
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

5-8-2004

Control Synchronous Web-Based Training Using Web Services Control Synchronous Web-Based Training Using Web Services

Yanfang Wei
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Wei, Yanfang, "Control Synchronous Web-Based Training Using Web Services" (2004). University of New
Orleans Theses and Dissertations. 170.
https://scholarworks.uno.edu/td/170

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of New Orleans

https://core.ac.uk/display/216835079?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/170?utm_source=scholarworks.uno.edu%2Ftd%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

CONTROL SYNCHRONOUS WEB-BASED TRAINING USING WEB SERVICES

A Thesis

Submitted to the Graduate Faculty of the

University of New Orleans
in partial fulfillment of the

requirements for the degree of

Master of Science
in

The Department of Computer Science

By

Yanfang Wei

B.S., Hebei University of Technology, China, 2000

August 2004

ii

Acknowledgement

 I am especially indebted to my adviser, Dr. Shengru Tu, for the encouragement in the

stressful days, comments for my thesis, patience for answering all questions, and hard

working.

 I would also like to thank my committee members, Dr. Fu and Dr. Chiu, for their work

and time.

 I wish to sincerely thank Shujing Shu and Liang Xu for their kindly help to support me

starting my thesis.

Last but not least, I extend my thanks to the faculty and staff of the Computer Science

Department for their enthusiasm and care during my study at the UNO.

iii

Table of Contents

List of Figures……………………………………………………………….……v

Abstract…………………………………………….………….……………….….vi

Chapter 1 Introduction……………………………………………………….….1

Chapter 2 Background……………………………………………………….….3

2.1 Web Service…………………………………………………………………..3

2.1.1 SOAP…………………………………………………………………….4

2.1.2 UDDI…………………………………………………………………….6

2.1.3 WSDL……………………………………………………………………7

2.2 Apache Axis…………………………………………………………………..7

2.3 JSDT………………………………………………………………………….8

2.4 JMF…………………………………………………………………………..10

Chapter 3 System Design………………………………………………………11

3.1 Virtual Training Class...………………………………………...……...…….11

3.2 System Description…………………………………………………………..13

3.3 System Structure……………………………………………………………..14

3.3.1 Web Services………………………………………………………….…16

3.3.1.1 Authentication Service……………………………………………...17

3.3.1.2 Instruction Service………………………………………………….21

3.3.1.3 Polling Service……………………………………………………...22

iv

3.3.2 A/V transmission………………………………………………………..25

3.3.3 JSDT………………………………………………………………….…27�
3.3.4 Trainer GUI………………………………………………………….….28

3.3.5 Trainee GUI………………………………………………………….….29�
Chapter 4 Implementation of the System…………………………………....31

4.1 Database………………………………………………………………….…..31

4.2 Web Service Creation, Deployment, and Involving…………………….……32

4.3 Implementation of the A/V agent component…………………………….….35

4.4 Database Connection………………………………………………………...37

Chapter 5 A Comparison of Using Web Service and Using Jini………...38

5.1 Jini…………………………………………………………………………....38

5.2 A Comparison between Web Services and Jini……………………………....39

5.3 Impact to System Design from the Difference of Jini Lookup and UDDI…...42

Chapter 6 Conclusion…………………………………………………………...45

References……………………………………………………………..……….…46

Vita………………………………………………………………………………....47

v

List of Figures

Figure 2.1: Structure of a SOAP Message……………………………….………5

Figure 3.1: System Architecture Diagram………………………………….…...15

Figure 3.2: Web Services Relationship Diagram………………………………..17

Figure 3.3: Trainee’s Authentication Web Service Process Diagram……….…..18

Figure 3.4: Login Dialog for Trainee……………………………….………..….18

Figure 3.5: Trainer Authentication Web Service……………………..……….…19

Figure 3.6: Login Dialog for Trainer……………………………………….……20

Figure 3.7: Instruction Web Service Diagram……………………………….…...21

Figure 3.8: Polling Service Process Diagram…………………………….….…..23

Figure 3.9: HTML Presentation Control (Polling Service) Diagram…………....24

Figure 3.10: A/V Transmission Diagram……………………………………........25

Figure 3.11: JSDT subsystem………………………………………………….…28

Figure 3.12: Trainer GUI…………………………………………………….…...29

Figure 3.13: Trainee GUI…………………………………………………….…...30

Figure 4.1: Virtual Classroom Relational Database Diagram…………….….….31

vi

Abstract

With the rapidly advancing technologies, training has been vital to keep companies

competitive. Web-based training grows rapidly and attracts more attention for its most

flexible manner. Virtual classroom is a form of synchronous web-based training. It

provides real-time interactivity in learning process.

I have developed a virtual classroom that uses Web services to control the

audio/video transmission, chat box, whiteboard, and synchronous HTML presentation.

Compared to an early implementation of the virtual classroom based on the Jini

network, my Web-service based implementation has a significantly different control

structure. My implementation has better interoperability.

- 1 -

Chapter 1 Introduction

Web-based Training (WBT) has become a widely accepted tool for distance

learning along with the World Wide Web. It is rapidly growing. Many WBT projects

have gained significant better results compared to the corresponding traditional training

courses. The advantages provided by Web Based Training include the flexibility of

schedule or space, reduced training costs, world-wide accessibility, easily updating

training course content, and a self-control capability which leads to a highly

individualized learning. Furthermore, some studies have shown that the

technology-based instruction may reduce the time to achieve the given objectives.

These are always appealing to companies that have many employees to train. The

market demand for web-based training is expanding faster than ever, which results in

the demand for rapid development of web-based training.

Web-based training is generally broken down into asynchronous and synchronous

learning. In asynchronous learning, training takes place in different time frames. The

trainees access information at their convenience. In synchronous learning, on the other

hand, training takes place for all the participants at the same time. The information is

accessed instantly. The latter requires an instructor and provides more interactivity. It is

also called Internet virtual classroom.

The virtual-classroom training plays an important role in distance learning.

- 2 -

Classroom interactivities have long been emphasized in conventional teaching

techniques. In a classroom, the learning process is interactive and spontaneous.

