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NOMENCLATURE 
 

 
a    Local speed of sound (m/s, ft/s) 
c   Concentration (mass/volume, moles/volume) 
cp, cv   Specific heat at constant pressure, volume (J/kg-K, Btu/lbm-°F) 
d   Diameter (m, ft) 
DH   Hydraulic diameter (m, ft) 
Dij   Mass diffusion coefficient (m2 /s, ft2 /s) 
E    Total energy, activation energy (J, kJ, cal, Btu) 
f    Mixture fraction (dimensionless) 
g    Gravitational acceleration (m/s2 , ft/s2 )  

Gr   Grashof number = 
2

3L)TsT(g

ν
∞−β

 (dimensionless) 

H    Total enthalpy (energy/mass, energy/mole) 
h    Heat transfer coefficient (W/m2 -K, Btu/ft2 -h-°F) 
h    Species enthalpy 
h0    Standard state enthalpy of formation (energy/mass, energy/mole) 
I    Radiation intensity (energy per area of emitting surface per unit solid angle) 
J    Mass flux; diffusion flux (kg/m2-s, lbm/ft2 -s) 
K    Equilibrium constant = forward rate constant/backward rate constant (units vary) 
k    Kinetic energy per unit mass (J/kg, Btu/lbm) 
k    Reaction rate constant, e.g., k1, k-1,kf;r , kb;r (units vary) 
k    Thermal conductivity (W/m-K, Btu/ft-h-°F) 
kB   Boltzmann constant (1.38 x10- 23 J/mole-K) 
k,kc   Mass transfer coefficient (units vary) 
l, L   Length scale (m, cm, ft, in) 
m    Mass (g, kg, lbm) 

•
m    Mass flow rate (kg/s, lbm/s) 
Mw   Molecular weight (kg/kgmol) 
M    Mach number = ratio of fluid velocity magnitude to local speed of sound  

Nu  Nusselt number ≡ 
k

hL (dimensionless) 

p    Pressure (Pa, atm, mm Hg, lbf /ft2) 

Pr  Prandtl number = 
α
ν  (dimensionless) 

Q    Flow rate of enthalpy (W, Btu/h) 
q    Heat flux (W/m2 , Btu/ft2-h) 
R    Gas-law constant (8.31447 =103 J/kgmol-K, 1.98588 Btu/lbmol-°F) 



 

 x

r    Radius (m, ft) 
R    Reaction rate (units vary) 

Re   Reynolds number ≡ 
ν

VL  (dimensionless) 

S    Total entropy (J/K, J/kgmol-K, Btu/lbmol-°F) 
s    Species entropy 
s0    standard state entropy (J/kgmol-K, Btu/lbmol-°F) 

Sc  Schmidt number = 
D
ν  (dimensionless) 

Sij    Mean rate-of-strain tensor (s-1) 
T    Temperature (K, °C, °R, °F) 
t    Time (s) 
U    Free-stream velocity (m/s, ft/s) 
u; v; w  Velocity magnitude (m/s, ft/s); also written with directional sub-scripts (e.g., vx, vy, vz, 

vr) 
V    Volume ( m3, ft3) 
vr    Overall velocity vector (m/s, ft/s) 
X    Mole fraction (dimensionless) 
Y   Mass fraction (dimensionless) 
α   Permeability, or flux per unit pressure difference (L/m2-h-atm, ft3/ft2-h-(lbf/ft2)) 
α    Thermal diffusivity (m2/s, ft2/s) 
α    Volume fraction (dimensionless) 
β    Coefficient of thermal expansion (K- 1 ) 
γ   Porosity (dimensionless) 
γ    Specific heat ratio, cp/cv (dimensionless) 
∆   Change in variable, final - initial (e.g., ∆p, ∆t, ∆H, ∆S, ∆T) 
δ   Delta function (units vary) 
ε    Emissivity (dimensionless) 
ε    Turbulent dissipation rate (m2/s3, ft2/s3) 

η ′′η′   Rate exponents for reactants, products (dimensionless) 

rθ    Radiation temperature (K) 
ν    Dynamic viscosity (cP, Pa-s, lbm/ft-s) 
µ    Kinematic viscosity (m2/s, ft2 /s) 

ν ′′ν′,   Stoichiometric coefficients for reactants, products (dimensionless) 
ρ    Density (kg/m3, lbm/ft3) 
σ    Stefan-Boltzmann constant (5.67 x10 -8 W/m2-K4) 

sσ   Scattering coefficient (m-1) 
≈
τ    Stress tensor (Pa, lbf /ft2) 
τ   Shear stress (Pa, lbf /ft2) 
τ  Time scale, e.g., τc,τp,τc (s) 
Ф   Equivalence ratio (dimensionless) 
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ABSTRACT 
 
 

Industrial boilers that  produce steam or electric power represent a large capital 

investment as well as a crucial facility for overall plant operations. In real applications, the 

operation of the superheater for producing high-pressure, high-temperature steam may result in 

problems frequently caused by ruptured superheater tubes. To make the boiler more efficient, 

less emission and less prone to tube rupture problems, it is important to understand the 

combustion and thermal flow behaviors inside the boiler. This study performs a detailed 

simulation of combustion and thermal flow behaviors inside an industrial boiler.  

The simulations are conducted using the commercial CFD package FLUENT. The 3-D 

Navier-Stokes equations and five species transport equations are solved with the eddy-breakup 

combustion model. Calculation of NOx is performed after obtaining a converged flow, thermal 

and combustion solution. The results provide insight into the detailed thermal-flow and 

combustion in the boiler and showing possible reasons for superheater rupture.  
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CHAPTER ONE 
 

INTRODUCTION 
 
 
 
1.1 Background 

 

During the past three decades, due to economic and environmental demands, engineers 

had to focus on improving the efficiency of energy producing power generation systems and in 

the meantime reduce their pollution emissions. Computer simulation is one of the best tools that 

can be applied in search for optimal solutions.  

Boilers are commonly used in industries to burn fuel to generate process steam and 

electric power. A situation may arise in which a considerable amount of unburned fuel is being 

picked up by the gas and carried out of the boiler; this is known in the industry as carryover. As a 

result, unburned fuel may be blown out of the boiler, causing efficiency and emissions problems. 

Poor emissions could be caused by unburned hydrocarbon (UHC) and non-uniform heating 

induced by cold and hot spots, which produce CO and NOx respectively.   Also a situation may 

arise where the superheater tubes break due to excessive heating, which may lead to boiler 

shutdown and thus increase the expenses incurred. 

Steam that has been heated above the temperature corresponding to its pressure is said to 

be  “superheated”. This steam contains more energy than does saturated steam at the same 

pressure and the heat added provides more energy for the turbine for conversion to electric 

power. Overheating of the super-heater tubes is prevented by using the appropriate materials and 
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designing the unit to accommodate the heat transfer required for a given steam velocity through 

the super-heater tubes, based on the desired exit temperature. In real applications, however, the 

operation of the superheater for producing high-pressure, high-temperature steam may result in 

problems frequently caused by ruptured superheater tubes. The damage or rupture of the 

superheater tubes may be caused by many possible reasons including, galvanic corrosion, 

thermal contraction and expansion, composition of the combustion gases, accumulations of soot 

outside the pipes, accumulation of slag inside the pipe or high temperature distribution above 

material yield temperature and high thermal stress. The damage caused by high temperature can 

be minimized by providing uniform combustion and temperature distribution and keep fouling 

resistance low, Installation of soot-blowers to remove accumulated soot and other particulates, 

and optimizing the combustion conditions.  

To help industry improve boiler’s efficiency, reduce emissions, avoid rupture of 

superheater tubes, and understand the thermal flow transport in the boiler, this study employs the 

Computational Fluid Dynamics (CFD) scheme. CFD simulations could provide a clear picture of 

what is happening at any point within the boiler, making it easy in most cases to identify the 

problem and develop a solution. A CFD analysis provides fluid velocity, pressure, and 

temperature values throughout the solution domain for problems with complex geometries and 

boundary conditions. During the analysis, the geometry of the system or boundary conditions 

such as inlet velocity and flow rate can be easily changed to view their effects on thermal-flow 

patterns or species concentration distributions. CFD can also provide detailed parametric studies 

that can significantly reduce the amount of experimentation necessary to identify problems and 

to optimize the operating conditions.  
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1.2 Objectives 

The objective of the study is to model and simulate the thermal flow behavior of an 

industrial natural gas fired boiler. The boiler information is provided by Dynegy Gas Plant at 

Venice, Louisiana. The gas flow and temperature distribution is simulated with the commercial 

CFD package FLUENT (6.1.22). FLUENT is a finite volume CFD code for solving transport 

equations of mass, momentum and energy conservation. The specific goals are 

1. To develop an appropriate numerical model to simulate the combustion features in the 

boiler. 

2. To investigate the flow pattern and temperature distribution inside the boiler. 

3. To study the flow behavior and heat transfer near the superheater tubes. 

4. To study the flow and aerodynamic behavior through the chimney. 

5. To calculate emissions NOx. 

6. To identify means that can help improve boiler efficiency, reduce emissions and avoid 

superheater tube rupture. 
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CHAPTER TWO 

LITERATURE SEARCH 

 
The literature search focuses on introducing fundamental functions, requirements and 

classification of the boilers, combustion, and NOx formation mechanisms and reduction 

technologies. 

 
2.1 Boiler 
 

A boiler is a closed vessel in which water, under pressure, is transformed into steam by 

the application of heat. In the furnace, the chemical energy in the fuel is converted into heat and 

this heat is transferred to water to convert to steam.  

 

2.1.1 Requirements of an efficient boiler 

The ideal, reliable, economic and efficient boilers will embodies the following features: 
 
! Simplicity in construction, excellent workmanship, and materials conducive to low 

maintenance cost. 

! Design and construction to accommodate expansion and contraction properties of 

materials. 

! Adequate steam and water space, delivery of clean steam, and good water circulation. 

! A furnace setting conducive to efficient combustion and maximum rate of heat transfer. 

! Responsiveness to sudden demands and overloads.  
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! Should have low initial cost, installation cost and maintenance cost. 

! Should be compact. 

! Easy accessibility for cleaning and repair. 

A boiler is designed to absorb the maximum amount of heat released in the process of 

combustion. The heat is transmitted to the boiler by radiation, conduction and convection, the 

percentage of each depending upon the boiler design. 

 

2.1.2 Steam Utilization 

Steam is generated for the following plant uses: 

1. Driving turbine for electric generating equipment, blowers and pumps. 

2. Process for direct contact with products, direct contact sterilization and non-contact for      

processing temperatures for drying and sterilization. 

3. Heating and air conditioning via absorption chillers for comfort and equipment. 

4. Providing processing steam for water-shift reaction and other chemical process. 

 

The efficiency achievable with steam generation relies heavily on the system's ability to 

return condensed steam to the operating cycle. Many of the systems described above return a 

significant portion of the condensed steam to the generation cycle. 

 

 

2.1.3 Classification of boilers  

Boilers are manufactured in many different sizes and configurations depending on the 

characteristics of the fuel, the specified heating output, and the required emissions controls. 
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Some boilers are only capable of producing hot water, while others are designed to produce 

steam. Boilers can be classified by various ways.  

 
a) Method of transporting hot gases:  

On this basis, boilers can be classified as: Fire tube boiler and water tube boiler.  

Fire tube boiler  

In a fire tube boiler, hot gases pass through the tubes and water surrounds them. Heat 

from the gases (produced by combustion) is transferred to water, which is then converted to 

steam. Examples: Cochran, Lancashire, Cornish, Locomotive boilers  

Water tube boilers  

In water tube boiler, water flows inside the tubes and the hot gases flow outside the tubes. 

Examples: Babcock and Wilcox boiler (which has straight but inclined water tubes); Stirling 

boiler (which has bent water tube).  

Fire tube boilers need stronger outer shell to contain steam pressure, water tube boilers 

does not need that.  

 

b) Method of firing:  

Internally fired: Furnace region is provided inside the boiler shell and is completely surrounded 

by water-cooled surfaces. e.g., Lancashire, Locomotive boilers. 

Externally fired: Furnace region is provided outside. e.g., Babcock and Wilcox boiler  
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Figure 2.1 a) Fire tube boiler (above)  b) Water tube boiler (below) 

c) Pressure of steam:  

Low pressure boiler: Steam pressure below 80 bars.  

Examples: Cochran, Cornish, Lancashire, locomotive boilers  

High pressure boiler: Pressure above 80 bars.  

