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Abstract 

With the rapidly advancing technologies, training has been vital to keep companies 

competitive. Web-based training grows rapidly and attracts more attention for its most 

flexible manner. Virtual classroom is a form of synchronous web-based training. It 

provides real-time interactivity in learning process.  

I have developed a virtual classroom that uses Web services to control the 

audio/video transmission, chat box, whiteboard, and synchronous HTML presentation. 

Compared to an early implementation of the virtual classroom based on the Jini 

network, my Web-service based implementation has a significantly different control 

structure. My implementation has better interoperability. 



- 1 - 

Chapter 1 Introduction 

Web-based Training (WBT) has become a widely accepted tool for distance 

learning along with the World Wide Web. It is rapidly growing. Many WBT projects 

have gained significant better results compared to the corresponding traditional training 

courses. The advantages provided by Web Based Training include the flexibility of 

schedule or space, reduced training costs, world-wide accessibility, easily updating 

training course content, and a self-control capability which leads to a highly 

individualized learning. Furthermore, some studies have shown that the 

technology-based instruction may reduce the time to achieve the given objectives. 

These are always appealing to companies that have many employees to train. The 

market demand for web-based training is expanding faster than ever, which results in 

the demand for rapid development of web-based training. 

Web-based training is generally broken down into asynchronous and synchronous 

learning. In asynchronous learning, training takes place in different time frames. The 

trainees access information at their convenience. In synchronous learning, on the other 

hand, training takes place for all the participants at the same time. The information is 

accessed instantly. The latter requires an instructor and provides more interactivity. It is 

also called Internet virtual classroom. 

The virtual-classroom training plays an important role in distance learning. 
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Classroom interactivities have long been emphasized in conventional teaching 

techniques. In a classroom, the learning process is interactive and spontaneous. 

Classroom discussions are an effective way for the trainer to verify the learning process. 

While many training courses have been replaced by asynchronous self-paced online 

courses, instant interactions remain to be necessary when the constructivist pedagogical 

approach is applied in a synchronous manner. The current web-based classrooms share 

a common weakness: limited support for viewers’ feedback. This often disables the 

continuality of conversations stimulated by questions. 

In this thesis, I report the design and implementation of the control structure of a 

virtual training classroom by means of Web services. This virtual classroom is 

supported by audio and video conferencing, electronic whiteboards, chat boxes, and 

web browsers. The trainer must control the whole class easily and access the resources 

directly. On the other hand, the trainees are able to receive the lecture in video and 

audio along with the synchronized HTML web pages. Each trainee can request to speak 

to the whole class. 

In the implementation of virtual training classroom, the interaction between the 

trainees and trainer does not follow the traditional way that trainer pushes everything to 

trainee. The trainee will request the resources. In this case, we can be benefited from 

the standard “requests and responds” communication pattern of Web services. 
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Chapter 2 Background 

In our virtual classroom, we have used various resources to facilitate the 

presentation and illustrations such as multimedia communications and electronic 

whiteboard to promote interaction between the trainer and trainees. Such a system is 

comprehensive and complicated to develop. 

In this chapter, I have reviewed the technologies used in our virtual classroom 

including the general Web service model, an open-source implementation of Web 

services – Apache Axis, the Java Shared Data Toolkit (JSDT), and the Java Media 

Framework (JMF). 

 

2.1 Web Service 

The definition of Web service provided by W3C Working Group is as follows:  

“A Web service is a software system identified by a URI, whose public interfaces 

and bindings are defined and described using XML. Its definition can be discovered by 

other software systems. These systems may then interact with the Web service in a 

manner prescribed by its definition, using XML based messages conveyed by Internet 

protocols.” [18]. 

In a typical Web services scenario, an application sends a request to a service at a 
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given URL using the SOAP protocol over HTTP. The service receives the request, 

processes it, and returns a response. An often-cited example of a Web service is a stock 

quote service, in which the request asks for the current price of a specified stock, and 

the response gives the stock price. This is one of the simplest forms of a Web service in 

which the request is fulfilled immediately in the same call. 

The Web service model is governed by three protocols: SOAP, UDDI, and WSDL. 

 

2.1.1 SOAP 

SOAP, short for "Simple Object Access Protocol", is an XML-based 

communication protocol and encoding format for inter-application communication. 

SOAP is widely viewed as the backbone of a new generation of cross-platform 

cross-language distributed computing applications, called Web Services. 

SOAP is a lightweight protocol for exchanging information in distributed 

environment. SOAP contains three parts:  

�  an envelope 

�  a set of encoding rules 

�  a convention for representing remote procedure calls and responses. 
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 The envelope is for describing what the message is and how to process it. The 

encoding rules are to express instances of data types which are defined in a specific 

application. Figure 1 shows the structure of a SOAP message. 