Classroom discussions are an effective way for the trainer to verify the learning process.

While many training courses have been replaced by asynchronous self-paced online

courses, instant interactions remain to be necessary when the constructivist pedagogical

approach is applied in a synchronous manner. The current web-based classrooms share

a common weakness: limited support for viewers’ feedback. This often disables the

continuality of conversations stimulated by questions.

In this thesis, I report the design and implementation of the control structure of a

virtual training classroom by means of Web services. This virtual classroom is

supported by audio and video conferencing, electronic whiteboards, chat boxes, and

web browsers. The trainer must control the whole class easily and access the resources

directly. On the other hand, the trainees are able to receive the lecture in video and

audio along with the synchronized HTML web pages. Each trainee can request to speak

to the whole class.

In the implementation of virtual training classroom, the interaction between the

trainees and trainer does not follow the traditional way that trainer pushes everything to

trainee. The trainee will request the resources. In this case, we can be benefited from

the standard “requests and responds” communication pattern of Web services.

- 3 -

Chapter 2 Background

In our virtual classroom, we have used various resources to facilitate the

presentation and illustrations such as multimedia communications and electronic

whiteboard to promote interaction between the trainer and trainees. Such a system is

comprehensive and complicated to develop.

In this chapter, I have reviewed the technologies used in our virtual classroom

including the general Web service model, an open-source implementation of Web

services – Apache Axis, the Java Shared Data Toolkit (JSDT), and the Java Media

Framework (JMF).

2.1 Web Service

The definition of Web service provided by W3C Working Group is as follows:

“A Web service is a software system identified by a URI, whose public interfaces

and bindings are defined and described using XML. Its definition can be discovered by

other software systems. These systems may then interact with the Web service in a

manner prescribed by its definition, using XML based messages conveyed by Internet

protocols.” [18].

In a typical Web services scenario, an application sends a request to a service at a

- 4 -

given URL using the SOAP protocol over HTTP. The service receives the request,

processes it, and returns a response. An often-cited example of a Web service is a stock

quote service, in which the request asks for the current price of a specified stock, and

the response gives the stock price. This is one of the simplest forms of a Web service in

which the request is fulfilled immediately in the same call.

The Web service model is governed by three protocols: SOAP, UDDI, and WSDL.

2.1.1 SOAP

SOAP, short for "Simple Object Access Protocol", is an XML-based

communication protocol and encoding format for inter-application communication.

SOAP is widely viewed as the backbone of a new generation of cross-platform

cross-language distributed computing applications, called Web Services.

SOAP is a lightweight protocol for exchanging information in distributed

environment. SOAP contains three parts:

� an envelope

� a set of encoding rules

� a convention for representing remote procedure calls and responses.

- 5 -

 The envelope is for describing what the message is and how to process it. The

encoding rules are to express instances of data types which are defined in a specific

application. Figure 1 shows the structure of a SOAP message.

Figure 2.1: Structure of a SOAP Message

• SOAP Envelope: A required root element that identifies the XML

document as a SOAP message

• SOAP Header: An optional key information element in SOAP Envelope,

which contains header information for supporting the addition of

directives that expand SOAP capabilities

• SOAP Body: A required element of SOAP Envelope, which contains call

and response information XML data

• SOAP Fault: An optional element in SOAP Body scope, which provides

information about errors that occurred while processing the message

- 6 -

A example of a soap message is as follows:

<soap:Envelope

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

 soap:encodingStyle='http://schemas.xmlsoap.org/soap/encoding/'>

<soap:Header>

<x:x

 xmlns:x='http://example.org/Extensions/'

 soap:actor='http://example.org/Nodes/Fireball/XL5'>

 <!-- extension detail goes here -->

 </x:x>

</soap:Header>

<soap:Body>

 <!-- message payload goes here -->

</soap:Body>

</soap:Envelope>

2.1.2 UDDI

The Universal Description, Discovery and Integration (UDDI) protocol creates a

standard interoperable platform so that it can enable companies and applications to find

and use Web services dynamically over the Internet. UDDI also allows operational

registries to be maintained for different purposes in different contexts.

- 7 -

JUDDI is an open source Java implementation of the UDDI specification for Web

services. It bounds with any database that supports ANSI standard SQL. Furthermore, it

is also deployable on any Java application server that supports the Servlet 2.3

specification such as Jakarta Tomcat, WebSphere, WebLogic, Borland Enterprise

Server, and JRun.

2.1.3 WSDL

Web Services Description Language (WSDL) is an XML format for describing

web services as a set of endpoints operating on messages containing either

document-oriented or procedure-oriented information. The operations and messages are

described abstractly, and then bound to a concrete network protocol and message

format to define an endpoint. Related concrete endpoints are combined into abstract

endpoints (services). WSDL is extensible to allow description of endpoints and their

messages regardless of what message formats or network protocols are used to

communicate [19].

2.2 Apache Axis

Apache Axis is a soap engine for constructing SOAP processors such as clients

and servers [18]. Apache Axis is not only an implementation of the SOAP but also a

framework that includes [10]:

- 8 -

• a simple stand-alone server

• a server which plugs into servlet engines such as Tomcat

• extensive support for the Web Service Description Language (WSDL)

• emitter tooling that generates Java classes from WSDL

• some sample programs

• a tool for monitoring TCP/IP packets

Axis is a great tool for publishing and deploying Web services. Axis provides two

ways to publish a service. The first one is very simple. It requires just copying the

service implementations into the “webapp” directory of Tomcat, and renaming it with

extension .jws instead of .java. The second way is to use Axis’s Admin command line

tool for tasks such as deployment or undeployment according to a deployment

descriptor. Axis provides two utility tools. Java2WSDL generates the WSDL file for a

given service implementation, and WSDL2Java generates the server-side wrapper Java

code and stubs for clients to access.

2.3 JSDT

JSDT, Java Shared Data Toolkit, is a development library that allows developers to

easily add collaboration features to applets and applications which are written in the

Java programming language. Enterprise developers use the Java Shared Data Toolkit

- 9 -

software to create network-centric applications such as shared whiteboards or chat

environments. It can also be used for remote presentations and shared simulations and

to easily distribute data for enhanced group workflow.

