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ABSTRACT 

 In wireless communication, MIMO (multiple input multiple output) is one of the 

promising technologies which improves the range and performance of transmission without 

increasing the bandwidth, while providing high rates. High speed hardware MIMO decoders are 

one of the keys to apply this technology in applications. In order to support the high data rates, 

the underlying hardware must have significant processing capabilities. FPGA improves the speed 

of signal processing using parallelism and reconfigurability advantages.  

 The objective of this thesis is to develop an efficient hardware architectural model for the 

universal lattice decoder and prototype it on FPGA. The original algorithm is modified to ensure 

the high data rate via taking the advantage of FPGA features. The simulation results of software, 

hardware are verified and the BER performance of both the algorithms is estimated. The system 

prototype of the decoder with 4-transmit and 4-receive antennas using a 4-PAM (Pulse amplitude 

modulation) supports 6.32 Mbit/s data rate for parallel-pipeline implementation on FPGA 

platform, which is about two orders of magnitude faster than its DSP implementation. 
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1 INTRODUCTION 

1.1 Motivations and Background 

Although wireless technologies have been around for a while, there has been a recent and 

rapid surge in the evolution of new standards that enable and accelerate the convergence of 

telecommunications and IP networking to provide new multimedia services. To keep up with the 

demands of wireless network services, the capacities of systems are increased. The most brute-

force approach to increasing wireless data rate is to use more frequency channels to increase 

modulation rate [Jones 2003]. This "channel bonding" approach will not meet the needs of 

wireless network consumers for the following reasons: First, while channel bonding increases 

data rate, it decreases the transmission range for the same transmit power. Second, channel 

bonding robs channels from other systems that operate nearby.  

 MIMO (multiple input multiple output) antenna technology is considered as one of the 

solutions to support the wireless network services. It essentially multiplies data throughput, with 

a simultaneous increase in range and reliability, without consuming any extra frequency 

spectrum [Jones 2003]. The multi-antenna wireless communication systems are capable of 

providing data transmission at potentially very high rates. Furthermore, to secure high reliability 

of the data transmission, special attention has to be given to the receiver design. The data streams 

are separated at the receiver using algorithms that rely on estimates of all channels between each 

transmitter and each receiver. The low complexity suboptimal detection algorithm for MIMO 

signals was the Vertical Bell Labs Layered Space-Time (VBLAST) algorithm. This is an 

iterative cancellation method that depends on computing a matrix inverse to solve the zero-
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forcing function [Jones 2003]. While the iterative detection can increase receiver sensitivity, 

there are substantial problems with a real implementation.  

 The optimal detection strategy for a MIMO receiver is to perform a maximum-likelihood 

search over all possible transmitted symbol sets. ML decoding is equivalent to finding the closest 

lattice point to the received point in a lattice constellation. ML detection at the receiver becomes 

an essential part in high-performance MIMO communication systems [Burg 2004]. Thus, ML 

decoding algorithms and their architecture are active research areas in wireless communication 

that motivated the research in MIMO systems. 

  For decoding the lattices with no regular structure at the receiver follows two main 

branches. Pohst [Pohst 1981] in 1981 examined lattice points lying inside a hyper sphere, 

whereas Kannan in 1983 used a rectangular parallelepiped. Both methods later appeared in 

revised and extended versions. Pohst method is intended as practical tool while Kannan’s is a 

theoretical tool. In [Viterbo 1999], a technique referred to as the "sphere decoding" (based on the 

Fincke-Pohst algorithm) was proposed for lattice code decoding [Eriksson 2002]. This performs 

a bounded distance search among the lattice points falling inside the sphere centered at the 

received point. 

 The sphere decoder provides the maximum-likelihood estimate of the transmitted signal 

sequence with complexity comparable, at high signal-to-noise ratios (SNRs), to VBLAST 

nulling/canceling algorithm [Bertrand 2003]. It is later stated that sphere decoding often 

significantly outperforms heuristic nulling and canceling. Developing an efficient sphere decoder 

with reduced complexity has received significant attention due to its applications to wireless 

communications as in [Viterbo 1999]. However, most modifications suggested are well suited for 

implementations using DSPs, for example BLAST system [Adjoudani 2003]. In the VBLAST 
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algorithm the front end of the receiver is implemented on FPGA whereas actual decoder function 

is implemented on a DSP processor. 

 As the performance requirements of today’s communication systems are outstripping the 

capabilities of general-purpose DSP processors, the need for DSP implementations to seek 

hardware solution arises [Dan 2004]. FPGAs provide an ideal platform for DSP implementation, 

combining the reprogrammability, architectural flexibility, and support of parallelism. FPGA-

based hardware platforms also meet the critical requirements such as processing speed, time-to-

market, system integration etc. Due to the significant processing capabilities of FPGAs, high data 

rates are ensured for signal processing applications implemented on FPGAs. With advanced 

FPGA architectures such as the Xilinx Virtex-II devices, a new hardware alternative is available 

for DSP implementations combining all the benefits of DSP processors with the performance 

advantages of ASICs [Dan 2004].  

 The key advantages of FPGAs when compared to DSP implementations include 

performance, integration, and customization. Because of this, an FPGA-based solution of a high-

performance DSP system will typically have fewer devices than a processor-based one resulting 

in less power consumption, lower overall cost, and significantly less board area [Kevin 2003]. 

Due to the support of parallelism, FPGAs achieve huge gains in performance compared to DSP 

implementations. The computational throughput is also at least an order of magnitude higher 

with FPGA platforms. 

 Comparing to ASICs, FPGAs are reprogrammable and when combined with HDL design 

flow can greatly reduce the design and verification cycle. In addition to this, increased time-to-

market demands, low FPGA development costs, and FPGA capacities well in excess of million 

gates are increasing the number of applications of FPGAs in programmable form [ED 2000].  
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1.2 Research Objective 

 The main objective of this thesis is to develop an efficient architecture of a sphere 

decoder simulated in VHDL and prototype it on device technology of XILINX VirtexII-1000 

FPGA platform.  The architectural model deploys the parallelism offered by FPGA and ensures 

the high data rate of the MIMO system. 

1.3 Contribution of Thesis 

 The main contribution in this thesis is the design and implementation of an universal 

lattice decoder on FPGA. Firstly, the functionality of original sphere decoding algorithm is 

examined using Matlab simulations. Then a VHDL model is developed for core decoder function 

and simulated at RTL level of abstraction using Mentor Graphics’ Modelsim SE 5.8a. Based on 

the simulation results, we observed that the original sphere decoder is not feasible for parallel-

pipeline implementation. Modifications are applied to the original algorithm and as a result an 

improved form of universal lattice decoder is proposed. Functionality testing procedure similar 

to that of original algorithm is carried out for the improved algorithm. Based on the data 

dependency analysis, a parallel-pipeline architectural model is developed for the improved 

sphere decoding algorithm. Both sequential and parallel-pipeline architectural models are 

developed in VHDL and are simulated at RTL level of abstraction.  All the hardware 

architectural models are prototyped on a XC2V1000-6FF896C, a device technology of Xilinx 

VirtexII-1000 FPGA platform. BER performance of original and improved sphere decoding 

algorithms is compared for both fixed point and floating point simulations. For a 4-transmit and 

4-receive antennas system using 4-PAM transmitted signals, a decoding throughput of 6.32 
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Mbits/s is achieved. The performances of FPGA and DSP implementations are compared. The 

details of the results are presented in Chapter 6. 

1.4 Organization of Thesis 

 Chapter 2 introduces FPGA and MIMO channels. Their concepts and features are 

explained in detail. Chapter 3 describes the original sphere decoding algorithm. It also discusses 

the data flow path by partitioning the algorithm into various states. Eventually the Finite state 

machine (FSM) design is proposed, state transitions are discussed and simulation times for each 

state are also presented. Chapter 4 presents the modifications applied to the original algorithm by 

avoiding square root. Thus, an improved sphere decoding algorithm is developed. In addition, 

data dependency analysis of the improved sphere decoder is discussed. Chapter 5 gives the detail 

description of the FSM design for the improved sphere decoder. Also, the parallel-pipeline 

structure of sphere decoding algorithm is described, and the design optimization techniques are 

presented. Finally Chapter 6 gives the experimental results obtained during the thesis research. 
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2 FPGAs and MIMO Channels 

 This chapter gives a brief introduction of FPGA and MIMO channel. A detail description 

explaining the basic concept, features is also given.  

2.1 MIMO Channels 

 The ever increasing demands of multimedia services have led to high speed wireless 

communications with much higher data rates. Multiple transmit and receive antennas are most 

likely the dominant solution in future broadband wireless communication systems as they are the 

key technology to produce high rates. 

 MIMO systems consist of an array of transmit and receive antennas combined in such a 

way that the quality (bit error rate) or the rate (Bit/sec) of the communication is improved 

[Gesbert 2005]. Use of multiple transmit and/or receive antennas produce enormous gain in 

spectral efficiency by exploiting a rich multi-path fading environment and increased the system 

capacity without requiring an increase in the transmit power or bandwidth of the system. These 

channels also provide radio-link reliable communication when multiple users are sharing the 

spectrum by reducing the fading environments which is sometimes possible through the use of 

diversity technique. The spatial diversity in the MIMO systems is to send the signals that carry 

the same data through different paths. Due to this multiple independently faded replicas of the 

same data symbol can be obtained at the receiver end and hence more reliable reception is 

achieved. If the path gains between individual transmit-receive antenna pairs fade independently, 

the channel matrix well conditioned with high probability such that multiple parallel spatial 

channels are created [Zheng 2003]. The spatial multiplexing of the MIMO system which helps in 

achieving high data rates is to split a single data stream into multiple sub-streams, and each of 
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Figure 2.1: A MIMO system. (a) MIMO Transmitter. (b) MIMO receiver 
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 Figure 2.1 shows a schematic representation of this multiple input multiple output 

(MIMO) system [Adjoudani 2003]. The complexity of the MIMO systems is involved in 

designing an optimal receiver for the system. The optimal receiver is a maximum-likelihood 

sequence detector and is computationally complex due to system parameters like number of 

antennas and type of constellation used. Therefore the optimal detection strategy is to equivalent 

to performing a maximum-likelihood search over all possible transmitted symbol vectors. When 

there is a perfect knowledge of channel state information at the receiver the sphere decoding 

algorithm is considered as the maximum likelihood decoder. 