  

Figure 2.1: Structure of a SOAP Message 

• SOAP Envelope: A required root element that identifies the XML 

document as a SOAP message 

• SOAP Header: An optional key information element in SOAP Envelope, 

which contains header information for supporting the addition of 

directives that expand SOAP capabilities   

• SOAP Body: A required element of SOAP Envelope, which contains call 

and response information XML data   

• SOAP Fault: An optional element in SOAP Body scope, which provides 

information about errors that occurred while processing the message  
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A example of a soap message is as follows: 

<soap:Envelope  

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 

 soap:encodingStyle='http://schemas.xmlsoap.org/soap/encoding/'> 

<soap:Header> 

<x:x  

 xmlns:x='http://example.org/Extensions/'  

  soap:actor='http://example.org/Nodes/Fireball/XL5'> 

 <!-- extension detail goes here --> 

 </x:x> 

</soap:Header> 

<soap:Body> 

 <!-- message payload goes here --> 

</soap:Body> 

</soap:Envelope> 

 

2.1.2 UDDI 

The Universal Description, Discovery and Integration (UDDI) protocol creates a 

standard interoperable platform so that it can enable companies and applications to find 

and use Web services dynamically over the Internet. UDDI also allows operational 

registries to be maintained for different purposes in different contexts.  
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JUDDI is an open source Java implementation of the UDDI specification for Web 

services. It bounds with any database that supports ANSI standard SQL. Furthermore, it 

is also deployable on any Java application server that supports the Servlet 2.3 

specification such as Jakarta Tomcat, WebSphere, WebLogic, Borland Enterprise 

Server, and JRun. 

 

2.1.3 WSDL 

Web Services Description Language (WSDL) is an XML format for describing 

web services as a set of endpoints operating on messages containing either 

document-oriented or procedure-oriented information. The operations and messages are 

described abstractly, and then bound to a concrete network protocol and message 

format to define an endpoint. Related concrete endpoints are combined into abstract 

endpoints (services). WSDL is extensible to allow description of endpoints and their 

messages regardless of what message formats or network protocols are used to 

communicate [19]. 

2.2 Apache Axis 

Apache Axis is a soap engine for constructing SOAP processors such as clients 

and servers [18]. Apache Axis is not only an implementation of the SOAP but also a 

framework that includes [10]: 
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• a simple stand-alone server  

• a server which plugs into servlet engines such as Tomcat 

• extensive support for the Web Service Description Language (WSDL)  

• emitter tooling that generates Java classes from WSDL  

• some sample programs 

• a tool for monitoring TCP/IP packets  

Axis is a great tool for publishing and deploying Web services. Axis provides two 

ways to publish a service. The first one is very simple. It requires just copying the 

service implementations into the “webapp” directory of Tomcat, and renaming it with 

extension .jws instead of .java. The second way is to use Axis’s Admin command line 

tool for tasks such as deployment or undeployment according to a deployment 

descriptor. Axis provides two utility tools. Java2WSDL generates the WSDL file for a 

given service implementation, and WSDL2Java generates the server-side wrapper Java 

code and stubs for clients to access. 

 

2.3 JSDT 

JSDT, Java Shared Data Toolkit, is a development library that allows developers to 

easily add collaboration features to applets and applications which are written in the 

Java programming language. Enterprise developers use the Java Shared Data Toolkit 
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software to create network-centric applications such as shared whiteboards or chat 

environments. It can also be used for remote presentations and shared simulations and 

to easily distribute data for enhanced group workflow.  

JSDT comes with three implementation types. Each implementation type uses a 

different transport protocol: 

• socket  - users TCP/IP sockets 

• http   - uses HTTP commands 

• lrmp  - uses a light weight reliable multicast package (LRMP) 

JSDT application is made up of four components listed below. 

Session object: As with all types of collaborative environments, there needs to be some 

way for each application to initially rendezvous so that data can be 

shared. The JSDT group rendezvous point is a Session object. 

Client object: A Client is an object which is part of a JSDT application or applet and is a 

participant in an instance of multiparty communications. A client object 

can be the source or the destination of the data which is being exchanged 

in an instance of communication.  

Channel object: A Channel is a specific instance of a potential multi-party 

communication path between two or more clients within a given session. 

All client objects which register an interest in receiving from a given 
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Channel will be given the data sent on that Channel. Any client is able to 

send data on a given channel. 

Channel consumer object: A channel consumer is a client object which has registered its 

interest in receiving data sent over a given channel. 

 

2.4 JMF 

The Java Media Framework (JMF) [13] is an application programming interface 

(API) for incorporating media data such as audio and video into Java applications and 

applets. It is specifically designed to take advantage of Java platform features. The JMF 

API (the Java Media Player API) enables programmers to develop Java programs for 

playback of time-based media. The JMF APIs support RTP (Real-Time Protocol). The 

JMF RTP APIs enable operations such as opening RTP sessions, receiving every 

incoming stream on the session, creating a JMF player using the stream data source, 

and sending outgoing RTP streams from a data source. 
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Chapter 3 System Design 

In the past, we designed and implemented a prototype of a virtual training 

classroom over the Internet controlled by the Jini network [17]. Since Jini requires 

TCP/IP ports that are typically blocked by firewalls, we decided to replace the 

Jini-based control structure with Web services. It turned out that this replacement 

implied significant change in design. For completeness, I describe the entire system in 

this chapter. 

