9)

 −== −− CTT niii).....(11 ξξ jlj

n

lj
q ξ

1+=
Σ = 2)(iiiii uSqT −− Equation (3-10)

 Thus the variables iS , iT and one of the outputs of the pre-processing part iiq are used to

determine and recursively update the values of bounds.

 The index iu is initially fixed at the lower bound and incremented in steps until it exceeds

the upper bound of that layer. Search procedure starts at the bottom layer i.e., at 4=i and

continues switching the layers step by step by checking various conditions at each layer until it

reaches the top layer and a valid lattice point vector is reported. When the vector inside the

sphere is found, its square distance from the center is computed which is given by

2
11111

2)(uSqTCd −+−=
Λ

 Equation (3-11)

 This value is compared to the minimum square distance 2d (initially set equal to C) found

so far in the search. If it is smaller then we have a new candidate closest point and new value

for 2d updated with
Λ

2d . Thus the search continues like this until all the vectors inside the

sphere are tested.

 If no point in the sphere is found the sphere is declared empty and the search fails. In this

case the squared radius C must be increased and the search is restarted. Thus finally we search

the lattice point closest to received point.

 The advantage of this method is that we never test the vectors which are present outside

the sphere.

 18

3.3 Decoding Procedure

 The original sphere decoding algorithm performs step-by-step procedure as follows,

The inputs are QC ,,ρ and output is
Λ

u

Step 1. (Initialization)

Set CdCTni n === 2,, (current sphere square radius) and

Step 2. (Bounds on index iu)

 Compute the upper and lower bounds. Assign the upper bound to iL and the lower bound

to index iu initially. Thus

Step 3. (Natural spanning of the interval)

 Increment the index iu by one step, i.e., 1+= ii uu

If ii Lu ≤ and 1>i , i.e., the index is within the range and layer is not the top layer then go to Step

5, else if ii Lu ≤ and 1=i , i.e., the index of the top layer is within the bound then go to Step 6,

else if ii Lu > go to Step 4.

Step 4. (Increase i: move one level down)

 If ni = terminate, i.e., the end of the search procedure is reached and closest lattice point

to received point is found, else set 1+= ii , i.e., the search procedure goes one level down in the

hierarchy, and go to Step 3.

Step 5. (Decrease i: move one level up)

nkS kk1, == ρ

 1/

/

−+−=

+=

iiiii

iiiii

SqTu

SqTL

 19

Let iii u−= ρξ

lli

n

ilii qS ξρ ,111 −=−− Σ+=

2
1)(iiiiii uSqTT −−=−

1−= ii and go to Step 2.

The variables needed to recursively update the lower and upper bounds are computed at this step

and the search procedure goes one layer up in the hierarchy to re-compute the upper bound and

index iu .

Step 6. (A valid point is found)

 Compute 2
11111

2)(uSqTCd −+−=
Λ

, the square distance of the vector found from the

center. Then compare this value to the minimum square distance 2d i.e., If 22 dd <
Λ

 then save

the lattice point, nkuu kk1, ==
Λ

and reduce the search area by assigning the minimum square

distance value 2d with
Λ

2d and the variable nT at the bottom layer with
Λ

2d and again set ni = .

Then go to Step 2 repeat the whole process once again. Else go to Step 3, where the index value

iu at each layer is incremented and the search procedure continues as mentioned.

3.4 High Level Simulation of the Sphere Decoding Algorithm

 Before actually carrying out the implementation of the sphere decoding algorithm in the

next section, which is the main concern of our thesis, it was felt necessary to visualize the

functionality and working of the sphere decoder. Therefore the whole algorithm, including both

22
2 ,

ΛΛ

== dTdd n

 20

pre-processing and decoding parts is initially developed in Matlab for simulating at behavioral

level. The complete system is brief below:

• Generation of Lattice generator matrix based on normally distributed random numbers

generated using MATLAB function “randn”

• Generating the upper triangular matrix by Cholesky decomposing of the gram matrix.

• After the input information to the decoder is ready, sphere decoding algorithm which finds

the closest lattice point is simulated using Matlab. Its functionality is verified by comparing the

obtained lattice point with the transmitted signal constellation vector.

 The functionality of the decoder is verified at high level of abstraction and behavior of

the decoder design is simulated using Matlab. Thus preliminary information of outputs is

obtained. After ensuring the functionality of the decoder design, the corresponding hardware

architecture is planned.

3.5 Decoder Architecture Scheduling

 The hardware architectural model of Sphere decoder is planned in accordance with the

simulated version. Each of the operations like calculating the bounds, calculating variables

needed to update the bounds, spanning of index at each level and finding the Euclidean distance

of a point from the received point are dealt in separate blocks. Different components are

designed for specific set of operations at each block. Each of these blocks are designed in VHDL

and tested for their functioning with the help of stand alone test benches and different sets of

data. Digital circuit designs are invariable faced with the need to design circuits that perform

specific sequence of operations, for example controllers used to control the operation of other

circuits [Smith 1997]. Thus the decoder controller is designed for the hardware architecture of

sphere decoder. The flowchart of the decoder controller of the original sphere decoding

 21

algorithm divided into states is shown in Figure 3.2. FSMs are proven to be a very efficient

means of modeling sequencer circuits. By modeling FSMs in a HDL for use with synthesis tools,

focus could be on modeling the desired sequences of operations without being overly concerned

with circuit implementation. In Figure 3.4 the state diagram of the decoder controller is given.

Sequences of operations which are almost independent of each other are combined into one

single state. While state division, care is taken in regard of processing time needed at each state

to maintain balance at the end of simulation of the algorithm.

 Here, in our case, the six steps of the sphere decoder are modeled to four states FSM.

This is because sequence of operations at some steps which do not really need separate states are

combined with others and modeled into a single state. The Step 1, Step 2 and Step 3 are

combined and modeled as State A. Step 5 as State B. Step 3 is combined with Step 4 and

modeled into State C. Step 6 as State D. Since Step 3 involves simple index increment it need not

be a separate state. It could be a part of State A or State C based on the requirement. If index has

to be incremented immediately after it is assigned with lower bound, then it is part of State A. If

only spanning of the interval with existing bounds, then it is part of State C.

 22

3.5.1 Data Flow of the Algorithm

Figure 3.2: Flowchart of a Sphere decoding algorithm showing states

 As seen in Figure 3.2, the computations at each of the four states in the recursive lattice

decoding algorithm are discussed in detail here. Along with the states and state transitions, the

Pre-processing: Calculate kjq , and ρ

State A
Initialize and find the upper bound and
index, ii uL , respectively of a value at

thi layer, ni ≤≤1 . Increment the index
iu by a scaling factor.

ii Lu >

State C
If ni = stop;
Else move one level down 1+= ii and
increment the corresponding index
value iu by a scaling factor

1>i

State D

Find the square distance,
Λ

2d of a point inside the

sphere from its center. Compare
Λ

2d with 2d , the

minimum square distance. If 22 dd <
Λ

, record
currently best ku , update the minimum square
distance and variable nTd ,2 respectively and
continue the search process from bottom
layer ni = . Else increment the index)1(=iui by a
scaling factor and continue the search process.

State B
Compute the variables

1−iT and iiS ξ,1− . Up by
one level 1−= ii

Y N

Y
N

 23

components enabled at each state are also discussed in detail. As we said earlier the

computations are divided into four components.

 In State A, it finds the upper and lower bounds of an integer component value at each

layer. The variable iL is assigned an upper bound and the index iu is initially set at lower bound.

Separate hardware component is designed for computing the square root. The decoder controller

when in State A, enables the all the functional blocks designed to compute the above variables.

 In State B, it computes the variables ii ST , and move one layer up. These variables are

used to recursively update the lower and upper bounds at that layer. A functional block to

compute the above variables in enabled at this state by the decoder controller. In addition to that

the functional blocks active in previous state are disabled by the decoder controller.

 In State C, check the layer at which search procedure is currently present. If it is the

bottom most layer, terminate the search procedure and declare the last saved u as the closest

lattice point. If the search procedure is at layers other than the bottom most layer move one layer

down and increment the index value iu at that layer by the scaling factor. At this state, the

spanning of the interval at each layer, i.e., incrementing iu is performed by the enabled

functional block. All other details are taken care by the decoder controller.

 In State D, the
Λ

2d , the square distance of
Λ

u the lattice point present inside the sphere from

center of the sphere or the received point is computed and is compared with the minimum square

distance 2d . Based on this, decision about the next state is made by the decoder controller.

At each state after obtaining the output from the blocks the decoder controller makes the decision

about the next state in the current state. Decoder controller is designed in such a way that it

disables the active functional blocks of previous state in addition to enabling the functional

 24

blocks of current state in the first clock cycle of current state itself. Thus when all the required

conditions are met and all the sequence of operations are completed the results are output. The

functioning of the decoder controller and all its components is tested using a test bench.