 There are two typical lattice decoding algorithms. One is the Pohst strategy based 

algorithm [Viterbo 1999]. This tries to find lattice points inside a sphere of given radius. Another 

is the Schnorr-Euchner strategy based algorithm [Eriksson 2002]. This method divides the lattice 

into hyper-planes and starts the search for the closet point in the nearest hyper-plane. 

2.2 Field Programmable Gate Array (FPGA) 

 FPGA is an integrated circuit that contains configurable (programmable) logic blocks and 

interconnects between these blocks. In other words, it is a general purpose chip which can be 

reconfigured any number of times to carry out specific hardware functions. It provides an 

opportunity of instantaneous changes in designing and debugging. It allows for system reuse, 

parallel design and SOC design. This is the result of combinatorial features of PLD and ASIC. 

PLD is a digital IC that can be programmed by the user to perform a wide variety of logical 

operations. ASIC is an IC product customized to perform specific functions to a particular 

system or application. Like PLD, FPGA is completely prefabricated and contain special features 

for customization. FPGA is subclass of ASIC which can be reprogrammable. Designs started in 
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FPGA can be migrated to ASICs. A comparison between ASIC, FPGA, and DSP 

implementations of the any decoder shows that the performance of FPGA-based designs lean 

more toward that of ASICs but retain flexibility more like DSP [Gregory 1999]. ASICs provide 

the most optimized hardware implementation of an algorithm. Using a dedicated ASIC for each 

mode of radio leads to a very large silicon area. DSPs have excellent programmability but cannot 

handle the complex algorithms at the required speeds with reasonable power consumption. 

FPGAs on the other hand use hardware reconfiguration, which allows implementation of 

complex high-speed algorithms [Srikanteswara 2003]. Compared to FPGA implementation, DSP 

implementations require low cost and less development time. But once an efficient architecture is 

developed and the parallelism of the algorithm is explored, FPGAs can be used to significantly 

improve the speed of the signal processing or wireless communication systems. Thus, FPGA is 

considered as an ideal platform for performing the computationally complex operations for 

reasons of performance, power consumption and configurability. Compared to DSP chip, 

parallelism is an additional feature in FPGA. The architecture of the Xilinx Virtex-II FPGA is 

shown in Figure 2.2. The device is organized as an array of logic elements and programmable 

routing resources used to provide the connectivity between the logic elements, FPGA I/O pins 

and other resources such as on-chip memory, delay lock loops and embedded hardware 

multipliers. 
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Figure 2.2: Virtex-II FPGA architecture [Chris]  
 
  The FPGA resources of particular interest to the signal processing engineer are 

configurable dual-port block memories, distributed memory, and the multiplier array [Xilinx 

2003]. The multiplier array is composed of 18x18-bit precision multipliers for addressing 

advanced sign al processing applications. The smallest Virtex-II device provides a modest 4 

multipliers while the largest supplies an impressive 192 multipliers [Chris]. 
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3 Sphere Decoding Algorithm 

  This chapter describes the Pohst’s lattice point enumeration algorithm [Viterbo 1999] 

widely known as sphere decoding, and also called universal lattice decoding. The data flow path 

and state transition details are elaborated. High level description of the algorithm and decoder 

architecture scheduling are also elucidated. The FSM diagram is shown. The table showing the 

processing time taken by each state is presented. 

3.1 The Sphere Decoder  

 In digital communications, lattice codes generate signal constellations for high rate 

transmission. The high-rate data streams and spatial multiplexing leave MIMO technology as the 

most desirable option in communication systems. The complexity of MIMO systems is involved 

in designing a MIMO receiver. For designing a MIMO receiver, a ML decoding is employed. 

ML decoding of a arbitrary lattice code used over an additive white Gaussian noise (AWGN) 

channel is equivalent to finding the closest lattice point to the received point. To reduce the 

complexity of an exhaustive search procedure, the bounded distance search among the lattice 

points is formulated. Therefore, for decoding the optimal receiver output of these MIMO 

systems, Pohst’s enumeration based sphere decoding algorithm searches for the closest lattice 

point to the received point within the sphere with radius C . The center point i.e., the signal or 

vector at the receiver is known before hand. The choice of C is very crucial to the speed of the 

algorithm. In practice the choice of C can be adjusted according to the noise variance so that the 

probability of a decoding failure reported is negligible. The complexity of the algorithm is 

independent of the lattice dimension size, which is very useful for high data rate transmission 

[Viterbo 1999]. Pohst first proposed the strategy for enumerating all the lattice points within the 
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sphere with a certain radius in [Pohst 1985]. Then it was introduced into the field of digital 

communications for the first time in [Viterbo 1993] and further analyzed in [Viterbo 1999].  

3.1.1 Maximum-Likelihood Criterion 

 Considering a MIMO system with m transmit and n receive antennas, and a perfect 

knowledge of channel state information is known at the receiver then the maximum likelihood 

decoding requires minimization of metric 

∑
=

−
n

i
ii xr

1

2|||| ∀ valid lattice points.             Equation (3-1) 

Where, VuMr += , the received vector. When the data streams interfere with each other in the 

channel and is distorted by an AWGN component V then, the resultant is the received vector.  

u is the transmitted signal.  

M is the channel matrix which generates the lattice. 

V  is the AWGN noise vector with zero mean and 0N variance. 

x is the information symbol vector mapped into the output vector which is the received vector r. 

Thus x is considered as one of the transmitted lattice code points. 

The representation of lattice points is given as { }uMx = where },....,{ 21 nuuuu =  is the integer 

component vector, and M is the channel transfer matrix which generates the lattice Λ structure. 

Any lattice Λ is given as the combination of set of basis vectors represented by }....,{ 21 nvvvv =   

 If )....,( 21 ibiii vvvv = , i = 1………n, and b is the dimension of the lattice then the generator 

matrix M of the lattice Λ is defined as  
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The same lattice structure Λ can have any number of generator matrices. For example the matrix 

of the form TMM =' , where T is an integer orthogonal matrix )1)(det( ±=T , is also the 

generator matrix of the latticeΛ  . Assuming matrix M to be non-singular square matrix 

i.e., bn = , the Gram matrix of the lattice Λ is given by  
















==

bbb

b
T

gg

gg
MMG

L

MM

L

1

111

 

The elements of the matrix G are the Euclidean square products of the pairs of vectors of the 

lattice basis. 

3.1.2 ML Decoding In Sphere Decoder 

 The lattice decoding algorithm attempts to minimize the metric in Equation (3-1) but 

employs the bounded distance search procedure. Thus it searches through the points of lattice 

that are falling inside the sphere of radius C  and centre at the received point. 

  Thus, sphere decoding problem is to solve 

||||min||||min wxr
rwx ∆−∈∆∈

=−                                                            Equation (3-2) 

So we search for the shortest vector w  in the translated lattice Λ−r  in the n-dimensional 

Euclidean space nR . We write 

uMx =  with nzu∈  

Mr ρ= with )...,( 21 nρρρρ =  nR∈  

∑
=

==
n

i
iivMw

1

ξξ with )....( 2,1 nξξξξ =   nR∈ and niuiii ,....1, =−= ρξ  

Where, ρ  and ξ  are real vectors. 
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1−= rMρ i.e., ρ is equal to the matrix product of the received vector ,r  and the inverse of 

generator matrix 1−M . ξ  defines the translated coordinated axes in sphere of the integer 

component vectors u of the cubic lattice nZ  

3.2  Flow-Chart 

 The flow chart showing of a Lattice decoding algorithm [Viterbo 1999] or a Universal 

lattice decoder is shown in Figure 3.1. The lattice decoding algorithm can be divided into two 

parts (1) Pre-processing part (2) Decoding part. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1: Flowchart of a Sphere decoding algorithm [Viterbo 1999] 
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3.2.1 Pre-Processing 

 The pre-processing stage of the sphere decoding algorithm involves the complex 

computations like Cholesky decomposition of the Gram matrix G, finding inverse and transpose 

of generator matrix M. The resultant matrices are passed to the decoding part where they are 

further exploited to carry on other computations, thereby reducing the complexity of the 

decoding part. The variables and specialized functions used at this stage are described in detail 

below. 

 An inverse matrix of the lattice generator matrix is computed. Another important function 

carried out in the preprocessing stage in the algorithm is the Cholesky factorization of the Gram 

matrixG . Gram matrix is equal to the product of lattice generator matrix M and its transpose,  

TMMG = yields RRG T=  where, R  is the upper triangular matrix. 

 From the algorithm )( ,kjq  is the element of Cholesky factor matrix.  

3.2.2 Decoding 

 In the decoding part, the integer component of lattice point vector u closest to the 

transmitted signal constellation x is found as an output when the Cholesky factor matrix )( ,kjq  , 

the square radius of the sphere C and the received vector with respect to lattice ρ  are taken as 

inputs. 

 Considering the metric properties of the lattice, we can say that the minimum squared 

Euclidean distance between any two points of lattice equals the minimum of the quadratic 

form )(ξQ .  

TTT MMGQ ξξξξξ ==)(                                                    Equation (3-2) 
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If the lattice point being searched is within the sphere with square radius C and centered at the 

received point then 

∑∑
= =

≤===
n

i

n

j
jiij

TT CgMMQw
1 1

2 )( ξξξξξ                     Equation (3-3) 

Thus the sphere of square radius C and centered at the received point is transformed into an 

ellipsoid centered at origin of the new coordinate system defined byξ .  

