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Foreword

In this thesis we label exclusively those formulas which are relevant to our
study, that is those expressions that posses a relevant importance on themselves as
terminal results or that will be used later on in the derivation of other expressions.
These formulas will be invariantly labeled by two numbers presented in the form
(n,m), the first corresponds to the chapter where they appear for the first time and
the second is the number of labeled formula within that chapter.

Important statements are denominated lemmas, theorems and corollaries.
Here we use the standard convention used throughout the mathematical sciences. So,
by a lemma we mean a technical result needed to prove a more general statement. It
is worth mentioning that a lemma is not important per se, its importance lies in its
usefulness to prove further results. By a theorem we understand a statement which is
relevant to our investigation and that may answer some of the concerns in this thesis
in a rather general form. In this sense a theorem is a terminal result in our research
that may or may not need of a lemma to be proved. A corollary is a particular case
of a theorem; its importance is manifested in the fact that it answers some specific
objectives of this paper. Lemmas, theorems and corollaries are numbered by a single
counter within a chapter, and new chapters restart the numeration. Cross-references
of lemmas, theorems and corollaries between chapters will be indicated following the
same convention as for formulas. Results in Chapter 2 are used in our research,
however we do not refer to them in later chapters since they are supposed to be part
of the standard literature.

We have included an appendix with the numeric routines we used in our
investigation as well as an alphabetic index at the end of this thesis for the sake of
easiness in the reading. An index is also included to facilitate the search of concepts
in this paper.

The present document was typeset using the packages KTEX 2z, ApS-
ETEX, and BIBTEX that belong to the mathematical typesetting system MIKTEX
version 2.4. ApMS-IFTEX was used to create special fonts in our formulas, while
BIBTEX was employed to generate the bibliography at the end of the present work.
The graphs were generated using computer programs designed to run in Matlab Stu-
dent Version 6.1.0.450 release 12.1.
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Abstract

In this paper we develop a finite-difference scheme to approximate radially
symmetric solutions of the initial-value problem

P*w 2 9 1o dw 2 / _
W—Vw—ﬁa(Vw)—l—vﬁ—l—mw—kG(w)— :
subject to : {w(gg,o):qs(x), reD,

ow,_
M #0) = v(@), €D

in an open sphere D around the origin, where the internal and external damping
coefficients—( and ~, respectively—are constant, and the nonlinear term has the
form G'(w) = wP, with p > 1 an odd number. We prove that our scheme is consistent
order O(At?) + O(Ar?) for G’ identically equal to zero, and provide a necessary
condition for it to be stable order n. Part of our study will be devoted to compare
the physical effects of 3 and 7.

x1



Chapter 1

Introduction

Klein-Gordon-like equations appear in several branches of modern physics.
A modified sine-Gordon equation appears for instance in the study of long Josephson
junctions between superconductors when dissipative effects are taken into account
[1]. A similar partial differential equation with different nonlinear term appears in
the study of fluxons in Josephson tramsmission lines [2]. A modified Klein-Gordon
equation appears in the statistical mechanics of nonlinear coherent structures such
as solitary waves in the form of a Langevin equation [3]; here no internal damping
coefficient appears, though. Finally, our differential equation describes the motion of
a string with internal and external damping in a non-Hookean medium.

The classical (1+1)-dimensional linear Klein-Gordon equation has an exact
soliton-like solution in the form of a traveling wave [4]. Some results concerning
the analytic behavior of solutions of nonlinear Klein-Gordon equations have been
established [5, 6, 7]; however, no exact method of solution is known for arbitrary
initial-value problems involving this equation. From that point of view it is important
to investigate numerical techniques to describe the evolution of radially symmetric
solutions of our problem.

It is worth mentioning that some numerical research has been done in this
direction. Strauss and Vazquez [8] developed a finite-difference scheme to approx-
imate radially symmetric solutions of the nonlinear Klein-Gordon equation for the
same nonlinear term we study in this paper; one of the most important features of
their numerical method was that the discrete energy associated with the differential
equation is conserved. The numerical study of the sine-Gordon model that describes
the Josephson tunnel junctions has been undertaken by Lomdahl et al. [2]. Numer-
ical simulations have also been performed to solve the (1 + 1)-dimensional Langevin
equation [9].

In this paper we present a numerical analysis of the radially symmetric solu-
tions to a modified nonlinear Klein-Gordon equation that generalizes the applications
described in the previous paragraphs, as well as several other well-known physically
and biologically important partial differential equations.

0o o o

Chapter 2 provides a list of important second-order partial differential equa-
tions that constitute particular cases of the equation under study. We state the general
form of our problem and describe the most important applications that it models.



We close Chapter 2 stating some important definitions and results from numerical
analysis that we use in this thesis without reference.

The next chapter is devoted to the study of our modified nonlinear Klein-
Gordon equation without damping. We show that the energy associated with our
differential equation is constant throughout time and derive a conditionally stable
finite-difference scheme consistent to the second order, which has the property that
the discrete energy is conserved. We close that chapter showing numerical results
that are in agreement with [8].

In the last chapter we derive a numerical method to approximate radially
symmetric solutions of the modified nonlinear Klein-Gordon equation under study.
As we will observe, if no external damping is present then the inclusion of an extra
term in the finite-difference scheme of Chapter 3 yields a second-order approximation
to the exact solution of our problem. For the externally damped case we notice that
the solution of the problem requires a more complicated reformulation in order to
achieve consistency to the second order. We analyze the energy associated with our
equation and derive a discrete expression for the rate of change of energy. We study
the stability and consistency of our numerical methods in detail and show graphically
that our results are in agreement with the non-dissipative case.

The appendix at the end of this work contains the most basic form of the
numerical routines we developed to approximate the solutions of our equation. The
programs do not contain the subroutines to generate the graphs included in this
thesis.



Chapter 2

Preliminaries

The nonlinear Klein-Gordon equation is one of the most important and sim-
plest nonlinear differential equations that appear in relativistic quantum mechanics.
As a second-order partial differential equation, the Klein-Gordon equation general-
izes several other important problems in various branches of physics, chemistry and
mathematical biology that range from the classical diffusion equation to the stochas-
tic Fisher-KPP equation, from the classical wave equation to the Schrédinger and
the telegrapher’s equations.

The present chapter is devoted to introduce and evidence the importance of the
differential equation under study in this thesis. We also present some important
definitions and results of numerical analysis that will be used without reference in
further chapters.

2.1 Basic definitions

By a domain we understand a closed connected subset of R”. A function
u defined in a domain D is said to be have compact support if it is zero outside a
compact subset of D.