JSDT comes with three implementation types. Each implementation type uses a

different transport protocol:

• socket - users TCP/IP sockets

• http - uses HTTP commands

• lrmp - uses a light weight reliable multicast package (LRMP)

JSDT application is made up of four components listed below.

Session object: As with all types of collaborative environments, there needs to be some

way for each application to initially rendezvous so that data can be

shared. The JSDT group rendezvous point is a Session object.

Client object: A Client is an object which is part of a JSDT application or applet and is a

participant in an instance of multiparty communications. A client object

can be the source or the destination of the data which is being exchanged

in an instance of communication.

Channel object: A Channel is a specific instance of a potential multi-party

communication path between two or more clients within a given session.

All client objects which register an interest in receiving from a given

- 10 -

Channel will be given the data sent on that Channel. Any client is able to

send data on a given channel.

Channel consumer object: A channel consumer is a client object which has registered its

interest in receiving data sent over a given channel.

2.4 JMF

The Java Media Framework (JMF) [13] is an application programming interface

(API) for incorporating media data such as audio and video into Java applications and

applets. It is specifically designed to take advantage of Java platform features. The JMF

API (the Java Media Player API) enables programmers to develop Java programs for

playback of time-based media. The JMF APIs support RTP (Real-Time Protocol). The

JMF RTP APIs enable operations such as opening RTP sessions, receiving every

incoming stream on the session, creating a JMF player using the stream data source,

and sending outgoing RTP streams from a data source.

- 11 -

Chapter 3 System Design

In the past, we designed and implemented a prototype of a virtual training

classroom over the Internet controlled by the Jini network [17]. Since Jini requires

TCP/IP ports that are typically blocked by firewalls, we decided to replace the

Jini-based control structure with Web services. It turned out that this replacement

implied significant change in design. For completeness, I describe the entire system in

this chapter.

3.1 Virtual Training Class

 A virtual training class is a synchronous online training class led by a trainer. In a

class, the trainer leads the (remote) trainees to conduct computer-aided hands-on

experiment during lectures. The lecture is delivered by audio and video (A/V) to every

trainee’s computer. The trainees’ lecture material in HTML is kept updating to

synchronize with the audio and video. Using the chat box and whiteboard, the trainer

and trainees can also discuss the lecture by exchanging textual messages and explain

problems by using the whiteboard. Furthermore, the chat box also enables more

trainees to discuss problems at same time. This has been proved a very effective

learning process for professional training. For the traditional satellite classroom, the

trainer pushes everything to trainees with little feedback from trainees. Compared to

- 12 -

that satellite classes, our system has been facilitated a channel from the trainees to the

entire class. The virtual training classes can provide more timely help to trainees than

the asynchronous web-based training classes. In asynchronous web-based training,

accumulated questions may prevent a trainee from catching up the lecture. On the other

hand, explaining every possible question in the lecture may force the trainer to loose the

concentration on the main theme. Boring “side walks” would be drawn the trainees’

focus. In a synchronous virtual training class, the trainees can ask questions instantly.

Explanation will always be given with a target. The question-and-answer conversation

is typically beneficial to the whole class.

In the traditional training class, human interactions consist of:

� the trainee poll the current page of HTML browser,

� the trainer and the trainees interacting with each other,

� the trainees interacting with one another.

Our virtual training class supports these types of interactions in different ways. If the

trainee receives questions from some trainees and grants permission to a chosen trainee,

the conversation regarding that question is sent to the whole class as an audio session.

Upon the trainer’s choice, the audio for the speaking trainee can be sent to everybody

else in the class. When a question-and-answer session is granted, the course

presentation is paused. In addition to the A/V session for questions and the follow-up

conversations, every trainee can post textual messages on the chat box or draw graphics

- 13 -

on the whiteboard which is shared by the class. The simplest communication means is a

chat box with which one can exchange textual messages with an individual. This is

available to everybody.

 In order to communicate in the learning process, both the trainees and the

trainer should be equipped with the networked computers. Additionally, to enable the

audio and video communication, the trainees and the trainer should also have installed

the corresponding software to support the audio and video transmission and JSDT

registry and servers. In my project, since the trainer transmits both audio and video to

the trainees and the trainees only transmits audio under control of the trainer, the trainer

has both microphone and camera and trainee has only microphone for audio.

3.2 System Description:

 The virtual classroom allows both the trainees and the trainer to be active in this

learning process. The trainer can create a course by registering the course on the server

side and providing information such as the course name, course id, course time, and the

references to the class web pages. Trainee can register by providing personal

information and the course identifier he/she wants to take. The trainer can activate the

course at the server side. At this time, the trainees must run the client side. User

authenticated function is first invoked. Only the registered trainees and trainer can take

the course. After the trainees and the trainer successfully login, course starts with the

- 14 -

trainer’s presentation. During the process of the class, the trainer’s audio and video are

continuing transmitting to the trainees’ GUI. The trainer can also use whiteboard and

HTML pages to facilitate his/her presentation. If a trainee has a question, he/she can ask

for permission to speak. The trainer can decide who can speak on the class and grant

the permission to the trainee. The trainer may also deactivate the speaking trainee’s

microphone. Moreover, the trainees can use chat box and whiteboard to raise and

discuss questions.

3.3 System Structure

 The whole system can be divided into four subsystems: A/V transmission, the

JDST server, the Web Server (Tomcat), and the UDDI registration. For the first two

subsystems, we have used free Java components such as Java Media Framework (JMF)

[13], the Real-Time Protocol (RTP) [7] implementation in JMF, and the Java Shared

Data Toolkit (JSDT) [15]. The Web Server (Tomcat) is responsible for system control

and UDDI registration is for service locating.

Figure 3.1 shows the system structure diagram.