 Cholesky factorization yields RRG T= , where R is an upper triangular matrix. By further 

analyzing the above equations we get 

∑ ∑
= +=

≤+===
n

i

n

ij
jijiii

TT CrrRRRQ
1

2

1

2 )()( ξξξξξξ                         Equation (3-4) 

Substituting 2
iiii rq = and iiijij rrq /=  for i = 1,…, n, j = i + 1,…, n, we can write (3-4) as follows 

∑ ∑
= +=

≤+=
n

i

n

ij
jijiii CqqQ

1

2

1
)()( ξξξ                                                         Equation (3-5) 

 We find the equations of the border of the ellipsoid to estimate the upper and lower 

bounds of the integer component value iu  at the thi  layer. Therefore the ranges for the integer 

component value at thi layer are given by  

                                                                                                                                                                                                     

                                                                                                                        

                                                                                                                                     

                                                                                                              Equation (3-6) 

 

 Thus the upper bound, iL  and the index, iu are simplified as follows 

                                                                                                              Equation (3-7) 

                                                    Equation (3-8) 
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Where, the variables iS  and iT  are written as  

  lil

n

ilinlii qS ξρξξ
1

)......(
+=+ Σ+=                                                    Equation (3-9) 

  −== −− CTT niii ).....(11 ξξ jlj

n

lj
q ξ

1+=
Σ = 2)( iiiii uSqT −−            Equation (3-10) 

 Thus the variables iS , iT  and one of the outputs of the pre-processing part iiq  are used to 

determine and recursively update the values of bounds.  

 The index iu is initially fixed at the lower bound and incremented in steps until it exceeds 

the upper bound of that layer. Search procedure starts at the bottom layer i.e., at 4=i and 

continues switching the layers step by step by checking various conditions at each layer until it 

reaches the top layer and a valid lattice point vector is reported. When the vector inside the 

sphere is found, its square distance from the center is computed which is given by 

2
11111

2 )( uSqTCd −+−=
Λ

                                                      Equation (3-11) 

 This value is compared to the minimum square distance 2d (initially set equal to C) found 

so far in the search.  If it is smaller then we have a new candidate closest point and new value 

for 2d  updated with 
Λ

2d  . Thus the search continues like this until all the vectors inside the 

sphere are tested.  

 If no point in the sphere is found the sphere is declared empty and the search fails. In this 

case the squared radius C must be increased and the search is restarted. Thus finally we search 

the lattice point closest to received point. 

 The advantage of this method is that we never test the vectors which are present outside 

the sphere. 
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3.3 Decoding Procedure 

 The original sphere decoding algorithm performs step-by-step procedure as follows, 

The inputs are QC ,,ρ  and output is 
Λ

u  

Step 1. (Initialization)  

Set CdCTni n === 2,, (current sphere square radius) and 

 

Step 2. (Bounds on index iu ) 

 Compute the upper and lower bounds. Assign the upper bound to iL  and the lower bound 

to index iu initially. Thus 

 

   

Step 3. (Natural spanning of the interval) 

 Increment the index iu by one step, i.e., 1+= ii uu  

If ii Lu ≤ and 1>i , i.e., the index is within the range and layer is not the top layer then go to Step 

5, else if ii Lu ≤ and 1=i , i.e., the index of the top layer is within the bound then go to Step 6, 

else if ii Lu >  go to Step 4.  

Step 4. (Increase i: move one level down)  

 If ni = terminate, i.e., the end of the search procedure is reached and closest lattice point 

to received point is found, else set 1+= ii , i.e., the search procedure goes one level down in the 

hierarchy, and go to Step 3. 

Step 5. (Decrease i: move one level up) 

nkS kk ..........1, == ρ

 

  1/

/

−+−=

+=

iiiii

iiiii

SqTu
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Let iii u−= ρξ  

lli

n

ilii qS ξρ ,111 −=−− Σ+=  

2
1 )( iiiiii uSqTT −−=−  

1−= ii  and go to Step 2. 

The variables needed to recursively update the lower and upper bounds are computed at this step 

and the search procedure goes one layer up in the hierarchy to re-compute the upper bound and 

index iu . 

Step 6. (A valid point is found)  

 Compute 2
11111

2 )( uSqTCd −+−=
Λ

, the square distance of the vector found from the 

center. Then compare this value to the minimum square distance 2d  i.e., If 22 dd <
Λ

 then save 

the lattice point, nkuu kk ....1, ==
Λ

and reduce the search area by assigning the minimum square 

distance value 2d with 
Λ

2d and the variable nT at the bottom layer with 
Λ

2d and again set ni = .  

 

Then go to Step 2 repeat the whole process once again. Else go to Step 3, where the index value 

iu at each layer is incremented and the search procedure continues as mentioned. 

3.4 High Level Simulation of the Sphere Decoding Algorithm 

 Before actually carrying out the implementation of the sphere decoding algorithm in the 

next section, which is the main concern of our thesis, it was felt necessary to visualize the 

functionality and working of the sphere decoder. Therefore the whole algorithm, including both 

22
2 ,

ΛΛ

== dTdd n
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pre-processing and decoding parts is initially developed in Matlab for simulating at behavioral 

level. The complete system is brief below:  

• Generation of Lattice generator matrix based on normally distributed random numbers 

generated using MATLAB function “randn”  

• Generating the upper triangular matrix by Cholesky decomposing of the gram matrix.  

• After the input information to the decoder is ready, sphere decoding algorithm which finds 

the closest lattice point is simulated using Matlab. Its functionality is verified by comparing the 

obtained lattice point with the transmitted signal constellation vector. 

 The functionality of the decoder is verified at high level of abstraction and behavior of 

the decoder design is simulated using Matlab. Thus preliminary information of outputs is 

obtained. After ensuring the functionality of the decoder design, the corresponding hardware 

architecture is planned.   

3.5 Decoder Architecture Scheduling 

 The hardware architectural model of Sphere decoder is planned in accordance with the 

simulated version. Each of the operations like calculating the bounds, calculating variables 

needed to update the bounds, spanning of index at each level and finding the Euclidean distance 

of a point from the received point are dealt in separate blocks. Different components are 

designed for specific set of operations at each block. Each of these blocks are designed in VHDL 

and tested for their functioning with the help of stand alone test benches and different sets of 

data. Digital circuit designs are invariable faced with the need to design circuits that perform 

specific sequence of operations, for example controllers used to control the operation of other 

circuits [Smith 1997]. Thus the decoder controller is designed for the hardware architecture of 

sphere decoder. The flowchart of the decoder controller of the original sphere decoding 
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algorithm divided into states is shown in Figure 3.2. FSMs are proven to be a very efficient 

means of modeling sequencer circuits. By modeling FSMs in a HDL for use with synthesis tools, 

focus could be on modeling the desired sequences of operations without being overly concerned 

with circuit implementation. In Figure 3.4 the state diagram of the decoder controller is given. 

Sequences of operations which are almost independent of each other are combined into one 

single state. While state division, care is taken in regard of processing time needed at each state 

to maintain balance at the end of simulation of the algorithm. 

 Here, in our case, the six steps of the sphere decoder are modeled to four states FSM. 

This is because sequence of operations at some steps which do not really need separate states are 

combined with others and modeled into a single state. The Step 1, Step 2 and Step 3 are 

combined and modeled as State A. Step 5 as State B. Step 3 is combined with Step 4 and 

modeled into State C. Step 6 as State D. Since Step 3 involves simple index increment it need not 

be a separate state. It could be a part of State A or State C based on the requirement. If index has 

to be incremented immediately after it is assigned with lower bound, then it is part of State A. If 

only spanning of the interval with existing bounds, then it is part of State C. 
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3.5.1 Data Flow of the Algorithm 

 

 

Figure 3.2: Flowchart of a Sphere decoding algorithm showing states 

 
 As seen in Figure 3.2, the computations at each of the four states in the recursive lattice 

decoding algorithm are discussed in detail here. Along with the states and state transitions, the 

Pre-processing: Calculate kjq ,  and ρ
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1>i  
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Find the square distance, 
Λ

2d of a point inside the 
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Λ

2d  with 2d , the 

minimum square distance. If 22 dd <
Λ
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currently best ku , update the minimum square 
distance and variable nTd ,2 respectively and 
continue the search process from bottom 
layer ni = . Else increment the index )1( =iui by a 
scaling factor and continue the search process. 

State B 
Compute the variables 

1−iT  and iiS ξ,1− . Up by 
one level 1−= ii  

Y N 

Y 
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components enabled at each state are also discussed in detail. As we said earlier the 

computations are divided into four components.  

 In State A, it finds the upper and lower bounds of an integer component value at each 

layer. The variable iL is assigned an upper bound and the index iu  is initially set at lower bound. 

Separate hardware component is designed for computing the square root. The decoder controller 

when in State A, enables the all the functional blocks designed to compute the above variables.  

 In State B, it computes the variables ii ST ,  and move one layer up. These variables are 

used to recursively update the lower and upper bounds at that layer. A functional block to 

compute the above variables in enabled at this state by the decoder controller. In addition to that 

the functional blocks active in previous state are disabled by the decoder controller. 

 In State C, check the layer at which search procedure is currently present. If it is the 

bottom most layer, terminate the search procedure and declare the last saved u as the closest 

lattice point. If the search procedure is at layers other than the bottom most layer move one layer 

down  and increment the index value iu at that layer by the scaling factor. At this state, the 

spanning of the interval at each layer, i.e., incrementing iu  is performed by the enabled 

functional block. All other details are taken care by the decoder controller.  

 In State D, the
Λ

2d , the square distance of 
Λ

u the lattice point present inside the sphere from 

center of the sphere or the received point is computed and is compared with the minimum square 

distance 2d . Based on this, decision about the next state is made by the decoder controller.  

At each state after obtaining the output from the blocks the decoder controller makes the decision 

about the next state in the current state. Decoder controller is designed in such a way that it 

disables the active functional blocks of previous state in addition to enabling the functional 
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blocks of current state in the first clock cycle of current state itself. Thus when all the required 

conditions are met and all the sequence of operations are completed the results are output. The 

functioning of the decoder controller and all its components is tested using a test bench. 

 The pin diagram of the decoder controller for the original sphere decoding algorithm and 

its functionality is shown in is shown in Figure 3.3 and Table 3.1. 