 The pin diagram of the decoder controller for the original sphere decoding algorithm and

its functionality is shown in is shown in Figure 3.3 and Table 3.1.

Figure 3.3: Input and Output pins for original sphere decoder

CD<15:0>

q<1><1><15:0>

q<4><4><15:0>

Invqx16384<1><15:0>

ubar<1><15:0>

ubar<4><15:0>

Invqx16384<4><15:0>

rho<1><15:0>

rho<4><15:0>
clk

res

START

 25

Table 3.1: Pin descriptions for the decoder controller of the original sphere decoding algorithm

Pin Width Type Description

CD 16 Input square radius of the sphere

q(1,1) - q(4,4) 16 Input elements of Cholesky factor matrix
Invqx16384(1) –

invqx16384(4 16 Input
Inverse of diagonal elements of the Cholesky factor

matrix

rho(1) - rho(4) 16 Input coordinates of received point vector with respect to lattice

clk) 1 Input clock signal

res 1 Input reset signal

START 1 Input control signal to initialize the current state

ubar(1) - ubar(4) 16 Output coordinates of the closest lattice point being searched

3.5.2 FSM Design

 A finite state machine (FSM) of a decoder controller is designed to control and organize

the sphere decoding algorithm and it synchronizes the operations between functional blocks. The

five parameters iu , iL , the index and upper bound respectively at the current investigated layer of

the lattice, the layer),1(nii ≤≤ the square distance of the lattice vector inside the sphere from

the received vector
Λ

2d and the minimum square distance 2d determine the state transitions as

shown in the Figure 3.4 below.

 If the search procedure is in State A then after computing the index iu and upper

bound iL , it checks for the conditions if the index is within range of the upper bound or equal to

upper bound and the current layer is not the top layer then the control goes to State B. At State B,

the variables needed to update the index and upper bound at State A are computed. Every time

 26

after State B control goes back to State A and continues to carry out the operations at this state.

Again when in State A, it looks for the condition if the index is within the range of upper bound

or equal to it and the current layer is the top layer then control moves to State D from State A.

And if index exceeds the upper bound at any layer then the control moves to State C from State

A. When the decoder controller is in State D, it computes square distance
Λ

2d and compares it

with the minimum square distance 2d , if it is less then control goes to State A from State D and

whole search procedure repeats once again. And if
Λ

2d is greater than or equal to the value of

2d then controller moves from State D to State C. At State C the index value is incremented and

the conditions are checked. The state transition from State C to other states is same as it was

from State A to other states.

Figure 3.4: The FSM diagram of Sphere decoding algorithm

 A B

 C

ii Lu ≤ & 1>i

 D

ii Lu ≤ &

1=i

ii Lu ≤

& 1>i

ii Lu >

Λ
2d 2d≥

Λ
2d 2d<

ii Lu ≤ & 1=i

 27

3.6 Simulation Results

 The decoder core is designed in VHDL at register transfer level (RTL). Mentor Graphics’

Modelsim SE 5.8 tool is used to create, compile and simulate the VHDL source code of the

decoder core. A design library named work is automatically created in the project directory upon

creating the new project and all the necessary design files and test bench are held together in the

project directory. The VHDL source code is compiled to test its syntax. Successfully compiled

source code is simulated using different sets of data. At the simulation step, initially the design is

loaded successfully if no errors are reported. View the signals of the design and add the

necessary signals to the waveform window. Run the wave until output results of the whole

design are obtained. Processing time taken by each state of the decoder controller individually

can be acquired from the wave. Table 3.1 shows the processing time of each state of FSM of the

Sphere decoder after successful VHDL simulation.

Table 3.1: Simulation Times of each state in original algorithm

State A B C D

Simulation Time in
clock cycles 37 7 2 7

 The determination of lower and upper bounds of an integer component value at a

particular layer involves a 32-bit square root computation. To compute the square-root, here we

made use of non-restoring algorithm explained in Section 3.6.1

3.6.1 Non-Restoring Square Root Algorithm

 In this algorithm [Piromsopa 2001], the radicand is a 32-bit unsigned number. The square

root is a 16-bit unsigned number. R is the remainder))((2QDR −= which is a 17-bit integer.

 28

 Since this is a redundant representation for a square root, exact bit can be obtained in

each iteration.

Let
D be 32-bit unsigned integer.
Q be 16-bit unsigned integer (Result)
R be 17-bit integer)(2QDR −=
Algorithm

;0
;0

=
=

R
Q

For i = 15 to 0 do
 If)0(≥R

);1)((

);3)(()2(
orQRR

andiiDorRR
<<−=

+>><<=

 Else

);3)((

);3)(()2(
orQRR

andiiDorRR
<<−=

+>><<=

 End if
 If)0(≥R then
 ;1)1(orQQ <<=
 Else
 ;0)1(orQQ <<=
 End if

 The above non-restoring algorithm for calculating the square-root of a number is

explained clearly by considering an example. Here in the example we consider D as an 8-bit

radicand equal to value 140).10001100(2 The 4-bit solution Q should be 11)1011(2 and

remainder R should be equal to 19)10011(2 .

Set Q = 0000 and R = 000000

 29

1011Q0,R

010011010101-101000R0,R

0,i

0101Q0,R

001010001011011111R0,R

1,i

0010Q0,R

011111000101000100R0,R

2,i

0001Q0,R

000001000001000010R0,R

3,i

=≥

==≥

=

=≥

=+=<

=

=<

=−=≥

=

=≥

=−=≥

=

 To correctly determine value of R, one more extra bit is added (Consider as sign bit).

Thus the result Q is obtained.

 From the simulation results of the sphere decoder core it is seen that sequence of

operations at State A take 37 clock cycles. Out of this, 32 clock cycles are needed for a square

root computation. The sequences of operations at other states take less than 10 clock cycles.

Comparing with the other states, processing time of State A is remarkably high. Due to this

imbalance and very high processing time, the throughput of the system is affected noticeably.

This imbalance has to be removed for efficient and high throughput implementations. This

eventually results in an un-efficient hardware implementation of the sphere decoding algorithm.

 An improved form of the algorithm is suggested with modifications in the sequences of

operations of each functional block. These modifications are such that the square root

computation is no longer necessary. They can be explained in detail in the next chapter.

 30

4 Improved Sphere Decoding Algorithm

 The improved sphere decoding algorithm is derived with modifications applied to the

sequences of operations at each state of the original algorithm in this chapter. The dataflow of

the improved algorithm is discussed. A table showing hardware processing time needed by each

state is given. Data dependency of the algorithm is also analyzed.

4.1 Improved Sphere Decoding Algorithm

 An improved sphere decoding algorithm is proposed. The need for the improved

algorithm arises from the simulation results of the original algorithm. As we have seen, State A

of the original algorithm requires 37 clock cycles for completion, out of which 32 clock cycles

are taken by square root itself. On the other hand the processing time required by each of the

remaining states is limited to very few clock cycles (Refer Table 3.1). The sequences of

operations at other states have to wait for the completion of State A if they are depending on the

results of State A. This time delay can be reduced if the square root computation is avoided.

Therefore we suggest some modifications to the original algorithm such that square root is

avoided in its sequences of operations and as a result emerges an improved sphere decoding

algorithm. The derivation of modifications is given in Section 4.1.1. The sequence of operations

at State A of the improved algorithm use simple adders and multipliers to compute the upper

bound iL and the index iu . Since there is no square root computation involved, a hardware

component to compute square root is no longer needed. In the improved algorithm, modifications

are present at the sequences of operations, whereas the state division and the state transition

decisions depending on the outputs obtained from the functional blocks at each state remains the

same.

 31

4.1.1 Derivation of Modifications

 As we know the minimum squared Euclidean distance between any two points of the

lattice equals the minimum of quadratic from)(xQ for any nZx∈ [Viterbo 1993]. Applying this

to the sphere decoder, squared Euclidean distance between any point inside the sphere and

received point must be less than or equal to the square radius of the sphere.

CQw ≤=)(2 ξ Equation (4-1)

∑ ∑
= +=

≤+
n

i

n

ij
jijiii Cqq

1 1

2)(ξξ Equation (4-2)

Expanding this, we get

.....)......().......(2
2323222

2
1212111 ++++++ nnnn qqqqqq ξξξξξξ +

 Cqqq nnnnnnnnn ≤++ −−−−
22

)1(1)1)(1()(ξξξ Equation (4-3)

We know that iii u−= ρξ Equation (4-4)

Substituting equation (4-4) in (4-3), we get

++−+−+−+−++−+− ...))()(())(...)((2
442433232222

2
122121111 uquququququq nnn ρρρρρρ

Cuq nnnn ≤− 2)(ρ Equation (4-5)

Equation (4-5) cannot be solved because of presence of n unknowns. Therefore we need to split

the expression and solve it. Due to the upper triangular form of Cholesky factor matrix, equation

(4-5) represents a set of conditions.

at i = n, Cuq nnnn ≤− 2)(ρ Equation (4-6)

at i = n-1, Cqquq nnnnnnnnnn ≤++− −−−−−
22

,1111,1)()(ξξρ Equation (4-7)

and so on.