- 15 -

Audio / Video

JSDT Client

Chat Server

White Broad Server

A/V Transmission Audio/ Video

White Board User

Chat Box User

Trainee Side

JSDT Client

White Board User

Chat Box User

Trainer Side

Client GUI

WS Client

Trainer GUI

Authentication Service

Instruction Service

Audio Control

HTML Presentation

 Control

Polling Service

Figure 3.1: System Architecture Diagram

UDDI
Registration

Whiteboard and
chat box control

- 16 -

3.3.1 Web Services

 In our system, the Web services are responsible for controlling the operations of

many components. In this project, we have created three Web services for the client: the

Authentication service, the Instruction service, and the Polling service. The polling

service contains audio control service and HTML presentation control service. The

authentication service is responsible for the trainees’ status verification. The Instruction

service is for notifying the trainer which trainee is asking in the question session. The

HTML presentation control service is to synchronize the lecture material and the audio

control service grants permission to the trainee who is asking to speak.

Figure 3.2 shows the “uses” relationship between the trainer GUI, the trainee GUI,

and the Web services. The implementations of the three Web services are under the

control of the trainer GUI. The trainee GUI is connected to the web server by the WS

client which resides in the trainee GUI. The trainees make use of the Web services

without bothering the trainer GUI. The changes caused by the Web services will be

forwarded to the trainer GUI, and trainer GUI waits for the trainer’s next action.

- 17 -

3.3.1.1 Authentication Service

We enabled password protection in use of the system. When a trainer needs to

establish a course, he/she will be asked to provide the course information. Moreover,

the trainer will be assigned an identifier for later use. For the trainees, the registration

process is simply collecting identification information. Each trainee will obtain an

identifier for authentication. Therefore, only registered user can access this system.

--Trainee Login:

Figure 3.3 shows the trainee’s authentication process and the components involved

Client GUI

WS Client

Trainer GUI

Figure 3.2: Web Services Relationship Diagram

Authentication Service

Instruction Service

Audio Control

HTML Presentation Control

Polling Service

Web Server (Tomcat)

- 18 -

in this process.

Authentication service is designed to deal with login and logout functions. When a

registered trainee wants to login to take the course he/she registered, the trainee is ask

to provide his/her identifier and password and select the course available at that time.

The system will check the profile of that trainee from the database to verify the

information.

 Figure 3.4: Login Dialog for Trainee

If the trainee logs in successfully, the system will add the trainee’s id, name, and

True/False

True/False
Id/Password

Id/Password

Trainee GUI

Login Dialog

Web Server (Tomcat)

Authentication Service

Process Manager
Id/Password

Database Manager

Id/Password
Id/Password

DB

True/False

True/False

Figure 3.3: Trainee’s Authentication Web Service Process Diagram

Trainee

- 19 -

status (listening) into the on-going class table. Correspondingly, the list which holds the

content of that table is shown in trainer’s GUI. In addition, the system will connect the

trainee as a chat user and a whiteboard user.

--Trainee Logout:

 When a trainee exits the system, all the information about this individual stored in

on-going class table will be removed, no matter what status he/she is. In the logout

process, the trainee will be disconnected from the chat group and the whiteboard.

--Trainer Login:

Figure 3.5 shows the trainer’s authentication process and the components involved

in this process. Figure 3.6 shows the trainer’s login dialog. Only user id and password

Id/Password True/False

Process Manager

Database Manager

DB

Trainer GUI

Login Dialog

Id/Password

Id/Password

Id/Password

True/False

Figure 3.5: Trainer Authentication Web Service Process Diagram

Trainer

- 20 -

are needed for a trainer to login.

 Figure 3.6: Login Dialog for Trainer

 When a trainer logs in successfully, system will do the following:

� tell system this course is available now by adding the course identifier to a

table which holds the on-going class information;

� load the presentation web pages for the course;

� insert the current page into a table which holds the current web page’s URL;

� create a chat user for the trainer;

� create a white board user for the trainer;

� start transmitting audio and video to trainees.

--Trainer Logout:

 Corresponding to the login process, the trainer can logout by asking the system to

clear and drop the tables which are used by and created for the class, and remove the

record in the courses availability table. In addition, we need to stop broadcast audio and

video after class to save network traffic resource. Finally, the system disconnects the

chat users and whiteboard users, and closes the database connection.

- 21 -

3.3.1.2 Instruction Service

 In the virtual classroom, a trainee is allowed to ask questions just like in a

traditional classroom. The trainee does it by clicking a button instead of raising his/her

hand. The Instruction Service as a Web service has few operations only. When the client

WS receives the request from the trainee, it sends the trainee’s id to the trainer GUI by

calling the Instruction service. In turn, the Instruction service calls the Process Manager

to change the status of this trainee from “listening” to “asking”. Since the trainer GUI is

kept refreshing periodically, every 0.1 seconds, the change will be shown on the trainer

GUI quickly. Thus, the trainer can figure out who has a question to ask and take the

operations accordingly. Figure 3.7 shows the process for using Instruction Web service.

 Figure 3.7: Instruction Web Service Diagram

Change status
to “asking”

Trainee Id

Trainee WS

Web Server (Tomcat)

Instruction Service

Process Manager

Database Manager

Trainee Id

DB

- 22 -

 3.3.1.3 Polling Service:

 Polling and callback are two commonly used patterns in asynchronous

communication, in which a client continues its computation without blocking it control

flow after issuing a remote service (procedure) call. If the client itself can also handle

remote service requests, the client can ask the remote server to call a specific (client’s)

method when the service result is ready to deliver. This approach is called callback.

However, if the client side is not capable of handle remote service requests, then the

client side has to poll the server side periodically until the service result is ready to pick

up.

In my project, since the trainee side is not equipped with a Web server, the trainee

side is incapable of accepting Web service calls. On the other hand, asynchronous calls

are more desirable for a number of long-duration requests such as the request for

speaking in the audio control process and the request for the next page in the HTML

presentation control.

Figure 3.8 shows the Polling service for the audio control and the HTML

presentation control processes. The Instruction service informs the trainer GUI who is

requesting to speak and then waits for the trainer’s decision. The audio control service

will continue the question session by polling the trainer’s next related operations.