 

Figure 3.3: Input and Output pins for original sphere decoder 

 

 

 

 

 

 

 

CD<15:0>

q<1><1><15:0>

q<4><4><15:0>
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rho<4><15:0>
clk
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Table 3.1: Pin descriptions for the decoder controller of the original sphere decoding algorithm 

Pin  Width Type  Description 

CD 16 Input square radius of the sphere 

q(1,1) - q(4,4) 16 Input elements of Cholesky factor matrix 
Invqx16384(1) – 

invqx16384(4 16 Input 
Inverse of diagonal elements of the Cholesky factor 

matrix 

rho(1) - rho(4) 16 Input coordinates of received point vector with respect to lattice

clk) 1 Input clock signal 

res 1 Input  reset signal 

START 1 Input control signal to initialize the current state 

ubar(1) - ubar(4) 16 Output coordinates of the closest lattice point being searched 
 

3.5.2 FSM Design 

 A finite state machine (FSM) of a decoder controller is designed to control and organize 

the sphere decoding algorithm and it synchronizes the operations between functional blocks. The 

five parameters iu , iL , the index and upper bound respectively at the current investigated layer of 

the lattice, the layer ),1( nii ≤≤ the square distance of the lattice vector inside the sphere from 

the received vector 
Λ

2d and the minimum square distance 2d determine the state transitions as 

shown in the Figure 3.4 below. 

 If the search procedure is in State A then after computing the index iu and upper 

bound iL , it checks for the conditions if the index is within range of the upper bound or equal to 

upper bound and the current layer is not the top layer then the control goes to State B. At State B, 

the variables needed to update the index and upper bound at State A are computed. Every time 
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after State B control goes back to State A and continues to carry out the operations at this state. 

Again when in State A, it looks for the condition if the index is within the range of upper bound 

or equal to it and the current layer is the top layer then control moves to State D from State A. 

And if index exceeds the upper bound at any layer then the control moves to State C from State 

A. When the decoder controller is in State D, it computes square distance 
Λ

2d and compares it 

with the minimum square distance 2d , if it is less then control goes to State A from State D and 

whole search procedure repeats once again. And if 
Λ

2d is greater than or equal to the value of 

2d then controller moves from State D to State C. At State C the index value is incremented and 

the conditions are checked. The state transition from State C to other states is same as it was 

from State A to other states.  

 

Figure 3.4: The FSM diagram of Sphere decoding algorithm 

 A  B 

 C 
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 D 
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3.6 Simulation Results 

 The decoder core is designed in VHDL at register transfer level (RTL). Mentor Graphics’ 

Modelsim SE 5.8 tool is used to create, compile and simulate the VHDL source code of the 

decoder core. A design library named work is automatically created in the project directory upon 

creating the new project and all the necessary design files and test bench are held together in the 

project directory. The VHDL source code is compiled to test its syntax. Successfully compiled 

source code is simulated using different sets of data. At the simulation step, initially the design is 

loaded successfully if no errors are reported. View the signals of the design and add the 

necessary signals to the waveform window.  Run the wave until output results of the whole 

design are obtained. Processing time taken by each state of the decoder controller individually 

can be acquired from the wave. Table 3.1 shows the processing time of each state of FSM of the 

Sphere decoder after successful VHDL simulation. 

Table 3.1: Simulation Times of each state in original algorithm  

State A B C D 

Simulation Time in 
clock cycles 37 7 2 7 

 

 The determination of lower and upper bounds of an integer component value at a 

particular layer involves a 32-bit square root computation. To compute the square-root, here we 

made use of non-restoring algorithm explained in Section 3.6.1  

3.6.1 Non-Restoring Square Root Algorithm 

 In this algorithm [Piromsopa 2001], the radicand is a 32-bit unsigned number. The square 

root is a 16-bit unsigned number. R is the remainder ))(( 2QDR −=  which is a 17-bit integer. 
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 Since this is a redundant representation for a square root, exact bit can be obtained in 

each iteration. 

Let  
D be 32-bit unsigned integer. 
Q be 16-bit unsigned integer (Result) 
R be 17-bit integer )( 2QDR −=  
Algorithm 

;0
;0

=
=

R
Q

 

For i = 15 to 0 do 
 If )0( ≥R  

  
);1)((

);3)(()2(
orQRR

andiiDorRR
<<−=

+>><<=
 

 Else 

  
);3)((

);3)(()2(
orQRR

andiiDorRR
<<−=

+>><<=
 

 End if 
 If )0( ≥R  then 
  ;1)1( orQQ <<=  
 Else 
  ;0)1( orQQ <<=  
 End if 
 
 The above non-restoring algorithm for calculating the square-root of a number is 

explained clearly by considering an example. Here in the example we consider D as an 8-bit 

radicand equal to value 140 ).10001100( 2  The 4-bit solution Q should be 11 )1011( 2  and 

remainder R should be equal to 19 )10011( 2 . 

Set Q = 0000 and R = 000000 
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1011Q0,R

010011010101-101000R0,R

0,i

0101Q0,R

001010001011011111R0,R

1,i
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011111000101000100R0,R
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3,i
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=≥

=−=≥

=

 

 To correctly determine value of R, one more extra bit is added (Consider as sign bit). 

Thus the result Q is obtained.  

 From the simulation results of the sphere decoder core it is seen that sequence of 

operations at State A take 37 clock cycles. Out of this, 32 clock cycles are needed for a square 

root computation. The sequences of operations at other states take less than 10 clock cycles. 

Comparing with the other states, processing time of State A is remarkably high. Due to this 

imbalance and very high processing time, the throughput of the system is affected noticeably. 

This imbalance has to be removed for efficient and high throughput implementations. This 

eventually results in an un-efficient hardware implementation of the sphere decoding algorithm.  

 An improved form of the algorithm is suggested with modifications in the sequences of 

operations of each functional block. These modifications are such that the square root 

computation is no longer necessary. They can be explained in detail in the next chapter. 
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4 Improved Sphere Decoding Algorithm 

 The improved sphere decoding algorithm is derived with modifications applied to the 

sequences of operations at each state of the original algorithm in this chapter. The dataflow of 

the improved algorithm is discussed. A table showing hardware processing time needed by each 

state is given. Data dependency of the algorithm is also analyzed. 

4.1 Improved Sphere Decoding Algorithm 

  An improved sphere decoding algorithm is proposed. The need for the improved 

algorithm arises from the simulation results of the original algorithm. As we have seen, State A 

of the original algorithm requires 37 clock cycles for completion, out of which 32 clock cycles 

are taken by square root itself. On the other hand the processing time required by each of the 

remaining states is limited to very few clock cycles (Refer Table 3.1). The sequences of 

operations at other states have to wait for the completion of State A if they are depending on the 

results of State A. This time delay can be reduced if the square root computation is avoided. 

Therefore we suggest some modifications to the original algorithm such that square root is 

avoided in its sequences of operations and as a result emerges an improved sphere decoding 

algorithm. The derivation of modifications is given in Section 4.1.1. The sequence of operations 

at State A of the improved algorithm use simple adders and multipliers to compute the upper 

bound iL  and the index iu . Since there is no square root computation involved, a hardware 

component to compute square root is no longer needed. In the improved algorithm, modifications 

are present at the sequences of operations, whereas the state division and the state transition 

decisions depending on the outputs obtained from the functional blocks at each state remains the 

same.  
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4.1.1 Derivation of Modifications 

 As we know the minimum squared Euclidean distance between any two points of the 

lattice equals the minimum of quadratic from )(xQ  for any nZx∈ [Viterbo 1993]. Applying this 

to the sphere decoder, squared Euclidean distance between any point inside the sphere and 

received point must be less than or equal to the square radius of the sphere.  

CQw ≤= )(2 ξ                                                                Equation (4-1) 

∑ ∑
= +=

≤+
n

i

n

ij
jijiii Cqq

1 1

2)( ξξ                                 Equation (4-2) 

Expanding this, we get 

.....)......().......( 2
2323222

2
1212111 ++++++ nnnn qqqqqq ξξξξξξ + 

    Cqqq nnnnnnnnn ≤++ −−−−
22

)1(1)1)(1( )( ξξξ                                     Equation (4-3) 

We know that iii u−= ρξ                               Equation (4-4) 

Substituting equation (4-4) in (4-3), we get 

++−+−+−+−++−+− ...))()(())(...)(( 2
442433232222

2
122121111 uquququququq nnn ρρρρρρ  

Cuq nnnn ≤− 2)(ρ                                                                                     Equation (4-5) 

Equation (4-5) cannot be solved because of presence of n unknowns. Therefore we need to split 

the expression and solve it. Due to the upper triangular form of Cholesky factor matrix, equation 

(4-5) represents a set of conditions.  

at i = n,  Cuq nnnn ≤− 2)(ρ                                                                                     Equation (4-6) 

at i = n-1,  Cqquq nnnnnnnnnn ≤++− −−−−−
22

,1111,1 )()( ξξρ                                  Equation (4-7) 

and so on. 
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Equation (4-6) can be solved easily because of only one unknown i.e., nu . Considering the above 

conditions in the order from n to 1 i.e., starting at the bottom layer and carrying on the backward 

substitution, we obtain the admissible values of each symbol iu for known values of ni uu ,,1 K+ . 

The range of the index iu  as found in the original algorithm is given as  

 

 

Equation (4-8) 

 

In equation (4-8), the upper and lower bounds of index iu  are found by using a square root 

computation. The main idea in the improved algorithm is to avoid square root 

At ith layer, equation (4-5) can be written as   
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Cuq nnnn ≤− 2)(ρ                                                                                           Equation (4-9) 

Simplifying it further,  
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 When the search procedure completes, index vector u should be the closest point to the 

transmitted signal. Because signal constellation is known at the receiver part, a new method of 

determining the search range of lattice index can be achieved by directly substituting each 

symbol from the signal constellation into equation (4-10). Here we assume the integer 

component value iu as one among the signal constellation elements nkxk ....1, =  (For a 4-PAM 

signal, symbol set is ranging as {-3, -1, 1, 3}) then equation (4-10) can be written as  
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Cquqqxq
n
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+= +=+= 1

2

1

2

1
)()( ξρξρ                Equation (4-11) 

If we redefine variable lT  as                                                

                  2)( lllll uSqT −=                                            Equation (4-12) 

and variable iS holds the same definition as in the original algorithm described in equation (3-9)  

∑
+=

+=
n

ij
jijii qS

1

ξρ                                        Equation (4-13) 

Finally by substituting equation (4-12), (4-13) in equation (4-11), we get the expression                                 

CTxSq
n

il
lkiii ≤+− ∑

+= 1

2)(                                              Equation (4-14) 

∴ CTxSqp
n

il
lkiiik ≤+−= ∑

+= 1

2)( ∀ values of nk ....1=                  Equation (4-15) 

The upper bound, )max( ki xL = ∀  Cpk ≤  

The index, 1−= ri xu for Cpp kr ≤= )min( ∀ values of nk ....1=  

 If vector p is empty, then the upper bound iL and index iu are assigned with maximum 

and minimum values of signal constellation. 