  

3.1 Virtual Training Class 

 A virtual training class is a synchronous online training class led by a trainer. In a 

class, the trainer leads the (remote) trainees to conduct computer-aided hands-on 

experiment during lectures. The lecture is delivered by audio and video (A/V) to every 

trainee’s computer. The trainees’ lecture material in HTML is kept updating to 

synchronize with the audio and video. Using the chat box and whiteboard, the trainer 

and trainees can also discuss the lecture by exchanging textual messages and explain 

problems by using the whiteboard. Furthermore, the chat box also enables more 

trainees to discuss problems at same time. This has been proved a very effective 

learning process for professional training. For the traditional satellite classroom, the 

trainer pushes everything to trainees with little feedback from trainees. Compared to 
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that satellite classes, our system has been facilitated a channel from the trainees to the 

entire class. The virtual training classes can provide more timely help to trainees than 

the asynchronous web-based training classes. In asynchronous web-based training, 

accumulated questions may prevent a trainee from catching up the lecture. On the other 

hand, explaining every possible question in the lecture may force the trainer to loose the 

concentration on the main theme. Boring “side walks” would be drawn the trainees’ 

focus. In a synchronous virtual training class, the trainees can ask questions instantly. 

Explanation will always be given with a target. The question-and-answer conversation 

is typically beneficial to the whole class.  

In the traditional training class, human interactions consist of:  

� the trainee poll the current page of HTML browser, 

� the trainer and the trainees interacting with each other, 

� the trainees interacting with one another. 

Our virtual training class supports these types of interactions in different ways. If the 

trainee receives questions from some trainees and grants permission to a chosen trainee, 

the conversation regarding that question is sent to the whole class as an audio session. 

Upon the trainer’s choice, the audio for the speaking trainee can be sent to everybody 

else in the class. When a question-and-answer session is granted, the course 

presentation is paused. In addition to the A/V session for questions and the follow-up 

conversations, every trainee can post textual messages on the chat box or draw graphics 
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on the whiteboard which is shared by the class. The simplest communication means is a 

chat box with which one can exchange textual messages with an individual. This is 

available to everybody.  

 In order to communicate in the learning process, both the trainees and the 

trainer should be equipped with the networked computers. Additionally, to enable the 

audio and video communication, the trainees and the trainer should also have installed 

the corresponding software to support the audio and video transmission and JSDT 

registry and servers. In my project, since the trainer transmits both audio and video to 

the trainees and the trainees only transmits audio under control of the trainer, the trainer 

has both microphone and camera and trainee has only microphone for audio.  

 

3.2 System Description: 

 The virtual classroom allows both the trainees and the trainer to be active in this 

learning process. The trainer can create a course by registering the course on the server 

side and providing information such as the course name, course id, course time, and the 

references to the class web pages. Trainee can register by providing personal 

information and the course identifier he/she wants to take. The trainer can activate the 

course at the server side. At this time, the trainees must run the client side. User 

authenticated function is first invoked. Only the registered trainees and trainer can take 

the course. After the trainees and the trainer successfully login, course starts with the 
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trainer’s presentation. During the process of the class, the trainer’s audio and video are 

continuing transmitting to the trainees’ GUI. The trainer can also use whiteboard and 

HTML pages to facilitate his/her presentation. If a trainee has a question, he/she can ask 

for permission to speak. The trainer can decide who can speak on the class and grant 

the permission to the trainee. The trainer may also deactivate the speaking trainee’s 

microphone. Moreover, the trainees can use chat box and whiteboard to raise and 

discuss questions.  

   

3.3 System Structure 

 The whole system can be divided into four subsystems: A/V transmission, the 

JDST server, the Web Server (Tomcat), and the UDDI registration. For the first two 

subsystems, we have used free Java components such as Java Media Framework (JMF) 

[13], the Real-Time Protocol (RTP) [7] implementation in JMF, and the Java Shared 

Data Toolkit (JSDT) [15]. The Web Server (Tomcat) is responsible for system control 

and UDDI registration is for service locating. 

Figure 3.1 shows the system structure diagram. 
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Audio / Video 
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Figure 3.1:  System Architecture Diagram 
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3.3.1 Web Services  

 In our system, the Web services are responsible for controlling the operations of 

many components. In this project, we have created three Web services for the client: the 

Authentication service, the Instruction service, and the Polling service. The polling 

service contains audio control service and HTML presentation control service. The 

authentication service is responsible for the trainees’ status verification. The Instruction 

service is for notifying the trainer which trainee is asking in the question session. The 

HTML presentation control service is to synchronize the lecture material and the audio 

control service grants permission to the trainee who is asking to speak. 

Figure 3.2 shows the “uses” relationship between the trainer GUI, the trainee GUI, 

and the Web services. The implementations of the three Web services are under the 

control of the trainer GUI. The trainee GUI is connected to the web server by the WS 

client which resides in the trainee GUI. The trainees make use of the Web services 

without bothering the trainer GUI. The changes caused by the Web services will be 

forwarded to the trainer GUI, and trainer GUI waits for the trainer’s next action.  
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3.3.1.1 Authentication Service 

We enabled password protection in use of the system. When a trainer needs to 

establish a course, he/she will be asked to provide the course information. Moreover, 

the trainer will be assigned an identifier for later use. For the trainees, the registration 

process is simply collecting identification information. Each trainee will obtain an 

identifier for authentication. Therefore, only registered user can access this system.  

--Trainee Login:  

Figure 3.3 shows the trainee’s authentication process and the components involved 

Client GUI 

WS Client 

Trainer GUI 

Figure 3.2:  Web Services Relationship Diagram 

Authentication Service 

Instruction Service 

Audio Control 

HTML Presentation Control 

Polling Service 

Web Server (Tomcat) 
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in this process. 