- 23 -

 In the virtual classroom, the RTP-based audio/video communication channels can

allow multiple speakers (the trainer or the trainees) to speak simultaneously. However,

as a classroom, the trainer must be able to control the channels and allow one speaker at

a time. This is achieved by our Web-service based control system. As mentioned earlier,

the trainer GUI controls the trainees’ microphones which are disabled by default. When

a trainee attempts to speak, he/she sends a request to the Instruction service in server

side. Then the trainee process continues polling the trainer-side Polling service until the

request is granted or rejected. The trainee may cancel his/her request at any time. Upon

receiving requests for speaking from (typically multiple) the trainees, the trainer will

choose one trainee to speak by granting the corresponding request. At the same time,

the trainer process also rejects every other request. Therefore, a trainee’s speaking

request typically goes through two of three states, first “pending” then either “granted”

or “rejected”. A trainee’s microphone will not be enabled unless a speaking request

result polling

Web Server (Tomcat)
Trainee GUI

WS Client

Polling Service

Audio Control

HTML Presentation Control

Trainer GUI

Figure 3.8: Polling Service Process Diagram

polling

result

- 24 -

results in a “granted” state.

 The Polling service is also used to push the HTML pages to every trainee’s GUI at

the pace controlled by the trainer. The URLs of the HTML pages of the classes are

stored in the database. The trainer may want to keep a page on the screen for a fraction

of a minute or a couple of minutes. The duration is unpredictable by the program. When

the trainer goes to a page by clicking the “Next” or “Previous” button, every trainee’s

screen should browse to the same page immediately. Considering the trainee side has

no Web server, we let each trainee’s process to poll the trainer-side Polling service. This

Polling service always returns the URL of the current page on the trainer’s browser.

Upon receiving this browser component should fetch a new page. Figure 3.9 shows the

HTML presentation control diagram.

Web Server (Tomcat)

Polling Service

Trainee GUI polling

Current Page

Trainer GUI

Current Page

Figure 3.9: HTML Presentation Control (Polling Service) Diagram

Process Manager

Database Manager

DB

- 25 -

3.3.2 A/V transmission

While the TCP/IP connection can handle all the control messages, the textual

messages and the HTML presentations, adequately, it is not suitable for audio and video

streams. Rather, we have chosen the Real-Time Transport Protocol (RTP) for

transmitting audio and video [16]. The Java Media Framework API enables the

playback and transmission of RTP streams through the APIs. JMF supports audio, video,

and other time-based media to be added to applications built on Java technology [5]. In

my project, I implemented the audio and video conference by using JMF [13]. JMF

offers a function to capture audio and video with capture devices, such as microphones

and cameras [12]. We can create a data source from the data captured by such devices

with JMF API. In order to display the data source in a GUI, a player takes the data

source as input and renders it into audio or video. Since a processor can output data

either to a player or to convert it to a format which is suitable to transmit, we create a

processor and get the output to be ready to transmit. In the receiver, a player is created

enable/not
grant/reject

ask

Web Server (Tomcat)

Client A/V Server A/V

Figure 3.10: A/V Transmission Diagram

Audio/Video

Audio

Start receiving if granted
Server GUI

- 26 -

for the receiving stream to display.

A challenge in using audio/video transmission is that one data source can not be

operated twice. In my project, the data source generated by video camera can either be

used to display on GUI locally or be transmitted to the trainees. To solve this problem, I

create a clone from that data source and use them for different places [11].

In a local area network, multicast does not cost much more bandwidth than a

point-to-point transmission. Transmission between zones across the Internet apparently

could be a problem due to the limited bandwidth. Particularly, when multiple viewers in

the same remote zone watch the same video and audio, we want to avoid duplicating

the transmissions of the same contents over the Internet. This was well thought in the

multipoint operation [Lindbergh] specified by a number of comprehensive multimedia

conferencing standards of ITU-T (the International Telecommunication Union

Telecommunication Standardization Sector) such as H.320 and H.323 [Thom].

Particularly, the multipoint operation in these two standards works by connecting all

participating terminals (the users’ interfaces) to a central bridge device called the

multipoint control unit (MCU) in a point-to-point mode. The MCU relays and controls

the transmissions between remote MCUs and their terminals in a flexible and

complicated manner. On one hand, the virtual classrooms acutely need the multipoint

operation, considering that multiple workers in one department often need to take the

same class. In the cases of popular technologies training or military professional

- 27 -

training, a whole lab’s users are all taking the same remote course. On the other hand,

using a fully-blown H.323 implementation would be overkill. H.323 has many special

requirements for routers that not commonly available, while many complicated features

and controls for teleconferencing are not needed by the virtual classroom.

We have devised an application-level solution to cope with the demand for the

multipoint feature. There are two channels for the trainer’s audio and video respectively

from a trainer’s zone to each class recipient zone, and two additional channels for A/V

transmission from each remote zone to every other zone. To achieve multicast at the

application-level, a pipe is needed between every pair of zones. At each zone, the A/V

agent object manages every pipe.

3.3.3 JSDT

I used the JSDT framework to implement the classroom facilities, the chat box and

the whiteboard [14]. JSDT gives a neat definition and simple structure of distributed

computing features data sharing. With JSDT, we can construct a collaborative

application easily and fast [15]. JSDT supports various types of networks and

multipoint communications among a number of connected entities. In my project

scenario, a number of trainees and a trainer can connected through any kind of

networks and share data resources. Chat box and whiteboard as shared objects can

- 28 -

provide the same view for all the participants. The communication supported by JSDT

is the complimentary for the audio and video communication in the class.

3.3.4 Trainer GUI

Only one trainer can be active in one virtual classroom at any time. The trainer must

be able to control every activity in the class. The trainer service must be capable of

enabling and disabling every component in the virtual classroom, such as the

microphone, whiteboard, and chat box at each trainee’s computer.

Figure 3.12 shows the trainer GUI [3]. In this GUI, the upper left pane is the

broadcasting video. The upper middle pane is the whiteboard of the virtual classroom.