Examples: Babcock & Wilcox, Lamont  
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d) Circulation of water:  

Natural circulation: Circulation of water in the boiler takes place by natural convection current 

produced by the application of heat.  

Examples: Lancashire, Locomotive, and Babcock & Wilcox boilers.  

Forced circulation:  Circulation of water takes by forced convection.  

 
 
2.2 Combustion 
 

Combustion occurs in boilers, refineries, drying kilns, incinerators, industrial ovens and 

is also used to generate energy from biomass (e.g. from wood, straw, organic waste). 

Combustion is the process whereby oxygen reacts with fuel, resulting in the release of heat and 

light. The effectiveness of combustion can be measured by analyzing the flue gas and the amount 

of soot. Perfect combustion is obtained when the flue gas analysis shows no carbon monoxide, 

hydrogen or oxygen and when the percentage of carbon dioxide is at a maximum.  

There are several factors or parameters that will affect combustion of heavy fuels in a 

boiler: 

1. Design of the combustion chamber  

2. Design of the burner(s)  

3. Condition of the burner(s)  

4. Air and fuel ratio. Excess air of a few percent is normal   

5. How well the air and fuel are mixed  

6. Temperature and air speed in the combustion chamber  

7. Air and fuel preheating  

8. Physical properties of the oil (viscosity, density, surface tension)  
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9. Chemical properties of the oil (asphaltenes, waxes, metal content)  

10. Fuel droplet size if liquid fuels are used. 

The combustion process provides tremendous amount of energy from a fuel and this 

energy is converted or transformed to heat for cooking, making hot water, generating steam for 

manufacturing or turning a turbine to produce shaft power and electricity, producing mechanical 

motion as in an auto engine, or thrust as in an aero-engine.  

The combustion of fuels requires the consumption of a large quantity of air. For example, 

150 Lbs of a fuel (oil) requires about 2000 Lbs of air and resulting to 250 Lbs of CO2. Small 

quantities of pollutants such as NO, CO and hydrocarbons are also formed, these quantities being 

negligible from engineering calculations standpoint but very significant from the environmental 

standpoint. 

The combustion process involves some 1000 reactions to complete the oxidation process 

forming CO2 and H2O, the ultimate products of combustion. However, pollutants such as CO, 

unburned hydrocarbons (UHC), soot, NOx, SO2 are also formed during the combustion process 

as a result of the various reactions. 

2.3 Pollutants 

Control of pollutant emissions is a major factor in the design of modern combustion 

system. Pollutants of concern include (i) particulate matter such as soot, fly ash, metal fumes, 

various aerosols etc, (ii) the sulfur oxides SO2 and SO3, (iii) unburned and partially burned 

hydrocarbons such as aldehydes, and (iv) oxides of Nitrogen, NOx which consists of NO and 

NO2, CO & greenhouse gases such as N2O. 
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Effects of Pollutants 

Primary and secondary air pollutants affect our environment and human health in many 

ways. Primary pollutants are those emitted directly from the sources, while secondary pollutants 

are those formed via reactions involving primary pollutants in the atmosphere. 

Four major negative effects of pollutants are 

1. Altered properties of the atmosphere and precipitants 

2. Harm to vegetation 

3. Foiling and deterioration of materials 

4. Potential increase of morbidity and mortality in humans 

5. Depleting ozone layer 

6. Affecting Global warming 

7. Producing Acid rains 

 

 2.4 NOx 

NOx emission consists of mostly nitric oxide (NO). It also contains nitrogen oxide (NO2) 

and nitrous oxide (N2O). NOx is a precursor for photochemical energy and contributes to acid 

rain and causes ozone depletion. The quantity of NOx formed depends on three T�s : 

Temperature, Time, and Turbulence. 

 

Oxides of Nitrogen Formation: 

In every circumstance where combustion occurs, the formations of nitrogen oxides (NOx) 

are inevitable. From a home open fire to a coal fired power plant, NOx is formed as an undesired 

product and a contributor to air pollution. 
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NOx is used to refer to NO and NO2. NO is the primary form in combustion products 

(typically 95 percent of total NOx). NO is subsequently oxidized to NO2 in the atmosphere. 

Nitrogen Oxide Formation occurs through three reaction paths, each having unique 

characteristics which is responsible for the formation of NOx during combustion processes:  

(1) Thermal NOx, which is formed by the combination of atmospheric nitrogen and  

      oxygen at high temperatures;     

(2) Fuel NOx, which is formed from the oxidation of fuel-bound nitrogen; and  

(3) Prompt NOx, which is formed by the reaction of fuel-derived hydrocarbon fragments  

with atmospheric nitrogen in an early phase of the flame front. 

 

NOx emissions do not form in significant amounts until flame temperatures reach 2800 F. 

Once that threshold is passed, any further rise in temperature causes a rapid increase in the rate 

of NOx formation. Lower excess air levels (fuel rich) starve the reaction for oxygen, and higher 

excess air levels (lean burn) drive down the flame temperature, slowing the rate of reaction. 

 

In the combustion of fuels that contains no nitrogen, nitric oxide is formed by three 

chemical mechanisms: 

1. The Thermal or Zeldovich Mechanism  

2. The Prompt or Fenimore Mechanism 

3. The  N2O Intermediate Mechanism 
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2.4.1 Thermal NOx Formation 

Thermally produced NOx is the largest contributor to these types of emissions. Thermal 

NOx is produced during the combustion process when nitrogen and oxygen are present at 

elevated temperatures. The two elements combine to form NO or NO2. NOx is generated by 

many combustion processes. It combines with other pollutants in the atmosphere and creates O3, 

a substance known as ground level ozone.  

The formation of thermal mechanism dominates in high-temperature combustion over a 

fairly wide range of equivalence ratios. Equivalence ratio is defined as the ratio of actual fuel/air 

ratio over the theoretical fuel/air ratio. The formation of thermal NOx is determined by a set of 

highly temperature-dependent chemical reactions known as the extended Zeldovich mechanism. 

The principal reactions governing the formation of thermal NOx from molecular nitrogen are as 

follows: 

O + N2  ⇔  NO + N         (2.4.1) 

N + O2 ⇔  NO + O          (2.4.2) 

A third reaction, particularly at near-stoichiometric conditions and in fuel-rich  

mixtures which contributes to the mechanism is 

N + OH ⇔  NO + H         (2.4.3) 

 

The activation energy for first reaction (2.4.1) is relatively large, 319,050 kJ/kmol. 

Therefore this reaction has very strong temperature dependence. The thermal mechanism is 

unimportant at temperatures below 1800 K. Compared with the time scales of fuel oxidation 
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processes, NO is formed rather slowly by thermal mechanism; thus, thermal NO is generally 

considered to be formed in post flame gases.        

 

2.4.2 Fuel NOx Formation 

 

Fuel NOX  formation is a more complex process involving local concentration of oxygen 

and nitrogen and is reduced by minimizing the availability of oxygen during various stages of the 

combustion process. Fuel-bound NOx is generated from nitrogen compounds present in the fuel 

itself. Gaseous fuels, such as natural gas or propane, are free of nitrogen compounds. However, 

fuel oils and coal can contain significant amounts of fuel-bound nitrogen. During combustion, 

the conversion rate of fuel-bound nitrogen to NOx varies widely over a range of 20 to 70%. 

During combustion process, nitrogen-containing organic compounds present in liquid or 

solid fossil fuel contributes to the total NOx formed. The fuel nitrogen is a particularly important 

source of nitrogen oxide emissions for residual duel oil, coke, and coal, which typically contain 

0.3-2% nitrogen by weight. The fuel-bound NOx contribution depends on the amount of nitrogen 

that is chemically bound in the fuel. The fuel NOx formation is generally important in non-

premixed combustion. The fuel NOx formation is not important in premixed combustion 

applications since most fuels used in premixed combustion contain little or no bound nitrogen.  

Under the reducing conditions surrounding the burning droplets or particles, the fuel-

bound nitrogen is converted to fixed nitrogen species such as HCN and NH3. These, in turn, are 

readily oxidized to form NO if they reach the lean zone of the flame. Between 20 and 80 percent 

of the bound nitrogen is typically converted to NOx, depending on the design of the combustion 
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equipment. With prolonged exposure (order of 100 ms) to high temperature and reducing 

conditions, however, these fixed nitrogen species can be converted to molecular nitrogen, thus 

avoiding the NO formation path. The fuel NOx mechanism is shown in the Figure 2.2. 

 

Fuel Nitrogen 

NH3 
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NO 
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NO

NO
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Figure 2.2 Fuel NOx mechanism 

 

2.4.3 PROMPT NOx Formation 

Prompt NOx is the third and least significant NOx formation mechanism. In this 

mechanism, nitrogen from combustion air reacts with hydrocarbon radicals from the fuel to form 

a hydrogen cyanide intermediate. The hydrogen cyanide then reacts with oxygen and nitrogen in 

combustion air to form nitrogen oxide. 

Hydrocarbon fragments (such as C, CH, CH2) may react with atmospheric nitrogen under 

fuel-rich conditions to yield fixed nitrogen species such as NH, HCN, H2CN, and CN. These, in 

turn, can be oxidized to NO in the lean zone of the flame. In most flames, especially those from 
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nitrogen-containing fuels, the prompt mechanism is responsible for only a small fraction of the 

total NOx. Its control is important only when attempting to reach the lowest possible emissions. 

The formation of prompt NOx is governed by a set of equations known as Fenimore 

mechanism. The scheme of Fenimore mechanism is that hydrocarbon radicals react with 

molecular nitrogen to form amines or cyano compounds. The amines and cyano compounds are 

then converted to inverted compounds that ultimately form NO. The Fenimore mechanism is 

given as: 

CH + N2 ⇔ HCN + N          (2.4.4) 

C + N2 ⇔ CN + N          (2.4.5) 

N + O2 ⇔ NO + O          (2.4.6)  

HCN + OH ⇔ CN + H2O         (2.4.7) 

N + OH ⇔ NO + H          (2.4.8) 

 

In the atmosphere, nitric oxide ultimately oxidizes to form nitrogen oxide, which 

contribute to production of acid rain and photochemical smog. Production of NO associated with 

the Fenimore prompt mechanism is shown in Figure. 2.3. 
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F

igure 2.3 NO production associated with Fenimore prompt mechanism 

Prompt NOx formation is proportional to the number of carbon atoms present per unit 

volume and is independent of the parent hydrocarbon identity. The quantity of HCN formed 

increases with the concentration of hydrocarbon radicals, which in turn increases with 

equivalence ratio. As the equivalence ratio increases, prompt NOx production increases, then 

passes a peak, and finally decreases due to deficiency in oxygen. 

 

2.4.4 NOx Formation From Reburning 

In Reburning NO mechanism, NO reacts with hydrocarbons and is subsequently reduced. 

In general the mechanism is given as 

CHi + NO �→ HCN + products       (2.4.9)  
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Three reburn reactions for temperature range 1600 ≤ T≤ 2100 are 

CH + NO �K1→ HCN + O                          (2.4.10) 

CH2 + NO �K2→ HCN + OH                                 (2.4.11)  

CH3 + NO �K3→ HCN + H2O                              (2.4.12) 

Where K1, K2 and K3 are rate constants for the above reactions 

K1 = 1 * 108      [m3 / gmol-s] 

K2 = 1.4 * 106 * e-550/T    [m3 / gmol-s] 

K3 = 2 * 105      [m3 / gmol-s] 

 

2.4.5 NOx Control 

NOx control technologies currently used within the industry can be grouped into two 

categories i.e combustion modifications and post-combustion NOx control technologies. The 

first addresses reducing the production of NOx by making changes in the combustion process or 

the fuel stream. The second involves mitigating the NOx that has been produced by the 

application of post-combustion technology through the use of chemical reagents. For coal-fired 

applications, combustion system modifications are generally less costly and may independently 

result in emissions levels that satisfy regulatory requirements. Several methods are available to 

effectively limit NOx formation during combustion. The optimum combustion system redesign 

may blend several of these, selected on the basis of unit capacity and fuels to be fired and of 

applicable NOx reduction requirements.  

For processes dominated by thermal NOx formation, time, temperature, and oxygen 

availability are the primary variables affecting NOx yields. Production of thermal NOx can be 
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controlled by reducing the thermal loading to the combustion zone. NOx mechanisms include (1) 

increasing the size of the combustion zone for a given thermal input, (2) reducing the rate of 

combustion and peak flame temperatures with specially designed burners, and (3) addition of 

recirculated flue gas to the combustion air to depress flame temperature. 