 32

Equation (4-6) can be solved easily because of only one unknown i.e., nu . Considering the above

conditions in the order from n to 1 i.e., starting at the bottom layer and carrying on the backward

substitution, we obtain the admissible values of each symbol iu for known values of ni uu ,,1 K+ .

The range of the index iu as found in the original algorithm is given as

Equation (4-8)

In equation (4-8), the upper and lower bounds of index iu are found by using a square root

computation. The main idea in the improved algorithm is to avoid square root

At ith layer, equation (4-5) can be written as

++−+−+−++−+− +++++++++++ ...)(())(...)((222,1111,1
2

111, iiiiiiiinniniiiiiiii uququququq ρρρρρ

Cuq nnnn ≤− 2)(ρ Equation (4-9)

Simplifying it further,

Cquqquq
n

il

n

lj
jljllll

n

ij
jijiiii ≤+−++− ∑ ∑∑

+= +=+= 1

2

1

2

1
)()(ξρξρ Equation (4-10)

 When the search procedure completes, index vector u should be the closest point to the

transmitted signal. Because signal constellation is known at the receiver part, a new method of

determining the search range of lattice index can be achieved by directly substituting each

symbol from the signal constellation into equation (4-10). Here we assume the integer

component value iu as one among the signal constellation elements nkxk1, = (For a 4-PAM

signal, symbol set is ranging as {-3, -1, 1, 3}) then equation (4-10) can be written as

++

+−

≤≤

++

+−−

∑∑ ∑

∑∑ ∑

+=+= +=

+=+= +=

n

ij
jiji

n

il

n

lj
jljlll

ii

i

n

ij
jiji

n

il

n

lj
jljlll

ii

qqqC
q

uqqqC
q

11 1

2

11

2

1

)(1

)(1

ξρξξ

ξρξξ

 33

Cquqqxq
n

il

n

lj
jljllll

n

ij
jijkiii ≤+−++− ∑ ∑∑

+= +=+= 1

2

1

2

1
)()(ξρξρ Equation (4-11)

If we redefine variable lT as

 2)(lllll uSqT −= Equation (4-12)

and variable iS holds the same definition as in the original algorithm described in equation (3-9)

∑
+=

+=
n

ij
jijii qS

1

ξρ Equation (4-13)

Finally by substituting equation (4-12), (4-13) in equation (4-11), we get the expression

CTxSq
n

il
lkiii ≤+− ∑

+= 1

2)(Equation (4-14)

∴ CTxSqp
n

il
lkiiik ≤+−= ∑

+= 1

2)(∀ values of nk1= Equation (4-15)

The upper bound,)max(ki xL = ∀ Cpk ≤

The index, 1−= ri xu for Cpp kr ≤=)min(∀ values of nk1=

 If vector p is empty, then the upper bound iL and index iu are assigned with maximum

and minimum values of signal constellation.

 Considering an example to explain this in detail, at SNR = 20 dB and generator matrix M

is given as

−
−

−
−−

=

6686.06900.05937.16236.1
2902.13999.02540.17143.0
7119.05711.08580.03362.1
8156.04410.06918.02944.0

M

 Then the received signal obtained after scaling and rounding is equal to

[]376130119385 −− when the transmitted signal constellation is equal

 34

to []384128128384 −− . Assuming the appropriate choice of squared sphere radius, C = 512

(after scaling and rounding). In such a case, the sequence of operations to find the index iu , and

upper bound iL go as follows.

at i = 4, p = [2714 1193 289 0]

The upper bound,)max(ki xL = = max (-128, -384) = -128

The index, 1−= ri xu for Cpp kr ≤=)min(

0=rp

512−=∴ iu

 This avoids square root computation while finding upper and lower bounds. And thus the

index iu takes the value within the range of signal constellation. The main advantage achieved

from this improved sphere decoding algorithm is the significant reduction in the processing time

of State A when the algorithm is prototyped on hardware. The flowchart of the improved

algorithm is given in Figure 4.1.

 35

4.1.2 Flow-Chart

Figure 4.1: Flow chart of improved algorithm

Y

nkT

S
Cd

k

nkkk

,....1,0

,,1

2

==

=
=

=ρ

ni =

CPandxL
nkCPPwherexu

CTxsqP

kki

krri

n

il
lkiiik

≤=
=≤=−=

≤+−= ∑
+=

)max(
,...1,)min(,1

)(
1

2

2)(

1

iiiii

ii

uSqT

uu

−=

+=

∑
=

=
n

i
iTd

1

2ˆ

∑
=

−−− +=

−=
n

ij
jjiii

iii

qS

u

ξρ

ρξ

,111

1−= ii

1+= ii

ui >Li

 i >1

22ˆ dd < 2d̂C

ubestu

=

=

 i =n?

Output u

N

Y

Y

N

N

N

Y

 36

4.2 Decoding Procedure

 The original sphere decoding algorithm performs step-by-step procedure as follows,

The inputs are QxC ,,,ρ and output is
Λ

u

Step 1. (Initialization)

Set CdTni k === 2,0, (current sphere square radius) and

Step 2. (Bounds on index iu)

 Compute the parameter kp such that the upper bound and index values are found.

 Thus CTxsqP
n

ij
lkiiik ≤+−= ∑

+= 1

2)(,),.....1(nk =

 wherexL ki),max(= CPk ≤

 ,)min(,1 CPPwherexu krri ≤=−=),.....1(nk =

Here when signal constellation vector is known, the upper bound and index can be computed.

Step 3. (Natural spanning of the interval)

 Increment the index iu by one step, i.e., 1+= ii uu and compute the variable iT at each

layer i. Thus 2)(iiiii uSqT −=

If ii Lu ≤ and 1>i , i.e., the index is within the range and layer is not the top layer then go to Step

5, else if ii Lu ≤ and 1=i , i.e., the index of the top layer is within the bound then go to Step 6,

else if ii Lu > go to Step 4.

nkS kk1, == ρ

 37

Step 4. (Increase i: move one level down)

 If ni = terminate, i.e., the end of the search procedure is reached and closest lattice point

to received point is found, else set 1+= ii , i.e., the search procedure goes one level down in the

hierarchy, and go to Step 3.

Step 5. (Decrease i: move one level up)

 Let iii u−= ρξ , lli

n

ilii qS ξρ ,111 −=−− Σ+=

1−= ii and go to Step 2.

The variables needed to recursively update the lower and upper bounds are computed at this step

and the search procedure goes one layer up in the hierarchy to re-compute the upper bound and

index iu .

Step 6. (A valid point is found)

 Compute ∑
=

Λ

=
n

i
iTd

1

2

, the square distance of the vector found from the center. Then

compare this value to the minimum square distance 2d i.e., If 22 dd <
Λ

 then save the lattice

point, nkuu kk1, ==
Λ

and reduce the search area by assigning the minimum square distance

value 2d with
Λ

2d and again set ni = . Thus
Λ

= 22 dd

Then go to Step 2 repeat the whole process once again. Else go to Step 3, where the index value

iu at each layer is incremented and the search procedure continues as mentioned.

4.3 High Level Description of the improved Sphere decoder

 For improved sphere decoding algorithm, we follow the same order of steps as in original

form. The functionality and working of the improved form of the sphere decoding algorithm is

 38

visualized and tested using Matlab simulation. For this the complete algorithm including the

preprocessing and decoding parts is initially developed in Matlab. For detail description, follow

Section 3.4.

4.4 Decode Architecture Scheduling

 The hardware architectural model of the improved form of sphere decoder is designed in

accordance with the simulated version. Sequences of operations like finding the upper bound and

index value, calculating variables needed in computing the index value, spanning of index and

partial Euclidean distance variable, and finding Euclidean distance of a currently investigating

point from the received point are individually dealt in separate functional blocks. Different

hardware components are designed for each set of functional block operations. Each of these

blocks are designed remotely in VHDL and tested for their functioning with the help of stand

alone test benches and different sets of data. The decoder controller is designed for the hardware

architecture of the improved sphere decoding algorithm. The flowchart showing the states and

sequences of operations at each state for the improved algorithm are shown in Figure 4.2. Details

about the state division are same as for the original algorithm (refer Section 3.5.2). Therefore the

state diagram for the FSM decoder controller of improved sphere decoding algorithm is same as

Figure 3.4.