 

Authentication service is designed to deal with login and logout functions. When a 

registered trainee wants to login to take the course he/she registered, the trainee is ask 

to provide his/her identifier and password and select the course available at that time. 

The system will check the profile of that trainee from the database to verify the 

information.  

 

             Figure 3.4: Login Dialog for Trainee 

If the trainee logs in successfully, the system will add the trainee’s id, name, and 

True/False 

True/False 
Id/Password 

Id/Password 

Trainee GUI 

Login Dialog 

Web Server (Tomcat) 

Authentication Service 

Process Manager 
Id/Password 

Database Manager 

Id/Password 
Id/Password 

DB 

True/False 

True/False 

Figure 3.3: Trainee’s Authentication Web Service Process Diagram 

Trainee 
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status (listening) into the on-going class table. Correspondingly, the list which holds the 

content of that table is shown in trainer’s GUI. In addition, the system will connect the 

trainee as a chat user and a whiteboard user. 

--Trainee Logout: 

 When a trainee exits the system, all the information about this individual stored in 

on-going class table will be removed, no matter what status he/she is. In the logout 

process, the trainee will be disconnected from the chat group and the whiteboard.  

 

--Trainer Login: 

 

Figure 3.5 shows the trainer’s authentication process and the components involved 

in this process. Figure 3.6 shows the trainer’s login dialog. Only user id and password 

Id/Password True/False 

Process Manager 

Database Manager 

DB 

Trainer GUI 

Login Dialog 

Id/Password 

Id/Password 

Id/Password 

True/False 

Figure 3.5: Trainer Authentication Web Service Process Diagram 

Trainer 
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are needed for a trainer to login. 

 

               Figure 3.6: Login Dialog for Trainer 

  When a trainer logs in successfully, system will do the following: 

� tell system this course is available now by adding the course identifier to a 

table which holds the on-going class information; 

� load the presentation web pages for the course; 

� insert the current page into a table which holds the current web page’s URL; 

� create a chat user for the trainer; 

� create a white board user for the trainer; 

� start transmitting audio and video to trainees. 

--Trainer Logout: 

 Corresponding to the login process, the trainer can logout by asking the system to 

clear and drop the tables which are used by and created for the class, and remove the 

record in the courses availability table. In addition, we need to stop broadcast audio and 

video after class to save network traffic resource. Finally, the system disconnects the 

chat users and whiteboard users, and closes the database connection.  
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3.3.1.2 Instruction Service 

 In the virtual classroom, a trainee is allowed to ask questions just like in a 

traditional classroom. The trainee does it by clicking a button instead of raising his/her 

hand. The Instruction Service as a Web service has few operations only. When the client 

WS receives the request from the trainee, it sends the trainee’s id to the trainer GUI by 

calling the Instruction service. In turn, the Instruction service calls the Process Manager 

to change the status of this trainee from “listening” to “asking”. Since the trainer GUI is 

kept refreshing periodically, every 0.1 seconds, the change will be shown on the trainer 

GUI quickly. Thus, the trainer can figure out who has a question to ask and take the 

operations accordingly. Figure 3.7 shows the process for using Instruction Web service. 

 

 

 

 

 

 

 

 

 

               Figure 3.7: Instruction Web Service Diagram 
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 3.3.1.3 Polling Service:  

 Polling and callback are two commonly used patterns in asynchronous 

communication, in which a client continues its computation without blocking it control 

flow after issuing a remote service (procedure) call. If the client itself can also handle 

remote service requests, the client can ask the remote server to call a specific (client’s) 

method when the service result is ready to deliver. This approach is called callback. 

However, if the client side is not capable of handle remote service requests, then the 

client side has to poll the server side periodically until the service result is ready to pick 

up. 

In my project, since the trainee side is not equipped with a Web server, the trainee 

side is incapable of accepting Web service calls. On the other hand, asynchronous calls 

are more desirable for a number of long-duration requests such as the request for 

speaking in the audio control process and the request for the next page in the HTML 

presentation control. 

Figure 3.8 shows the Polling service for the audio control and the HTML 

presentation control processes. The Instruction service informs the trainer GUI who is 

requesting to speak and then waits for the trainer’s decision. The audio control service 

will continue the question session by polling the trainer’s next related operations. 
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 In the virtual classroom, the RTP-based audio/video communication channels can 

allow multiple speakers (the trainer or the trainees) to speak simultaneously. However, 

as a classroom, the trainer must be able to control the channels and allow one speaker at 

a time. This is achieved by our Web-service based control system. As mentioned earlier, 

the trainer GUI controls the trainees’ microphones which are disabled by default. When 

a trainee attempts to speak, he/she sends a request to the Instruction service in server 

side. Then the trainee process continues polling the trainer-side Polling service until the 

request is granted or rejected. The trainee may cancel his/her request at any time. Upon 

receiving requests for speaking from (typically multiple) the trainees, the trainer will 

choose one trainee to speak by granting the corresponding request. At the same time, 

the trainer process also rejects every other request. Therefore, a trainee’s speaking 

request typically goes through two of three states, first “pending” then either “granted” 

or “rejected”. A trainee’s microphone will not be enabled unless a speaking request 

result polling 

Web Server (Tomcat) 
Trainee GUI 

WS Client 

Polling Service 

Audio Control 

HTML Presentation Control 

Trainer GUI 

Figure 3.8: Polling Service Process Diagram 

polling 

result 
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results in a “granted” state.  