 Considering an example to explain this in detail, at SNR = 20 dB and generator matrix M 

is given as  



















−
−

−
−−

=

6686.06900.05937.16236.1
2902.13999.02540.17143.0
7119.05711.08580.03362.1
8156.04410.06918.02944.0

M  

 Then the received signal obtained after scaling and rounding is equal to 

[ ]376130119385 −−  when the transmitted signal constellation is equal 
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to [ ]384128128384 −− . Assuming the appropriate choice of squared sphere radius, C = 512 

(after scaling and rounding). In such a case, the sequence of operations to find the index iu , and 

upper bound iL  go as follows. 

at i = 4, p = [2714   1193   289   0] 

The upper bound, )max( ki xL =  = max (-128, -384) = -128 

The index, 1−= ri xu for Cpp kr ≤= )min(  

0=rp  

512−=∴ iu  

 This avoids square root computation while finding upper and lower bounds. And thus the 

index iu  takes the value within the range of signal constellation. The main advantage achieved 

from this improved sphere decoding algorithm is the significant reduction in the processing time 

of State A when the algorithm is prototyped on hardware. The flowchart of the improved 

algorithm is given in Figure 4.1.   



 35

4.1.2 Flow-Chart 

 

Figure 4.1:  Flow chart of improved algorithm 
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4.2 Decoding Procedure  

 The original sphere decoding algorithm performs step-by-step procedure as follows, 

The inputs are QxC ,,,ρ  and output is 
Λ

u  

Step 1. (Initialization)  

Set CdTni k === 2,0, (current sphere square radius) and 

    

Step 2. (Bounds on index iu ) 

 Compute the parameter kp  such that the upper bound and index values are found.  

  Thus CTxsqP
n

ij
lkiiik ≤+−= ∑

+= 1

2)( , ),.....1( nk =  

  wherexL ki ),max(=  CPk ≤   

  ,)min(,1 CPPwherexu krri ≤=−= ),.....1( nk =  

Here when signal constellation vector is known, the upper bound and index can be computed. 

Step 3. (Natural spanning of the interval) 

 Increment the index iu by one step, i.e., 1+= ii uu and compute the variable iT at each 

layer i. Thus 2)( iiiii uSqT −=  

If ii Lu ≤ and 1>i , i.e., the index is within the range and layer is not the top layer then go to Step 

5, else if ii Lu ≤ and 1=i , i.e., the index of the top layer is within the bound then go to Step 6, 

else if ii Lu >  go to Step 4.  

 

 

nkS kk ..........1, == ρ
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Step 4. (Increase i: move one level down)  

 If ni = terminate, i.e., the end of the search procedure is reached and closest lattice point 

to received point is found, else set 1+= ii , i.e., the search procedure goes one level down in the 

hierarchy, and go to Step 3. 

Step 5. (Decrease i: move one level up) 

 Let iii u−= ρξ , lli

n

ilii qS ξρ ,111 −=−− Σ+=  

1−= ii  and go to Step 2. 

The variables needed to recursively update the lower and upper bounds are computed at this step 

and the search procedure goes one layer up in the hierarchy to re-compute the upper bound and 

index iu . 

Step 6. (A valid point is found)  

 Compute ∑
=

Λ

=
n

i
iTd

1

2

, the square distance of the vector found from the center. Then 

compare this value to the minimum square distance 2d  i.e., If 22 dd <
Λ

 then save the lattice 

point, nkuu kk ....1, ==
Λ

and reduce the search area by assigning the minimum square distance 

value 2d with 
Λ

2d and again set ni = . Thus 
Λ

= 22 dd  

Then go to Step 2 repeat the whole process once again. Else go to Step 3, where the index value 

iu at each layer is incremented and the search procedure continues as mentioned. 

4.3 High Level Description of the improved Sphere decoder  

 For improved sphere decoding algorithm, we follow the same order of steps as in original 

form. The functionality and working of the improved form of the sphere decoding algorithm is 
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visualized and tested using Matlab simulation. For this the complete algorithm including the 

preprocessing and decoding parts is initially developed in Matlab. For detail description, follow 

Section 3.4. 

4.4 Decode Architecture Scheduling  

 The hardware architectural model of the improved form of sphere decoder is designed in 

accordance with the simulated version. Sequences of operations like finding the upper bound and 

index value, calculating variables needed in computing the index value, spanning of index and 

partial Euclidean distance variable, and finding Euclidean distance of a currently investigating 

point from the received point are individually dealt in separate functional blocks. Different 

hardware components are designed for each set of functional block operations. Each of these 

blocks are designed remotely in VHDL and tested for their functioning with the help of stand 

alone test benches and different sets of data. The decoder controller is designed for the hardware 

architecture of the improved sphere decoding algorithm. The flowchart showing the states and 

sequences of operations at each state for the improved algorithm are shown in Figure 4.2. Details 

about the state division are same as for the original algorithm (refer Section 3.5.2). Therefore the 

state diagram for the FSM decoder controller of improved sphere decoding algorithm is same as 

Figure 3.4. 
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Figure 4.2: Flow chart of an improved algorithm showing states 

 Similar to original algorithm, a state machine with four states is developed for the 

improved sphere decoding algorithm. The Figure 4.2 depicts the states, state transitions and 

sequences of operations at each state. Operations at each state are nothing but the operations of 

functional block enabled at that state. For each functional block, an entity - architecture model is 
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developed in VHDL. Each of these hardware components is tested for its functionality using 

corresponding test benches.  

 In State A, it finds the upper bound iL , of an integer component value, index iu , and 

partial Euclidean distance variable, iT at each layer. Decoder controller enables the functional 

block designed to compute above variables. 

Similar procedure is followed at all other states. Decoder controller enables the functional blocks 

needed to compute variables at that state and disables the previous state components. After all 

possible state transitions the decoder controller finds the closest lattice point to the received 

point. The whole decoder controller system is designed in VHDL and hardware functionality is 

tested using a test bench at RTL level of abstraction. 

 

Figure 4.3: Input and Output pins for improved sphere decoder 

 
 The pin diagram of the decoder controller of the improved sphere decoding algorithm and 

its functionality is shown in Figure 4.3 and Table 4.1. 
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Table 4.1: Pin descriptions for the decoder controller of the improved sphere decoding algorithm 

Pin  Width Type  Description 

CD 16 Input square radius of the sphere 

q(1,1) - q(4,4) 16 Input elements of Cholesky factor matrix 

rho(1) - rho(4) 16 Input 
coordinates of received point vector with respect to 

lattice 

x(1) - x(4)  16 Input coordinates of transmitted signal constellation vector 

clk 1 Input clock signal 

res 1 Input  reset signal 

START 1 Input control signal to initialize the current state 

ubar(1) - ubar(4) 16 Output 
coordinates of the closest lattice point being 

searched 
 

4.5 Hardware-Software Scenario 

 The complete file structure and planning, of both the simulation and hardware 

development processes are shown in Figure 4.4. The inputs are generated randomly. The receiver 

output obtained is noise corrupted. These inputs are preprocessed. Using preprocessed data and 

necessary inputs, the uncoded receiver signal is decoded by the sphere decoding algorithm (.m 

file of original or improved version). The decoded outputs and errors are recorded. After the 

decoder is implemented in hardware, its functionality will be verified with help of same input 

used for checking the decoding algorithm functionality. In the software simulation i.e., in 

Matlab, algorithm is tested with 10000 simulations or sets of data at a time, whereas in hardware 

i.e., in VHDL, algorithm is tested for single data or simulation at a time. 
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Figure 4.4: Overview of the complete system 

4.6 Simulation Results 

 The decoder core of the improved sphere decoding algorithm is designed in VHDL at 

register transfer level (RTL). Mentor Graphics’ Modelsim SE 5.8 tool is used to create, compile 

and simulate the VHDL source code of the decoder core. A design library named work is 

automatically created in the project directory upon cresting a new project and all the necessary 

design files and test bench are held together in the project directory. The VHDL source code is 

compiled for its correct syntax and is then executed. Upon successful loading of design, signals 

are added to the wave and allowed to run until the results are obtained. The waveform gives the 

details like the processing time of each state, number of time each state is visited and order of 

states one following the other. The processing time of each state in improved algorithm 

approximately are shown in Table 4.2. 
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Table 4.2: Simulation Times of each state in improved algorithm  

State A B C D 
Simulation Time in 

clock cycles 7 7 7 3 
 

The simulation results of the improved sphere decoding algorithm show significant improvement 

compared to the original algorithm. At State A, number of clock cycles required falls to 7 from 

37. This improvement is due to discarding square root in sequence of operations at State A. With 

approximately equivalent clock cycles at each state, the parallel-pipeline implementation could 

speed up the search procedure. None of the states need to wait for long time to start or make 

decisions about next state as it happened in the original algorithm. i.e., when two states are 

implemented in parallel, they start simultaneously and come to an end approximately at the same 

time. No latencies are inserted into the system. Thus the improved algorithm is favorable for 

parallel design implementation.  

4.7 Data Dependency 

 

Figure 4.5: Dependency graph of the Sphere decoding algorithm 
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 Unlike other decoding algorithms such as Viterbi and Turbo decoding algorithms, this 

sphere decoding algorithm has high data dependency between states as depicted in Figure 4.5. 

State A is flow-dependent on states B and D if the search procedure switches to A from B and D 

because the parameters iS  and  
Λ

2d calculated in states B and D respectively are used in A when 

the upper and lower bounds of the value are determined. This means that either state B or state D 

cannot be implemented in parallel to state A. Similarly states B and D are flow dependent on A, 

C if the search procedure switches to B or D from A or C because the parameter iT  and iu , the 

integer component at thi layer are used in some computations in states A and C.  This concludes 

that states A or C cannot be implemented in parallel to states B or D. Looking at the possibilities 

of pipelining, it is seen that State A or C can be implemented in pipeline to State B. Considering 

the case of State A switching to State B, it can be observed that part of operations involved in 

calculation of variable iS  are independent of index iu , the output of State A. This means state B 

is partially dependent on state A. Therefore, State B can begin before the completion of State A 

or before iu  is computed. Once index iu  is determined, State B continues with other operations. 