 39

Figure 4.2: Flow chart of an improved algorithm showing states

 Similar to original algorithm, a state machine with four states is developed for the

improved sphere decoding algorithm. The Figure 4.2 depicts the states, state transitions and

sequences of operations at each state. Operations at each state are nothing but the operations of

functional block enabled at that state. For each functional block, an entity - architecture model is

Pre-processing: Calculate kjq , and ρ

State A
Initialize and find the upper bound,
index, and variable ii uL , , iT respectively
of a value at thi layer, ni ≤≤1 .
Increment the index by a scaling factor.

ii Lu >

State C
If ni = stop;
Else move one level down 1+= ii and
increment the corresponding index
value iu by a scaling factor and
compute the variable iT

1>i

State D

Find the square distance,
Λ

2d of a point inside the

sphere from its center. Compare
Λ

2d with 2d , the

minimum square distance. If 22 dd <
Λ

, record
currently best ku , update the minimum square
distance and variable nTd ,2 respectively and
continue the search process from bottom
layer ni = . Else increment the index)1(=iui by a
scaling factor and continue the search process.

State B
Compute the
variables iiS ξ,1− . Up
by one level 1−= ii

Y N

Y
N

 40

developed in VHDL. Each of these hardware components is tested for its functionality using

corresponding test benches.

 In State A, it finds the upper bound iL , of an integer component value, index iu , and

partial Euclidean distance variable, iT at each layer. Decoder controller enables the functional

block designed to compute above variables.

Similar procedure is followed at all other states. Decoder controller enables the functional blocks

needed to compute variables at that state and disables the previous state components. After all

possible state transitions the decoder controller finds the closest lattice point to the received

point. The whole decoder controller system is designed in VHDL and hardware functionality is

tested using a test bench at RTL level of abstraction.

Figure 4.3: Input and Output pins for improved sphere decoder

 The pin diagram of the decoder controller of the improved sphere decoding algorithm and

its functionality is shown in Figure 4.3 and Table 4.1.

CD<15:0>

q<1><1><15:0>

q<4><4><15:0>

rho<1><15:0>

rho<4><15:0>

x<4><15:0>

x<1><15:0>

clk

res

START

ubar<1><15:0>

ubar<4><15:0>

 41

Table 4.1: Pin descriptions for the decoder controller of the improved sphere decoding algorithm

Pin Width Type Description

CD 16 Input square radius of the sphere

q(1,1) - q(4,4) 16 Input elements of Cholesky factor matrix

rho(1) - rho(4) 16 Input
coordinates of received point vector with respect to

lattice

x(1) - x(4) 16 Input coordinates of transmitted signal constellation vector

clk 1 Input clock signal

res 1 Input reset signal

START 1 Input control signal to initialize the current state

ubar(1) - ubar(4) 16 Output
coordinates of the closest lattice point being

searched

4.5 Hardware-Software Scenario

 The complete file structure and planning, of both the simulation and hardware

development processes are shown in Figure 4.4. The inputs are generated randomly. The receiver

output obtained is noise corrupted. These inputs are preprocessed. Using preprocessed data and

necessary inputs, the uncoded receiver signal is decoded by the sphere decoding algorithm (.m

file of original or improved version). The decoded outputs and errors are recorded. After the

decoder is implemented in hardware, its functionality will be verified with help of same input

used for checking the decoding algorithm functionality. In the software simulation i.e., in

Matlab, algorithm is tested with 10000 simulations or sets of data at a time, whereas in hardware

i.e., in VHDL, algorithm is tested for single data or simulation at a time.

 42

Figure 4.4: Overview of the complete system

4.6 Simulation Results

 The decoder core of the improved sphere decoding algorithm is designed in VHDL at

register transfer level (RTL). Mentor Graphics’ Modelsim SE 5.8 tool is used to create, compile

and simulate the VHDL source code of the decoder core. A design library named work is

automatically created in the project directory upon cresting a new project and all the necessary

design files and test bench are held together in the project directory. The VHDL source code is

compiled for its correct syntax and is then executed. Upon successful loading of design, signals

are added to the wave and allowed to run until the results are obtained. The waveform gives the

details like the processing time of each state, number of time each state is visited and order of

states one following the other. The processing time of each state in improved algorithm

approximately are shown in Table 4.2.

RANDOM
INPUT
GENERATION

randn

NOISE
ADDITION

PREPROCESSOR

Cholesky
factorization

Matrix
inversion

DECODER
SIMULATION

.m file

.vhd files

DECODER
HARDWARE

DECODER
PERFORMANCE

output

output

DECODER
HARDWARE
PERFORMANCE

 43

Table 4.2: Simulation Times of each state in improved algorithm

State A B C D
Simulation Time in

clock cycles 7 7 7 3

The simulation results of the improved sphere decoding algorithm show significant improvement

compared to the original algorithm. At State A, number of clock cycles required falls to 7 from

37. This improvement is due to discarding square root in sequence of operations at State A. With

approximately equivalent clock cycles at each state, the parallel-pipeline implementation could

speed up the search procedure. None of the states need to wait for long time to start or make

decisions about next state as it happened in the original algorithm. i.e., when two states are

implemented in parallel, they start simultaneously and come to an end approximately at the same

time. No latencies are inserted into the system. Thus the improved algorithm is favorable for

parallel design implementation.

4.7 Data Dependency

Figure 4.5: Dependency graph of the Sphere decoding algorithm

A B

D C

Dependent

Partially dependent

Not dependent

 44

 Unlike other decoding algorithms such as Viterbi and Turbo decoding algorithms, this

sphere decoding algorithm has high data dependency between states as depicted in Figure 4.5.

State A is flow-dependent on states B and D if the search procedure switches to A from B and D

because the parameters iS and
Λ

2d calculated in states B and D respectively are used in A when

the upper and lower bounds of the value are determined. This means that either state B or state D

cannot be implemented in parallel to state A. Similarly states B and D are flow dependent on A,

C if the search procedure switches to B or D from A or C because the parameter iT and iu , the

integer component at thi layer are used in some computations in states A and C. This concludes

that states A or C cannot be implemented in parallel to states B or D. Looking at the possibilities

of pipelining, it is seen that State A or C can be implemented in pipeline to State B. Considering

the case of State A switching to State B, it can be observed that part of operations involved in

calculation of variable iS are independent of index iu , the output of State A. This means state B

is partially dependent on state A. Therefore, State B can begin before the completion of State A

or before iu is computed. Once index iu is determined, State B continues with other operations.

 Thus concept of pipeline evolves between State A and B. The case of State A pipelined to

State B also supports partial parallelism or in other words, it can be stated as state B is partially

dependent on state A. Therefore, when one state is partially dependent on the other, pipelining

could be evolved between them. In case of search procedure switching from C to B, it is seen

that computations in state B use the index iu and not iT of state C where iT is computed later

than iu . This means state B can also start before state C ends. Similar is the case of A pipeline to

B, it can be stated that State C pipeline to State B.

 45

 Both states A and C can neither be executed in parallel nor in pipeline to State D. This is

because, squared distance
Λ

2d computed at State D requires variable vector T which is obtained at

the end in both A and C.

 Dependency from A to A is not investigated because it is not possible for state A to

follow itself in this algorithm. Similar is the case with state B and D. But if we analyze the

search procedure in detail, it can be found that state C is not data dependent on state D and itself

because it does not use any of the parameters or values calculated during any of the states that

could jump to state C.

 Based on the data dependency analysis, the possibility of the parallelism and pipelining

among the four states is found as follows.

 C || C, D || C

 A B, B A, A D, D A, C D, C B

 A | B, C | B

 B A, A D, D A, C D

 Where, D || C means if current state is D and next state is C, these two states can be

implemented at the same time, A B means if current state is A and next state is B, then these

two states cannot be implemented in parallel, C | B means if current state is C and next state is B,

then these two states are implemented in pipeline i.e., state B is started before the end of state C

is reached, and B A means if current state is B and next state is A, then these two sates cannot

be implemented in pipeline.

 46

5 FPGA Based Architecture Design

 The next stage of work involved is the parallel-pipeline implementation of the improved

sphere decoding algorithm and therefore designing an efficient architectural model for it. Hence,

this chapter discusses in detail the parallel-pipeline architecture for improved lattice decoding

algorithm. The design optimization techniques are also illustrated.

5.1 Lattice Decoder Architecture

 The hardware architectural model for improved sphere decoding algorithm is shown in

Figure 5.1. The decoder controller communicates with the functional blocks at each state. The

data transfer and decision about next state are made at the decoder controller. Data buffer unit

consists of array of registers to temporarily store data during the decoding process.