A function u defined on a domain D is called smooth in D if it has contin-
uous partial derivatives of all orders in D. The function u is called small at infinity
if for every Zy in the boundary of D,

lim u(z) =0.
i’—>1_]0
reD

Let a, b, ¢, d and e be real numbers with at least one of a, b or ¢ not equal
to zero. A second-order partial differential equation in the variables x and y with
constant coefficients is an equation of the form

0%u 0%u 0%u ou ou

a8x2+b8x8y+68y2+d%+68_y:F(I’y)’ (2.1)

where u is a function of (z,y) usually assumed to be defined and of compact support
in some domain D, that has continuous partial derivatives up to the second order in



D. The number b* — 4ac is called the discriminant of Equation (2.1) and yields a
criterion to classify second-order partial differential equations:

If b* — 4ac > 0 then Equation (2.1) is called a hyperbolic equation. As
an example of this type of equation we have the classical one-dimensional
wave equation

Pu 1 0%

ox2 2o
It describes the vertical disturbance of a wave with phase velocity v as it
travels on the horizontal direction. The wave equation applies to a stretched
string or a plane electromagnetic wave. Given initial and boundary condi-
tions the wave equation can be solved exactly by using a Fourier transform

method or via separation of variables.

If b — 4ac = 0 then Equation (2.1) is called a parabolic equation. An
example of parabolic equation is the one-dimensional diffusion equation
(also called heat equation)

o _ o
ot ox?

This equation commonly arises in problems of heat conductivity. In those
situations k represents thermal diffusivity and u represents temperature.
If initial and boundary conditions are given, the diffusion equation can be
solved analytically by separation of variables.

If > —4ac < 0 then Equation (2.1) is called an elliptic equation. Laplace’s
equation

Pu  *u

—+-5=0

ox?  OJy?
is an example of an elliptic equation. It is satisfied by the potential of
any distribution of matter which attracts according to the Newtonian Law.
A solution to Laplace’s equation is uniquely determined if the value of
the function or the normal derivative of the function is specified on all
boundaries.

We must remark that the wave equation, the heat equation and Laplace’s

equation have generalizations that model the corresponding physical phenomena in
three dimensions. For example, the wave equation in three space variables reads

) 1 0%u
U= ——
V2 o2’

where u is a scalar function that depends on the space coordinate (x,y, z) and time ¢.
The symbol V2 denotes the Laplacian differential operator, which is the divergence of
the gradient of a scalar function. With this notation the three-dimensional diffusion
equation is described by the equation

ou 1_,
E—EVU,

4



and the three-dimensional Laplace’s equation by

Vu = 0.

Let V and p be scalar functions depending only on space. An important
variation of the three-dimensional Laplace’s equation occurs in classical electromag-
netic theory when relating the electric potential V' of a distribution and its charge
density p. The relation between V and p is described by the equation ¢, V2V = p,
which is called Poisson’s equation. More generally, every equation of the form

Viu = F(z,y,z2,1),

where u is a scalar function depending on z, ¥, z and t, is called a Poisson equation.

Another useful classification of second-order partial differential equations
with constant coefficients is in terms of a property called linearity. Differential equa-
tion (2.1) is called linear if for arbitrary real constants ki, ke and solutions uy, us of
(2.1), kyuy + kauy is also a solution of (2.1).

Finally, if the variable time is one of the independent variables of the scalar
function u then the term kOu/0t in the differential equation modeling u is called
the external damping term and the constant k is called the external damping
coefficient. The differential equation is said to be damped if £ is not equal to zero,
otherwise it is called undamped.

2.2 Important partial differential equations

Many other three-dimensional generalizations of the wave equation, the dif-
fusion equation and Laplace’s equation happen to appear in mathematical physics and
biology. For example, the manipulation of Maxwell’s equations to obtain propagating
waves gives rise to the so called Helmholtz equation [10], whose general form is

Vu + k*u =0,

where k is a real constant and wu is a scalar function in the variables z, y, z, t.
Obviously, Helmholtz equation is a linear second-order partial differential equation
that generalizes the three-dimensional wave equation.

Another physical example appears in the field of non-relativistic quantum
mechanics: Let A denote Planck’s original constant divided by 27. The wave function
associated to a particle of mass m with potential scalar function V' is a scalar function
u that depends on the position vector (z,y, z) of the particle and the time ¢, given
by the differential equation

ou h?
ih— = ——V?u + Vu.
ot 2m
This differential equation is called Schrodinger’s equation. In this equation the
scalar function v may be complex, but the square of its modulus is a real scalar func-

tion that represents the probability density function associated with the location of



the particle at any time. It is worth noticing that Schrodinger’s equation provides
a mathematical generalization of the three-dimensional diffusion equation. Observe
that because the scalar function V' does not need to be constant, Schrodinger’s equa-
tion is a linear partial differential equation with not necessarily constant coefficients.

The relativistic counterpart of Schrodinger’s equation is the Klein-Gordon
equation. By the linear Klein-Gordon equation we understand the linear second-
order partial differential equation

where m is a real constant and wu is a scalar function of position and time. This is the
equation for a relativistic quantum-mechanical scalar (spin-zero) particle of mass m.
The exact solution of this equation in the form of a traveling wave is given in [4]. An
important nonlinear variation of this equation that often appears in the study of the
collisional properties of solitons [11, 12] and a number of other physical applications
[7, 13, 14] is the sine-Gordon equation
2u = i@ +m?sinu
c2 Ot? '

In mathematical biology, consider a population distributed in a linear habi-
tat with uniform density. If at any point of the habitat a mutation advantageous to
survival occurs then the mutant gene increases at the expense of the allelomorphs
previously occupying the same locus. Mathematically, let u be the frequency of the
mutant gene and let m be a constant representing intensity of selection in favor of the
mutant gene. Then u must satisfy Fisher’s equation (also called the Fisher-KPP
equation)

ou 0%

where k is a diffusion coefficient and v depends on the position x in the linear habitat
and time ¢ given in generations. This parabolic equation was simultaneously and
independently investigated by Fisher [15] and Kolmogoroff et al. [16], using F'(u) =
mu(l — u). It is used also in describing the process of epidermal wound healing [17].
Other applications appear in the theory of superconducting electrodynamics [18] and
in the study of excitons [19]. Fisher’s equation is a nonlinear equation that obviously
generalizes the three-dimensional diffusion model if we rewrite Fisher’s equation as

% = kV?u + F(u).

The stochastic Fisher-KPP equation is the one-dimensional Fisher
equation with F(u) = mu(l — u) + yy/u(l —u)n(x,t), where 0 < u < 1, v is a
real constant, and n(x,t) is a Gaussian white noise process in space and time with
mean equal to zero [20]. To fix ideas, we may think of a noise as a random signal of
known statistical properties of amplitude, distribution, and spectral density. A noise
is a white noise in space and time if it is uncorrelated in these two variables, and
it is Gaussian if its probability density function over a given frequency band is nor-



mal. The stochastic Fisher-KPP equation is a stochastic partial differential equation
that describes random walk processes that have applications in hydrodynamics and
€conomics.

Second-order partial differential equations describing diffusion or conduc-
tion happen to appear in the area of thermodynamics [21]. Heat conduction is under-
stood as the transfer of heat from warm areas to cooler ones, and effectively occurs
by diffusion. Under the assumption of a macroscopic continuum formulation, the
Fourier equation [22] for the heat flux ¢ in a medium of density p, mass heat
capacity Cp, and temperature function u, is

q = —kVu,

where both ¢ and u depend on the three spatial coordinates and time, k = prCp is
the thermal conductivity of the medium, and « is the thermal diffusivity term of the
classical diffusion equation.