The chat box is in the lower left corner on the GUI. The lecture presentation is in the

lower middle pane. The trainees’ status information is displayed in the list on the right

hand side. The trainer can take some actions according trainees’ different statuses, such

as listening, asking, and speaking. The trainer can grant the audio channel to or revoke

it from any trainee by highlighting the trainee’s entry and then pressing the “Grant” or

JSDT Client JSDT Client

Chat Box Server

White Board Server

Chat Box User

White Board User

Chat Box User

White Board User

Figure 3.11: JSDT subsystem

- 29 -

the “Revoke” button.

 Figure 3.12: Trainer GUI

3.3.5 Trainee GUI

The trainee service is the front end of the virtual classroom. The emphasis of this

service is on ease of use. Figure 3.13 illustrates the trainee GUI [3]. As mentioned

earlier, the progress of the HTML presentation is controlled by the trainer.

- 30 -

 Figure 3.13: Trainee GUI

The microphone of every trainee is disabled by default. Before the trainee wants to

speak, he/she must ask for permission from the trainer. The trainer service grants the

permission by enabling the trainee’s microphone. Either the trainer or the trainee can

stop this audio channel at any time.

- 31 -

Chapter 4 Implementation of the System

In the implementation of the system, I have taken advantage of the existing

components but focused on the Web services implementation.

4.1 Database

 The virtual classroom system is supported by a small database that accommodates

the data model depicted in Figure 4.1 [1]. The “Trainee” and “Trainer” entities hold the

information such as name, id, and password. The “Course” entity has the fields such as

the course title, description, and length. Relationship “cover” represents the skill that

each course covers. The “Class” entity is an offer of a course. The class time, URL, and

other related information are associated with this entity. Relationship “Attending” holds

1

n m

Trainer

Skill

Attending Offer

Cover

m

Use

PageURL

m

m 1

Class

Trainee Register

1

1

Course

Figure 4.1 Virtual Classroom Relational Database Diagram

- 32 -

the dynamic attendance information upon trainees’ login on to the classes. Entity

“PageURL” and Relationship “Use” represent the collection of each course’s web pages.

When a trainee wants to take a course, he/she needs to register to the class.

4.2 Web Service Creation, Deployment, and Involving

 Axis facilitates creation and deployment of Web services [4] [6]. The following is

an example of doing so for the audio control of polling service. The implementation of

this service is listed below.

If a trainee has a question and attempts to speak, he/she will click “Ask” button to

ask to speak. This request is processed by calling a trainer-side Polling service. When

the call to this service is accepted by Axis through the Tomcat Servlet engine, Axis

invokes method pollGrant(). Here is the Java implementation.

- 33 -

This Java implementation must be represented by an XML message in WSDL. We can

obtain such a WSDL document by running the command Java2WSDL, an Axis utility.

Next, we need to generate all of the code for deploying the service as well as the stub to

access this service. This is carried out the following command, another Axis utility.

After running this command, seven programs will be generated in package

server.polling.

public String pollGrant(){
if(pm.isStatus(tablename,"speaking")){

 String i= pm.checkWhoSpeak(tablename);
 i = i.trim();
 pm.terminate();
 if (i.compareTo(stuid)==0){
 return "accept";
 }
 else{
 return "reject";
 }

}
else{

 return "pending";
 }
}

java org.apache.axis.wsdl.Java2WSDL -o Polling.wsdl
-l"http://localhost:8080/axis/services/PollingService" -n urn:Polling -p"Polling" urn:Polling
server.Polling

 java org.apache.axis.wsdl.WSDL2Java -o . -d Session -s -p server.polling Polling.wsdl

- 34 -

• PollingServiceSoapBindingImpl: This is the implementation code for our Web

service. PollingServiceSoapBindingImpl needs to be changed to delegate the

call to the implementation code.

• Polling.java: This is a remote interface to the polling subsystem (extends

Remote, and methods from the original Polling.java throw RemoteExceptions).

• PollingService.java: Service interface of the Web services. The ServiceLocator

implements this interface.

• PollingServiceLocator.java: This is the program which can locate the service for

the trainee.

• PollingServiceSoapBindingStub: Client-side stub code that encapsulates client

access.

package server.polling;
import server.Polling;
public class PollingServiceSoapBindingImpl implements server.polling.Polling{
 server.Polling poll = new server.Polling();
 public java.lang.String proPolling(java.lang.String in0, java.lang.String in1) throws
java.rmi.RemoteException {
 return poll.proPolling(in0,in1);
 }

 public boolean pollRevoke(java.lang.String in0, java.lang.String in1) throws
java.rmi.RemoteException {
 return poll.pollRevoke(in0,in1);
 }

}

- 35 -

• deploy.wsdd: Deployment descriptor that we pass to the Axis system to deploy

these Web services.

• undeploy.wsdd: Deployment descriptor that will undeploy the Web services

from the Axis system.

In order to deploy the service, we first compile the java programs in directory

server.polling and then pack all of the code into a jar file and copy it into Axis’ “lib”

directory in Tomcat. Next, after running Tomcat, we deploy the Web service using the

WSDD deployment descriptor.

The client-side code to call this Web service is simple because Axis has prepared the

stub code for the client side. The following code fragment is sufficient to make the call

for Polling service.

4.3 Implementation of the A/V agent component

 Multicast is not supported in most part of the internet. A less expensive solution

without special network routers’ intelligence would be using the subnet-directed

java org.apache.axis.client.AdminClient deploy.wsdd

 server.polling.PollingService service1 = new server.polling.PollingServiceLocator();

 server.polling.Polling poll = service1.getPollingService();

 result = poll.proPolling(id,tablename);

- 36 -

broadcast address. If the network number and the subnet number are both valid and the

most number is 255, then this address refers to all hosts on the specified subnet. The

subnet broadcast is performed by the router that receives the packets into the subnet.

However, the subnet broadcast capacity is deliberately turned off in many routers due to

security concerns. Thus a solution at the application level is needed.

In a local network, multicast is commonly available. In each subnet, we allocate

multicast channels. All the channels use the same multicast IP number but have

different port numbers. In our system, we use 228.1.2.3:42050 and 228.1.2.3:42052 for

the audio and video outputs respectively. We use 228.1.2.3:42054 and 228.1.2.3:42056

for the audio and video inputs respectively.