Figure 5.1: The hardware architecture of improved sphere decoding algorithm

 The decoder controller is designed using FSM to organize the improved sphere decoding

algorithm and to synchronize the operations of functional blocks. The state diagram of this FSM

is same as given in Figure 3.3. As the data flow and state transition decisions are same in both

STATE A

DATA
BUFFER

DECODER
CONTROLLER

STATE B

STATE C

STATE D

 47

original and improved form of the sphere decoding algorithms, the state diagram is similar.

Differences between both the algorithmic models lie in the sequences of operations involved at

each state. Thus the improved form of the sphere decoding algorithm reduces the individual

complexity at each state which is beneficial to the entire decoder system model.

 Based on the data dependency analysis, we designed a parallel-pipeline architectural

model for improved sphere decoding algorithm. For the parallel architectural model, in addition

to the existing four functional blocks, three duplicated functional blocks for sequences of

operations at State C are created. This is because State C can be in parallel to another State C. In

our case, system being a 4-transmit and 4-receive antenna system i.e., n = 4, maximum of four C

states can be performed simultaneously in parallel to each other. For a general case with m-

transmit and n-receive antennas, maximum n number of C states could be implemented in

parallel. Thus, n-1 numbers of duplicate functional blocks for State C need to be created.

5.2 Parallel Structure

 Based on the data dependency analysis in Chapter 3, a parallel structure is developed to

implement the sphere decoding search procedure. Seven hardware modules are created in this

structure, with one for each state and three duplicated modules for state C because four

continuous C states could be implemented at the same time in parallel. When all four C states are

implemented in parallel, it’s the end of the algorithm i.e., the closest lattice point is found or no

lattice point is reported. The hardware architectural model for parallel-pipeline implementation is

shown in the Figure 5.2.

 48

Figure 5.2: The hardware architecture of parallel-pipeline improved sphere decoding algorithm

 These seven modules are executed simultaneously to speed up the search procedure as

shown in Figure 5.3 (a) and (b) below. For an example of an improved sphere decoding

algorithm, the sequence of states captured Eb/No = 6 dB is shown in Table 5.1, to demonstrate

the parallel-pipeline implementation.

Table 5.1: Sequence of states for an example of improved algorithm at 6dB SNR

Iteration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 …………

State A B A B A B A D C D C D C C B A …………

 Figure 5.3 (a) and (b) give the pictorial description of the above sequences of states when

implemented in sequential and parallel-pipeline. For making the explanation more simple and

clear, the iterations from 5 - 16 are considered. The difference in sequential and parallel-pipeline

implementations exists at these iterations.

DATA
BUFFER

STATE B

STATE A

STATE C

STATE D

DECODER
CONTROLLER

STATE C

STATE C

STATE C

 49

(a)

(b)

Figure 5.3: An example of improved sphere decoding algorithm (a) Sequential implementation (b)
Parallel-Pipeline implementation

 The shaded boxes represent the following conditions:

 Module enabled and results accepted.

 Module enabled and results ignored.

A A A A A A A AA A

B B B B B B B BB B

C C C C C C C CC C

D D D D D D D DD D

A A

B B

C C

D D

1 2 3 4 5 6 7 8 9 10 11 12

A A A A A A

C C C C C C

D D D D D D

C C C C C C

C C C C C C

C C C C C C

B B B B B B

2 3 4 5 6

1

 50

 In the example if the current state is A then module B is enabled with a time delay,

making A be implemented in pipeline to B (refer Section 4.7). The results of B are accepted or

ignored depending on the state transition conditions as shown in Figure 3.4. In Figure 5.3 (b) at

first iteration, results of B are accepted as the state transition conditions lead to B as next state.

Therefore the length of iteration is equal to the sum of processing time of module A and the extra

time taken by the module B. In the next iteration although module B is enabled, the results are

ignored as the state transition conditions lead to D as next state. Length of the iteration in this

case is equal to the processing time of module A. In the case of pipelining when the results are

accepted, the pipelining state has to be allowed to reach completion. Thus, more time is needed

for iterations with pipeline and results being accepted.

 If the current state is D then module D and all C modules are enabled, making D be

implemented in parallel to all the C’s. This is because possible states after next state could be

executed in parallel with the next state. The results of either one or multiple C modules is

accepted or ignored based on the state transition conditions. In Figure 5.3 (b) at third and fourth

iterations, the result of only one C is accepted as the next state is C and possible state after the

next state is D. Length of iteration in this case is equal to the processing time of module C (as

processing time of module C is higher than D). In fifth iteration along with the module D and all

C modules, module B is enabled with a time delay. This is because state transition conditions

lead to B as next state after all possible C’s and decision about accepting the result of B is

already made within the allowed time delay. Based on the state transition conditions the results

from two C modules are accepted. Average clock cycles at this iteration are equal to the sum of

the processing time of State C (as processing time of State C is more than State D) and extra time

needed by State B.

 51

 For the purpose of transitions between the states, control signals are generated which

enable the modules of next state. In hardware implementation, the decoder controller

manipulates these control signals depending on the conditions produced by the data calculated in

various states or modules. Separate decoder controller components are developed for each of the

sequential structures of the original, improved algorithms and parallel-pipeline structure of

improved algorithm. Not only the next states but the possible states after the next states are also

enabled if they could be executed with the next state in parallel. This concept is made as the

basis in modeling the HDL code for the parallel-pipeline structure.

 52

5.3 VLSI Design Flow

 The design flow adopted in this thesis is shown in Figure 5.4

Figure 5.4: Design flow for an FPGA

 After designs are verified using RTL simulations the next most significant step is

synthesis process which deals with rendering of a complete design described in VHDL into

technology specific circuits. Logic synthesis is a process by which algorithmic descriptions of

circuits are turned into a design for electronic hardware of some nature. Common examples of

this process include synthesis of HDLs, including VHDL and Verilog. Logic synthesis tools may

be used to automatically convert the RTL description of a digital system into a gate level

Concept

Specifications

Algorithm or Behavioral
design using Matlab

RTL design using VHDL

Logic synthesis using
Xilinx’s ISE 6.2i

Set timing constraints for
the design

 Placement

 Routing

 53

description of the system. In all the implementations in this work, a synthesis tool from Xilinx

called ISE 6.2i is used and the target technology being the device XC2V1000-6ff896 from wide

range of Virtex-II FPGA family. Project Navigator is the user interface for Xilinx ISE and its

work space is presented in Figure 5.5.

Figure 5.5: Workspace of Project Navigator

 As seen in the Figure 5.5, all the necessary source files are added to the project which is

seen in the sources for project window. Select the top-level source from the sources for project

 54

window, set the timing constraints, and then perform the “synthesize” step. This will synthesize

the whole project. Then perform the “implement design” step. This step involves three steps to

finally achieve the place and route report. The maximum frequency of the digital circuit design

prototyped on a FPGA hardware platform can be obtained as the output. The RTL schematic of

the decoder controller generated by Xilinx ISE 6.2i synthesis tool is shown in Figure 5.6.

5.4 Design Optimization

 For a given lattice generation matrix M, the gram matrix TMMG = is computed on DSP.

The Cholesky factorization of this gram matrix yields an upper triangular matrix R which is also

performed on DSP. Then

∑ ∑
= +=

≤+===
n

i

n

ij
jijiii

TTT CrrRRRQ
1 1

22)(||||})(ξξξξξξ

Substituting 2
iiii rq = for ni ,....,1= and iiijij rrq /= for ,,.....,1 ni = ,,.....,1 nij += from this, it is

simplified to

∑∑
+==

≤+=
n

ij
jiji

n

ii
ii CqqQ

1

2)()(ξξξ

where, C is the square radius of sphere centered at the received point and transformed into an

ellipsoid centered at origin of the new coordinate system defined by ξ . The matrix Q is also

computed on DSP and the results are passed on to FPGA. All the DSP computations are done in

the pre-processing stage. The inverse of each of the diagonal element of matrix Q, i.e., iiq/1 is

also computed on DSP. Thus using DSP to perform the computations of pre-processing stage

simplifies the processing in FPGA. In most of the communication applications where decoding

the large set of receiver data samples for a single channel matrix is a purpose, the pre-processing

stage of the corresponding decoding algorithm has to be performed only once. This shows that

 55

pre-processing stage is in imbalance with the decoding stage in terms of number of computations

or load of computations. And it is also known that pre-processing stage involves complex

computations. Thus partitioning the irregular computation to DSP provides a good balance to

entire system performance [Ma 2004].

 56

Figure 5.6: RTL schematic of parallel-pipeline implemented sphere decoder generated by Xilinx ISE 6.2i

COMP1: All inputs and
outputs from different
component or all
component instantiations
in a .vhd file.

COMP2: Decoder
Controller or .vhd
file of the decoder
controller.