The previously mentioned Fourier heat conduction equation is diffusive and
does not account for the temperature propagation speed in transient situations. Be-
cause of certain issues argued and identified earlier, attempts to account for a finite
speed of heat propagation have evolved over the years. The Maxwell-Cattaneo
model [23], which is based on the notion of relaxing the heat flux, is given as

061

(915 = —q — kVu,

where 7 is the relaxation time. Assuming that there are no heat sources and that k
is constant, the one-dimensional version of the Maxwell-Cattaneo equation together
with the energy equation

ou aq
Cp— =0
yield the hyperbolic equation
0%u 0%u Ju
C k— C =0.
TP T Vaar TP g

Obviously, it can be generalized to the three-dimensional case as

0*u k 1 0u
U+ == =0,
o> 1pCp T Ot

The telegraph equation is a hyperbolic equation that describes heat or
mass transport. It models phenomena that are mixtures between diffusion and wave
propagation. In this model a small section of a telegraph wire is treated to study the
pulse of voltage moving along the wire. It was studied in 1876 by Heaviside in his
research on coaxial marine telegraph cables [24]. The telegraph equation is the linear
second-order partial differential equation

Pu 1 0%u ou

- - - ——b2 _
02 o o V=0



where v is positive, and v and b are nonnegative constants. The one-dimensional
wave equation is just a particular case of the telegraph equation with v and b both
equal to zero. The generalization of the telegraph equation to three dimensions is

Lo
2 Ot?

Vu —

2.3 Modified Klein-Gordon equations

The objective of this paper is to study a general form of the Klein-Gordon
equation that embraces the partial differential equations described in the previous
section and, at the same time, takes into account a third-order term proportional to
the Laplacian of the partial derivative of u in time, which physically represents the
internal damping term. More precisely, let u be a function of the spatial variables
X, Y., Z, and the time variable T'. The nonlinear partial differential equation with
constant coefficients that we wish to study in this thesis is

2
a% — bV — C@% (V?u) + dg—;ﬁ +m?*u+ G'(u) =0,

Let + = X/Vb, y = Y/Vb, 2 = Z/v/b, and t = T/+/a for a and b pos-
itive numbers. Let 8 = ¢/(by/a) and v = d/y/a. Our problem can be stated in
dimensionless form as

0?u 9 o Ou 2 10 —
oz — Viu— o (Vi) + 5 +mu+ G (u) =0,
subject to : { u(z,0) = ¢(z), TEeD, (2.2)
ou
—(z.0)=u(z). Te€D.
5 (5 0) =9(), z€

This initial-value problem will be referred to as the modified nonlinear
Klein-Gordon equation or the dissipative nonlinear Klein-Gordon equation,
and its numerical study for the particular choice G'(u) = u?, for p > 1 an odd number,
is the topic of this paper. We identify the term containing the coefficient 3 as the
internal damping term, while the term containing + is easily identified as the external
damping term. Needless to say that the differential equation in (2.2) generalizes the
equations listed in Section 2.2 either by choosing suitable coefficients or by suppressing
terms; the classical Klein-Gordon equation, for instance, can be obtained by setting
(4 and v both equal to zero and G’ identically zero.

The following is the major theoretic result we will use in our investigation.
It is valid only for certain classical one-dimensional nonlinear Klein-Gordon equations.
Here M (t) represents the amplitude of a solution of (2.2) at time ¢, that is
M (t) = max |u(z,t)].
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THEOREM 1. Let 3 and ~ be both equal to zero, and let G'(u) = |u[P~ u. Suppose
that ¢ and v are smooth and small at infinity. Then

(1) Ifp <5, a unique smooth solution of (2.2) exists with amplitude bounded
at all time [6].

(2) Ifp>5, a weak solution exists for all time [25].

(3)  For p > 8/3 and for solutions of bounded amplitude, there is a scattering
theory; in particular, they decay uniformly as fast as M(t) < c¢(1 + [t|)~3/2
[26]. O

As we stated in the introductory chapter, initial-value problem (2.2) has
applications in several physical problems. We describe now some of them.

2.3.1 Josephson transmission lines

A Josephson junction is a type of electronic circuit capable of switch-
ing at very high speeds when operated at temperatures approaching absolute zero.
Named for the British physicist who designed it, a Josephson junction exploits the
phenomenon of superconductivity, that is the ability of certain materials to conduct
electric current with practically zero resistance. Josephson junctions are used in
certain specialized instruments such as highly-sensitive microwave detectors, magne-
tometers, and quantum interference devices.

A Josephson junction is made up of two superconductors, separated by
a nonsuperconducting layer so thin that electrons can cross through the insulating
barrier. The flow of current between the superconductors in the absence of an ap-
plied voltage is called a Josephson current, and the movement of electrons across
the barrier is known as Josephson tunneling. Two or more junctions joined by
superconducting paths form what is called a Josephson interferometer.

superconductor
y . 7 /

<~— insulator

VI \
superconductor

FIGURE 2.1: Schematic representation of a long Josephson junction.

While researching superconductivity, Josephson studied the properties of
a junction between two superconductors [27]. Following up on earlier work by Leo
Esaki and Ivar Giaever, he demonstrated that in a situation when there is electron
flow between two superconductors through an insulating layer (in the absence of an
applied voltage), and a voltage is applied, the current stops flowing and oscillates



at a high frequency. This phenomenon is called the Josephson effect, and it is
influenced by magnetic fields in the vicinity, a capacity that enables the Josephson
junction to be used in devices that measure extremely weak magnetic fields, such as
superconducting quantum interference devices. For their efforts, Josephson, Esaki,
and Giaever shared the Nobel Prize for Physics in 1973.

It is worthwhile mentioning that the theory of low temperature conductivity
tells us that a superconductor is a system where a fraction of the conduction elec-
trons form pairs called Cooper pairs. In these pairs the two electrons have opposite
momentum and spin. These pairs are able to condense in the same quantum state so
that the superconductor can be described by a single macroscopic wave function

U = \/ﬁei¢.

Here p represents the pair density and ¢ is the quantum phase common to all pairs.

For the long Josephson junction, in dealing with real transmission lines
one must take into account losses, bias, and junction irregularities which influence
motion [1]. When we account for all of these effects, we obtain the third order partial
differential equation

*¢ 0%¢ 09

022 o o

)

+ 050

= sing — v,

where «, § and ~ are constants.

2.3.2 The statistical mechanics of kinks

The statistical mechanics of kinks (that is, exact solitary waves) of non-
linear coherent structures has been studied by two approaches. In the first approach
one assumes that the kinks may be treated as weakly interacting elementary exci-
tations. Provided the kink density is low, the canonical partition function can be
found by standard methods [28, 29, 30]. Alternatively, it is possible to calculate the
partition function to exploit a transfer operator technique. This method was used
by Krumhansl and Schrieffer in [29], and it showed that in the low temperature limit
the partition function naturally factorizes into two contributions: A tunneling term
which they were able to identify with the kink contribution, and the remainder which
they identified as linearized phonons (by a phonon we mean a quantized mode of
vibration occurring in a rigid crystal lattice, such as the atomic lattice of a solid).