Fuel NOx formation can be reduced by switching to, or co-firing with, fuel with lower 

nitrogen content and/or by limiting oxygen availability during the early stages of combustion. 

Oxygen reduction mechanisms include reducing excess air, reducing burner stoichiometry by 

removing a portion of the combustion air from the burner zone and introducing this air later 

through NOx or overfire air (OFA) ports (air staging), and limiting the rate that air is introduced 

to the fuel during the early stages of combustion with specially designed burners.  

 

Combustion Modifications for NOx control 

Low Excess Air ---- Reducing the air supplied in the furnace lowers NOx production. Thermal 

NOx emissions peak at leaner than stoichiometric equivalence ratios. The NOx creation rate 

typically peaks at excess oxygen levels of 5-7% where the combination of high combustion 

temperatures and the higher oxygen concentration act together. At both lower and higher air/fuel 

ratios, NOx production falls off due to lower flame temperature at high excess air levels and 

lower oxygen at low air levels. Low air is achieved by changes in operating procedures, system 

controls or both. The NOx reduction technique involves reducing the air supplied. Only limited 

NOx reductions are possible when low air level is supplied because excessive reduction in air 

can be accompanied by significant increases in CO.  
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Figure 2.4 Combustion modification technologies for NOx control 

Staged Combustion � Staged combustion processes significantly reduce NOx emissions. In the 

initial stage of combustion, the air supplied to the burners is less than the amount required to 

completely burn the fuel. During this stage, fuel-bound nitrogen is released but cannot be 

oxidized, so it forms stable molecules of harmless molecular nitrogen (N2). Other components of 

the fuel are also released without being fully oxidized. These include carbon particles and carbon 

monoxide. By adding a second stage, in the air-fuel mixture, the carbon and carbon monoxide 

can be burned, converting them to carbon dioxide. 

Over-fire Air � Over-fire air is the air that is injected into the furnace above the normal 

combustion zone. Generally when Over-fire air is employed, the burners are operated at a lower 

than normal air-to-fuel ratio, which reduces NOx formation. Over-fire air, which is frequently 
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used in conjunction with low NOx burners, completes the combustion process at a lower 

temperature. 

Flue Gas Recirculation � Flue Gas Recirculation, in which part of the flue gas is recirculated 

to the furnace, can be used to modify conditions in the combustion zone (lowering the 

temperature and reducing the oxygen concentration) to reduce NOx formation. Flue Gas 

Recirculation is also used as a carrier to inject fuel into a reburn zone to increase penetration and 

mixing. 

Operational Modifications � Changing certain boiler operational parameters can create 

conditions in the furnace that will lower NOx production. Examples include burners-out-of-

service (BOOS), low excess air (LEA), and biased firing (BF). In BOOS, selected burners are 

removed from service by stopping fuel flow, but airflow is maintained to create staged 

combustion in the furnace. LEA involves operating at the lowest possible excess air level 

without interfering with good combustion, and BF involves injecting more fuel to some burners 

(typically the lower burners) while reducing fuel to other burners (typically the upper burners) to 

create staged combustion conditions in the furnace. 

Low NOx Burners (LNB) � Low NOx Burners are designed burners to control the mixing of 

fuel and air to achieve what amounts to staged combustion. This staged combustion reduces both 

flame temperature and oxygen concentration during some phases of combustion, in turn, reduces 

both thermal NOx and fuel NOx production. The most common LNB types achieve lower NOx 

emissions by "staging" the injection of either air or fuel in the burner region. Low NOx burners 

are classified as either a staged air or a staged fuel burner. Air staging is more common. As the 

name implies, the staged air burner gradually introduces combustion air to the fuel at various 
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regions along the flame front. These regions are typically referred to as the primary, secondary 

and tertiary (staged) air zones. The division of combustion air reduces the oxygen concentration 

in the primary burner combustion zone, lowering the amount of NO formed there and increasing 

the amount of NO-reducing agents formed in an oxygen deficient combustion zone. Secondary 

and tertiary air injections complete the combustion downstream of the primary zone, lowering 

the peak temperature and reducing thermal NOx formation. Aside from the basic staged air 

burner, there are other variations of staged air burners that incorporate internal recirculation of 

combustion products to aid in NOx reduction. Low NOx Burners are often coupled with over fire 

(secondary) air (OFA) injection to assure complete combustion. Low NOx burner employing air 

staging and fuel staging is shown in Figure 2.5. 

Reburning � In the Reburning process, part of the boiler fuel input (typically 10-25%) is added 

in a separate reburn zone. The fuel-rich reducing conditions in this zone lead to the reduction of 

NOx formed in the normal combustion zone. OFA is injected above the reburn zone to complete 

combustion. Thus, with reburn there are three zones in the furnace: (1) a combustion zone with 

an approximately normal air-to-fuel ratio; (2) a reburn zone, where added fuel results in a fuel-

rich condition; and (3) a burnout zone, where OFA completes the combustion. Coal, oil, or gas 

can be used as the reburn fuel. 
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Figure 2.5  (a) Low NOx burner employing air staging (above)  

       (b) Low NOx burner employing fuel staging 
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Post-Combustion controls for NOx reduction 

The post-combustion controls can be achieved by using selective non-catalytic reduction 

(SNCR) and selective catalytic reduction (SCR) as shown in Figure 2.6. 
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Figure 2.6 Post-combustion control technologies for NOx reduction 

Selective Non-Catalytic Reduction (SNCR) � In this post control technique, a nitrogen 

containing additive, ether ammonia, urea, or cyanuric acid is injected and mixed with flue gases 

to affect chemical reduction of NO to N2 without the aid of catalyst. Temperature is a critical 

variable, and operation within a relatively narrow range of temperatures is required to achieve 

large NOx reductions. 

Selective Catalytic Reduction (SCR) � In this technique, a catalyst is used in conjunction with 

ammonia injection to reduce NO to N2. Effective reduction depends on the temperature range 

and is about 480 K to 780 K.  Greater NOx reductions are possible but the costs of NOx removal 

are generally the highest of all NOx control techniques because of both the initial cost and the 

operating costs associated with catalyst replacement.  
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CHAPTER THREE 

PROBLEM SETUP AND MODELING 

 

The overall design of the studied boiler is shown in Figure 3.1. The model basically 

consists of four sections, burner, combustion chamber, saturating/superheating, and chimney 

(exhaust). The top view of the boiler is shown in Figure 3.2. The burner is provided with three 

inlets, two for air inlet and one for fuel inlet. Primary and secondary air enters the burner as 

shown in Figure 3.3 and Figure 3.4. The primary air enters with a swirl and is directed outward. 

The air entering around the outside periphery of the swirl air is defined as the secondary air. It 

contributes to a controlled expansion in the quarl section of the burner where it reacts with the 

unburned fuel from the center reaction to complete the combustion process. The fuel used is 

Methane, CH4, which is burned in the combustion chamber and the flue gasses pass through the 

saturated and super-heater tubes and exhausted through the chimney.  
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Figure 3.1 A 3-D view of the studied boiler (steam tubes are not shown) 

 

The problem is modeled with the following general assumptions: 

1. The flow is steady and incompressible. 

2.  Variable fluid properties. 

3. Turbulent Flow 

4. Instantaneous combustion with the chemical reaction much faster than the turbulence 

time scale. 

5. The steam temperature is assumed as the tube wall temperature. 

The full three-dimensional Navier-Stokes equations are employed with five species transport 

equations. 
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Figure 3.2 a) Top view of the horizontal mid plane of the boiler 
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Figure 3.2  b) Side view of the boiler c) Compressed end view looking towards the burner  
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Figure 3.3. (a) Schematic of the burner geometry  (b) Simulated burner geometry 
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Figure 3.4. Computational model of the 3-D view of the burner exit  

 

3.1 Governing Equations 

 

The conservation equations for mass, momentum and energy conservation in general form are 

shown below.  
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τ , the stress tensor is given by  





 ⋅⋅∇−∇+∇µ=τ Iv

3
2)Tvv( rrr                         (3.4)  

where I is the unit tensor. 

In energy equation E is given as 

2
v 2phE +

ρ
−=                          (3.5) 

�h� is sensible enthalpy and for incompressible flow it is given as 

ρ
+∑= p

h j
j

Y jh                         (3.6) 

dT
T

T ref
c j,ph j ∫=                          (3.7) 

Tref  is constant taken as 298.15 K 

Sh in the energy equation (3.3) is the source term, which is provided by the net enthalpy 

formation rates from the species transport reactions 
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The boundary conditions are 

Fuel inlet: Mass inlet condition ,  855.0
.

=fuelm   kg/s 

Air inlet: 
•

m primary air = 6.9 kg/s, 
•

m secondary air = 13.08 kg/s 

Outlet: Constant pressure outlet condition at P = 1 bar 

Walls: Adiabatic or constant wall temperature 

! Flow: No-slip condition at the walls; u = 0, v = 0, w = 0. 

! Temperature: Walls at the surfaces inside the combustion chamber are covered by 

the saturating steam tubes at constant temperature at T = 526.68 K    

! All the superheaters are set at the constant temperature at T = 672.03 K   

!  Saturator section: All walls set at T = 526.68 K      

! Superheater section: Outer wall is at alternating saturator (T = 526.86 K) and 

superheater temperature (T = 672.03 K)       

! Chimney walls: Adiabatic 

3.2 Computational Domain 

In view of the complex geometry of the boiler, the simulation is conducted in three 

stages.  

Stage 1: In this stage of study, the computational domain includes the entire boiler but excludes 

water/steam tubes. The computational domain with all boundary conditions is shown in Figure 

3.5. 

Stage 2: In stage 2 of study, detailed simulation of the saturating and superheating regions is 

performed. Due to the large numbers of saturator and superheater tubes, the simulation is broken 

down into 33 sub-sections. Each sub-section includes 4x2x2 tubes. The geometry and boundary 

conditions are shown in Figure 3.6 and Figure 3.7. Figure 3.6 (b) shows the expanded view of 
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the saturating and superheating regions. Initially only combustion chamber part section, as 

shown in Figure 3.6 (a), is modeled and simulated. The outlet profile solution (velocity, 

temperature and species concentrations) of the combustor section is used as the inlet profile 

condition for the saturating/superheating regions (Figure 3.7). A total of 32 sub-sections of 

similar computational domain as shown in Figure 3.7 are simulated. Each uses the outlet profile 

solution of the previous sub-section as the inlet profile boundary condition. In this approach the 

inlet pressure information will be calculated and updated to satisfy overall mass and momentum 

conservation. 

                           

 
Burner: Mass flow rates 
Fuel: 0.855 kg/s 
Primary air: 6.9 kg/s 
Secondary air: 13.08 kg/s 

Outlet: Constant pressure  
P = 1 atm 

Combustion chamber walls: 
Constant temperature 
T=526.68  K 

Boiler outer walls: 
Constant temperature 
T = 526.68 K 

Chimney: adiabatic  

 

Figure 3.5 Computational domain and boundary conditions for stage 1: The entire boiler is 
employed as the computational domain excluding water/steam tubes. 
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Figure 3.6  (a) Computational domain for combustion chamber with boundary conditions for 

stage-2 study  (b) Computational sub-domain with boundary conditions for the saturating and 

superheating regions. 
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Figure 3.7 A representative computational sub-domain with boundary conditions for the 
saturating and superheating regions in stage-2 simulation 

 

Stage 3: In this phase of study, the outlet results of stage 2 are used to calculate the flow in the 

chimney section. For this stage the computational domain and boundary conditions are shown in 

figure 3.8. The outlet profile (velocity, temperature and species concentration) solution of the last 

sub-section of stage 2 is taken as the inlet profile condition for this stage.  
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Figure 3.8 Computational domain with boundary conditions for the chimney section in stage-3 
simulation 

 

3.3 Turbulence Model 

Turbulent flows are characterized by spectral broad-brand, randomly fluctuating velocity 

fields. These fluctuations mix transported quantities such as momentum, energy, and species 

concentration, and cause the transported quantities to fluctuate as well. Since these fluctuations 

can be of small scale and high frequency, they are too computationally intensive to simulate 

directly in practical engineering calculations. Instead, the instantaneous (exact) governing 

equations can be time-averaged, ensemble-averaged, or otherwise manipulated to remove the 

small scales, resulting in a modified set of equations that are computationally less expensive to 

solve. However, the modified equations contain additional unknown variables, and turbulence 

models are needed to determine these variables in terms of known quantities. 