In our system, trainee has three objects to relay communications: audioTrans,

videoTrans, videoRec. Trainee also has three objects: audioRec, videoTans, videoRec.

The audioTrans object is to forward the local audio steam broadcasting in the local

network to the A/V agent at every participating zone. The audioRec object is to catch

the audio steams coming from any participating zone and forward the streams to the

local audio broadcasting address, 228.1.2.3:42052. The videoTrans and videoRec

objects perform the similar tasks for management. Since the internet bandwidth is not

adequate, all the A/V agents will reduce their transmission rate for video to preserve the

quality for audio streams. Additionally, system doesn’t allow trainee video transmission

to save the network transmission resource.

- 37 -

4.4 Database Connection

To facilitate managing the database, we create a Process Manager for the system.

Using Process Manager can prevent other programs from accessing database and

establishing unnecessary database connections. Additionally, Process Manager also

provides simple methods for easy use of the database.

Furthermore, we also create a Database Manager to communicate the database with

Process Manager. Database Manager can access database directly and handle all the

SQL commands needed in this system, such as establishing and closing a connection,

selecting and updating an attribute, creating and dropping tables.

- 38 -

Chapter 5 A Comparison of Using Web Service and Using Jini

As mentioned earlier, we implemented a similar virtual training classroom using

the Jini network to control classroom components and activities. Having implemented

the current virtual training classroom using the Web service, I am to compare the

implementations based on these two mechanisms. First, I am to introduce Jini in

Section 5.1.

5.1 Jini

 The Jini network is an infrastructure for providing services over a network.

Services can join or leave the network in a robust fashion. Clients can rely upon the

availability of visible services. The advantages offered by Jini technology include [9]:

 Simplicity - Jini is about how services connect to one another, not about what those

services are or what they do or how they work.

 Reliability - Jini allows a set of known services to change fluidly, without requiring

any static configuration and administration. Every service that connects to a Jini

community carries with it all the code necessary for that service to be used by any other

participant in the community. Communities of Jini services are largely self-healing. Jini

services are able to cope with network failures in that they will recover by themselves

over time.

- 39 -

 Scalability - Jini software creates communities that form along network boundaries.

With trivial administration, these communities can be federated together.

The Jini technology supports distributed computing environment which supports

services that provide an interoperable and flexible distributed environment with the

primary goal of solving the interoperable problems with the networked electronic

devices. Jini network plug and play mechanism is particularly suitable for this problem.

5.2 A Comparison between Web Services and Jini

 Both Web services and Jini networks support the service-oriented computing

model for distributed software. The basic building blocks in both approaches are the

services. Services are self-describing and open components which support composition

of distributed applications. To operate in a service-oriented computing environment,

services must declaratively define their functional and nonfunctional requirements and

capabilities in an agreed and machine-readable format. Based on declarative service

descriptions, automated service discovery, selection, and binding must be supported.

The Web services and the Jini network both intend to provide such a realization of the

service-oriented computing paradigm. They both have three main parts: (1)

application-level services which are offered across networks, such as printing services,

software, human resource; (2) clients who need to make use of the services; (3)

- 40 -

connectors which support looking up services, an extension of the system naming

service. Finally, some transport protocols, such as TCP/IP and HTTP, line them up.

While Web services and Jini share many common features in principle, they are

different in many important aspects due to their different originations. The original goal

of the Jini network was to connect networked devices in embedded systems such as

printers, conference room lighting control, and overhead projectors. Therefore, small

footage has been an important requirement in the Jini architecture. The core Jini

network services for both service providers and clients are supported by a set of

programs less than 400 KB only. On the other hand, the Web service was originated

from XML-RPC, remote procedure call in XML. The goal has been set to support

business-to-business (B2B) software integration. A default assumption has been that

every service provider has a companion web server which is a typically substantial

large footage.

Another direct consequence of the different originations of Jini and Web services is

the openness in terms of programming languages of the applications. Jini directly

supports one programming language only – Java; this is a way for Jini to achieve

leanness. On the other hand, Web services have eliminated the restriction to the

programming languages used by the participants because Web services are built on a set

of industrial standards including SOAP, WSDL and UDDI. XML is the chosen

representation of messages.

- 41 -

Jini and Web services’ approaches to implementations of the common feature –

lookup services – are very different. The Jini lookup serivce is the central component of

Jini runtime infrastructure [8]. It not only provides a powerful way for clients to find the

services but also enables service providers to advertise their presence. In order to register,

the service provider has to find the lookup server. Jini offers two ways to find the

regestrar. If the service provider knows the address of the lookup sever, it can use unicast

to directly communicate with the lookup server. If not, it uses multicast which enables

the service provider to send a request to all the computers it can access and then wait for

an answer from a lookup server. After that, the service provider can register by posting a

proxy of this service (a Java object) on the lookup server. Web service uses UDDI

(Universal Description, Discovery and Integration) as its lookup (locating) service. Some

leading companies, such as IBM and Microsoft, offer UDDI business registry

functionality for companies to register, publish, and search services. Web services use a

web browser as the user interface which is very user friendly. Users can use either their

own registry [2] or the business registry provided by IBM or Microsoft to register their

services. Developers can register, publish, and search services through a web browser

over the Internet. Registration is the process to create a publisher account by offering the

email, name, and phone number. Publishing allows the publisher (service provider) to

publish and modify the service information. The publisher (service provider) can provide

more information to describe the service by giving the service’s category, name,

description, binding URL. Moreover, a tModel [UDDI Registry tModels, Version 2.04],

- 42 -

which represents a description of an interface and can be referenced as part of the binding

and instance information for a service, can provide a reference to the service for the

searcher. A service will be available immediately after it finishes registration.

JUDDI is an open source implementation of UDDI using a database (with the

administrator privilege) to build a local registry. By deploying JUDDI on a Web server

such as Tomcat, developers can use their own registry.

5.3 Impact to System Design from the Difference of Jini Lookup and UDDI

Since Jini’s footage is so small, every trainee’s program can contain a Jini platform.