Inputs to the
Universal lattice
decoder design.

Output (i.e.,
the closest
lattice point)
from the
Universal
lattice decoder
design.

 57

6 RESULTS

 This chapter gives the experimental results obtained for both the preprocessing and

decoding part of the MIMO decoder. Efficient hardware model for the decoding part of the

original and improved algorithm are developed and prototyped on to a Xilinx’s VirtexII-1000

FPGA. The simulations results and the synthesis results are presented.

6.1 Experimental Setup

 A system with 4-transmit and 4-receive antennas i.e., m=n=4 is assumed. The signal

constellation linear over the field of real numbers is considered. The symbol set of 4-PAM

constellation is ranging from {-3, -1, 1, 3}. The simulation tools used are Matlab 6.5 and

Modelsim SE 5.8a to design the decoder at behavioral and RTL levels of abstraction. Xilinx ISE

6.2i is used as synthesis tool. Project Navigator 6.2.03i is the user interface for Xilinx ISE.

6.2 Pre-Processing Results

 The pre-processing part involves computations like matrix inversion, transposition and

Cholesky decomposition. Of these computations, matrix inversion and Cholesky decomposition

are relatively more complicated and time consuming. The transpose operation takes negligible

part of the processing time. The whole of pre-processing part was implemented on DSP. TI’s

TMS320c6711 is a floating point DSP, supports either real or integer arithmetic while

TMS320c6201 is a fixed point DSP which supports only integer arithmetic. The maximum

frequency on both DSP chips is at 200 MHz. Although floating point calculation is more

accurate, it is time consuming and is not supported by VHDL. Therefore we need to calculate the

fixed point processing times. The software tool used is Code Composer Studio.

 58

 For a 4x4 matrix, the time taken to execute the computations in pre-processing part is

19,645 clock cycles in floating point processing and 26,901 clock cycles in the fixed point

processing.

msT float 1.0)10*200/(19645 6 ==

 msTfix 13.0)10*200/(26901 6 ==

 For a 8x8 matrix, the time taken to execute the computations in pre-processing part is

19,645 clock cycles in floating point processing and 26,901 clock cycles in the fixed point

processing.

msTfloat 49.0)10*200/(98189 6 ==

 msTfix 71.0)10*200/(141619 6 ==

6.3 Decoding Results

6.3.1 Simulation Results

 The processing time taken by the prototyped lattice decoder with original algorithm and

the improved algorithm are estimated. Based on the description of the simulation results of

original algorithm in Chapter 3, it is observed that State A requires 37 clock cycles in the search

process, 7 clock cycles are needed in both States B and D, and 2 clock cycles for State C. At

each state, 1 clock cycle is needed for condition check and decision making about next state. For

example, State A finds the upper bound and index of the element in the 36th clock cycle and 37th

cycle is used in decision making.

 The simulation results of improved algorithm as given in Chapter 4 shows that State A

requires only 7 clock cycles in the search procedure. 7 clock cycles each for States B and C, and

3 clock cycles are needed for State D. The last clock cycle at each state is used for condition

 59

check and decision making. The bar-chart comparing the processing times needed at each state in

both the algorithms is presented in Figure 6.1.

Figure 6.1: Bar chart showing the simulations times of each states in both algorithms

 The performance of the sphere decoder is enhanced in the improved algorithm. There is a

drastic reduction in the number of clock cycles required by the State A in the search procedure of

improved algorithm compared to the original one.

 The simulation results from Matlab gives the details about average number of times each

state is visited. As the Matlab source code is executed for 10000 simulations or 10000 different

sets of received signal vectors, average number of state visits obtained is a result for all 10000

simulations. Here in our thesis, one iteration means a visit to any state. Two or more states

operating at the same time also count as one iteration (in case of parallel-pipeline

implementation) [Ma 2005]

0

5

10

15

20

25

30

35

40

A B C D

States

Cl
oc

k
C
yc

le
s

Original algorithm
Improved algorithm

 60

 Table 6.1 is showing the number of state visits for 10000 simulations in each case of

original and improved sphere decoding algorithms in their sequential implementation.

Table 6.1: Average number of state visits in sequential implementation at 20 dB

State A B C D

Original 163,872 132,742 101,389 32,982

Improved 84,328 64,221 43,900 43,494

 Table 6.2 is showing the number of state visits for 10000 simulations of improved sphere

decoding algorithm in its parallel-pipeline implementation. For more details about A | B, D || C,

C | B, refer to Section 4.7 and Section 5.2.

Table 6.2: Average number of state visits in parallel-pipeline implementation at 20 dB

State
A|B

B accepted
A|B

B ignored
D||C

C accepted
D||C

C ignored
C|B

B accepted
C|B

B ignored
Improved-
parallel-
pipeline 60,816 23,514 13,407 10,107 3,407 19,980

6.3.2 Synthesis Results

 After testing the functionality of both the sphere decoding algorithms using Matlab model

of simulation, the core decoder function is designed using VHDL, simulated using Mentor

Graphic’s Modelsim, and prototyped on a device technology XC2V1000-6ff896C of Xilinx

Virtex2 FPGA platform [Xilinx 2003]. Figure 6.2 gives the description of the device.

 61

Figure 6.2: Xilinx Virtex-II 1000 FPGA Device Description

 The simulation results of Matlab and hardware verify each other. Synthesis results of a

sphere decoder with 4-transmit and 4-receive antennas when prototyped on a Xilinx Virtex-II

1000 FPGA using original and improved sphere decoding algorithms are shown in Table 6.3

below. The 18-bit embedded multipliers available on this FPGA are employed in the design to

ensure the processing speed.

Table 6.3: Synthesis results of m=n=4 MIMO system

Original

algorithm
Improved-
Sequential

Improved-Parallel-
Pipeline

Target FPGA platform Xc2v1000 -6 Xc2v1000 -6 Xc2v1000 -6

No. of External IOBs 387 out of 432 387 out of 432 387 out of 432

No. of Mult 18X18s 8 out of 40 20 out of 40 26 out of 40

No. of SLICEs 1168 out of 5120 2216 out of 5120 2347 out of 5120

No. of BUFGMUXs 1 out of 16 1 out of 16 1 out of 16

Max. freq 102.8 MHz 80.7 MHz 84.5 MHz

XC2V1000-6FF 896C

Device type

Speed grade
(-4, -5, -6)

Number of Pins

Temperature Range
C=Commercial (CCto °° 850)
I=Industrial (CCto °°− 10040)

Package Type

 62

6.3.3 Decoding Rate

 The bit rate of decoder is calculated as follows:

Rate = (frequency × bits_per_dimension × n) / (total number of clock cycles)

n = 4 for 4 - antenna system

bits_per_dimension = 2

Total number of clock cycles = ∑
=

tn

ni
nini ITCCPIT

1

*

where, niCPIT is the number of cycles per nith iteration (one iteration here means a visit to any

state. Two or more states operating at the same time also count as one iteration). This is obtained

from the simulation results of VHDL i.e., from the waveform into which signals are added and

allowed to run for some specified time.

niITC is the count of the average number of times nith iteration or a particular state is visited. This

is obtained from the Matlab simulations. As we have the data obtained for 10000 simulations,

average count for one simulation is calculated and used in the decoding rate computation. Here

in our case, this can be obtained by dividing the values in the tables 6.1 and 6.2 by 10000.

tn is the number of possible kinds of iterations or states. For sequential implementations, it is

simply equal to number of states in the FSM of the decoder controller, whereas for parallel-

pipeline implementation of the improved sphere decoding algorithm this can be obtained from

the data dependency analysis. In our case, for sequential tn = 4, for parallel-pipeline tn = 6 (refer

tables 6.1, 6.2)

 In order to test both the original and improved form of sphere decoders, the same

example as given in Chapter 4 is considered. In this case the lattice generator matrix M is some

randomly generated matrix with zero mean and unit variance and SNR is set at 20 dB.

 63

−
−

−
−−

=

6686.06900.05937.16236.1
2902.13999.02540.17143.0
7119.05711.08580.03362.1
8156.04410.06918.02944.0

M

Then the received signal obtained after scaling and rounding is []376130119385 −− when

the transmitted signal constellation is[]3113 −− .

 For above described example, and considering the case of original sphere decoding

algorithm, the total number of clock cycles required to complete the search procedure are:

Total number of cycles = 37 × 16.3 (number of iterations with State A) + 7 × 13.2 (number of

iterations with State B) + 2 ×10.1 (number of iterations with State C) + 7 × 3.2 (number of

iterations with State D) = 738 cycles

Bit rate = (108.2 MHz * 4 * 2) / 738 = 1.17 Mbit/s

 For improved algorithm, a parallel-pipeline architectural model is also developed as

hardware implementation on FPGA can make use of an additional parallelism feature. In both

sequential and parallel-pipeline implementations, the number of iterations, states at each iteration

and average clock cycles per iteration vary significantly. This can be explained in detail by

looking at the sequence of states in both cases.