 36

The following turbulence models are available in the public literature: 

! Spalart-Allmaras model 

! κ-ε models 

- Standard κ-ε model 

- Renormalization-group (RNG) κ-ε model 

- Realizable κ-ε model 

! κ-ω models 

- Standard κ-ω model 

- Shear-stress transport (SST) κ-ω model 

! υ2-f model 

! Reynolds stress model (RSM) 

! Large eddy simulation (LES) model 

In view of the complex flow field in the boiler, this study selects the standard κ-ε model 

due to its suitability for a wide range of wall-bound and free-shear flows. The standard κ-ε model 

is the simplest of turbulence two-equation model in which the solution of two separate transport 

equations allows the turbulent velocity and length scales to be independently determined. The κ-

ε model is a semi-empirical model with several constants obtained from experiments.  

All the three κ-ε models have similar forms, with major differences in the method of 

calculating the turbulent viscosity, the turbulent Prandtl numbers, and the generation and 

destruction terms in the k-ε equations. 

The standard κ-ε model is a semi-empirical model based on model transport equations for 

the turbulence kinetic energy (κ) and its dissipation rate (ε). The model transport equation for κ is 
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derived from the exact equation, while the model transport equation for ε is obtained using 

physical reasoning and bears little resemblance to its mathematically exact counterpart.  

The turbulence kinetic energy, κ, and its rate of dissipation, ε, are obtained from the 

following transport equations:  
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In these equations, kG  represents the generation of turbulence kinetic energy due to the mean 

velocity gradients and the Reynolds stress, calculated as  
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bG represents the generation of turbulence kinetic energy due to buoyancy, calculated as  
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where Prt is the turbulent Prandtl number and gi is the component of the gravitational vector in 

the i-th direction. For standard κ-ε model the value for Prt is set 0.85 in this study. 
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β is the coefficient of thermal expansion and is given as 

pT
1
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In equation (3.8), YM represents the contribution of the fluctuating dilatation in compressible 

turbulence to the overall dissipation rate, and is given as 

2
tM2MY ρε=             (3.13) 

where Mt is the turbulent Mach number, given as  

2a
kM t =              (3.14) 

where a = RTγ  is the speed of sound.  

The turbulent (or eddy) viscosity, µt, is computed by combining κ and ε as  

ε
κ

µρ=µ
2

Ct             (3.15) 

C1ε, C2ε, Cµ, σκ, and σt are constants and have the following values 

 

C1ε= 1.44, C2ε = 1.92, Cµ = 0.09, σκ = 1.0, σt = 1.3        (3.16) 

 

These constant values have been determined from experiments with air and water for 

fundamental turbulent shear flows including homogeneous shear flows and decaying isotropic 
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grid turbulence. They have been found to work fairly well for a wide range of wall-bounded and 

free-shear flows. The initial values for κ and ε at the inlets and outlet are set as 1 m2/s2 and 1 

m2/s3 respectively. 

 

In general, turbulent flows are significantly affected by the presence of walls. Very close 

to the wall, viscous damping reduces the tangential velocity fluctuations, while kinematic 

blocking reduces the normal fluctuations and away from the wall the turbulence is increased by 

the production of turbulence kinetic energy. In the near-wall region the solution variables have 

large gradients, and the momentum and other scalar transports occur strongly. Therefore, 

accurate representation of the flow in the near-wall region is required for successful predictions 

of wall-bounded turbulent flows. 

 

The κ-ε turbulence model used in this study is primarily valid for turbulent core flows 

(i.e., the flow in the regions somewhat far from walls). Wall functions are used to make this 

turbulence model suitable for wall-bounded flows. Wall functions are a collection of semi-

empirical formulas and functions that link the solution variables at the near-wall cells and the 

corresponding quantities on the wall. The wall functions consists of the following: 

! Laws of the wall for mean velocity and temperature and other scalars 

! Equations for near-wall turbulent quantities 

 

The law-of �the-wall for mean velocity gives 
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where 
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E = empirical constant (=9.793)  

UP = mean velocity of the fluid at point P 

kP = turbulence kinetic energy at point P 

yP = distance from point P to the wall 

µ = dynamic viscosity of the fluid 

The logarithmic law for mean velocity is valid for y+ > about 30 to 60 

The law-of-the-wall for temperature is given 
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where P is computed using the formula 
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kf = thermal conductivity of the fluid 

ρ = density of fluid 

cp = specific heat of fluid 
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•
q  = wall heat flux 

Tp = temperature at the cell adjacent to the wall 

Tw = temperature at the wall 

Pr = molecular Prandtl number (
f

pc
κ

µ ) 

Prt = turbulent Prandtl number (=0.85 at the wall) 

A = 26 (Van Driest constant) 

κ = 0.4187 (von Karman constant) 

E = 9.793 (wall function consatant) 

Uc = mean velocity magnitude at y+ = yT
+ 

 

For κ-ε turbulence model, wall adjacent cells are considered to solve the κ-equation. The 

boundary condition for κ imposed at the wall is 0
n

=
∂
κ∂ , where �n� is the local coordinate normal 

to the wall. The production of kinetic energy, Gk, and its dissipation rate, ε, at the wall-adjacent 

cells, which are the source terms in κ equation, are computed on the basis of equilibrium 

hypothesis with the assumption that the production of κ and its dissipation rate assumed to be 

equal in the wall-adjacent control volume. The production of κ and ε is computed as 

Py5.0
Pk25.0C

w
wy

U
wkG

µκρ

τ
τ=

∂
∂τ≈                       (3.20.a) 

Py

5.1
pk75.0C

P κ
µ=ε                                (3.20.b) 
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3.4 Radiation Model 

 The radiative transfer equation for an absorbing, emitting, and scattering medium at 

position rr  in the direction sr  is given as 

∫
π

Ω⋅Φ
π

σ
+

π
σ=σ++

4

0

'd)'ss()'s,r(I
4

s
4T2an)s,r(I)sa(

ds
)s,r(dI rrrrrr
rr

              (3.21.a) 

where  rr  is position vector 

 sr  is direction vector 

'sr  is scattering direction vector 

s is path length 

a is absorption coefficient 

n is refractive index 

sσ  is scattering coefficient 

I is radiation intensity, which depends on position rr  and direction sr  

T is local temperature 

Φ  is phase angle 

'Ω  is solid angle 

The Rosseland radiation model [7] is used in this study, which is valid for medium optical 

thickness. The radiative heat flux in a gray medium is approximated by the following equation 

Grq ∇Γ−=                                               (3.21.b) 

where Γ  is given as  

)sC)sa(3(
1

σ−σ+
=Γ                    (3.21.c) 

4T4G σ=                                  (3.21.d) 
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In Rosseland model it is assumed that the intensity is the black-body intensity at the gas 

temperature. Therefore substituting equation (3.21.d) into equation (3.21.b) gives 

T3T16rq ∇Γσ−=                     (3.21.e)  

 

3.5 Combustion Model 

 Modeling for combustion ranges from nonreacting to multiple reactions with multiple 

species, and finite rate kinetics. In this study, combustion of methane is modeled by a single-step 

reaction. The mixing and transport of chemical species is modeled by solving the conservation 

equations describing convection, diffusion, and reaction sources for each component species. 

The species transport equations are solved by predicting the local mass fraction of each species, 

Yi, through the solution of a convection-diffusion equation for the i-th species. The species 

transport equation in general form is given as: 

( ) ( ) iiiii SRJYY
t

++⋅−∇=⋅∇+
∂
∂ rvνρρ                   (3.22) 

where Ri is the net rate of production of species i by chemical reaction. Si is the rate of creation 

by addition from the dispersed phase plus any user-defined sources. iJ
r

 is the diffusion flux of 

species i, which arises due to concentration gradients. Mass diffusion for laminar flows is given 

as 

imii YDJ ∇−= ,ρ
r

            (3.23) 

For turbulent flows, mass diffusion flux is given as 

i
t

t
mii Y

Sc
DJ ∇








+−=

µρ ,

r
           (3.24) 
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where tSc  is the turbulent Schmidt number given as
t

t

Dρ
µ

, where tµ  is the turbulent viscosity 

and Dt is the turbulent diffusivity. 
 
           

The reaction rate that appears as source term in equation (3.22) is given by the 

turbulence-chemistry interaction model called the eddy-dissipation model. The overall rate of 

reaction for most fast burning fuels is controlled by turbulent mixing. The net rate of production 

of species i due to reaction r, Ri,r, is given by the smaller of the two given expressions below: 

















νκ
ερν=

R,wMr,R'
RY

R
minAi,wMr,i'r,iR          (3.25) 

 

j,wMN
j r,j"

P PY
ABi,wMr,i'r,iR

∑ ν

∑

κ
ερν=          (3.26) 

where YP is the mass fraction of any product species, P 

 YR is the mass fraction of a particular reactant, R 

 A is an empirical constant equal to 4.0 

 B is an empirical constant equal to 0.5 

 r,i'ν  is the stoichiometric coefficient for reactant �i� in reaction �r�. 

 r,j"ν  is the stoichiometric coefficient for product �j� in reaction �r� 
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In the above equations (3.25) and (3.26), the chemical reaction rate is governed by the 

large-eddy mixing time scale, 
ε
κ

, and an ignition source is not required. This is based on the 

assumption that the chemical reaction is much faster than the turbulence mixing time scale, so 

the actual chemical reaction is not important. 

In this study, methane (CH4) is used as fuel. The complete stoichiometric combustion 

equation is given below: 

CH4 + 2(O2 + 3.76 N2)→ CO2 + 2H2O + 7.52 N2        (3.27) 

3.6 Modeling and Calculation of NOx Emissions  

NOx emission consists of mostly nitric oxide (NO). Less significant are nitrogen oxide, 

NO2 and nitrous oxide (N2O). NOx is a precursor for photochemical smog, it contributes to acid 

rain, and causes ozone depletion. Thus, NOx is a pollutant. 

To predict NOx emission, transport equation for nitric oxide (NO) concentration are 

solved. With fuel NOx sources, an additional transport equation for an intermediate species 

(HCN or NH3) are solved. Since NOx concentrations generated in a combustion system are 

generally low, NOx chemistry has negligible influence on the predicted flow fields, and species 

concentrations. Therefore, the calculation of NOx concentrations can be post-processed after the 

thermal flow and major species concentrations are computed. 

 The NOx transport equations are solved based on a given flow field and combustion 

solution. NOx is post processed from a combustion simulation, thus an accurate combustion 

solution becomes a prerequisite of NOx production. For example, thermal NOx production 
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doubles for every 90 K temperature increase when the flame temperature is about 2200 K. 

Accurate prediction of NOx parametric trends can cut down on the number of laboratory tests, 

allow more design variations to be studied, shorten the design cycle, and reduce product 

development cost.  

In laminar flames, and at the molecular level within turbulent flames, the formation of 

NOx can be attributed to four distinct chemical kinetic processes: thermal NOx formation, 

prompt NOx formation, fuel NOx formation, and reburning. Thermal NOx is formed by the 

oxidation of atmospheric nitrogen present in the combustion air. Prompt NOx is produced by 

high-speed reactions at the flame front, and fuel NOx is produced by oxidation of nitrogen 

contained in the fuel. The reburning mechanism reduces the total NOx formation by accounting 

for the reaction of NO with hydrocarbons. 

The mass transport equation for the NO species is solved taking into account convection, 

diffusion, production and consumption of NO and related species. The effect of residence time in 

NOx mechanisms, a Lagrangian reference frame concept, is included through the convection 

terms in the governing equations written in the Eulerian reference frame. For thermal and prompt 

NOx mechanisms, only the NO species transport equation is needed which is given as 

NOS)NOYD()NOYv�()NOY(
t

+∇ρ⋅∇=ρ⋅∇+ρ
∂
∂ r

       (3.28) 

Thermal NOx 

The formation of thermal mechanism dominates in high-temperature combustion over a 

fairly wide range of equivalence ratios.  The formation of thermal NOx is determined by a set of 
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highly temperature-dependent chemical reactions known as the extended Zeldovich mechanism 

described 

O + N2  ⇔
f1k

r1k
 NO + N           (3.29) 

N + O2 ⇔
f2k

r2k
 NO + O            (3.30) 

N + OH ⇔
f3k

r3k
 NO + H           (3.31) 

 

The net rate of formation of NO via extended Zeldovich mechanism reactions described 

above from equations (3.29) to (3.31) is given by 

d[NO] / dt =  K1f[O][ N2] +  K2f[N][ O2] + K3f[N][ OH] - K1r[NO][ N] � K2r[NO][ O]  

                      - K3r[NO][ H]            (3.32) 

Where all concentrations have units of gmol/m3. In order to calculate the formation rates 

of NO and N, the concentrations of O, H, OH are required. The rate constants for these reactions 

have been measured in numerous experimental studies. The expressions for the rate coefficients 

for above reactions are: 

K1f = 1.8*1011 exp [-38,370/T (K)]         m3 / kmol-s,      (3.33) 

K1r = 3.8*1010 exp[-425/T (K)]   m3 / kmol-s,      (3.34) 

K2f = 1.8*107 exp [-4,680/T (K)]   m3 / kmol-s,      (3.35) 

K2r = 3.8*106 exp[-20,820/T (K)]   m3 / kmol-s,      (3.36) 

K3f = 7.1*1010 exp [-450/T (K)]   m3 / kmol-s,      (3.37) 

K3r = 1.7*1011 exp[-24,560/T (K)]   m3 / kmol-s      (3.38)  
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Where K1f is forward reaction rate for reaction 1 and K1r is the backward reaction rate for 

reaction 1 and in a similar manner for reactions 2 and 3. 