Thus, not only the trainer’s program but also every trainee’s program can be a Jini

service provider. As a result, the call-back design pattern rather than the polling was

applied to synchronize the trainer and trainees processes. An advantage of call-back is

that the messages sending between the trainer and the trainees are minimized. However,

call-back is not practical in the Web service implementation because we cannot expect

every trainee side to install a Web server. Compared to call-back, polling will generate

substantial network overhead due to those polling messages.

The significant size difference of Jini and Web services will almost inevitably

affect the system structures. Jini will strongly encourage the peer-to-peer computing

structure. The Web services tend to lead centralized service centers.

The selection criteria in looking up or locating services are significantly different

- 43 -

between UDDI and the Jini lookup service. When a service wants to join a UDDI

registry, all the information the service needs to provide is string. Clients can find the

service by specifying a service name or a category. Both the service name and category

are strings. Furthermore, if the client wants to use this service, a URL (also a string)

will be returned by the UDDI registry to the client. In contrast to UDDI, when a service

joins a Jini network, it advertises itself by passing a java object (a proxy) that

implements the Jini service interface to the lookup service. The implementation of the

service for this proxy can work in any way the service chooses. Jini uses a special

interface, the Entry classes (those classes that implements the interface

net.jini.core.entri.Entry) to encapsulate the attributes of the service. The client can look

for services according to a number of criteria such as the service name, the service

interface, or the service category.

 Jini’s garbage collection is a unique functionality. When the service registers its

presence on a lookup server, it has to provide a lease. During this lease, the service will

guarantee to be alive and can be invoke by clients. To keep the service available

without expiration, the lease has to be renewed before the expiring time. Otherwise, the

service will be removed from the lookup server. In this way, we can handle some

failures by removing the dead services. This mechanism offers a dynamic approach for

keeping services useful. Unfortunately, the Web service does not have an approach like

lease to handle the services' availability. When a Web service registers through UDDI, it

- 44 -

is the service provider's responsibility to keep the service alive. If the service provider

forgets to remove it when the service is not available, invoking this service will result in

failure. If many dead services appear on the look up pages, clients will feel discouraged

to use this lookup server again.

- 45 -

Chapter 6 Conclusion

I successfully implemented the control mechanism of the virtual training

classroom using the Web service technology by transforming the Jini-based

peer-to-peer structure to a Web service-based centralized structure. In doing so, I was

forced used polling extensively. Through this project, I have experienced both the

advantages and the disadvantages of using Web services.

In my project, I have implemented four Web services: the authenticated service,

the instruction service, the audio control service, and the HTML presentation control

service. These four services are used to control multimedia components and classroom

activities.

A significant advantage of my implementation is that it is based on the industrial

standards, which can lead to a wider user base considering Web based training systems

have great demands.

- 46 -

References

[1] Abraham Silberschatz, Henry F. Korth, S. Sudarshan, Database System
Concepts Fourth Edition, McGraw-Hill Science/Engineering/Math, 2001.

[2] Andreas Hess, “How to set up your own UDDI registry”, http://moguntia.ucd.ie
/programming/uddi/#jUDDI.

[3] Cay S. Horstmann, Core Java2, Prentice Hall PTR, 2001.
[4] Dion Almaer � “Creating Web Services with Apache Axis”, http://www.onjava.com

/pub/a/onjava/2002/06/05/axis.html?page=1.
[5] Fred Halsall, Multimedia communications, Addison-Wesley, 2001.
[6] Hongtao Liu, “The Frequently Asked Questions and Solution in Using Apache Axis”

http://www-900.ibm.com/developerWorks/cn/webservices/ws-axisfaq/in
dex.shtml.

[7] H. Schulzrinne, et al, “RTP: A transport protocol for real-time applications” IETF RFC
1889, Jan. 1996, http://www.ietf.org/rfc/rfc1889.txt

[8] Jan Newmarch, “Jan Newmarch's Guide to JINI Technologies”,
http://pandonia.canberra.edu.au /java/jini/tutorial/Jini.xml.

[9] Keith Edwards, Core Jini, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 2000.
[10] Maydene Fisher, “Introduction to Web Services”, http://java.sun.com/webservices

/docs/1.0/tutorial/doc/IntroWS.html.
[11] Sun Microsystems, Clone.java, http://java.sun.com/products/java-media/

jmf/2.1.1/solutions/Clone.java.
[12] Sun Microsystems, “Code Samples and Apps JMF 2.1.1 Solutions”,

http://java.sun.com/products/java-media/jmf/2.1.1/solutions.
[13] Sun Microsystems, JavaTM Media Framework 2.1.1 Reference Implementation,

http://java.sun.com/products/java-media/jmf/2.1.1/.
[14] Sun Microsystems, JavaTM Shared Data Toolkit,

http://java.sun.com/products/java-media/jsdt/index.html.
[15] Sun Microsystems, “Setting up and Running JSDT”.
[16] Sun Microsystems, “Transmitting Audio and Video using RTP”,

http://java.sun.com/products/java-media/jmf/2.1.1/solutions/AVTransmit.html.
[17] S. Tu, L. Xu and Y. Wu, “A Framework Approach to Accommodation of

MultimediaCommunications for Training Systems”, Proceedings of the 4th
InternationalSymposium on Multimedia Software Engineering (MSE2002),
Newport Beach, CA, pp 232-239, December 11-13, 2002.

[18] The Axis Development Team, WebServices – Axis,�http://ws.apache.org/axis/.
[19] W3C, “Web Service Description Language (WSDL)”,

http://www.w3.org/TR/wsdl.

- 47 -

Vita

Yanfang Wei was born in Hengshui, a small city in North China. She received

her Bachelor Degree in Computer Science from Hebei University of Technology in July

2000. Yanfang Wei entered the Computer Science Graduate Program at the University

of New Orleans in the fall of 2002 and completed her graduate studies in June 2004.

	Control Synchronous Web-Based Training Using Web Services
	Recommended Citation

	Table of Contents
	List of Figures
	Abstract
	Chapter 1 Introduction
	Chapter 2 Background
	Chapter 3 System Design
	Chapter 4 Implementation of the System
	Chapter 5 A Comparison of Using Web Service and Using Jini
	Chapter 6 Conclusion
	References
	Vita