The ideas of Krumhansl and Schrieffer were further refined and extended
to a wider class of systems [30]. In particular, interactions of kinks with linearized
phonons were considered, leading to substantial corrections of results.

Computer simulations based on standard methods [9] made possible to ver-
ify results on the equilibrium statistical mechanics of kinks using a dimensionless
Langevin equation describing the (1 + 1)-dimensional theory:

P00 0o

Z T 42
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2.3.3 The wave equation revisited

Initial-value problem (2.2) also describes the mechanical motion of strings
for certain physical situations. Consider the one-dimensional motion of a string im-
mersed in a non-Hookean medium. We represent the vertical motion of the string
as a function wu(r,t) of horizontal position and time, and the nonlinear force of the
medium by G'(u). The string is assumed to posses internal damping due to its inner
stiffness, which is proportional to u,,;. Finally, we assume that there exists friction
between the string and the medium that derives in a force which opposes the mo-
tion of the string and is proportional to the vertical velocity of the string. In these
circumstances, the motion of our string will be described by (2.2).

2.4 Elements of numerical analysis

In our investigation, we are interested in developing finite-difference schemes
to approximate radially symmetric solutions of modified nonlinear Klein-Gordon
equations. In order to determine how accurate our approximations are, we need
to introduce the notions of convergence, consistency and stability. To understand
these concepts we must first clarify some ideas from mathematical analysis. Here we

follow [31] and [32]. Throughout K denotes the fields R and C.

2.4.1 Normed linear spaces

A norm on a vector space V over a scalar field K is a function || - || that
associates every element of V' with a real number, such that for any vectors u and v,
and any scalar a, the following properties are satisfied:

@) |o]| =0, and ||5]| = 0 iff & = 0,
(ii)  [lav]| = [al [|7]], and
(i) [lu+ | < |[af| + [|v]].

It is worthwhile mentioning that a vector space with a norm associated with
it is called a normed linear space or simply normed space. The following are
examples of normed linear spaces with the given norms.

EXAMPLE 2. Denote by | - | the standard norm in K. The linear space K" can be

given the p-norm (p > 1)
n l/p
1zl = (ZW”) :
i=1

The 1-norm and the 2-norm in K™ are called the the taxicab norm and the Eu-
clidean norm , respectively. K™ can also be normed by the so called infinity norm
||1Z]|oo = max{|z1|, ..., |za|} O

11



EXAMPLE 3. Let Az and p be positive numbers with p > 1. The space ¢, o, is the

normed linear space of all infinite sequences u = (...,u_1,up,uy,...) of elements

in K with vector addition and scalar multiplication given componentwise, such that
Z |u;]P < co. The norm is given by

—o00<j<0o

o0 1/])
[luflp.ae = (Z \Uk\pA56> :

k=—o00

The space ¢, is defined to be the space €, ;. If p is equal to 2 then £, 5, is called the
energy space. O

EXAMPLE 4. Let A represent the Lebesgue measure on X C R. The space L,(X)
for p > 1 is the normed linear space of all equivalence classes of functions f: X — R
under the relation of equivalence almost everywhere, together with addition and scalar
multiplication defined in representatives, such that f + JP d\ < oo. Its norm is given

by )
1/p
||f||p:(/XfpdA> .

EXAMPLE 5. Let || - || be any norm in K™. The space of all n x n-matrices with
coefficients in K is a normed linear space with the usual operations of addition of
matrices and scalar multiplication, with matrix norm defined by

QI = sup {Qu}. O

[lal|<1

2.4.2 Analysis of Stability

Convergence

A difference scheme L}u} = G} approximating the partial differential equa-
tion Lv = F is a convergent scheme at time ¢ in the norm || - || of ¢, A, if, as
(n+ 1)At — t,

Hun+1 o Vn+1H =0

as Az, At — 0. Here u" = (...,u",uf,u},...) and v" = (..., 0", vf,v},...)
are the sequences representing the vector of approximations to the solution of the
partial differential equation and the vector of exact solutions whose k-th component
is v(kAx,nAt), respectively.

Consistency

The difference scheme u"™! = Qu" + AtG" is consistent with the partial
differential equation Lv = F in the norm || - || if the solution v of the differential
equation satisfies

vl = Qv + Atg" + Atr",

12



and ||7"|| — 0 as Az, At — 0. Moreover, the scheme is said to be accurate with order
O(AxP) + O(At9) if
|7"]] = O(AxP) + O(At?).

Stability

One interpretation of stability of a finite-difference scheme is that, for a
stable scheme, small errors in the initial conditions cause small errors in the solution.
As we will see, the definition does allow the errors to grow but limits them to grow
no faster than exponential. More precisely, the finite-difference scheme u"™! = Qu"
is said to be stable with respect to the norm || - || if there exist positive constants
Axg and Aty, and nonnegative constants K and [ so that

"] < Ke [l

for 0 <t=(n+1)At, 0 < Az < Az and 0 < At < Atg. If further restrictions on
the relationship between At and Ax are needed in order to guarantee stability of the
finite-difference scheme, we say that the scheme is conditionally stable.

One characterization of stability that is often useful comes from the in-
equality in the definition above. We state this in the following result.

THEOREM 6. The scheme u™™! = Qu" is stable with respect to the norm || - || if and
only if there exist positive constants Axy and Aty, and nonnegative constants K and
G so that

Q™| < Ke™,

for0<t=(n+1)At, 0 < Az < Azxg and 0 < At < Aty. O

The difference scheme u"*' = Qu" is said to be stable order n with
respect to the norm ||| if there exist positive constants Az and Aty, and nonnegative
constants K4, Ky and 3 such that

™| < (Ky + nk)e™ |,

for 0 <t = (n+ 1At 0 < Az < Azxg and 0 < At < Aty. Obviously, if a finite-
difference scheme is stable then it will be stable order n. We also realize that the
above definition is equivalent to requiring that Q satisfy ||Q"|| < (K| + nkKy)e?.

The use of the discrete Fourier transform is a useful tool in the analysis of
stability of finite-difference schemes for initial-value problems. We define the discrete
Fourier transform of u € ¢ as the function @ € Lo([—m, 7]) given by

1
@(f):\/—z—7r > e Uy,

m=—00

for £ € [—m, m]. The ¢y vectors that we will be using later will be the f3 A, vectors
that are the solutions to our finite-difference schemes at time step n.

EXAMPLE 7. The central second-order difference is the linear operator % that
associates with each infinite sequence u = (..., u_y,ug, uy,...) of real numbers the

13



infinite sequence d?u whose m-th component is given by w41 — 2y, + Up—1. It is
easy to check that the Fourier transform of §%u is given by —4sin? gﬁ ]

It is important to remark that if u € ¢5 has discrete Fourier transform u then
||a||2 = ||ul|2, where the first norm is the Lg-norm on [—m, 7] and the second norm
is the fo-norm. This fact constitutes a bridge between the spaces (5 and Lo([—7, 7))
that provides us with the following important result for stability.