The sequential procedure for improved sphere decoding algorithm for above considered example

needs 20 iterations, while parallel-pipeline procedure needs only 10 iterations as shown in Table

6.2 and 6.3 respectively.

Table 6.4: Sequence of state in Sequential procedure

Iteration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

State A B A B A B A D A B A B A B A D C C C C

 64

Table 6.5: Sequence of state in Parallel-Pipeline procedure

Iteration 1 2 3 4 5 6 7 8 9 10

State A A A A D A A A A D

Parallel state C's C's

Pipeline state B B B B B B B B

 As we know the states in parallel can begin at the same time, at the iteration 5 from Table

6.5, State D and all possible State C’s are executed at the same time but the output obtained from

all C states are ignored as the conditions lead to State A after this State D. At the end of State D

simulation, parallel C states are interrupted and disabled. Therefore, the average number of

cycles at this iteration is equal to the simulation time of State D. Similarly in iteration 10, State D

and all C states are executed in parallel and the results are accepted as the conditions satisfy and

the search procedure ends. Here State C is allowed to complete as the conditions lead to State C

as next state after current State D. Therefore, the average number of cycles at this iteration is

equal to the simulation time of State C.

 In Table 6.5, we see at iteration 1, State B is implemented in pipeline to State A. And so

State B is enabled a little while after State A. This case of pipelining also supports partial

parallelism. Here the output from State B is accepted as the conditions of state transitions lead to

State B as next state. Therefore, the average number of cycles at this iteration is equal to the sum

of simulation time of State A and extra time needed by State D. Similar is the case at iterations 2,

3, 6, 7, 8. At iteration 4, State B is implemented in pipeline to State A and so State B is enabled a

little while after State A. But the output of State B is ignored as conditions of state transitions

 65

lead to State D as next state. Therefore, the average number of cycles at this iteration is equal to

the simulation time of State A alone.

 The total number of clock cycles required by the improved algorithm to complete the

search procedure at 20 dB in both sequential and parallel-pipeline procedures is as follows:

Sequential:

Total number of cycles = 7 × 8.4 (number of iterations with State A) + 7 × 6.4 (number of

iterations with State B) + 7 × 4.4 (number of iterations with State C) + 3 × 4.3 (number of

iterations with State D) = 147 cycles

Bit rate = (80.7 MHz * 4 * 2) / 147 = 4.39 Mbit/s

Parallel-Pipeline:

Total number of cycles = 13 × 6.1 (number of iterations with A|B, B accepted) + 7 × 2.3 (number

of iterations with A|B, B ignored) + 3 × 1.0 (number of iterations with D||C, C ignored) + 7 × 1.0

(number of iterations with D||C|B, C accepted, B ignored) + 10 × 0.3 (number of iterations with

D||C|B, C accepted, B accepted) = 108 cycles

Bit rate = (84.5 MHz * 4 * 2) / 108 = 6.26 Mbit/s

The comparison of decoding rate for original sphere decoding algorithm and improved-

sequential, improved-parallel-pipeline algorithms are shown in Table 6.6.

Table 6.6: Comparison of decoding rate at 20 dB

 Original Improved-Sequential
Improved-Parallel-

Pipeline

Total number of
clock cycles 738 147 108

Max Frequency 102.8 MHz 80.7 MHz 84.5 MHz

Decoding Rate 1.17 Mbit/s 4.39 Mbit/s 6.26 Mbit/s

 66

 The sequential architecture of the original and improved algorithms offer a decoding rate

of 1.17 Mbit/s and 4.39 Mbit/s respectively when implemented on a device technology

XC2V1000-6FF896 of Xilinx VirtexII-1000 FPGA platform. From the synthesis results we

observe that the maximum frequency of the original sphere decoder is higher compared to the

improved form of algorithms. Although this is the case, the decoding rate of the improved sphere

decoding algorithm is far better and shows a lot of improvement from the original algorithm.

 This is because of better values of number of clock cycles per iteration, niCPIT and count

of average number of times particular iteration or state is visited, niITC for the improved sphere

decoding algorithm. They contribute to the better decoding rate the decoder.

The bit rate of the decoder with improved algorithm and utilizing the parallelism and pipelining

features is 6.26 Mbit/s.

 From table 6.6 we observe that the decoding rate of the improved sphere decoding

algorithm whose flow chart given in Figure 4.1 in sequential implementation is 3.75 times faster

than the original sphere decoding algorithm shown in Figure 3.1. The parallel-pipeline

implementation of the improved sphere decoding algorithm is 5.35 times faster than the

sequential implementation of the original algorithm when corresponding architectural models of

both the algorithms are prototyped on FPGA platform. In case of improved algorithm, the

parallel-pipeline architecture speeds up the search procedure by 1.43 times compared with its

sequential architecture. Thus the parallel-pipeline architectural model of improved sphere

decoder when prototyped on a device XC2V1000-5FF896 of Xilinx’s VirtexII-1000 FPGA

platform could reach a decoding rate up to 6.26 Mbit/s with a spectral efficiency 2

bits/dimension at SNR of 20 dB.

 67

6.3.4 BER Performance

 Using Matlab, BER performance for both original and improved sphere decoding

algorithms has been estimated for a particular Gaussian distributed lattice generator matrix and at

different SNRs. Figure 6.3 shows BER versus Eb/No (dB) of an uncoded system for m=n=4

using original and improved sphere decoding algorithms.

Figure 6.3: BER vs. Eb/No (dB) for an uncoded system using original and improved algorithms

 From Figure 6.3, we can observe that improved sphere decoding algorithm shows better

BER performance than the original algorithm. This means the number of bit errors reported in

the improved algorithm is less compared to that of original algorithm. Both the algorithms are

executed for fixed point hardware simulation and floating point software simulation to compare

the performance. It is observed from Figure 6.3 that the BER of the fixed point implementation

matches the floating point implementation. The Matlab fixed point simulation results also verify

with VHDL simulation results.

 68

6.3.5 Comparison between FPGA and DSP Implementations

 The comparison of sphere decoding algorithm implementations on DSP and FPGA are as

shown in the Table 6.7. The parallel-pipeline architecture of improved sphere decoding

algorithm was implemented on FPGA and sequential architecture of original sphere decoding

algorithm was implemented on DSP.

Table 6.7: Comparison between FPGA and DSP implementation at 20 dB

 From the above comparison we can observe that the decoding rate of parallel-pipeline

implementation of an improved sphere decoding algorithm when prototyped on FPGA is

approximately 100 times faster than the sequential implementation of the original sphere

decoding algorithm prototyped on DSP. Although the frequency on DSP decoder is twice the

frequency of the FPGA decoder, we visualize a better performance for the FPGA prototype of

the sphere decoder. Total cycles needed to complete the search procedure and obtain a closest

lattice using parallel-pipeline implementation of the improved sphere decoding algorithm

prototyped on a device technology XC2V1000-6FF896C of Xilinx’s VirtexII-1000 FPGA

platform is 107. Whereas in case of sequential implementation of the original sphere decoding

algorithm prototyped on a TI’s TMS320c6201 DSP chip, the total clock cycles consumed are

Platform FPGA DSP

Max Freq 84.5 MHz 200 MHz

Total cycles 108 27,492

Bits/dimension 2 2

Dimension 4 4

Decoding Rate 6.26 Mbit/s 0.06 Mbit/s

 69

27,492. The couple of reasons for such a high variation in total number of clock cycles in both

the cases are interpreted as follows.

• Algorithmic model is improved.

The improved form of the sphere decoding algorithm does not need to perform square root

operation while computing an integer component value or the index value iu and the its upper

bound iL at each layer in the 4-dimensional (4-transmit 4-receive antenna system) space created

at the receiver end. A significant count of clock cycles are saved due to this in the improved

sphere decoding algorithm compared to the original one.

• Parallel-pipeline implementation.

An additional feature of FPGA over DSP chip is its support of parallelism. Therefore a parallel-

pipeline architectural model is developed for improved sphere decoding algorithm and is

prototyped on FPGA as it supports parallelism. Due to possible parallelism and pipelining the

FPGA implementation of improved sphere decoding algorithm saves in number of clock cycles

essentially.

 Hence we observe that improved sphere decoding algorithm in its parallel-pipeline

implementation and prototyped on FPGA reaches a decoding rate of 6.26 Mbit/s. And the

original sphere decoding algorithm in its sequential implementation and prototyped on DSP chip

reaches a decoding rate of 0.06 Mbit/s. The FPGA implementation is 104.33 times faster than the

DSP. The DSP implementation is very slow compared to FPGA prototype because the original

sphere decoding algorithm performs the iterative search procedure involving square root

computation while finding the bounds of the lattice index point at each layer.