 The Polling service is also used to push the HTML pages to every trainee’s GUI at 

the pace controlled by the trainer. The URLs of the HTML pages of the classes are 

stored in the database. The trainer may want to keep a page on the screen for a fraction 

of a minute or a couple of minutes. The duration is unpredictable by the program. When 

the trainer goes to a page by clicking the “Next” or “Previous” button, every trainee’s 

screen should browse to the same page immediately. Considering the trainee side has 

no Web server, we let each trainee’s process to poll the trainer-side Polling service. This 

Polling service always returns the URL of the current page on the trainer’s browser. 

Upon receiving this browser component should fetch a new page. Figure 3.9 shows the 

HTML presentation control diagram. 

 

Web Server (Tomcat) 

Polling Service 

Trainee GUI polling  

Current Page 

Trainer GUI 

Current Page 

Figure 3.9: HTML Presentation Control (Polling Service) Diagram 
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3.3.2 A/V transmission 

 

While the TCP/IP connection can handle all the control messages, the textual 

messages and the HTML presentations, adequately, it is not suitable for audio and video 

streams. Rather, we have chosen the Real-Time Transport Protocol (RTP) for 

transmitting audio and video [16]. The Java Media Framework API enables the 

playback and transmission of RTP streams through the APIs. JMF supports audio, video, 

and other time-based media to be added to applications built on Java technology [5]. In 

my project, I implemented the audio and video conference by using JMF [13]. JMF 

offers a function to capture audio and video with capture devices, such as microphones 

and cameras [12]. We can create a data source from the data captured by such devices 

with JMF API. In order to display the data source in a GUI, a player takes the data 

source as input and renders it into audio or video. Since a processor can output data 

either to a player or to convert it to a format which is suitable to transmit, we create a 

processor and get the output to be ready to transmit. In the receiver, a player is created 

enable/not 
grant/reject 

ask 

Web Server (Tomcat) 

Client A/V Server A/V 

Figure 3.10:  A/V Transmission Diagram 

Audio/Video 
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for the receiving stream to display.  

A challenge in using audio/video transmission is that one data source can not be 

operated twice. In my project, the data source generated by video camera can either be 

used to display on GUI locally or be transmitted to the trainees. To solve this problem, I 

create a clone from that data source and use them for different places [11].  

In a local area network, multicast does not cost much more bandwidth than a 

point-to-point transmission. Transmission between zones across the Internet apparently 

could be a problem due to the limited bandwidth. Particularly, when multiple viewers in 

the same remote zone watch the same video and audio, we want to avoid duplicating 

the transmissions of the same contents over the Internet. This was well thought in the 

multipoint operation [Lindbergh] specified by a number of comprehensive multimedia 

conferencing standards of ITU-T (the International Telecommunication Union 

Telecommunication Standardization Sector) such as H.320 and H.323 [Thom]. 

Particularly, the multipoint operation in these two standards works by connecting all 

participating terminals (the users’ interfaces) to a central bridge device called the 

multipoint control unit (MCU) in a point-to-point mode. The MCU relays and controls 

the transmissions between remote MCUs and their terminals in a flexible and 

complicated manner. On one hand, the virtual classrooms acutely need the multipoint 

operation, considering that multiple workers in one department often need to take the 

same class. In the cases of popular technologies training or military professional 
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training, a whole lab’s users are all taking the same remote course. On the other hand, 

using a fully-blown H.323 implementation would be overkill. H.323 has many special 

requirements for routers that not commonly available, while many complicated features 

and controls for teleconferencing are not needed by the virtual classroom.  

 

We have devised an application-level solution to cope with the demand for the 

multipoint feature. There are two channels for the trainer’s audio and video respectively 

from a trainer’s zone to each class recipient zone, and two additional channels for A/V 

transmission from each remote zone to every other zone. To achieve multicast at the 

application-level, a pipe is needed between every pair of zones. At each zone, the A/V 

agent object manages every pipe.   

 

3.3.3 JSDT 

I used the JSDT framework to implement the classroom facilities, the chat box and 

the whiteboard [14]. JSDT gives a neat definition and simple structure of distributed 

computing features data sharing. With JSDT, we can construct a collaborative 

application easily and fast [15]. JSDT supports various types of networks and 

multipoint communications among a number of connected entities. In my project 

scenario, a number of trainees and a trainer can connected through any kind of 

networks and share data resources. Chat box and whiteboard as shared objects can 
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provide the same view for all the participants. The communication supported by JSDT 

is the complimentary for the audio and video communication in the class. 

 

3.3.4 Trainer GUI  

Only one trainer can be active in one virtual classroom at any time. The trainer must 

be able to control every activity in the class. The trainer service must be capable of 

enabling and disabling every component in the virtual classroom, such as the 

microphone, whiteboard, and chat box at each trainee’s computer. 

Figure 3.12 shows the trainer GUI [3]. In this GUI, the upper left pane is the 

broadcasting video. The upper middle pane is the whiteboard of the virtual classroom. 