THEOREM 8. The sequence {u™} is stable in ly a, if and only if the sequence {4} is
stable in Lo([—m,7]). O

Let u"™ = Qu" be a finite difference scheme. Taking discrete Fourier
transform in both sides we obtain an equation of the form 4" = A(¢)a". The
matrix A(§) is called the amplification matrix of the difference scheme. By virtue
of Theorem 8, the stability of the scheme depends on the growth of the amplification
matrix raised to the n-th power.

THEOREM 9 (LAX THEOREM). If a two-level difference scheme u"™ = Qu™ + AtG"
is consistent in the norm || - || to an initial-value problem and is stable with respect to
|| - ||, the it is convergent with respect to || - ||. O

14



Chapter 3

The nonlinear Klein-Gordon
equation

In the present chapter we describe a numerical method to approximate radially
symmetric solutions of the nonlinear Klein-Gordon equation. The energy analysis
of this equation shows that the total energy is conserved. We propose a discrete
scheme for the energy of this equation and prove that it is conserved at every time
step. Finally, we show that our results are in general agreement with Strauss and
Vézquez [8].

3.1 Finite-difference scheme

Let u be a function of position & and time ¢, and suppose that ¢ and ¥
are functions of z of compact support in a domain D of R? with continuous partial
derivatives up to the second order in D. The problem under study in this chapter
can be rewritten in dimensionless form as the initial-value problem

82
8_157; — Vu+m*u+ G'(u) =0,
. . B ~ B (3.1)
subject to : uw(z,0) = ¢(z), z €D,
0
S(#0) = ¥(@), T€D.
We are interested in computing radially symmetric solutions of (3.1), that
is solutions of the form w = wu(r,t) with r = ||Z||, where || - || denotes the usual

Euclidean norm in R3. For the sake of simplicity we may assume that D represents
the open sphere with center in the origin and radius L, and that ¢ and 1) are radially
symmetric in D and small at infinity.

In spherical coordinates

0%u ou
9
IV =T 2

so that our nonlinear Klein-Gordon equation reads
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Pu  O*u  20u ) )
W—W—;E—FmU—FG(U):O, for 0 <r < L.
In order to simplify this equation we let v(r,t) = ru(r,t). Obviously v
satisfies v(0,t) = 0, for every ¢ > 0. Moveover, for every 0 < r < L

1 0% 0%u

;w = W’ and (32)
1P _ P 200

ror2  or2  ror

These equations together with the initial conditions in (3.1) and the bound-
ary condition stated in the previous paragraph yield the mixed-value problem

o2 92
a—;—8—7§+m2v+rG’(v/r):0, for0<r <L,
subject to : %(73 0)=ro(r), 0<r<L, (3.3)
a_:(“ 0) =ri(r), 0<r<L,
v(0,t) =0, t>0.

Suppose that a < L and T are positive, and that a is approximately equal to
L. To discretize the differential equation in (3.3) we approximate solutions for values
of r and ¢ in the intervals [0,a] and [0,77], respectively. We construct partitions
O=rp<m<--<ry=aand 0=ty <t; < --- <ty =T of [0,a] and [0,T
consisting of M and N regular subintervals of lengths Ar = a/M and At = T/N,
respectively.

Denote the approximate value of v(r;,t,) by v}, for j = 0,1,..., M and
n=0,1,...,N. For the first time step the first initial condition gives v = r;¢(r;), for
each j = 0,1,..., M. Using second-order approximation the second initial condition
yields

At\®
v} = v? + [v?_l - QU? + Ugo‘+1] (A_r) +19(ry) At

for every j =1,..., M — 1. The boundary condition in problem (3.3) states that v
is zero for every n = 0,1,..., N. Moreover, we impose the constraint that every v,
is also equal to zero in our scheme since we expect solutions to be small at infinity.

Assuming that the solution of (3.3) has been approximated up to the n-
th time step, we proceed to approximate the solution of the (n + 1)-st time step
by induction, using central second-differences to estimate the second-order partial
derivatives of v with respect to ¢ and r. The term v(r;,t,) is approximated using the
average of v/ and v, and G'(v(r;,t,)/r;) is estimated using the average rate of

change of G' between UJT-LH /r; and v?_l /r;. Our finite-difference scheme is thus

16
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FIGURE 3.1: Forward-difference scheme for the nonlinear Klein-Gordon equation.

n+1 n n—1
Vit — 2054 Vi1 — 207 U +m_2 o7+ 4 07 1]
(At)? (Ar) 2 L J
LGy fry) =Gl fry)
T ot - v
J J

The method is explicit if G is constant. If GG is not constant the approxima-
tion v;"‘“ can be obtained from Newton’s method, keeping all other terms constant.
More precisely, let yo be an estimate of the true value of v7. Define

n n—1 n o __ n n 2

Fly) = (At)? - (Ar)?2 T [y + 0]
+T]2 G(y/rj) — Ci(l? 1/T])
y=vy;
Then
/ 1 m? LGy ) = Gly/ry) + (y —vf G (y/ry)
F(y) = (At)z 2 J (y—v” 1)2 .

For initial approximations sufficiently close, Newton’s method guarantees
that the true value of v is the limit at which the recursive sequence yn41 = yn —
F(yn)/F'(yn) converges. The order of convergence is quadratic in such circumstances.

As mentioned earlier in Chapter 2, it is physically interesting to approx-
imate radially symmetric solutions of the nonlinear Klein-Gordon equation when
G'(u) = uP, for p > 1 an odd number. For this choice of G’, our finite-difference
scheme has the simpler expression

17



n+1 n n—1 n n n 2
T — 200 4+ vl vt — 20T 4+ T m
J J J J+1 J Jj—1 1 -1
— +7[v”+ +oi ] +

(At)? (Ar)? ’

1 G =Gl
GArp-t gty

= 0. (34)

We state the most important numerical properties of our scheme in the
following theorem, whose proof will be given in a more general context in Chapter 4.
For a proof of consistency and stability in case that G’ and m are both equal to zero,
refer to [32].

THEOREM 1. Let G’ be identically equal to zero. Then scheme (3.4) is consistent
O(At?) + O(Ar?). Moreover, it is stable (and thus convergent) if

At ? 1 )
— 14+ = (mAt)”.
(Ar) <1+ 4(m ). O

3.2 Energy analysis

The present section is primarily devoted to compute an expression for the
total energy of the three-dimensional nonlinear Klein-Gordon equation. We prove
that the energy is conserved throughout time and develop a numeric scheme for the
discrete energy that has the same conservative property.

3.2.1 Derivation of the energy equation

In order to derive the energy expression of the three-dimensional nonlinear
Klein-Gordon equation, it is necessary to compute the Lagrangian and the Hamilto-
nian of the differential equation in (3.1). Throughout we will use equations from the
Lagrangian and Hamiltonian formulations of mechanics. We refer the reader to [33]
for more details.