  The rate of formation of NOx is significant only at high temperatures because fixation of 

nitrogen requires the breaking of the strong N2 triple bond. A quasi-steady state can be 

established for a fuel-lean flame, where the rate of consumption of free nitrogen atoms becomes 

equal to the rate of its formation. This assumption is valid for most combustion cases except in 

extremely fuel-rich combustion conditions. In quasi-steady state the NO formation rate is 

predicted by the following equation: 















+
−+
















−−−

=

]OH[3k]2O[2k

]NO[1k
1

]2O[2k]2N[1k

]2NO[2k1k
1

]2N][O[1k2
dt

]NO[d        (3.39) 

where the sub-scripts , negative is for backward reaction and positive is for forward reaction and 

the number (1,2,3) stands for the reaction number in the Zeldovich mechanism (Eq. 3.29, 3.30, 

and 3.31). 

From the above equation it is clear that the rate of formation of NO will increase with 

increasing oxygen concentration. The O-atom concentration is calculated by the equations given 

below       

- For the equilibrium assumption 

T/31090e2
1

]2O[2
1

T51097.3]O[ −−
×=      (3.40) 

- For a partial equilibrium assumption 
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[ ] T
27123

e2
1

2O2
1

T64.36]O[
−

=        (3.41) 

- Using the local O2-species mass fraction. 

The source term due to thermal NOx formation in equation (3.28) is calculated as   

dt
]NO[d

NO,wMNO,thermalS =          (3.42) 

where Mw, NO is the molecular weight of NO, and [ ]
dt
NOd  is computed from Equation (3.39)  

 

Prompt NOx  

During combustion of hydrocarbon fuels, the NOx formation rate can exceed that 

produced from direct oxidation of nitrogen molecules (i.e., thermal NOx). Prompt NOx can be 

formed in a significant quantity in some combustion environments, such as in low-temperature, 

fuel-rich conditions and where residence times are short. Surface burners, staged combustion 

systems, and gas turbines can create such conditions. 

The formation of prompt NOx is governed by a set of equations known as Fenimore 

mechanism given below: 

CH + N2 ⇔ HCN + N            (3.43) 

C + N2 ⇔ CN + N            (3.44) 

N + O2 ⇔ NO + O            (3.45)  
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HCN + OH ⇔ CN + H2O           (3.46) 

N + OH ⇔ NO + H            (3.47) 

 The scheme of Fenimore mechanism is that hydrocarbon radicals react with molecular 

nitrogen to form amines or cyano compounds. The amines and cyano compounds are then 

converted to inverted compounds that ultimately form NO.  

In prompt NOx mechanism, reaction (3.43) is of primary importance. The majority of the 

NOx at the flame base is prompt NOx formed by the CH reaction and the prompt NOx formation 

rate is given as  

[ ] [ ][ ]20 NCHk
dt
NOd =             (3.48)  

The prediction of prompt NOx formation within the flame requires coupling of the NOx 

kinetics to an actual hydrocarbon combustion mechanism. Hydrocarbon combustion mechanisms 

involve many steps and, as mentioned previously, are extremely complex and costly to compute. 

The rate for most hydrocarbon is given as 

[ ] RT

'
a

E

e]FUEL][2N[a
2O'

prfk
dt

]NO[d −
=         (3.49)  

where �a� is the oxygen reaction order, R is the universal gas constant. 

kpr = 1.2 x 107 (RT/p)a+1 and 

Ea = 60 kcal/gmol 
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 The source term due to prompt NOx mechanism in equation (3.28) is given as 

[ ]
dt
NOdMS NOwNOprompt ,, =           (3.50) 

where Mw, NO is the molecular weight of NO, and [ ]
dt
NOd  is computed from Equation (3.49). In 

above equation (3.49) f  is a correction factor and is given as 

32 2.12322.230819.075.4 φφφ −+−+= nf                 (3.51)  

where n is the number of carbon atoms per molecule for the hydrocarbon fuel, and φ  is the 

equivalence ratio which is defined as 

φ  =  (Actual air-fuel ratio) / (stoichiometric air-fuel ratio)  
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CHAPTER FOUR 

COMPUTATIONAL METHOD 

 

4.1 Fluent Background 

In the past two decades, because of the continuous increase of computer speed, 

computational fluid dynamics (CFD) technique has become a widely used tool in engineering, 

biomedical, and environmental research and development. This study uses the commercial code 

FLUENT (version 6.1.22) as the simulation tool. 

FLUENT is a finite volume CFD code for solving transport equations of mass, 

momentum, energy conservation, and species concentrations. FLUENT software is used for 

simulation, visualization, and analysis of fluid flow, heat and mass transfer, and chemical 

reactions. The organizational program structure of FLUENT package is shown below: 
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GAMBIT 
- geometry setup 
- 2D/3D mesh generation 

Other CAD/CAE 
Packages 

prePDF 
- calculation of PDF 
look-up tables 

FLUENT 
- mesh import and adaption 
- physical models 
- boundary conditions 
- materia l properties 
-calculation 
-postprocessing 

TGrid 
- 2D triangular mesh 
- 3D tetrahedral mesh 
- 2D or 3D hybrid mesh 
 

PDF Files 

2D/3D M esh 
Boundary 
M esh 

     Geometry  
     or M esh 

Boundary  and/or 
Volume M esh 

M esh 

Mesh 

 

Figure 4.1 Organizational program structure of FLUENT 

4.2 Solution Methodology 

 

Fluent employs the finite-volume method to discretize the partial differential equations. 

The following general steps are taken for modeling fluid flow and heat transfer 

! Pre-processing , done using Gambit 

• Defining geometry 

• Grid or Mesh 

• Boundary Conditions 

! Processing 

• Solving equations, using appropriate choices for solution parameters 

! Post-processing 

• Analyzing results 
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Pre-processing 

The pre-processing phase of a problem includes all the steps from the initial problem 

definition through the beginning of computation. At this phase, the scope of the geometry to be 

studied is considered. This includes geometry creation, mesh generation, model selection, fluid 

property specification, and enabling and setting up the models.  

 

Processing 

The processing phase is the phase where the calculations begin, after generating the mesh 

and setting up the problem for solution. The processing phase includes the steps of solving the 

equations, observe the progress of the CFD code toward convergence and perhaps adjust under-

relaxation factors and adapt the grid. It is always the stated goal to obtain a solution that is grid-

independent. 

 

Post-processing 

The post-processing phase includes the necessary outputs for the analyst to understand 

the results of the simulation. The outputs necessary are the x-y plots (e.g., temperature vs. 

position along the burner centerline), contour plots, velocity vectors plots, streamline plots, and 

combinations and animations of these outputs. The production of these different sorts of outputs 

becomes very important in communicating the results of a simulation. In addition to still images, 

animations can be effectively used to illustrate CFD results. Animated velocity vectors and 

streamlines can illustrate the path of the fluid flow in internal and external flow problems.  
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4.3 Computational Grid 

Geometry modeling is based on constructing a mesh for the studied boiler. In the model 

burner inlets are defined with circular shapes with the same effective areas as the real burner, to 

get the same incoming velocities. Three-dimensional tetrahedral mesh is used for meshing the 

entire boiler. Figure 4.2 illustrates the model geometry with computational grid for the current 

study. In this study boundary layer is not important in the combustion chamber and exhaust 

chimney sections but is important in the saturating/superheating sections. Wall function is used 

to link the solution variables at the near-wall cells and the corresponding quantities on the wall. 

The wall boundary conditions for the solution variables, including mean velocity, temperature, 

species concentration, k, and ε, are all taken care of by the wall functions.  

 

4.4 Combustion Model 

The combustion model consists of the following sub-models:  

! Three-dimensional flow is described by the Navier-Stokes equations 

! Turbulence is accounted by the standard κ-ε model with wall-functions 

! Combustion is described by the conserved scalar approach to high temperature species-

transport combustion 

! Chemistry is described with one-step global reactions.  

! Properties of the gas mixture are composition and temperature dependant.  
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Full Boiler model with 
mesh 

Superheating/saturating 
section model with mesh

Chimney model w ith 
mesh 

Combustion chamber 
with end furnace wall 
model w ith mesh 

Tubes present inside 
the model section 

Top view section of 
the tubes 

 

Figure 4.2 Computational model of the studied boiler showing different sections with meshes 
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4.5 Numerical Procedure 

 The numerical procedure consists of the following problem solving steps: 

1. Creating and meshing the geometry model using Gambit 

2. Importing the geometry model to FLUENT solver 

3. Selecting the appropriate solver formulation 

4. Choosing the physical models to be solved 

5. Specifying the material properties 

6. Specifying the initial boundary conditions 

7. Calculating the solution 

(i) Solve the continuity, momentum and κ-ε turbulence equation using the 

SIMPLE algorithm (pressure-predictor-correction method) 

(ii) Obtain the velocity, pressure and turbulence distribution 

(iii) Solve the energy equation and calculate the temperature distribution 

(iv) Calculate the species production using the eddy-dissipation model 

(v) Transfer the species production to the source terms of the species transport 

equations 

(vi) Solve the species transport equation to obtain species concentration 

distribution and enthalpy formation 

(vii) Transfer the enthalpy formation energy to the source term of the energy 

equation 

(viii) Update the continuity with new distribution of mass from the solution of 

species of transport equation (step (vi)) 

(ix) Return to (i) and reiterate until convergence is achieved.  

8. Post-processing the results 
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The geometry is created and meshed using GAMBIT. Three-dimensional tetrahedral 

mesh is used for meshing the studied boiler model. After creating and meshing, the model is 

imported and read in FLUENT. 

 

FLUENT provides three different solver formulations: segregated, coupled implicit, and 

coupled explicit. In the segregated formulation, the governing equations are solved sequentially, 

i.e. segregated from one another; while in the coupled solver formulation the governing 

equations are solved simultaneously, i.e. coupled together. The implicit and explicit coupled 

solvers differ in the way that they linearize the coupled equations. In this study segregated solver 

formulation is used to solve the governing integral equations for the conservation of mass and 

momentum, energy, turbulence and chemical species. A control-volume-based technique is used 

to convert the governing equations to algebraic equations, which are solved numerically using 

the implicit method.  

The governing equations are non-linear, therefore to obtain converged solution several 

iterations of the solution loop must be performed. Each iteration consists of the following steps: 

(i) Fluid properties are updated first, based on the current solution or on the initialized 

solution 

(ii) To obtain updated velocity field, the u, v, and w momentum equations are solved 

using the current values of pressure and face mass fluxes. 

(iii) Equation for the pressure correction is calculated from the continuity equation and the 

linearized momentum equations, since the velocities obtained in above step may not 

satisfy the continuity equation. 
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(iv) The pressure correction equation obtained from above step is solved to obtain the 

necessary corrections to the pressure and velocity fields and face mass fluxes such 

that the continuity equation is satisfied 

(v) Appropriate equations for scalars such as turbulence, energy, and species are solved 

using the updated values of the other variables. 

(vi) The equation is checked for convergence. 

The above steps are continued till the convergence criteria are obtained. The above steps can be 

shown by a flow chart as shown in Figure 4.3. 

 

Update properties 

Solve momentum equations 

Solve pressure-correction (continuity) equation.
Update pressure, face mass flow rate 

Solve energy, species, turbulence, and 
other scalar equations 

Converged? Stop 
YesNo 

 

Figure 4.3 Flow chart showing the segregated solution method 
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In this simulation, segregated solver is used which employs implicit pressure-correction 

scheme. The SIMPLE algorithm is used for coupling the pressure and velocity. The momentum, 

energy, turbulence and species equations are discretized using the first order upwind scheme. 