 70

6.4 Conclusions

 Design and implementation of universal lattice decoder is presented in this thesis. Firstly

the functionality of the original sphere decoding algorithm is examined using Matlab simulation.

Then a VHDL model is developed for the core decoder function and simulated at RTL level of

abstraction using Mentor Graphics’ Modelsim SE 5.8a. Because the simulation results show

imbalance in the processing time of each individual state, which is not practical for parallel

implementation, original algorithm is modified such that square root computation is avoided, as a

result an improved universal lattice decoding algorithm is proposed. Functionality testing

procedure similar to that of original algorithm is carried out for the improved algorithm. The

primary focus in this thesis has been to design an efficient hardware architectural model for the

improved sphere decoding algorithm and implement it on FPGA platform.

 Based on the data dependency analysis, a parallel-pipeline architectural model is

developed for the improved sphere decoding algorithm. Both sequential and parallel-pipeline

architectural models are developed in VHDL and are simulated at RTL level of abstraction. All

the hardware architectural models are synthesized using Xilinx ISE 6.2i synthesis tool. The

device technology XC2V1000-6FF896C of Xilinx VirtexII-1000 FPGA platform is used to

prototype the architectural models. BER performance of both original and improved sphere

decoding algorithms has also been estimated. When a MIMO system of 4-transmit and 4-receive

antennas with 4-PAM modulation is considered, the decoding throughput of 6.32 Mbit/s is

achieved for parallel-pipeline implementation of the improved sphere decoding algorithm at

20dB SNR. The parallel-pipeline implementation of improved sphere decoding algorithm is 1.44

times faster than its own sequential implementation and is 5.4 times faster when compared to the

sequential implementation of original sphere decoding algorithm when all the hardware

 71

architectural models are prototyped on FPGA platform. Comparing the FPGA and DSP

implementations, it is concluded that parallel-pipeline implementation of the improved sphere

decoding algorithm prototyped on FPGA achieves a decoding throughput of 6.32 Mbit/s, which

is about two orders of magnitude faster than the sequential implementation of the original sphere

decoding algorithm prototyped on a DSP chip.

 72

REFERENCES

1. [Viterbo 1999] E.Viterbo and J. Boutros, “A universal lattice code decoder for fading
channels”, pp 1639-1642, IEEE trans. on Inf. Theory, July.1999.

2. [Ma 2004] Jing Ma and Xinming Huang, “Design of Lattice Decoder for MIMO Systems in
FPGA”, Proceedings of IEEE Workshop on Signal Processing Systems(SiPS’04), Austin, Texas,
pp. 24-29, October 13-15, 2004.

3. [Burg 2004] A. Burg, M. Wenk, M. Zellweger, M. Wegmueller, N. Felber, and W. Fichtner,
“VLSI implementation of the Sphere Decoding Algorithm”, pp 303-306, Proceedings of the 30th
European Solid-State Circuits Conference(ESSCIRC’04), Integrated Systems Laboratory, ETH-
Zurich, Switzerland, Sep 21-23, 2004.

4. [Gregory 1999] Gregory C.Ahlquist, Michael Rice, and Brent Nelson, “Error control coding
in software radios: An FPGA approach”, IEEE commun, pp 35-39, August 1999

5. [Srikanteswara 2003] Srikathyayani Srikanteswara, Ramesh chembil Palat, Jeffrey H.Reed,
and Peter Athanas, “ An Overview of Configurable Computing Machines for Software Radio
Handsets”, IEEE commun Mag, pp 134-141, July 2003

6. [Adjoudani 2003] Ali Adjoudani, Eric C, D Haessig and Salim Manji “Prototype Experience
for MIMO Blast Over Third-Generation Wireless System.” Vol. 21, pp 440, IEEE Journal on
Selected areas in communication, April 2003.

7. [Damen 2000] Damen, A. Chkeif, and J.C. Belfiore, “Lattice code decoder for space-time
code”, Vol. 4. No.5, pp161-163, IEEE Communications Letters, May 2000

8. [Viterbo 1993] E. Viterbo and E. Biglieri: “A universal decoding algorithm for lattice codes”,
Quatorzieme colloque GRETSI, pp. 611-614, Juan-les-Pins, September 1993.

9. [Bertrand 2003] Bertrand M. Hochwald and Stephean ten Brink, “Achieving Near-Capacity
on a Multiple-Antenna Channel”, IEEE Transaction on communications, vol. 51, PP 389-399,
March 2003

10. [Cummings 1999] Mark Cummings, and Shinichiro Haruyama, “FPGA in the Software
Radio”, pp 108-112, IEEE Communications Magazine, Febraury 1999.

11. [Eriksson 2002] Thomas Eriksson, Erik Agrell and Kenneth Zeger, “Closest Point Search in
Lattices,” Vol. 48, pp 2201, IEEE Transaction on Information theory, August 2002.

12. [Chris] Chris H. Dick, “Design and Implementation of High-Performance FPGA Signal
Processing Data paths for Software Defined Radios”, Xilinx Inc.

13. [Garrett 2002] David Garrett, Chris Nicol, “Multipath expands RF bandwidth”, EE Times,
November 08, 2002.

 73

14. [Jones 2003] V.K. Jones, Greg Raleigh, Richard van Nee, “MIMO answers high-rate WLAN
call”, EE Times, December 31, 2003.

15. [Xilinx 2003] Virtex II Platform FPGA User Guide, UG001, v1.6.1, Xilinx Inc., August
2003

16. [Love 2004] D. J. Love, R. W. Heath Jr., W. Santipach, and M. L. Honig, “What is the value
of limited feedback for MIMO channels?,” IEEE Commun. Mag., vol. 42, no. 10, pp 4-59,
October 2004

17. [Smith 1997] Douglas J Smith, “HDL Chip Design” Doone Publication, 1997.

18. [Gesbert 2005] http://heim.ifi.no/~gesbert/mimo_research.htm

19. [Piromsopa 2001] K.Piromsopa, C.Aprontewan, and P.Chogsatitvatana, “An FPGA
implementation of a fixed-point square root operation”, ISCIT 2001

20. [Pohst 1985] M.Pohst, “On the computation of lattice vectors of minimal length, successive
minima and reduced basis with applications,” ACM SIGSAM Bull., vol. 15, pp. 463-471, April
1985.

21. [Damen 2003] Damen, M.O., H.E. Gamal, and G.Caire, “On maximum-likelihood detection
and the search for the closest lattice point,” IEEE Transaction on Information theory, vol. 49,
no.10, 2389-2402, October 2003

22. [Zheng 2003] L.Zheng, David N.C Tse, “Diversity and Multiplexing: A fundamental
tradeoff in multiple-antenna channels,” IEEE Transaction on Information theory, vol.49, no.5,
1073-1096, May 2003

23. [Lee 2003] Hoo-Jin Lee, Shailesh Patil, and Raghu G. Raj, “Fundamental overview and
simulation of MIMO systems for Space-Time coding and Spatial Multiplexing,” WNGC, Austin,
Texas, May 2003

24. [Ma 2005] Jing Ma and Xinming Huang, “A System-on-programmable chip approach for
MIMO sphere decoder”

25. [Kevin 2003] Kevin Morris, “Implementing high-performance DSP Algorithms in FPGA’,
FPGA and Programmable Logic Journal”, www.fpgajournal.com, October 2003

26. [Dan 2004] Dan Ganousis, “Top-Down DSP Design Flow to Silicon Implimentation”,
www.fpgajournal.com, March 2004

27. [ED 2000] “Design Technology Advances Unleash New FPGA Capabilities”
http://www.elecdesign.com/Articles/Index.cfm?AD=1&ArticleID=4405, June 2000

 74

VITA

 Swapna Kura was born on the March 15th, 1980, in Hyderabad, India. She aspired to be

an Engineer since she was young and her mathematical skills encouraged her to pursue her

undergraduate degree in Electrical Engineering. She graduated from Jawaharlal Nehru

Technological University, India, in July 2001. Her aspirations to research and learn more about

her subject made her get into an International Graduate school. She joined the University of New

Orleans in 2002 and majored in Electrical and Computer Engineering. Her research interests are

mainly related to FPGA, VHDL and Hardware Design.

	Design and Implementation of an Universal Lattice Decoder on FPGA
	Recommended Citation

	ACKNOWLEDGEMENTS
	GLOSSARY OF ABBREVIATIONS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	INTRODUCTION
	FPGAs and MIMO Channels
	Sphere Decoding Algorithm
	Improved Sphere Decoding Algorithm
	FPGA Based Architecture Design
	RESULTS
	REFERENCES
	VITA