LEMMA 2. The Lagrangian of the nonlinear Klein-Gordon equation is given by

£=3 { (%)2 |Vt - m2u2} e

Proof. Let xg =t, x1 = x, o =y, and x3 = z. To simplify notation, we define

_ Ou
n (91:1-’

U; fori=0,1,2,3.
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To prove our lemma, we must verify that the Fuler-Lagrange equation as-
sociated with £ yields the nonlinear Klein-Gordon equation. The canonical Euler-
Lagrange equation in this case reads

i 0 (oL oL _

Notice that

% = —m’u— G'(u), and
0%u o
a (aﬁ) W’ lf 1 = O,
- = 2
Ox; \ O, —%, ifi=1,2,3.
The result is now evident. O

THEOREM 3. The Hamiltonian of the nonlinear Klein-Gordon equation is given by
1 ou\? 9 9 9
H:§ E +|Vu] +mTu +G(u) ]

COROLLARY 4. The total energy associated with the nonlinear Klein-Gordon equation
at time t 1s given by

g0 [[[ {5 (Gr) + gt s Bt o pas.

Suppose that the solution u of the nonlinear Klein-Gordon equation has
radial symmetry at every time ¢ and that D represents the open sphere with center
in the origin and radius L. Recall that the general expression of the gradient in
spherical coordinates is given by

1(’9uA+ 1 Ou,
or (ol rsinf d¢

Using this fact, the total energy can be rewritten as

E(t) = 4n /OL {% (%)2 + % (g—:)z + %2u2 + G(u)} ridr, (3.5)

and using the change of variable v(r,t) = ru(r,t), the energy expression for radially
symmetric solutions of the nonlinear Klein-Gordon equation adopts the following
form.
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COROLLARY 5. The energy expression at time t of a radially symmetric solution u
of the nonlinear Klein-Gordon equation has the form E(t) = 4w Ey(t), where

so= [ {5(%) 45 (%) + o rotm o

and u(r,t) = ro(r,t). O

COROLLARY 6. The energy expression at time t of a radially symmetric solution u of
the nonlinear Klein-Gordon equation with G'(u) = uP has the form E(t) = 4w Ey(t),

where , ,
L1 fov 1 [ov m* o, o,
Ey(t) _/o {5 (a) 3 (5) vt G(v) ¢ dr

and u(r,t) = ro(r,t). O

3.2.2 Continuous energy

One of the most interesting properties of the energy expression in Corollary
4 is that it is unchanged in time under certain analytical conditions. This statement
is proved in Theorem 8 and requires the following result whose proof can be found in

[34).

LEMMA 7. Let ¢ and 1) scalar functions on a domain D of R® with continuous partial
derivatives in D. Then for every closed simple domain R C D with boundary OR,

/awa-ﬁda://R(w2¢+w~v¢)df

where i represents the unit vector normal to the surface OR . 0

It is worthwhile noticing that if D is a domain of R?® and if u is a function
of z and t with continuous partial derivatives in D x R up to the second order then

\vu|2 = 2Vu -V (g?)

By virtue of Lemma 7, for every closed simple domain R contained in D we have that
Green’s first identity is satisfied:

[ iweenan= [If (Giveas vt )ae
/// 5 VUl dx—//aR—Vu nda—// 22y dz. (3.6)
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THEOREM 8. Let D be a domain in R®, and suppose that Vu-fi = 0 on the boundary of
D at all times. Then the energy of the nonlinear Klein-Gordon equation is conserved.

Proof.  Differentiating the expression of the total energy in Corollary 4 and applying
successively Equations (3.6) and (3.1), we obtain

0 =[] wos ] t
:/// {W—VQU—i—mquG }dx—i—//aD—VU ndo = 0.

]

If ¢ and 1 are supposed to be small at infinity then the solution of the
nonlinear Klein-Gordon equation will be likewise small at infinity. This implies in
particular that Vu = 0 on the boundary of D, whence the following result follows.

COROLLARY 9. Let D be a domain in R3, and suppose that ¢ and v are smooth
functions of compact support in D which are small at infinity. Then the energy of the
nonlinear Klein-Gordon equation is conserved. Il

Our next result implies in particular that radial solutions of the nonlinear
Klein-Gordon equation are bounded outside of every open neighborhood of the origin.

THEOREM 10. Let u be a radially symmetric solution of initial-value problem (2.2) in
a sphere with center in the origin and radius L, with smooth initial conditions which
are small at infinity and total energy E = 4wEy. Then for every r > 0 and t,

(2E)'/?

t) <
u(r, )] < =2

Proof.  First observe that for every differentiable function v(r,t),
dv ? N> o)
< — (&) A% e
0 ( or U> ( or ) or v
Let u be a radially symmetric solution of initial-value problem (2.2), and set

v(r,t) = ru(r,t). The expression of the total energy of the nonlinear Klein-Gordon
equation in Corollary 5 and the fact that v(0,¢) = 0 for every ¢ imply that

vi(r,t) = /;%122) dr

" o\ 2
< ov 2
< /0 {(87") + v }dr
< 2k

for every r and t, whence the result follows. O]
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3.2.3 Discrete energy

It becomes now necessary to posses a discrete expression to compute the
total energy of the system. In view of the fact that the energy of the nonlinear
Klein-Gordon equation is conserved throughout time, it is highly desirable to posses
a discrete expression to approximate the total energy FE, of the system in the n-th
time step, such that E, = E,,_; for each n € N.

For the sake of precision, let 0 =rqg <r; <---<ry=aand 0=ty <t; <

- <ty = T be regular partitions of [0,a] and [0,7] into M and N subintervals of

lengths Ar = a/N and At = T'/M, respectively. Let v be the value of the function
v—defined in Corollary 5—at (r;,t,). Strauss and Vazquez [8] propose the scheme

M-1 /. n )\ 2 M—1 n n n n
L O e i oy S Ui =T (i =Y
Ar 2 2 s Ar Ar

J=0

L () +(v”)2 LN G + G

3 Z 2(jAr)p-1

j=0 7=1

to approximate the true value of Ejy in Corollary 5. We claim that this scheme has
the property that energy is conserved throughout time. To prove this statement, let
n and j be positive integers such that 7 < M and n < N. Notice first of all that

(U?H - 2”? + U;'L—l)(vgn“ - U?_l) = ]nrf nH)(”jH - U;'l
+(Vj41 — )(U;L—i-ll anq (3.7)

Uit — Ui )(U]+1 — vy
n

vn-l—l i 1)(1);1 —

—(
(v}
+( n+1 n
—(
Taking the sum over j from 1 to M — 1 we notice that the last two terms
in the right-hand side of Equation (3.7) form a telescoping series. Using the fact that
for every nonnegative integer n the quantities v;}, and vy are both equal to zero, this

telescoping series becomes

M-1
> L0 =) (0 = o) = @ = o (0] = up )] = R = o),
j=1

Multiplying finite-difference equation (3.4) by (v] ntl U?’I) and simplifying,

(vp )2 = 2000n ! 4 20m0 T — (772 (v — 200 Fon ) (o — o)
(At)? (Ar)?

m’ n+1y2 _ (,n—1y2 1 I AT _
+_[(U'+ ) ( 7 ) ]+ (jAT‘)p_l [G( j+ ) G( )} 0.

Next we add the terms (v ;)2 to the numerators of the first and second
terms, and G(v7) to the numerator of the last term in the left-hand side of this last
equation. By regroupmg and using Equation (3.7) we obtain
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2
Vit AT vl — Ut m?