 Thus concept of pipeline evolves between State A and B. The case of State A pipelined to 

State B also supports partial parallelism or in other words, it can be stated as state B is partially 

dependent on state A. Therefore, when one state is partially dependent on the other, pipelining 

could be evolved between them. In case of search procedure switching from C to B, it is seen 

that computations in state B use the index iu and not iT  of state C where iT  is computed later 

than iu . This means state B can also start before state C ends. Similar is the case of A pipeline to 

B, it can be stated that State C pipeline to State B.  
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 Both states A and C can neither be executed in parallel nor in pipeline to State D. This is 

because, squared distance 
Λ

2d computed at State D requires variable vector T which is obtained at 

the end in both A and C.  

 Dependency from A to A is not investigated because it is not possible for state A to 

follow itself in this algorithm. Similar is the case with state B and D. But if we analyze the 

search procedure in detail, it can be found that state C is not data dependent on state D and itself 

because it does not use any of the parameters or values calculated during any of the states that 

could jump to state C.  

 Based on the data dependency analysis, the possibility of the parallelism and pipelining 

among the four states is found as follows. 

            C || C, D || C 

            A  B, B  A, A  D, D  A, C  D, C  B 

            A | B, C | B    

            B      A, A       D, D     A, C       D 

 Where, D || C means if current state is D and next state is C, these two states can be 

implemented at the same time, A  B means if current state is A and next state is B, then these 

two states cannot be implemented in parallel, C | B means if current state is C and next state is B, 

then these two states are implemented in pipeline i.e., state B is started before the end of state C 

is reached, and B    A means if current state is B and next state is A, then these two sates cannot 

be implemented in pipeline. 
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5 FPGA Based Architecture Design 

 The next stage of work involved is the parallel-pipeline implementation of the improved 

sphere decoding algorithm and therefore designing an efficient architectural model for it. Hence, 

this chapter discusses in detail the parallel-pipeline architecture for improved lattice decoding 

algorithm. The design optimization techniques are also illustrated. 

5.1 Lattice Decoder Architecture 

 The hardware architectural model for improved sphere decoding algorithm is shown in 

Figure 5.1. The decoder controller communicates with the functional blocks at each state. The 

data transfer and decision about next state are made at the decoder controller. Data buffer unit 

consists of array of registers to temporarily store data during the decoding process.  

 

Figure 5.1: The hardware architecture of improved sphere decoding algorithm 

 The decoder controller is designed using FSM to organize the improved sphere decoding 

algorithm and to synchronize the operations of functional blocks. The state diagram of this FSM 

is same as given in Figure 3.3. As the data flow and state transition decisions are same in both 
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original and improved form of the sphere decoding algorithms, the state diagram is similar. 

Differences between both the algorithmic models lie in the sequences of operations involved at 

each state. Thus the improved form of the sphere decoding algorithm reduces the individual 

complexity at each state which is beneficial to the entire decoder system model.   

 Based on the data dependency analysis, we designed a parallel-pipeline architectural 

model for improved sphere decoding algorithm. For the parallel architectural model, in addition 

to the existing four functional blocks, three duplicated functional blocks for sequences of 

operations at State C are created. This is because State C can be in parallel to another State C. In 

our case, system being a 4-transmit and 4-receive antenna system i.e., n = 4, maximum of four C 

states can be performed simultaneously in parallel to each other. For a general case with m-

transmit and n-receive antennas, maximum n number of C states could be implemented in 

parallel. Thus, n-1 numbers of duplicate functional blocks for State C need to be created. 

5.2 Parallel Structure 

 Based on the data dependency analysis in Chapter 3, a parallel structure is developed to 

implement the sphere decoding search procedure. Seven hardware modules are created in this 

structure, with one for each state and three duplicated modules for state C because four 

continuous C states could be implemented at the same time in parallel. When all four C states are 

implemented in parallel, it’s the end of the algorithm i.e., the closest lattice point is found or no 

lattice point is reported. The hardware architectural model for parallel-pipeline implementation is 

shown in the Figure 5.2.  
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Figure 5.2: The hardware architecture of parallel-pipeline improved sphere decoding algorithm 
 
  These seven modules are executed simultaneously to speed up the search procedure as 

shown in Figure 5.3 (a) and (b) below. For an example of an improved sphere decoding 

algorithm, the sequence of states captured Eb/No = 6 dB is shown in Table 5.1, to demonstrate 

the parallel-pipeline implementation. 

  
Table 5.1: Sequence of states for an example of improved algorithm at 6dB SNR 

Iteration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ………… 

State A B A B A B A D C D C D C C B A ………… 
 

 Figure 5.3 (a) and (b) give the pictorial description of the above sequences of states when 

implemented in sequential and parallel-pipeline. For making the explanation more simple and 

clear, the iterations from 5 - 16 are considered. The difference in sequential and parallel-pipeline 

implementations exists at these iterations.  
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(a) 

 

(b) 

Figure 5.3: An example of improved sphere decoding algorithm (a) Sequential implementation (b) 
Parallel-Pipeline implementation 

 

 The shaded boxes represent the following conditions: 

  Module enabled and results accepted. 

  Module enabled and results ignored. 
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 In the example if the current state is A then module B is enabled with a time delay, 

making A be implemented in pipeline to B (refer Section 4.7). The results of B are accepted or 

ignored depending on the state transition conditions as shown in Figure 3.4. In Figure 5.3 (b) at 

first iteration, results of B are accepted as the state transition conditions lead to B as next state. 

Therefore the length of iteration is equal to the sum of processing time of module A and the extra 

time taken by the module B. In the next iteration although module B is enabled, the results are 

ignored as the state transition conditions lead to D as next state. Length of the iteration in this 

case is equal to the processing time of module A. In the case of pipelining when the results are 

accepted, the pipelining state has to be allowed to reach completion. Thus, more time is needed 

for iterations with pipeline and results being accepted.  

 If the current state is D then module D and all C modules are enabled, making D be 

implemented in parallel to all the C’s. This is because possible states after next state could be 

executed in parallel with the next state. The results of either one or multiple C modules is 

accepted or ignored based on the state transition conditions. In Figure 5.3 (b) at third and fourth 

iterations, the result of only one C is accepted as the next state is C and possible state after the 

next state is D. Length of iteration in this case is equal to the processing time of module C (as 

processing time of module C is higher than D). In fifth iteration along with the module D and all 

C modules, module B is enabled with a time delay. This is because state transition conditions 

lead to B as next state after all possible C’s and decision about accepting the result of B is 

already made within the allowed time delay. Based on the state transition conditions the results 

from two C modules are accepted. Average clock cycles at this iteration are equal to the sum of 

the processing time of State C (as processing time of State C is more than State D) and extra time 

needed by State B. 
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 For the purpose of transitions between the states, control signals are generated which 

enable the modules of next state. In hardware implementation, the decoder controller 

manipulates these control signals depending on the conditions produced by the data calculated in 

various states or modules. Separate decoder controller components are developed for each of the 

sequential structures of the original, improved algorithms and parallel-pipeline structure of 

improved algorithm. Not only the next states but the possible states after the next states are also 

enabled if they could be executed with the next state in parallel. This concept is made as the 

basis in modeling the HDL code for the parallel-pipeline structure.  
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5.3 VLSI Design Flow  

 The design flow adopted in this thesis is shown in Figure 5.4 

 

Figure 5.4: Design flow for an FPGA 
 
 After designs are verified using RTL simulations the next most significant step is 

synthesis process which deals with rendering of a complete design described in VHDL into 

technology specific circuits. Logic synthesis is a process by which algorithmic descriptions of 

circuits are turned into a design for electronic hardware of some nature. Common examples of 

this process include synthesis of HDLs, including VHDL and Verilog. Logic synthesis tools may 

be used to automatically convert the RTL description of a digital system into a gate level 
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description of the system.  In all the implementations in this work, a synthesis tool from Xilinx 

called ISE 6.2i is used and the target technology being the device XC2V1000-6ff896 from wide 

range of Virtex-II FPGA family. Project Navigator is the user interface for Xilinx ISE and its 

work space is presented in Figure 5.5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Workspace of Project Navigator 

 As seen in the Figure 5.5, all the necessary source files are added to the project which is 

seen in the sources for project window. Select the top-level source from the sources for project 
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window, set the timing constraints, and then perform the “synthesize” step. This will synthesize 

the whole project. Then perform the “implement design” step. This step involves three steps to 

finally achieve the place and route report. The maximum frequency of the digital circuit design 

prototyped on a FPGA hardware platform can be obtained as the output. The RTL schematic of 

the decoder controller generated by Xilinx ISE 6.2i synthesis tool is shown in Figure 5.6.  

5.4 Design Optimization 

 For a given lattice generation matrix M, the gram matrix TMMG =  is computed on DSP. 

The Cholesky factorization of this gram matrix yields an upper triangular matrix R which is also 

performed on DSP. Then 

∑ ∑
= +=

≤+===
n

i

n

ij
jijiii

TTT CrrRRRQ
1 1

22 )(||||})( ξξξξξξ  

Substituting 2
iiii rq = for ni ,....,1= and iiijij rrq /=  for ,,.....,1 ni =  ,,.....,1 nij += from this, it is 

simplified to 

∑∑
+==

≤+=
n

ij
jiji

n

ii
ii CqqQ

1

2)()( ξξξ  

where, C is the square radius of sphere centered at the received point and transformed into an 

ellipsoid centered at origin of the new coordinate system defined by ξ . The matrix Q is also 

computed on DSP and the results are passed on to FPGA. All the DSP computations are done in 

the pre-processing stage. The inverse of each of the diagonal element of matrix Q, i.e., iiq/1  is 

also computed on DSP. Thus using DSP to perform the computations of pre-processing stage 

simplifies the processing in FPGA. In most of the communication applications where decoding 

the large set of receiver data samples for a single channel matrix is a purpose, the pre-processing 

stage of the corresponding decoding algorithm has to be performed only once. This shows that 
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pre-processing stage is in imbalance with the decoding stage in terms of number of computations 

or load of computations. And it is also known that pre-processing stage involves complex 

computations. Thus partitioning the irregular computation to DSP provides a good balance to 

entire system performance [Ma 2004].   
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Figure 5.6: RTL schematic of parallel-pipeline implemented sphere decoder generated by Xilinx ISE 6.2i 
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6 RESULTS 

 This chapter gives the experimental results obtained for both the preprocessing and 

decoding part of the MIMO decoder. Efficient hardware model for the decoding part of the 

original and improved algorithm are developed and prototyped on to a Xilinx’s VirtexII-1000 

FPGA. The simulations results and the synthesis results are presented. 