The chat box is in the lower left corner on the GUI. The lecture presentation is in the 

lower middle pane. The trainees’ status information is displayed in the list on the right 

hand side. The trainer can take some actions according trainees’ different statuses, such 

as listening, asking, and speaking. The trainer can grant the audio channel to or revoke 

it from any trainee by highlighting the trainee’s entry and then pressing the “Grant” or 

JSDT Client JSDT Client 

Chat Box Server 

White Board Server 

Chat Box User 

White Board User 

Chat Box User 

White Board User 

Figure 3.11:  JSDT subsystem 
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the “Revoke” button. 

 

 

      Figure 3.12: Trainer GUI 

 

3.3.5 Trainee GUI  

The trainee service is the front end of the virtual classroom. The emphasis of this 

service is on ease of use. Figure 3.13 illustrates the trainee GUI [3]. As mentioned 

earlier, the progress of the HTML presentation is controlled by the trainer.  
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       Figure 3.13: Trainee GUI 

The microphone of every trainee is disabled by default. Before the trainee wants to 

speak, he/she must ask for permission from the trainer. The trainer service grants the 

permission by enabling the trainee’s microphone. Either the trainer or the trainee can 

stop this audio channel at any time. 
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Chapter 4 Implementation of the System 

In the implementation of the system, I have taken advantage of the existing 

components but focused on the Web services implementation. 

 

4.1 Database 

 

 The virtual classroom system is supported by a small database that accommodates 

the data model depicted in Figure 4.1 [1]. The “Trainee” and “Trainer” entities hold the 

information such as name, id, and password. The “Course” entity has the fields such as 

the course title, description, and length. Relationship “cover” represents the skill that 

each course covers. The “Class” entity is an offer of a course. The class time, URL, and 

other related information are associated with this entity. Relationship “Attending” holds 

1 
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m 
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PageURL 

m 

m 1 

Class 

Trainee Register 
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Course 

Figure 4.1 Virtual Classroom Relational Database Diagram 
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the dynamic attendance information upon trainees’ login on to the classes. Entity 

“PageURL” and Relationship “Use” represent the collection of each course’s web pages. 

When a trainee wants to take a course, he/she needs to register to the class.  

  

4.2 Web Service Creation, Deployment, and Involving 

 Axis facilitates creation and deployment of Web services [4] [6]. The following is 

an example of doing so for the audio control of polling service. The implementation of 

this service is listed below. 

If a trainee has a question and attempts to speak, he/she will click “Ask” button to 

ask to speak. This request is processed by calling a trainer-side Polling service. When 

the call to this service is accepted by Axis through the Tomcat Servlet engine, Axis 

invokes method pollGrant(). Here is the Java implementation. 



- 33 - 

 

This Java implementation must be represented by an XML message in WSDL. We can 

obtain such a WSDL document by running the command Java2WSDL, an Axis utility.  

  

Next, we need to generate all of the code for deploying the service as well as the stub to 

access this service. This is carried out the following command, another Axis utility. 

 

 

After running this command, seven programs will be generated in package 

server.polling.  

public String pollGrant(){  
if(pm.isStatus(tablename,"speaking")){ 

  String i= pm.checkWhoSpeak(tablename); 
  i = i.trim(); 
        pm.terminate(); 
  if (i.compareTo(stuid)==0){ 
   return "accept"; 
  } 
  else{ 
   return "reject"; 
  } 

} 
else{ 

  return "pending"; 
 }  
} 

java org.apache.axis.wsdl.Java2WSDL -o Polling.wsdl 
-l"http://localhost:8080/axis/services/PollingService" -n urn:Polling -p"Polling" urn:Polling 
server.Polling 

 java org.apache.axis.wsdl.WSDL2Java -o . -d Session -s -p server.polling Polling.wsdl 
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• PollingServiceSoapBindingImpl: This is the implementation code for our Web 

service. PollingServiceSoapBindingImpl needs to be changed to delegate the 

call to the implementation code. 

 

• Polling.java: This is a remote interface to the polling subsystem (extends 

Remote, and methods from the original Polling.java throw RemoteExceptions).  

• PollingService.java: Service interface of the Web services. The ServiceLocator 

implements this interface.  

• PollingServiceLocator.java: This is the program which can locate the service for 

the trainee.  

• PollingServiceSoapBindingStub: Client-side stub code that encapsulates client 

access.  

package server.polling; 
import server.Polling; 
public class PollingServiceSoapBindingImpl implements server.polling.Polling{ 
 server.Polling poll = new server.Polling(); 
    public java.lang.String proPolling(java.lang.String in0, java.lang.String in1) throws 
java.rmi.RemoteException { 
        return poll.proPolling(in0,in1); 
    } 
 
    public boolean pollRevoke(java.lang.String in0, java.lang.String in1) throws 
java.rmi.RemoteException { 
        return poll.pollRevoke(in0,in1); 
    } 
 
} 
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• deploy.wsdd: Deployment descriptor that we pass to the Axis system to deploy 

these Web services.  

• undeploy.wsdd: Deployment descriptor that will undeploy the Web services 

from the Axis system.  