J J Jj+1 J J+1 J n+1\2 n\2

0 <— At + Ay ( Ay )+7[(Uj ) +(vj)}

L\ 2 o
+G(v§°+l) + G (vf) B v} — vy 1 N Vi — v} ijl — ] !
(jAr)p—1 At Ar Ar

m2 n\2 n—1\2 G(U?) + G<U}1_l)
‘I’? [(Uj) + (Uj ) } (jAT)pfl }
B (U}l—tll - U;‘:11>(U?+1 - U?) B (”}Hl - 'U;%l)(")? - U;'Z—l)
(Ar)? Ar)? '

Finally, we take half of the sum over j from 1 to M — 1 in both sides of this
equation. Observe that the sum of the first four terms differs from twice the total
discrete energy in the n-th time step by v7v?*!/(Ar)2. Similarly, the sum of the next
four terms differs from twice the total discrete energy in the (n — 1)-st time step by
vt /(Ar)2. Thus it follows that

n,n+1 n—1,n n(,n+1 n—1
o Ui ]_[ 0 U1 U1:| v (v =0 T)

7S] - [ il

We conclude that E? = EY | for every n € N and, in particular, £ = E{.

3.3 Numerical results

Throughout this section we approximate radially symmetric solutions of the
nonlinear Klein-Gordon equation with m? = 1 and G’(u) = P, for p > 1 and odd
number.

Let p = 7 and let the space and time steps be Ar = At = 0.002. As initial
data we choose ¢(r) = h(r) and ¥(r) = h'(r) + h(r)/r, where

1
5 100 [1 — f0<r<0.2
h(r) = eXp{ { 1—(10r—1)2H’1 =7
if 0.2<r<04.

Y

The results at successive time intervals ¢ = 0,0.04,0.08,0.12,0.16, 0.2—depicted in
Figure 3.2—are in agreement with Strauss and Vézquez [8]. The total energy is
effectively conserved and equal to 67.85. Graphically, the initial data immediately
break up into an incoming part (moving toward the origin) and an outgoing part
(moving away from the origin). The incoming part resolves into oscillations. By time
t = 0.16, the incoming part does not produce new oscillations and all the existing
ones have already been reflected away from the origin; all the oscillations from this
time on move at the same speed (which appears to be equal to one). We notice that
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FIGURE 3.2: Approximate radial solutions at successive times of the nonlinear Klein-
Gordon equation with G’(u) = u”, initial data ¢(r) = h(r), ¥(r) = K'(r) + h(r)/r,
and boundary condition u(0.4,¢) = 0.
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FIGURE 3.3: Approximate radial solutions for the given function G’(u) at time ¢ = 0.2 for
initial data ¢(r) = 0 and ¢(r) = 100h(r), and boundary condition «(0.4,t) = 0.
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FIGURE 3.4: Approximate radial solutions for the given function G’(u) at time ¢ = 0.2 for
initial data ¢(r) = h(r), ¥(r) = 0 on the left column, and initial conditions (3.8)

on the right column.
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the solutions are bounded at all time, which is in agreement with [6]. Moreover, it
appears that max,cjo0.4 |u(r,t)| is a decreasing function of time for values of ¢t > 0.16.

G'(u)
0 u3 u® u” | u¥ | sinh(5u) — 5u
maxg. [u(r, £)] | 49.98 | 47.59 | 19.09 | 9.74 | 6.56 372

TABLE 3.1: Maximum amplitudes over space and time of solutions of the nonlinear Klein-
Gordon equation for six nonlinear terms G’ (u).

We wish to study now the effect of the nonlinear term. We approximated
solutions at time ¢t = 0.2 for the initial data ¢(r) = 0 and ¢(r) = 100h(r), and
six different equations: G'(u) = 0,3, u®, v, u°, and sinh(5u) — 5u. The results are
shown in Figure 3.3 for Ar = At = 0.002. We observe that the amplitude of the
curves seems to decrease as the degree of G'(u) increases. Indeed, our computations
show that the maximum amplitude decreases with respect to the exponent as Table
3.1 shows. The energy for all powers is equal to 31.294; for the last case the energy
equals 31.317.

Next we computed solutions to the nonlinear Klein-Gordon equation at time
t = 0.2 for the initial data ¢(r) = h(r) and ¢(r) = 0, and for p = 3,5, 7. The results
are printed in the left column of Figure 3.4; the right column shows the solutions of
the nonlinear Klein-Gordon equation at the same time and nonlinear term similar to
the corresponding graph to the left, for initial data

5, for 0 <r <0.1
or) = { h(r), for 0.1 <r <0.4 and v(r) =0. (3.8)

As before, we verify that the number of oscillations increases with the exponent p
of the nonlinear term. Similarly, the amplitude over space and time decreases as
the degree of the nonlinear term increases. For each case the energy is conserved;
however, the values of the total energy are different for the six cases presented in
Figure 3.4.

We finally wish to mention that we have computed solutions of the nonlinear
Klein-Gordon equation with nonlinear term given by G'(u) = u? u*, u® and we found
out that their graphs blow out in finite time. This is in agreement with [5].

3.4 Discussion

Our numerical analysis of the nonlinear Klein-Gordon equation yields the
following conclusions:

1.  For a fixed nonlinear term and initial data, the total energy is conserved
throughout time.
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For any initial data the equation immediately breaks up into an incoming
part and an outgoing part. The incoming part moves toward the origin while
the outgoing moves away from it. The incoming part resolves in oscillations
and is reflected away at the origin.

From certain time on (about ¢ = 0.16 in our experiments) the incoming
part does not produce new oscillations and all the oscillations move away
from the origin at the same speed.

The number of final oscillations in the solutions increases with the exponent
p of the nonlinear term.

The amplitude of the curves over space and time seems to decrease as p
increases. Similarly, for a fixed value of p the amplitude of the solution
decreases as time increases.
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Chapter 4

A modified nonlinear
Klein-Gordon equation

Dissipative Klein-Gordon-like equations appear in areas of physics as diverse as
superconductivity, statistical mechanics and wave mechanics. In view of the fact
that there is no general method to compute exact solutions for these equations, it is
indispensable to posses reliable numerical techniques to approximate their solutions.

In this chapter we generalize the finite-difference scheme derived in Chapter
3 to account for internal and external damping, and demonstrate consistency and
stability of our method. We derive continuous and discrete energy expressions,
and compute their rates of change with respect to time. Finally we verify that
our method is in general agreement with the undamped nonlinear Klein-Gordon
equation, and study the effects of external and internal damping.

4.1 Finite-difference scheme

In this section we prove that the problem of computing radially symmetric
solutions of certain dissipative nonlinear Klein-Gordon-like equations is equivalent
to a number of problems that have the advantage that are dimensionally simpler or
involve solving certain modified nonlinear equation without external damping. For
the two simplest formulations we derive discrete schemes based on modifications of
the numerical method previously proposed in Chapter 4.

For the sake of simplicity, once and for all we state that the problems we
will study in this chapter are of the form (2.2), and convey to call modified Klein-
Gordon equations to any equation resembling the one in the problem under study.