6.1 Experimental Setup 

 A system with 4-transmit and 4-receive antennas i.e., m=n=4 is assumed. The signal 

constellation linear over the field of real numbers is considered. The symbol set of 4-PAM 

constellation is ranging from {-3, -1, 1, 3}. The simulation tools used are Matlab 6.5 and 

Modelsim SE 5.8a to design the decoder at behavioral and RTL levels of abstraction. Xilinx ISE 

6.2i is used as synthesis tool. Project Navigator 6.2.03i is the user interface for Xilinx ISE.  

6.2 Pre-Processing Results 

 The pre-processing part involves computations like matrix inversion, transposition and 

Cholesky decomposition. Of these computations, matrix inversion and Cholesky decomposition 

are relatively more complicated and time consuming. The transpose operation takes negligible 

part of the processing time. The whole of pre-processing part was implemented on DSP.  TI’s 

TMS320c6711 is a floating point DSP, supports either real or integer arithmetic while 

TMS320c6201 is a fixed point DSP which supports only integer arithmetic. The maximum 

frequency on both DSP chips is at 200 MHz. Although floating point calculation is more 

accurate, it is time consuming and is not supported by VHDL. Therefore we need to calculate the 

fixed point processing times. The software tool used is Code Composer Studio. 
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 For a 4x4 matrix, the time taken to execute the computations in pre-processing part is 

19,645 clock cycles in floating point processing and 26,901 clock cycles in the fixed point 

processing. 

msT float 1.0)10*200/(19645 6 ==  

   msTfix 13.0)10*200/(26901 6 ==  

 For a 8x8 matrix, the time taken to execute the computations in pre-processing part is 

19,645 clock cycles in floating point processing and 26,901 clock cycles in the fixed point 

processing. 

msTfloat 49.0)10*200/(98189 6 ==  

   msTfix 71.0)10*200/(141619 6 ==  

6.3 Decoding Results 

6.3.1 Simulation Results 

 The processing time taken by the prototyped lattice decoder with original algorithm and 

the improved algorithm are estimated. Based on the description of the simulation results of 

original algorithm in Chapter 3, it is observed that State A requires 37 clock cycles in the search 

process, 7 clock cycles are needed in both States B and D, and 2 clock cycles for State C. At 

each state, 1 clock cycle is needed for condition check and decision making about next state. For 

example, State A finds the upper bound and index of the element in the 36th clock cycle and 37th 

cycle is used in decision making.  

 The simulation results of improved algorithm as given in Chapter 4 shows that State A 

requires only 7 clock cycles in the search procedure. 7 clock cycles each for States B and C, and 

3 clock cycles are needed for State D. The last clock cycle at each state is used for condition 
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check and decision making. The bar-chart comparing the processing times needed at each state in 

both the algorithms is presented in Figure 6.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Bar chart showing the simulations times of each states in both algorithms 
 
 The performance of the sphere decoder is enhanced in the improved algorithm. There is a 

drastic reduction in the number of clock cycles required by the State A in the search procedure of 

improved algorithm compared to the original one.  

 The simulation results from Matlab gives the details about average number of times each 

state is visited. As the Matlab source code is executed for 10000 simulations or 10000 different 

sets of received signal vectors, average number of state visits obtained is a result for all 10000 

simulations. Here in our thesis, one iteration means a visit to any state. Two or more states 

operating at the same time also count as one iteration (in case of parallel-pipeline 

implementation) [Ma 2005] 
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 Table 6.1 is showing the number of state visits for 10000 simulations in each case of 

original and improved sphere decoding algorithms in their sequential implementation. 

Table 6.1: Average number of state visits in sequential implementation at 20 dB  

State A B C D 

Original 163,872 132,742 101,389 32,982 

Improved 84,328 64,221 43,900 43,494 
 

 Table 6.2 is showing the number of state visits for 10000 simulations of improved sphere 

decoding algorithm in its parallel-pipeline implementation. For more details about A | B, D || C, 

C | B, refer to Section 4.7 and Section 5.2. 

Table 6.2: Average number of state visits in parallel-pipeline implementation at 20 dB 
 

State 
A|B           

B accepted 
A|B          

B ignored 
D||C        

C accepted 
D||C         

C ignored 
C|B         

B accepted 
C|B         

B ignored 
Improved-
parallel-
pipeline 60,816 23,514 13,407 10,107 3,407 19,980 

 

6.3.2 Synthesis Results 

 After testing the functionality of both the sphere decoding algorithms using Matlab model 

of simulation, the core decoder function is designed using VHDL, simulated using Mentor 

Graphic’s Modelsim, and prototyped on a device technology XC2V1000-6ff896C of Xilinx 

Virtex2 FPGA platform [Xilinx 2003]. Figure 6.2 gives the description of the device. 
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Figure 6.2: Xilinx Virtex-II 1000 FPGA Device Description 

 The simulation results of Matlab and hardware verify each other. Synthesis results of a 

sphere decoder with 4-transmit and 4-receive antennas when prototyped on a Xilinx Virtex-II 

1000 FPGA using original and improved sphere decoding algorithms are shown in Table 6.3 

below. The 18-bit embedded multipliers available on this FPGA are employed in the design to 

ensure the processing speed. 

 
Table 6.3: Synthesis results of m=n=4 MIMO system 

  
Original 

algorithm 
Improved-
Sequential 

Improved-Parallel-
Pipeline 

Target FPGA platform Xc2v1000 -6 Xc2v1000 -6 Xc2v1000 -6 

No. of External IOBs 387 out of 432    387 out of 432    387 out of 432    

No. of Mult 18X18s 8 out of 40     20 out of 40     26 out of 40     

No. of SLICEs 1168 out of 5120 2216 out of 5120 2347 out of 5120 

No. of BUFGMUXs 1 out of 16      1 out of 16      1 out of 16      

Max. freq 102.8 MHz 80.7 MHz 84.5 MHz 
 

XC2V1000-6FF 896C

Device type 

Speed grade 
(-4, -5, -6) 

Number of Pins

Temperature Range 
C=Commercial ( CCto °° 850 ) 
I=Industrial ( CCto °°− 10040 )

Package Type 
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6.3.3 Decoding Rate 

 The bit rate of decoder is calculated as follows:  

Rate = (frequency × bits_per_dimension × n) / (total number of clock cycles) 

n = 4  for 4 - antenna system 

bits_per_dimension = 2 

Total number of clock cycles = ∑
=

tn

ni
nini ITCCPIT

1

*  

where, niCPIT  is the number of cycles per nith iteration (one iteration here means a visit to any 

state. Two or more states operating at the same time also count as one iteration). This is obtained 

from the simulation results of VHDL i.e., from the waveform into which signals are added and 

allowed to run for some specified time. 

niITC is the count of the average number of times nith iteration or a particular state is visited. This 

is obtained from the Matlab simulations. As we have the data obtained for 10000 simulations, 

average count for one simulation is calculated and used in the decoding rate computation. Here 

in our case, this can be obtained by dividing the values in the tables 6.1 and 6.2 by 10000.   

tn is the number of possible kinds of iterations or states. For sequential implementations, it is 

simply equal to number of states in the FSM of the decoder controller, whereas for parallel-

pipeline implementation of the improved sphere decoding algorithm this can be obtained from 

the data dependency analysis. In our case, for sequential tn = 4, for parallel-pipeline tn = 6 (refer 

tables 6.1, 6.2)  

 In order to test both the original and improved form of sphere decoders, the same 

example as given in Chapter 4 is considered. In this case the lattice generator matrix M is some 

randomly generated matrix with zero mean and unit variance and SNR is set at 20 dB. 
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−
−

−
−−

=

6686.06900.05937.16236.1
2902.13999.02540.17143.0
7119.05711.08580.03362.1
8156.04410.06918.02944.0

M  

Then the received signal obtained after scaling and rounding is [ ]376130119385 −− when 

the transmitted signal constellation is[ ]3113 −− . 

 For above described example, and considering the case of original sphere decoding 

algorithm, the total number of clock cycles required to complete the search procedure are: 

Total number of cycles = 37 × 16.3 (number of iterations with State A) + 7 × 13.2 (number of 

iterations with State B) + 2 ×10.1 (number of iterations with State C) + 7 × 3.2 (number of 

iterations with State D) = 738 cycles 

Bit rate = (108.2 MHz * 4 * 2) / 738 = 1.17 Mbit/s 

 For improved algorithm, a parallel-pipeline architectural model is also developed as 

hardware implementation on FPGA can make use of an additional parallelism feature. In both 

sequential and parallel-pipeline implementations, the number of iterations, states at each iteration 

and average clock cycles per iteration vary significantly. This can be explained in detail by 

looking at the sequence of states in both cases.  

The sequential procedure for improved sphere decoding algorithm for above considered example 

needs 20 iterations, while parallel-pipeline procedure needs only 10 iterations as shown in Table 

6.2 and 6.3 respectively. 

 

Table 6.4: Sequence of state in Sequential procedure 

Iteration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

State A B A B A B A D A B A B A B A D C C C C 
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Table 6.5: Sequence of state in Parallel-Pipeline procedure 

Iteration 1 2 3 4 5 6 7 8 9 10 

State A A A A D A A A A D 

Parallel state     C's     C's 

Pipeline state B B B B  B B B B  
 

 As we know the states in parallel can begin at the same time, at the iteration 5 from Table 

6.5, State D and all possible State C’s are executed at the same time but the output obtained from 

all C states are ignored as the conditions lead to State A after this State D. At the end of State D 

simulation, parallel C states are interrupted and disabled. Therefore, the average number of 

cycles at this iteration is equal to the simulation time of State D. Similarly in iteration 10, State D 

and all C states are executed in parallel and the results are accepted as the conditions satisfy and 

the search procedure ends. Here State C is allowed to complete as the conditions lead to State C 

as next state after current State D. Therefore, the average number of cycles at this iteration is 

equal to the simulation time of State C. 