A generalized finite-rate chemistry model is used to analyze the combustion using a one-

step global reaction mechanism, assuming complete conversion of the fuel to CO2 and H2O. 

FLUENT provides five approaches to reaction modeling: generalized finite-rate model, non-

premixed combustion model, premixed combustion model, partially premixed combustion 

model, and composition PDF (Probability Density Function) Transport model. In this study 

generalized finite-rate combustion model is used to solve the species transport equations. The 

reaction rates are computed from the eddy dissipation model. The eddy-dissipation model 

computes the rate of reaction under the assumption that chemical kinetics are fast compared to 

the rate at which reactants are mixed by turbulent fluctuations. Basically FLUENT provides three 

finite-rate formulations for reaction rates: Laminar finite-rate model, eddy-dissipation model, and 

eddy-dissipation-concept (EDC) model. In eddy-dissipation reaction model the reaction rates are 

controlled by the turbulence. 

 In the present study methane-air combustion is simulated. The methane-air mixture 

consists of 5 species (CH4, CO2, H2O, O2 and N2). The specific heat of the species is temperature 

dependant and is defined as a piecewise-polynomial function of temperature. The physical 

properties are defined for the mixture material and the constituent species. The flow and thermal 

variables are defined by the boundary conditions on the boundaries of the studied model. Mass-

flow inlet conditions are applied at the three inlets in the burner. Pressure outlet boundary 

condition is applied at the outlet and the walls are treated as constant wall temperature or 
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adiabatic wall temperature. The walls are stationary with no-slip conditions applied on the wall 

surface.  

 

Convergence 

The solution convergence is obtained by monitoring the continuity, momentum, energy, 

turbulence and species equations separately. An order of 10-6 is used for convergence. The 

temperature distribution is determined after a converged solution is achieved.  

 

 

Figure 4.4 Plot showing iterations of converged residuals 

 

Mass and Energy Conservation 

 The energy conservation is made by enforcing the thermal energy transfer out of the 

domain equal to that of into the domain. The net transport of energy at inlets consists of both the 

convection and diffusion components. The convection component is fixed by the inlet 
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temperature specified. The diffusion component depends on the gradient of the computed 

temperature field. The procedure for energy balance is given in Appendix-C. 

 

4.6 Grid Independent Study 

 
  Grid independent study was conducted using a coarse grid (22424 grid points), a 

medium-density grid (95845 grid points) and a fine grid (198751 grid points) for the entire 

boiler. The contour temperature plots on the central horizontal plane y=0 for the three grids is 

shown in Figure 4.5. It can be seen that for both coarse grid and studied grid the peak 

temperature is of order 1,630 K and for fine grid the temperature is of order 1,640 K. The flow 

distribution is almost same for all the grids. The outlet exit temperature for all the grid cases is of 

order 560 K. The velocity, temperature and the methane and carbon dioxide concentrations at 

selected axial planes for the three grids are shown in Figure 4.6 and Figure 4.7. The species 

mass-fraction, temperature and pressure losses at the outlet for the three grids are shown in Table 

4.1. It can be seen from the table that all the variables are almost identical between the results of 

the medium grid and fine grid. Although the solution is still changing between the medium and 

the fine grid cases the difference is small, to obtain results with reasonable time frame, therefore 

the medium density grid is used for this study.  
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Variable Coarse Grid  
(22424 grid points)

Medium Grid 
(95845 grid points) 

Fine Grid 
(198751 grid points) 

Mass weighted 
average temperature 

at the outlet(K) 
730.64 746.72 732.96 

Peak temperature in 
the domain (K) 1630 1630 1640 

Total pressure 
losses (Pascal) 4617.61 4282.69 4132.08 

Outlet mass-fraction 
of CH4 

0 0 0 

Outlet mass-fraction 
of O2 

0.056413464 0.056017853 0.055890907 

Outlet mass-fraction 
of CO2 

0.1128673 0.11312288 0.11321723 

Outlet mass-fraction 
of H2O 0.092403255 0.09261018 0.092690654 

Outlet mass-fraction 
of N2 

0.30602559 0.37207656 0.34881523 

 

Table 4.1 Variables for three different grids  

 
 

 

(a) (b) (c) 
 

Figure 4. 5 Contours of temperature on horizontal plane y=0 for different meshing 
a) Coarse mesh  b) Medium mesh  c) Fine mesh 
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Figure 4.6 Concentrations of CH4 and CO2 at different axial planes for different grids 
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Figure 4.7 Profiles of velocity and temperature at different axial planes for different grids 
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CHAPTER FIVE 
 

RESULTS 
 

 
This study illustrates the analysis of simulation of combustion and thermal flow behavior 

inside an industrial boiler. The simulation is conducted in two stages. In the first stage the entire 

boiler with combustion chamber and furnace is considered. The flow and temperature 

distribution is simulated without the inclusions of superheater and saturator tubes located amid 

the flow path. In the second stage of the simulation, the boiler is divided into three main sections. 

The first main section consists of only the combustion chamber where the fuel is burned. The 

second main section which are further divided into 31 sub-sections including superheater and 

saturator tubes sections. The last main section consists of the chimney exhaust.  

 

The flow distribution inside the entire boiler is simulated in the first stage of study. A 

mesh with approximately 95,845 grid points is used for the simulation. The grid incorporated the 

fuel inlet duct for injecting the natural gas, the primary inlet duct for injecting the swirling air 

stream and the secondary inlet duct for injecting the uniform air stream. Figure 5.1 shows the 

velocity vector distribution for the three inlets, where the primary air enters with a swirl. The 

swirling flow is used for enhance mixing for a complete combustion of air and fuel and for 

stabilizing the flame front. The swirl induces a recirculation zone along the centerline of the 

combustion chamber downstream from the burner outlet. The mass weighted average velocities 



 67

for the three inlets are given in Table 5.1.  The total air supplied is 19.98 kg/s, which is at 35 % 

more air than the stoichiometric value. 

 

Variables Average Velocities (m/s) 

Fuel Inlet 157.49 

Primary Air Inlet 75.22 

Secondary Air Inlet 57.95 

 

Table 5.1 Average velocities at the burner inlets 

 

 

(a) (b) 

X
Y

Z
 

Figure 5.1 Velocity vectors for the three inlets in the burner 

a) 3-D velocity profile  b) A cross-sectional view 
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The temperature distributions on the vertical center-plane at x=0 and on the horizontal 

plane at y=0 are shown in Figure 5.2 and Figure 5.3, respectively. The temperature contour 

clearly shows the peak temperature is at about 1,630 K occurs at about 1/4 of the boiler length 

and is less than the adiabatic flame temperature 2,226 K for methane combustion. Both Figures 

5.2 and 5.3 show the flame propagation and the mixing and chemical reactions occurring closer 

to the inlet. The horizontal plane in Figure 5.3 shows that the hot flames turn around 180 degrees 

at the end and enters into the super-heater section at the right passage. This flame is at about 

1,100 K, which is higher than the yield temperature of the superheater tube material (SA-213-

T12, temperature of yield at 1050 F). This imposes a risk to the integrity of the superheater tube 

wall.  Due to this high temperature flow, the first few rows of the super-heater tubes near the end 

furnace wall are subjected to the risk of rupture.  

 

Compositions of temperature distribution on different horizontal planes and vertical 

planes are shown in Figures 5.4 and 5.5, respectively. From these two figures, it can be clearly 

seen that the combustion starts as a ring, then propagates both inward and outward radially as 

well as longitudinally like a cone. 

 

The flow-fields on the center horizontal and vertical planes in Figure 5.6 and 5.7 show 

the flow passes from the combustion chamber through the superheater section and finally 

through the chimney and is exhausted to the atmosphere. Figure 5.6 shows that the flame 

impinges on the combustion chamber sidewalls at 1/3 of the combustion chamber length. Figure 

5.3 shows that the temperature of this impinging flame is about 1500 K. Care must be taken to 

frequently examine this hot region in the real boiler. Figure 5.6 shows that the flow separates at 
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the 180-degree turn at the end. These separations will induce total pressure losses and requires 

more fan power to drive the flow through the boiler. Figure 5.7 shows the flow is characterized 

by a flame jet spreading over the combustion chamber surfaces, top and bottom with a 

temperature of about 1250 K at about 1/3 of the chamber length. A recirculation zone is seen 

surrounding the flame near the burner. Figure 5.8 shows profile of mass-weighted average 

temperature at selected axial planes. It can be seen from the figure that maximum temperature is 

observed at about 1/3rd of the combustion chamber length. 

 
 Figure 5.9 and Figure 5.10 shows the species (CH4, O2, CO2, and H2O) concentrations in 

vertical plane at x=0 and horizontal plane at y=0, respectively. These two figures show that the 

fuel (methane) is completely burned near the burner. The figures show that methane diffuses 

rapidly toward the flame front, where it is almost completely consumed, but a very small amount 

diffuses and convects outward from the leading edge of the flame. The figures show the oxygen 

depletes in the core of the flame jet and maintains higher oxygen concentrations in the 

recirculation zones. Downstream of the oxygen-depleted region, the oxygen mass fraction 

exhibits an increase due to replenish by advection/diffusion from the surrounding air. The figures 

also reveal that large quantities of H2O and CO2 are produced soon after the methane has been 

consumed. The mass fractions of H2O and CO2 are low near the burner region with higher values 

further downstream. 

 

 

 



 70

 

Figure 5.2: Contours of static temperature on the vertical plane at x=0    

 

Figure 5.3 Contours of static temperature on the horizontal plane at y=0 
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Figure 5.4 Contour temperature profile distribution on different horizontal y-planes 

 

 

Figure 5.5 Contour temperature profile distribution on different vertical z-planes 
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Figure 5.6 Vector plot of velocity on the horizontal plane at y=0 
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Figure 5.7 Vector plot of velocity on the vertical plane at x=0 
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Figure 5.8 Profile of mass-weighted average temperature on selected axial distances 
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Figure 5.9 Contours of mass fraction of CH4, H2O, O2, CO2, and N2 on plane x=0 
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Figure 5.10 Contours of mass fraction of CH4, H2O, O2, CO2, and N2 on plane y=0 
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 Profiles for CH4 concentrations, O2 concentrations and H2O concentrations and CO2 

concentrations, at selected axial locations are presented in Figure 5.11 (a) and Figure 5.11 (b), 

respectively. The profiles clearly show the decrease in methane concentrations, oxygen 

concentrations and nitrogen concentrations while the concentrations of CO2 and H2O are 

increased going further downstream. 
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Figure 5.11 (a) Profiles of CH4 and O2 concentrations along selected axial distances 
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Figure 5.11 (b) Profiles of CO2 and H2O concentrations along selected axial distances 
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In the second stage of this study, the second main section containing the saturator and 

superheater tubes is specifically zoomed in for a detailed simulation. This second main section is 

divided into thirty-one sub-sections. The outlet solution of the first main section (the combustion 

chamber) is used as the inlet condition for the first sub-section of the second main section. The 

first main section is simulated without downstream sections. The interface between the first and 

the second main sections is set at a constant pressure. 

 The temperature profile of the first section is shown in Figure 5.12. The figure shows the 

contour temperature profile on the vertical center plane x=0. Figure 5.13 shows the contour 

temperature profile on the horizontal center plane x=0. The figure shows the peak temperature is 

1640 K, which is 10 K higher than in Figure 5.2 and Figure 5.3 when the entire boiler is 

simulated without the tubes. This difference is due to the disconnection of the downstream 

section from the first section. In the second-stage of simulation, a fine mesh is used near the 

outlet of the first section. Figure 5.13 shows that the flame shifts towards the right side (near the 

superheater tube section). This shift is believed to be induced by the clockwise swirl motion 

imposed by the burner.  

 
The contour temperature profile at outlet of the first section is taken as the inlet profile 

condition of sub-section 1 of the main second stage as shown in Figure 5.14. High temperature of 

about 1000 K is seen near the center of the flow passage. This could be the region where the 

material of the superheater tubes may subject to extreme high thermal load and prone to rupture. 