In order to deploy the service, we first compile the java programs in directory 

server.polling and then pack all of the code into a jar file and copy it into Axis’ “lib” 

directory in Tomcat. Next, after running Tomcat, we deploy the Web service using the 

WSDD deployment descriptor. 

 

The client-side code to call this Web service is simple because Axis has prepared the 

stub code for the client side. The following code fragment is sufficient to make the call 

for Polling service. 

  

 

 

 

4.3 Implementation of the A/V agent component 

 Multicast is not supported in most part of the internet. A less expensive solution 

without special network routers’ intelligence would be using the subnet-directed 

java org.apache.axis.client.AdminClient deploy.wsdd 

 server.polling.PollingService service1 = new server.polling.PollingServiceLocator();

 server.polling.Polling  poll = service1.getPollingService(); 

  result = poll.proPolling(id,tablename); 
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broadcast address. If the network number and the subnet number are both valid and the 

most number is 255, then this address refers to all hosts on the specified subnet. The 

subnet broadcast is performed by the router that receives the packets into the subnet. 

However, the subnet broadcast capacity is deliberately turned off in many routers due to 

security concerns. Thus a solution at the application level is needed.  

In a local network, multicast is commonly available. In each subnet, we allocate 

multicast channels. All the channels use the same multicast IP number but have 

different port numbers. In our system, we use 228.1.2.3:42050 and 228.1.2.3:42052 for 

the audio and video outputs respectively. We use 228.1.2.3:42054 and 228.1.2.3:42056 

for the audio and video inputs respectively. 

In our system, trainee has three objects to relay communications: audioTrans, 

videoTrans, videoRec. Trainee also has three objects: audioRec, videoTans, videoRec. 

The audioTrans object is to forward the local audio steam broadcasting in the local 

network to the A/V agent at every participating zone. The audioRec object is to catch 

the audio steams coming from any participating zone and forward the streams to the 

local audio broadcasting address, 228.1.2.3:42052. The videoTrans and videoRec 

objects perform the similar tasks for management. Since the internet bandwidth is not 

adequate, all the A/V agents will reduce their transmission rate for video to preserve the 

quality for audio streams. Additionally, system doesn’t allow trainee video transmission 

to save the network transmission resource. 
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4.4 Database Connection 

To facilitate managing the database, we create a Process Manager for the system. 

Using Process Manager can prevent other programs from accessing database and 

establishing unnecessary database connections. Additionally, Process Manager also 

provides simple methods for easy use of the database. 

Furthermore, we also create a Database Manager to communicate the database with 

Process Manager. Database Manager can access database directly and handle all the 

SQL commands needed in this system, such as establishing and closing a connection, 

selecting and updating an attribute, creating and dropping tables.  
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Chapter 5 A Comparison of Using Web Service and Using Jini 

As mentioned earlier, we implemented a similar virtual training classroom using 

the Jini network to control classroom components and activities. Having implemented 

the current virtual training classroom using the Web service, I am to compare the 

implementations based on these two mechanisms. First, I am to introduce Jini in 

Section 5.1.  

  

5.1 Jini  

 The Jini network is an infrastructure for providing services over a network. 

Services can join or leave the network in a robust fashion. Clients can rely upon the 

availability of visible services. The advantages offered by Jini technology include [9]: 

 Simplicity - Jini is about how services connect to one another, not about what those 

services are or what they do or how they work. 

 Reliability - Jini allows a set of known services to change fluidly, without requiring 

any static configuration and administration. Every service that connects to a Jini 

community carries with it all the code necessary for that service to be used by any other 

participant in the community. Communities of Jini services are largely self-healing. Jini 

services are able to cope with network failures in that they will recover by themselves 

over time.  
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 Scalability - Jini software creates communities that form along network boundaries. 

With trivial administration, these communities can be federated together. 

The Jini technology supports distributed computing environment which supports 

services that provide an interoperable and flexible distributed environment with the 

primary goal of solving the interoperable problems with the networked electronic 

devices. Jini network plug and play mechanism is particularly suitable for this problem.  

 

5.2 A Comparison between Web Services and Jini 

 Both Web services and Jini networks support the service-oriented computing 

model for distributed software. The basic building blocks in both approaches are the 

services. Services are self-describing and open components which support composition 

of distributed applications. To operate in a service-oriented computing environment, 

services must declaratively define their functional and nonfunctional requirements and 

capabilities in an agreed and machine-readable format. Based on declarative service 

descriptions, automated service discovery, selection, and binding must be supported. 

The Web services and the Jini network both intend to provide such a realization of the 

service-oriented computing paradigm. They both have three main parts: (1) 

application-level services which are offered across networks, such as printing services, 

software, human resource; (2) clients who need to make use of the services; (3) 
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connectors which support looking up services, an extension of the system naming 

service. Finally, some transport protocols, such as TCP/IP and HTTP, line them up.  

While Web services and Jini share many common features in principle, they are 

different in many important aspects due to their different originations. The original goal 

of the Jini network was to connect networked devices in embedded systems such as 

printers, conference room lighting control, and overhead projectors. Therefore, small 

footage has been an important requirement in the Jini architecture. The core Jini 

network services for both service providers and clients are supported by a set of 

programs less than 400 KB only. On the other hand, the Web service was originated 

from XML-RPC, remote procedure call in XML. The goal has been set to support 

business-to-business (B2B) software integration. A default assumption has been that 

every service provider has a companion web server which is a typically substantial 

large footage.  