 In Table 6.5, we see at iteration 1, State B is implemented in pipeline to State A. And so 

State B is enabled a little while after State A. This case of pipelining also supports partial 

parallelism. Here the output from State B is accepted as the conditions of state transitions lead to 

State B as next state. Therefore, the average number of cycles at this iteration is equal to the sum 

of simulation time of State A and extra time needed by State D. Similar is the case at iterations 2, 

3, 6, 7, 8. At iteration 4, State B is implemented in pipeline to State A and so State B is enabled a 

little while after State A. But the output of State B is ignored as conditions of state transitions 
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lead to State D as next state. Therefore, the average number of cycles at this iteration is equal to 

the simulation time of State A alone. 

 The total number of clock cycles required by the improved algorithm to complete the 

search procedure at 20 dB in both sequential and parallel-pipeline procedures is as follows: 

Sequential: 

Total number of cycles = 7 × 8.4 (number of iterations with State A) + 7 × 6.4 (number of 

iterations with State B) + 7 × 4.4 (number of iterations with State C) + 3 × 4.3 (number of 

iterations with State D) = 147 cycles 

Bit rate = (80.7 MHz * 4 * 2) / 147 = 4.39 Mbit/s 

Parallel-Pipeline: 

Total number of cycles = 13 × 6.1 (number of iterations with A|B, B accepted) + 7 × 2.3 (number 

of iterations with A|B, B ignored) + 3 × 1.0 (number of iterations with D||C, C ignored) + 7 × 1.0 

(number of iterations with D||C|B, C accepted, B ignored) + 10 × 0.3 (number of iterations with 

D||C|B, C accepted, B accepted) = 108 cycles 

Bit rate = (84.5 MHz * 4 * 2) / 108 = 6.26 Mbit/s 

The comparison of decoding rate for original sphere decoding algorithm and improved-

sequential, improved-parallel-pipeline algorithms are shown in Table 6.6. 

Table 6.6: Comparison of decoding rate at 20 dB  

  Original Improved-Sequential 
Improved-Parallel-

Pipeline 

Total number of 
clock cycles 738 147 108 

Max Frequency 102.8 MHz 80.7 MHz 84.5 MHz 

Decoding Rate 1.17 Mbit/s 4.39 Mbit/s 6.26 Mbit/s 
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 The sequential architecture of the original and improved algorithms offer a decoding rate 

of 1.17 Mbit/s and 4.39 Mbit/s respectively when implemented on a device technology 

XC2V1000-6FF896 of Xilinx VirtexII-1000 FPGA platform. From the synthesis results we 

observe that the maximum frequency of the original sphere decoder is higher compared to the 

improved form of algorithms. Although this is the case, the decoding rate of the improved sphere 

decoding algorithm is far better and shows a lot of improvement from the original algorithm. 

 This is because of better values of number of clock cycles per iteration, niCPIT  and count 

of average number of times particular iteration or state is visited, niITC  for the improved sphere 

decoding algorithm. They contribute to the better decoding rate the decoder. 

The bit rate of the decoder with improved algorithm and utilizing the parallelism and pipelining 

features is 6.26 Mbit/s.  

 From table 6.6 we observe that the decoding rate of the improved sphere decoding 

algorithm whose flow chart given in Figure 4.1 in sequential implementation is 3.75 times faster 

than the original sphere decoding algorithm shown in Figure 3.1.  The parallel-pipeline 

implementation of the improved sphere decoding algorithm is 5.35 times faster than the 

sequential implementation of the original algorithm when corresponding architectural models of 

both the algorithms are prototyped on FPGA platform. In case of improved algorithm, the 

parallel-pipeline architecture speeds up the search procedure by 1.43 times compared with its 

sequential architecture. Thus the parallel-pipeline architectural model of improved sphere 

decoder when prototyped on a device XC2V1000-5FF896 of Xilinx’s VirtexII-1000 FPGA 

platform could reach a decoding rate up to 6.26 Mbit/s with a spectral efficiency 2 

bits/dimension at SNR of 20 dB.  
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6.3.4 BER Performance 

 Using Matlab, BER performance for both original and improved sphere decoding 

algorithms has been estimated for a particular Gaussian distributed lattice generator matrix and at 

different SNRs. Figure 6.3 shows BER versus Eb/No (dB) of an uncoded system for m=n=4 

using original and improved sphere decoding algorithms.  

 

 

 

 

 

 

 

 

 

 

Figure 6.3: BER vs. Eb/No (dB) for an uncoded system using original and improved algorithms 
 
 
 From Figure 6.3, we can observe that improved sphere decoding algorithm shows better 

BER performance than the original algorithm. This means the number of bit errors reported in 

the improved algorithm is less compared to that of original algorithm. Both the algorithms are 

executed for fixed point hardware simulation and floating point software simulation to compare 

the performance. It is observed from Figure 6.3 that the BER of the fixed point implementation 

matches the floating point implementation. The Matlab fixed point simulation results also verify 

with VHDL simulation results.    
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6.3.5 Comparison between FPGA and DSP Implementations 

 The comparison of sphere decoding algorithm implementations on DSP and FPGA are as 

shown in the Table 6.7. The parallel-pipeline architecture of improved sphere decoding 

algorithm was implemented on FPGA and sequential architecture of original sphere decoding 

algorithm was implemented on DSP. 

  
Table 6.7: Comparison between FPGA and DSP implementation at 20 dB 

 

 

  

 

 

 

 

 

 From the above comparison we can observe that the decoding rate of parallel-pipeline 

implementation of an improved sphere decoding algorithm when prototyped on FPGA is 

approximately 100 times faster than the sequential implementation of the original sphere 

decoding algorithm prototyped on DSP. Although the frequency on DSP decoder is twice the 

frequency of the FPGA decoder, we visualize a better performance for the FPGA prototype of 

the sphere decoder. Total cycles needed to complete the search procedure and obtain a closest 

lattice using parallel-pipeline implementation of the improved sphere decoding algorithm 

prototyped on a device technology XC2V1000-6FF896C of Xilinx’s VirtexII-1000 FPGA 

platform is 107. Whereas in case of sequential implementation of the original sphere decoding 

algorithm prototyped on a TI’s TMS320c6201 DSP chip, the total clock cycles consumed are 

Platform FPGA DSP 

Max Freq 84.5 MHz 200 MHz 

Total cycles 108 27,492 

Bits/dimension 2 2 

Dimension 4 4 

Decoding Rate 6.26 Mbit/s 0.06 Mbit/s 
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27,492. The couple of reasons for such a high variation in total number of clock cycles in both 

the cases are interpreted as follows. 

• Algorithmic model is improved. 

The improved form of the sphere decoding algorithm does not need to perform square root 

operation while computing an integer component value or the index value iu and  the its upper 

bound iL at each layer in the 4-dimensional (4-transmit 4-receive antenna system) space created 

at the receiver end. A significant count of clock cycles are saved due to this in the improved 

sphere decoding algorithm compared to the original one. 

• Parallel-pipeline implementation. 

An additional feature of FPGA over DSP chip is its support of parallelism. Therefore a parallel-

pipeline architectural model is developed for improved sphere decoding algorithm and is 

prototyped on FPGA as it supports parallelism. Due to possible parallelism and pipelining the 

FPGA implementation of improved sphere decoding algorithm saves in number of clock cycles 

essentially. 

 Hence we observe that improved sphere decoding algorithm in its parallel-pipeline 

implementation and prototyped on FPGA reaches a decoding rate of 6.26 Mbit/s. And the 

original sphere decoding algorithm in its sequential implementation and prototyped on DSP chip 

reaches a decoding rate of 0.06 Mbit/s. The FPGA implementation is 104.33 times faster than the 

DSP. The DSP implementation is very slow compared to FPGA prototype because the original 

sphere decoding algorithm performs the iterative search procedure involving square root 

computation while finding the bounds of the lattice index point at each layer.   
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6.4 Conclusions 

 Design and implementation of universal lattice decoder is presented in this thesis. Firstly 

the functionality of the original sphere decoding algorithm is examined using Matlab simulation. 

Then a VHDL model is developed for the core decoder function and simulated at RTL level of 

abstraction using Mentor Graphics’ Modelsim SE 5.8a. Because the simulation results show 

imbalance in the processing time of each individual state, which is not practical for parallel 

implementation, original algorithm is modified such that square root computation is avoided, as a 

result an improved universal lattice decoding algorithm is proposed. Functionality testing 

procedure similar to that of original algorithm is carried out for the improved algorithm. The 

primary focus in this thesis has been to design an efficient hardware architectural model for the 

improved sphere decoding algorithm and implement it on FPGA platform.  

 Based on the data dependency analysis, a parallel-pipeline architectural model is 

developed for the improved sphere decoding algorithm. Both sequential and parallel-pipeline 

architectural models are developed in VHDL and are simulated at RTL level of abstraction. All 

the hardware architectural models are synthesized using Xilinx ISE 6.2i synthesis tool. The 

device technology XC2V1000-6FF896C of Xilinx VirtexII-1000 FPGA platform is used to 

prototype the architectural models. BER performance of both original and improved sphere 

decoding algorithms has also been estimated. When a MIMO system of 4-transmit and 4-receive 

antennas with 4-PAM modulation is considered, the decoding throughput of 6.32 Mbit/s is 

achieved for parallel-pipeline implementation of the improved sphere decoding algorithm at 

20dB SNR. The parallel-pipeline implementation of improved sphere decoding algorithm is 1.44 

times faster than its own sequential implementation and is 5.4 times faster when compared to the 

sequential implementation of original sphere decoding algorithm when all the hardware 
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architectural models are prototyped on FPGA platform. Comparing the FPGA and DSP 

implementations, it is concluded that parallel-pipeline implementation of the improved sphere 

decoding algorithm prototyped on FPGA achieves a decoding throughput of 6.32 Mbit/s, which 

is about two orders of magnitude faster than the sequential implementation of the original sphere 

decoding algorithm prototyped on a DSP chip.  
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