Near the inner wall, the temperature is reduced to about 970 K due to the separation bubble, 

which serves as a buffer zone to protect the inner wall from the hot flue gases. 
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Figure 5.12 Contour temperature profile on the vertical center plane x=0 in the second 
         stage simulation  

 

 
 

Figure 5.13 Contour temperature profile on the horizontal center plane y=0 in the second              
                   stage simulation 
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Figure 5.14 Contour temperature plot at outlet of first section of the second stage 
 
 

Figure 5.15 shows temperature distribution on different selected horizontal y-planes. The 

flow between the superheater tubes is shown in the expanded view in Figure 5.15. A 

Recirculation can be seen near the inner wall due to low pressure area created by flow separation 

while taking a 180 degree sharp turn from the combustion chamber to enter into the saturator and 

superheater tubes section. The path lines of velocity vector colored by velocity magnitude near 

the superheater tubes inside the section model are shown in Figure 5.16. 
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Figure 5.15 Temperature contour plots on different y planes 
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Figure 5.16 Velocity vectors inside the first sub-section of the superheater section  
 
 

 The outlet profile conditions for velocity, temperature and species mass-fraction of sub-

section 1 is taken as the inlet profile condition for the next sub-domain (sub-section-2) and the 

simulation is carried until the calculation of the last sub-domain in the second main section is 

completed. The temperature contour plots of the entire second main section on the horizontal 

center-plane y = 0.3 is shown in Figure 5.17 (a). The profiles of mass-weighted average total 

pressure and temperature of the entire 31 sub-sections of second stage, on the horizontal plane at 

y=0.3 are shown in Figure 5.17 (b). The plots show decreasing temperature distribution due to 

heat losses to saturator and superheater tubes.  The pressure drop due to the steam tubes is about 

1055 Pascal. The compositions of velocity, temperature, and pressure at inlet and outlet 

boundaries are shown in Table 5.2.  
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Table 5.2 Mass weighted pressure, temperature and velocity compositions at inlets and outlets 

for all the 31 sub-sections in the saturator/superheater section. 

 

Pressure 
(Pascal) 

Temperature 
(K) 

Velocity 
(m/sec) 

Sub-section 
No./Variable 

Inlet Exit Inlet Exit Inlet Exit 

Sub-section-1 791.8138 556.6385 1002.9 977.69 34.74 33.37
Sub-section-2 654.7561 548.7185 966.62 946.96 33.61 33.13
Sub-section-3 603.5862 525.4882 945.52 915.69 33.18 32.42
Sub-section-4 594.4885 472.1365 913.88 886.46 33.13 30.73
Sub-section-5 558.7462 431.5822 884.42 859.16 32.18 29.38
Sub-section-6 469.9282 351.3801 857.61 835.35 29.42 26.51
Sub-section-7 428.225 323.8613 833.83 812.38 28.1 25.45
Sub-section-8 394.1101 299.3905 810.95 789.67 26.99 24.47
Sub-section-9 364.2005 277.3013 788.96 768.42 25.97 23.55

Sub-section-10 337.17 263.3513 767.69 747.67 25 22.95
Sub-section-11 313.6561 257.8721 747.12 727.47 24.11 22.71
Sub-section-12 290.0861 240.9013 727.12 707.86 23.11 21.95
Sub-section-13 277.8022 215.4888 707.77 688.16 22.62 20.76
Sub-section-14 265.5018 206.8578 688.36 668.61 22.06 20.34
Sub-section-15 256.0261 200.4002 668.96 649.7 21.61 20.02
Sub-section-16 249.0865 195.2288 650.03 631.14 21.27 19.76
Sub-section-17 243.8001 190.7105 631.52 613.11 21.01 19.53
Sub-section-18 238.8465 186.6312 613.42 595.47 20.77 19.32
Sub-section-19 233.9258 182.405 595.79 578.28 20.54 19.1
Sub-section-20 224.9218 176.3442 578.52 561.41 20.06 18.78
Sub-section-21 223.1105 174.0978 562.39 560.93 19.97 18.66
Sub-section-22 215.0545 171.4952 561.08 544.15 19.67 18.52
Sub-section-23 209.3082 165.62 544.79 527.93 19.42 18.2
Sub-section-24 206.6245 159.3113 528.7 512.05 19.33 17.85
Sub-section-25 198.4113 152.2513 512.97 496.91 18.95 17.45
Sub-section-26 190.0413 146.205 497.62 481.77 18.55 17.1
Sub-section-27 181.7298 139.7792 482.74 467.32 18.14 16.72
Sub-section-28 173.6665 133.6613 468.24 453.24 17.73 16.35
Sub-section-29 165.9245 127.8401 454.09 439.46 17.33 15.99
Sub-section-30 158.5518 122.1485 440.26 426.03 16.94 15.63
Sub-section-31 151.3813 116.8921 426.76 412.91 16.55 15.29
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C o n to u r s  o f  s ta t ic  te m p e r a tu r e  K
 

Figure 5.17 (a) Temperature contour plot of the superheater tubes section including all the 31 

sub-sections on the horizontal plane at y=0.3 
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Figure 5.17 (b) Profiles of mass-weighted average total pressure and temperature of all the 31 

sub-sections on the horizontal plane at y=0.3   
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In the third stage of study, the simulation is conducted focusing the chimney (exhaust) 

region. The outlet of sub-section 31 of section-2 is taken as the inlet condition for the main 

section-3. Peak temperature in the order of 580 K exists at the outlet of the superheater section. 

In the saturator section the peak temperature is lower at about 460 K. This is reasonable because 

more energy is transferred to the saturator. Also since the saturator tube walls are maintained at a 

lower temperature than the superheater tube walls, the hot gasses loose more energy to the 

saturator tubes than to the superheater tubes. There is total pressure loss due to the saturator and 

superheater tubes.  

 

Figures5.18 and 5.19 shows the static pressure distribution on different x-planes and y-

planes, respectively. The flue gasses with high pressure pass through the steam drum where its 

velocity is increased due to a sudden convergent section in the flow area.  

 

Contours of static pressure, static temperature and velocity at the outlet are shown in 

Figure 5.20. The outlet static temperature is of order 465 K. The hot flue gasses loose energy to 

the walls covered by saturator tubes below the steam drum and finally passing through the 

chimney and exhausted to the atmosphere. The temperature is reduced from the order of 580 K 

to the order of 465 K. The exhaust temperature is high; a lot of useful energy is wasted. In the 

actual exhaust section, an economizer is installed to recover this energy. Due to the limited scope 

of this study, the economizer is not considered in this study. A infrared thermography inspection 

of the boiler was conducted recently. It is interesting to see that the actual infrared image shows 

the chimney exhaust gases at temperature about 360 F (455 K), which are close to the CFD 

results at 465 K. Figure 5.21 shows the exhaust outlet temperature for the simulated boiler and 
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the infrared thermography inspection of the boiler. Figure 5.22 shows the path lines colored by 

velocity magnitude. It is observed that the hot gases have a large re-circulation zone in the 

chimney section before leaving the atmospheric outlet. Figure 5.23 and Figure 5.24 show the 

vector distribution colored by velocity magnitude at selected planes. The plots clearly show the 

flow distribution, the flue gases heading towards the chimney and finally to the atmosphere.  

 

  

 
 
 
 

 
Figure 5.18 Contour plot of static pressure on different x-planes 
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Figure 5.19 Contour plot of static pressure on different y-planes 

 
 

   Contours of static pressure Contours of velocity 

 
 

Figure 5.20 Contour plots of static pressure and velocity at the outlet of the boiler chimney 
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Figure 5.21 Contour plots of static temperature at the outlet of the boiler chimney 

(a) simulated boiler chimney outlet, temperature is in (K) 

(b) Infrared thermography inspection of the boiler, temperature unit is in (F) 
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(a) 

 

 
(b) 

 
Figure 5.22 Path lines colored by velocity magnitude on z-plane 

a) The entire section model  b) Expanded view 
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(a) 

 

 
 

(b) 
 

Figure 5.23 Vector plot colored by temperature on different y-planes 
(a) The entire section model  b) Expanded view 
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Figure 5.24 Vector plot colored by temperature on z-plane 
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NOx 
 

A major purpose of many combustion simulations is to predict emissions of pollutants 

such as NO and CO, which is typically calculated in post-processing fashion once a fully 

converged flow solution, is obtained. Therefore, accurate predictions of these pollutant quantities 

are highly dependent on the quality of the flow field solution. With methane combustion, NO 

results principally from thermal production, and prompt NO production. The NO mass-fraction 

and NO-ppm at the horizontal plane (x = 0), vertical plane (y = 0) and at the outlet are shown in 

Figure 5.25 and Figure 5.26. The maximum obtained is about 0.248 ppm, observed at the end 

furnace. The maximum NO concentration is about 1.65e-07 observed at the center of the 

combustion chamber as expected, due to the high temperature in this region. The figures show 

that the NO concentration is low near the inlet of the burner due to low temperature and is 

maximum at the flame front due to high temperature and then decreases further downstream. The 

NO concentration at the outlet is about 4.38e-08. 

 
 
Effect of Air-fuel ratios: 
 
 NO emissions are dependent on temperature and therefore on the air-fuel ratios. Low 

emissions are obtained when using more air than the stoichiometric ratio. Lower excess air levels 

(fuel rich) starve the reaction for oxygen, and higher excess air levels (lean burn) drive down the 

flame temperature, slowing the rate of reaction. The NO concentrations for three different air-

fuel ratios (stoichiometric, 10% more air, and 35% more air), at selected axial planes are shown 

in Figure 5.27. The figures show that the NOx emissions are higher when stoichiometric air-fuel 

condition is used. It also shows that using 35 % more air yields less emissions when compared to 

10% more air. The figures also show that the NO concentrations are low near the inlet and 
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increases further downstream in the combustion chamber. Table 5.3 shows the NO 

concentrations for three different air-fuel ratios. The peak NO concentrations are observed in 

stoichiometric air-fuel condition. 

 

NO-ppm NO Mass Fraction 
Variable 

Peak Value Exhaust Peak Value Exhaust 

Stoichiometric 4.23 0.94 2.12e-06 6.63e-07 

10% Excess Air 2.54 0.53 1.29e-06 3.81e-07 

35% Excess Air 0.24 0.06 1.65e-07 4.38e-08 

 

Table 5.3 NO concentrations and NO-ppm for different air-fuel ratios 

 

 
 

Figure 5.25 Contours of NO-ppm and NO mass fraction at vertical planes y = 0 
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a) NO ppm 

  

 
b) NO-ppm 

 
Figure 5.26 Contours of NO-ppm and NO mass fraction on horizontal plane x = 0 
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Figure 5.27 NO concentrations for different air-fuel ratios 
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CHAPTER SIX 

CONCLUSIONS 
 

The computational simulation of combustion and thermal-flow behavior inside an 

industrial boiler was performed in this study using the commercial code FLUENT. The 

simulations were conducted with and without considering the saturator/superheater tubes. After 

obtaining a converged flow and combustion solution, the calculation of NOx was performed to 

obtain NOx concentrations. 

The results provide comprehensive information concerning combustion and thermal-flow 

behavior inside an industrial boiler. The temperature distribution shows combustion starting as a 

ring at the interface of fuel and primary air and expanding rapidly both inward and outward. The 

flame propagates as a conical jet slightly bending toward the roof. The hottest region is at the 

center of the boiler with the peak temperature around 1630 K (2474.33 oF).  

The swirling flow is used to enhance the mixing of air and fuel and to stabilize the flame 

front. The gas flow distribution shows the flow is characterized by a flame jet spreading over the 

combustion chamber surface. A recirculation zone in the upper and lower portion of the chamber 

surface near the burner is observed. The combustion and heat transfer efficiency in this 

recirculation zone is low. The flame impinges on the combustion chamber sidewalls at 1/3 of the 

combustion chamber length, with the temperature of the flame about 1500 K (2240.33o F). In the 

vertical plane, the flame impinges on the floor and roof at about 50% of the combustion chamber 

length at 1250 K (1790.33 oF). The hot flames turn around 180 degrees at the end of the 
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combustion chamber and enter into the superheater section. A large separation bubble forms at 

the turning location across a dozen rows of tubes. This separation bubble remains relatively cool 

at 940 K (1232.33 oF) by entraining downstream cooler gasses. The separation bubble pushes the 

hot flow towards the mid-section of the passage walls and subjects the superheater tubes to high 

temperature thermal stress at about 1060 K (1448.33 oF), which can lead to tube rupture. 

 An intensive calculation was conducted to compute the flow and heat transfer across the 

496 tubes. With the inclusion of the saturated/super-heater tubes, the exit temperature drops from 

746 K (without including saturator/super-heater tubes) to almost 465 K (377.33 oF). The 

decrease in temperature is due to the heat transfer into the tubes. With the inclusion of tubes, the 

actual temperature distribution was simulated, and the exit temperature is close to the actual 

temperature measured by infrared thermograph at about 455 K (360 oF). The pressure drop, due 

to the steam tubes, is about 1055 Pascal (0.153 Psi).   