Another direct consequence of the different originations of Jini and Web services is 

the openness in terms of programming languages of the applications. Jini directly 

supports one programming language only – Java; this is a way for Jini to achieve 

leanness. On the other hand, Web services have eliminated the restriction to the 

programming languages used by the participants because Web services are built on a set 

of industrial standards including SOAP, WSDL and UDDI. XML is the chosen 

representation of messages.  
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Jini and Web services’ approaches to implementations of the common feature – 

lookup services – are very different. The Jini lookup serivce is the central component of 

Jini runtime infrastructure [8]. It not only provides a powerful way for clients to find the 

services but also enables service providers to advertise their presence. In order to register, 

the service provider has to find the lookup server. Jini offers two ways to find the 

regestrar. If the service provider knows the address of the lookup sever, it can use unicast 

to directly communicate with the lookup server. If not, it uses multicast which enables 

the service provider to send a request to all the computers it can access and then wait for 

an answer from a lookup server. After that, the service provider can register by posting a 

proxy of this service (a Java object) on the lookup server. Web service uses UDDI 

(Universal Description, Discovery and Integration) as its lookup (locating) service. Some 

leading companies, such as IBM and Microsoft, offer UDDI business registry 

functionality for companies to register, publish, and search services. Web services use a 

web browser as the user interface which is very user friendly. Users can use either their 

own registry [2] or the business registry provided by IBM or Microsoft to register their 

services. Developers can register, publish, and search services through a web browser 

over the Internet. Registration is the process to create a publisher account by offering the 

email, name, and phone number. Publishing allows the publisher (service provider) to 

publish and modify the service information. The publisher (service provider) can provide 

more information to describe the service by giving the service’s category, name, 

description, binding URL. Moreover, a tModel [UDDI Registry tModels, Version 2.04], 
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which represents a description of an interface and can be referenced as part of the binding 

and instance information for a service, can provide a reference to the service for the 

searcher. A service will be available immediately after it finishes registration.  

JUDDI is an open source implementation of UDDI using a database (with the 

administrator privilege) to build a local registry. By deploying JUDDI on a Web server 

such as Tomcat, developers can use their own registry.  

 

5.3 Impact to System Design from the Difference of Jini Lookup and UDDI  

Since Jini’s footage is so small, every trainee’s program can contain a Jini platform. 

Thus, not only the trainer’s program but also every trainee’s program can be a Jini 

service provider. As a result, the call-back design pattern rather than the polling was 

applied to synchronize the trainer and trainees processes. An advantage of call-back is 

that the messages sending between the trainer and the trainees are minimized. However, 

call-back is not practical in the Web service implementation because we cannot expect 

every trainee side to install a Web server. Compared to call-back, polling will generate 

substantial network overhead due to those polling messages.  

The significant size difference of Jini and Web services will almost inevitably 

affect the system structures. Jini will strongly encourage the peer-to-peer computing 

structure. The Web services tend to lead centralized service centers.  

The selection criteria in looking up or locating services are significantly different 
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between UDDI and the Jini lookup service. When a service wants to join a UDDI 

registry, all the information the service needs to provide is string. Clients can find the 

service by specifying a service name or a category. Both the service name and category 

are strings. Furthermore, if the client wants to use this service, a URL (also a string) 

will be returned by the UDDI registry to the client. In contrast to UDDI, when a service 

joins a Jini network, it advertises itself by passing a java object (a proxy) that 

implements the Jini service interface to the lookup service. The implementation of the 

service for this proxy can work in any way the service chooses. Jini uses a special 

interface, the Entry classes (those classes that implements the interface 

net.jini.core.entri.Entry) to encapsulate the attributes of the service. The client can look 

for services according to a number of criteria such as the service name, the service 

interface, or the service category.  

   Jini’s garbage collection is a unique functionality. When the service registers its 

presence on a lookup server, it has to provide a lease. During this lease, the service will 

guarantee to be alive and can be invoke by clients. To keep the service available 

without expiration, the lease has to be renewed before the expiring time. Otherwise, the 

service will be removed from the lookup server. In this way, we can handle some 

failures by removing the dead services. This mechanism offers a dynamic approach for 

keeping services useful. Unfortunately, the Web service does not have an approach like 

lease to handle the services' availability. When a Web service registers through UDDI, it 
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is the service provider's responsibility to keep the service alive. If the service provider 

forgets to remove it when the service is not available, invoking this service will result in 

failure. If many dead services appear on the look up pages, clients will feel discouraged 

to use this lookup server again.  
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Chapter 6 Conclusion 

I successfully implemented the control mechanism of the virtual training 

classroom using the Web service technology by transforming the Jini-based 

peer-to-peer structure to a Web service-based centralized structure. In doing so, I was 

forced used polling extensively. Through this project, I have experienced both the 

advantages and the disadvantages of using Web services.  

In my project, I have implemented four Web services: the authenticated service, 

the instruction service, the audio control service, and the HTML presentation control 

service. These four services are used to control multimedia components and classroom 

activities.  

A significant advantage of my implementation is that it is based on the industrial 

standards, which can lead to a wider user base considering Web based training systems 

have great demands. 
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