 The NOx prediction was conducted using both the thermal and prompt NOx. The 

maximum NO is formed in the core of the combustion. The effect of excess air on NOx 

production was investigated using three cases – stoichiometric, 10%, and 35% excess air. The 

results show the NOx production for using stoichiometric air is highest at about 4.23 ppm.  

 The overall simulation was successful and provides comprehensive information of 

combustion and thermal-flow in the studied boiler. The prediction of NOx is lower than the 

actual level. Several ideas were formed from this study to improve boiler efficiency and 

minimize the thermal stress problem imposed on the super-heater tubes. 



 99

 
 
 
 
 

APPENDIX A 
 

Application of FLUENT Code 
 

 
In the present work the generalized finite-rate chemistry model is used to analyze the 

methane-air combustion system. The combustion is modeled using a global one-step reaction 

mechanism, assuming complete conversion of fuel to CO2 and H2O. 

 

Step 1: Grid  

1. Read the grid file 

File Read Case...   

After reading the grid file, FLUENT will report the number of fluid cells that have been 

read, along with numbers of boundary faces with different zone identifiers.  

2. Check the grid 

Grid Check 

The grid check lists the minimum and maximum x and y values from the grid, and reports 

on a number of other grid features that are checked. Any errors in the grid would be 

reported at this time. 

3. Scale the grid 

Since this grid was created in units of inches, the Scale Grid panel will be used to  

scale the grid into meters. 

Grid Scale... 
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(a) Under Units Conversion, select in from the drop-down list to confirm that the Grid 

was created in inches. 

(b) Click on Scale 

4. Display the grid. 

Display Grid... 

 

Step 2: Model 

1. Define the domain space as 3D, and choose segregated solver. 

Define Models Solver...  

 

 

2. Enable the κ-ε turbulence model.  

Define Models Viscous... 
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3. Enable heat transfer by activating the energy equation.  

Define Models Energy... 
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4. Enable Radiation 

Define Models Radiation...  

 

 

 

a) Select Rosseland model as radiation model 

 

5. Enable chemical species transport and reaction.  

Define Models Species...  
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(a) Select Species Transport under Model.  

(b) Select Volumetric under Reactions.  

(c) Choose methane-air in the Mixture Material drop-down list.  

      By selecting one of the pre-defined mixtures, the complete description of the   

      reacting system including chemical species and their physical and  

      thermodynamic properties are accessed.        
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(d) Select Eddy-Dissipation under Turbulence-Chemistry Interaction. 

      The eddy-dissipation model computes the rate of reaction under the  

      assumption that chemical kinetics are fast compared to the rate at which    

      reactants are mixed by turbulent fluctuations (eddies). 

(e) Click OK. 

 

Step 3: Materials 

Define Materials... 

The Materials panel shows the mixture material, methane-air, that was enabled in the Species 

Model panel. 
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1. Choose incompressible-ideal-gas in the Density drop-down list. 

2. The strong temperature and composition dependence of the specific heat will have a 

significant impact on the predicted flame temperature. 

Enable composition dependence of the specific heat.  

Define Materials...  

 

(a) In the drop-down list next to Cp, select mixing-law as the specific heat method. 

(b) Click on the Change/Create button to render the mixture specific heat based on a local 

mass-fraction-weighted average of all the species. 
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3. Enable temperature dependence of the specific heat for each species. 

 

(a) In the Material Type drop-down list, select fluid.  

 The fluid material type gives you access to each species in the mixture.  

(b) Select carbon-dioxide (CO2) under Fluid Materials.  

(c) In the drop-down list for Cp, select piecewise-polynomial.  

  This will open the Piecewise Polynomial Profile panel.  
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(d) 

! Click on OK to accept the coefficients describing the  polynomial temperature 

variation of Cp for carbon dioxide. 

! Click on Change/Create in the Materials panel to accept the change in the 

properties for carbon dioxide, CO2. 

4. Repeat steps (b), (c) and (d) above for the remaining species (methane, CH4; nitrogen, N2; 

oxygen, O2; and water, H2O), and click on Change/Create to accept change for each 

species. 

 

Step 4: Boundary Conditions 

Define Boundary Conditions...  
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a) Select air-inlet1 (Secondary air) and set the boundary condition, mass-flow-inlet 

 



 109

b) Set the boundary condition for air-inlet2 (Primary air with swirl), mass-flow-inlet 

 

c) Set the boundary condition for fuel-inlet, mass-flow-inlet 
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d) Set the outlet boundary condition for outlet, pressure-outlet 

 

e) Set the boundary conditions for all the walls, one example is for constant wall  temperature 

(saturators or superheaters) and the other example is for adiabatic wall condition.    
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Step 5: Solution Initialization 

1. Initialize the field variables.  

    Solve Initialize Initialize...  
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(a) Select all-zones in the Compute From drop-down list.  

(b) Adjust the Initial Values for Temperature to 2000  

(c) Click Init to initialize the variables, and then close the panel.  

2. Set the under-relaxation factors. 

  Solve Controls Solution...  

 
   (a) 

 
   (b) 

 

3. Turn on residual plotting during calculation 

    Solve Monitors Residual... 
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4. Start the calculation by requesting 1000 iterations 

    Solve Iterate... 

 

 

 

Step 6: Post-processing 

Review the solution by examining graphical displays of the results and performing surface 

integrations and making energy balance 
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APPENDIX-B 
 

NOx Prediction Using FLUENT NOx Model 
 
 

During combustion of fuels with air, a small part of the nitrogen present in the air or in 

the fuel itself reacts with oxygen to form nitric oxide in the flame gases. NOx concentrations 

generated in combustion systems are generally low. As a result, NOx chemistry has negligible 

influence on the predicted flow field, temperature, and major combustion product concentrations. 

Therefore, the prediction of NOx production can be post-processed after the thermal flow and 

major species concentrations are calculated. But combustion-generated pollution is a threat to the 

environment.  

NOx emissions mainly consist of nitric oxide, less significant nitrogen oxide and nitrous 

oxide. To predict NOx emission, a transport equation for nitric oxide is solved. NOx calculations 

are obtained using FLUENT NOx model as a postprocessor to the main combustion calculation. 

The restrictions for using the FLUENT NOx model are 

- Can be used only for segregated solver and not for coupled solver. 

- The NOx models cannot be used in conjunction with the premixed combustion model. 

In this study both thermal and prompt NOx are calculated. The procedure for NOx prediction is 

as follows: 

Step-1: Combustion Simulation 

Calculate the combustion problem using FLUENT. 
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Step-2: NOx Prediction 

1. Enable the desired NOx model 

Define Models Pollutants NOx... 

 

(a) Under Models, enable Thermal NO and Prompt NO.  

(b) Select Temperature in the PDF Mode drop-down list under Turbulence     

     Interaction to enable the turbulence-chemistry interaction. 

(c) Select Partial-equilibrium in the [O] Model drop down list under Thermal 

      NO Parameters.  

The partial-equilibrium model is used to predict the O radical concentration 

required for thermal NOx prediction.  

(d) Set the Equivalence Ratio to 1 under Prompt NO Parameters, and keep  

      the default Fuel Species and Fuel Carbon Number. 
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The equivalence ratio defines the fuel-air ratio (relative to stoichiometric 

conditions) and is used in the calculation of prompt NOx formation. The Fuel Carbon 

Number is the number of carbon atoms per molecule of fuel and is used in the prompt 

NOx prediction. 

(e) Click OK to accept these changes. 

2. Enable the calculation of only the NO species, and set the under-relaxation factor for this 

equation.  

Solve Controls Solution... 

 

(a) In the Equations list, deselect all variables except the NO species.  

(b) Increase the NO under-relaxation factor to 1.0. 
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Formation of NOx is predicted in a ``post-processing'' mode, with the flow field, 

temperature, and hydrocarbon combustion species concentrations fixed. Thus, only the 

NO equation is computed. Prediction of NO in this mode is justified on the grounds that 

the NO concentrations are very low and have negligible impact on the hydrocarbon 

combustion results. 

3. Reduce the convergence criterion for the NO species equation. 

Solve Monitors Residual... 

 

(a) Set the Convergence Criterion to 1e-6 and click OK. 
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4. Start the calculation by requesting 1000 iterations 

Solve Iterate... 

 

The solution is converged after certain iterations. 

5. Post-processing 

Review the mass fractions of NO by examining graphical displays of the  

results and performing surface integration. 

6. Use a custom field function to compute NO parts per million (ppm). 

Define Custom Field Functions... 

NO ppm is computed from the following equation:  

 

fraction mole OH1
10 fraction x mole NONOppm

2

6

−
=         (A-1) 

where  

 

30
weightmolecular  mixture  fraction massNO

fraction mole NO
×

=          (A-2) 

and the mixture molecular weight is  
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∑
=

i MW
fractionmass

1MWmixture           (A-3) 

where MW is the molecular weight of each species.  

 

(a) Create a custom field function for the mixture molecular weight.  

 

i. Click on the 1 calculator button, then on /, and then on (.  

ii. Select Species... and Mass fraction of ch4 in the Field Functions drop-down  

     list. Click Select to add this variable to the field function Definition. 

iii. Click on / and then click on 1 and 6 to enter 16 (the molecular weight of  

      methane). 

iv. Continue in this fashion to complete the definition of the mixture molecular  

     weight field function. 

v. Enter bulk-mw in the New Function Name text entry box.  

vi. Click Define to add the new field function to the variable list.  
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(b) Create a field function for NO ppm.  

 

i. Select NOx... and Mass fraction of NO in the Field Functions drop-down list.  

   Click Select to add this variable to the field function Definition.  

ii. Click the X button to introduce the multiplication sign.  

iii. Select Custom Field Functions... and bulk-mw in the Field Functions drop- 

     down list. Click Select to add this variable to the field function Definition.    

iv. Click on / and then click on 3 and 0 to enter 30 (the molecular weight of NO).  

v. Click the X button and then click on 1 and 0 to enter 10.  

vi. Click on y ^ x and then on 6.  

vii. Complete the definition of NO ppm as shown in the panel above.  

viii. Enter no-ppm in the New Function Name text entry box.  

ix. Click Define to add the new field function to the variable list. 

7. Review the results of NO ppm by examining the graphical display. 
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APPENDIX-C 
 

Energy Balance 
 
 

The energy conservation is made by enforcing the thermal energy transfer out of the domain 

equal to that transfer into the domain. Energy balance using the enthalpy of formation approach 

is given by 

Hin = Hout (Q=0)             (C-1) 

 

Step-1: Combustion Simulation 

Calculate the combustion problem using FLUENT. 

Step-2: Energy Balance 

1. Calculate the net inlet enthalpy formation at inlet and outlet 

Define Materials... 
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(a) Under Material Type, select fluid  

(b) Under Fluid Materials, select methane (ch4) 

The Standard State Enthalpy (j/kgmol) of methane is obtained 

(c) In a similar way, obtain the Standard State Enthalpy of the other Fluid Materials   

(d) The net enthalpy formation at inlet is obtained by  

   Einlet = Mass Flow Rate * Standard State Enthalpy * Mole Fraction        (C-2) 

(e) The net enthalpy formation at the outlet is obtained as 

   Eout = (Mass Flow Rate)out * Σ(Standard State Enthalpy)i * (Mole Fraction)I      (C-3) 

 

2. Calculate mass flow rate of fuel  

Report Flux Reports... 

 

(a) Under Options, select Mass Flow Rate   

(b) Select fuel-inlet and outlet under Boundaries. 
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The mass flow rate of the fuel and outlet is calculated. 

 

3. Calculate heat transfer rate  

Report Flux Reports... 

 

(c) Under Options, select Total Heat Transfer Rate   

(d) Select all under Boundaries. 
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The heat transfer rate of all the boundaries is calculated 

 

Note: Fluent uses the following sign convection for heat flux at each boundary: Q is positive for 

the heat transfer into the domain and Q is negative for heat transfer out of the domain. For 

example, a negative Qinlet at inlet means heat transfer from inside to outside. At outlet, a negative 

Qoutlet also means heat transfer from inside to outside. 

 

4. Calculate the net energy. 

(a) The net energy is calculated as  

{Einlet + (Heat Transfer Rate)fuel-inlet} - { Eout + (Heat Transfer Rate)all walls and outlet} 

                         (C-4)  

Energy of fuel, Efuel = LHVfuel * (Mass Flow Rate)fuel       (C-5) 

 5.  Energy Balance 

   For energy balance equation (C-4) must be equal to equation (C-5) 
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