4.1.1 Equivalent formulations

Assume that w is a function of position z and time ¢, where Z belongs to a
domain D of R3. Suppose that ¢ and 1 are smooth functions of Z of compact support
in D, and let G'(w) = wP. The problem we study in this chapter is
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ow ’
Sz~ Vw =05 (Vw) + 750 +miw+ G (w) =0,
subject to : { w(z,0) = ¢(z), reD, 1)
ow , _ _

LEMMA 1. Let a = 1+ 3v/2 and p? = m? —~2/4. A function w of (Z,t) is a solution
of initial-value problem (4.1) iff u(z,t) = '/?w(Z,t) is a solution of

aZu v2 0 V? 2 'yt(l—p)/?G/ =0

iz~ OV Py (Viu) +pfu e () =0,

subject to : u(z,0) = ¢(Z), reD, (42)
ou
5 (®0) = 30(&) + v(@), #eD.

Proof.  Assume first that w satisfies initial-value problem (4.1). Notice that

efyt(l—p)/2G/(u) _ efyt/QG/(w)7

Viu = 2V,
0 0
5 (V) = /2 (%V%} + 5 (V2w)) , and
0%u Pw  Ow AP
bl (70 Il -
oz~ © (8t2+78t+4w>'

It is easy to check that u satisfies the second-order partial differential equation in
(4.2). The expression for the first partial derivative of u with respect to ¢ implies that
the initial conditions satisfied by u are precisely those described in (4.2).

Conversely, suppose that u satisfies the initial-value problem (4.2). Then

Viw = e"yt/ZVQu,
2 (V2w) — 2Ty + 2 (V2u)
ot 2 ot
ow ou
S 172N I
5 e (8t 2u> ) and
0*w 0%u ou  ~?
S 172 E iV
o2 ‘ (at2 Yot 4“)'

It is straight-forward to check that w satisfies the second-order partial differential
equation and the initial conditions of (4.1). O

COROLLARY 2. Let ¢ and i be radially symmetric in an open sphere D, and let
r = ||z||. Then w is a radially symmetric solution of initial-value problem (4.1) iff
u(r,t) = e?w(r,t) is a radially symmetric solution of (4.2). O
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Suppose that ¢ and v are radially symmetric and that w(r,t) is a radially
symmetric solution of initial-value problem (4.2). For every ¢ > 0, w satisfies the
initial-value problem

Pw  Pw 20w Pw 263 0*w ow

o _am - 2 / _
52 "o ror Poter v arer Ve TMwtGEw) =0,

subject to : w(r,0) =¢(r), 0<r<L, (4.3)
{ 88—1:(7",0) =(r), 0<r<L.

Consider the change of variable w(r,t) = e /?u(r,t). Since w is radially
symmetric, by virtue of Corollary 2, w is also radially symmetric. Moreover, set-
ting o and p? as in Lemma 1 we can rewrite initial-value problem (4.2) in spherical
coordinates as

Pu_ Fu 2adu 0w 2 0
oz Yo T or "otorr r ot or

+M2U+ 67t(1_p>/2G/(u) =0,

subject to : u(r,0) = 6(r), 0<r<L (4.4)
{ %(“ 0) = %45(7’) +4(r), 0<r<L.

More precisely, we have the following result.

THEOREM 3. Let D be the open sphere of center at the origin and radius L. Let
w(7,t) be a function with T € D and t, and define u(Z,t) = "*/?w(z,t). Suppose that
¢ and v are radially symmetric functions in D. The following are equivalent:

(i)  w(z,t) is a radially symmetric solution of initial-value problem (4.1).

(i)  w(z,t) is a radially symmetric solution of initial-value problem (4.2).
(i)  w(r,t) is a solution of initial-value problem (4.3), where r = ||Z||.
(iv)  wu(r,t) is a solution of initial-value problem (4.4), where r = ||z||. O

4.1.2 The externally damped formulation

In this section we describe a numerical method to approximate radially
symmetric solutions to our modified nonlinear Klein-Gordon equation using the for-
mulation described in (4.3). If no explicit assumption is made on G'(w), we will only
suppose that it is a continuous function of w.

Assume that w(r,t) is a radially symmetric solution of the modified nonlin-
ear Klein-Gordon equation in an open sphere D with center in the origin and radius L,
with respective internal and external constant damping coefficients § and ~y, and ini-
tial data ¢ and v of compact support and small at infinity in D. Let v(r,t) = rw(r,t).
It is evident that v(0,t) = 0 for every ¢t. Moreover, substituting Equations (3.2) it is
easy to check that v must satisfy the mixed-value problem
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FIGURE 4.1: Forward-difference scheme for the nonlinear Klein-Gordon equation with
internal damping.

Gv v v _ g 0%v
oz o2 Vot~ Vot or?

+m?v +1rG (v/r) =0, for 0 <r < L,

subject to : %(T’ 0)=ro(r), 0<r<L, (4.5)
S0 = (), 0<r <L,
v(0,t) = 0, t>0.

Let a < L and T be positive with a close to L, and let 0 = rg < r; <

< ry =aand 0 =1t <t < --- <ty =T be partitions of [0,a] and [0, 7]

into M and N subintervals of lengths Ar = a/M and At = T/N, respectively.

Denote the approximate value of v(r;,t,) by v}. The first initial condition on v yields
0 _

v} = 1;¢(r;), for every j =0,1,..., M, whereas the second gives

At\?
v} = v? + [02_1 - 21}? + U?H} (A_T) + 10(r;) At

for every j =1,..., M — 1. The boundary condition guarantees that v{ vanishes for
every n = 0,1,..., N. Moreover, every v}, is also equal to zero in our scheme since
we expect solutions to be small at infinity.

Assume that the we have computed the n-th approximation to the solution
of (4.5). To approximate the solution of the (n+ 1)-st time step we proceed by induc-
tion, using central second-differences to estimate the second-order partial derivatives
of v with respect to ¢t and r, and the difference between v}”l and v?’l divided by 2At
to estimate the partial derivative of v with respect to t. The third-order derivative cor-
responding to the internal damping is approximated using central second-differences
at times n — 1 and n + 1 to estimate the second-order partial derivatives of v with
respect to r at t,_; and ¢, 1, and then we compute the difference of those derivatives
divided by 2At. The term v(r;,t,) is approximated using the average of U?H and
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v?_l, and G'(v(r;,t,)/r;) is estimated using the average rate of change of G between
v;”l /r; and v;-“l /rj. In these circumstances our finite-difference scheme becomes

n+1 n—1 n n n n+l _  n—1
v = 207 g Uiy — 207 + ) v; v;

Y (v U T
Lo =20 o) = (o 207 ) (4.6)
2AL (Ar)?

2 Gt fry) — G(oj™ /1))
m- o n+1 n—1 2 7\ J Yj i
- [T T+ F— = 0.

Several remarks have to be made about this numerical scheme depending
on the values assigned to the damping coefficients § and v, and the expression of the
function G’ :

e If § and ~v are equal to zero and G’ is identically zero, our equation is the
classical Klein-Gordon equation without damping. In this case scheme (4.6)
is explicit, consistent, and conditionally stable order n.

e If Fiszero and G’ is identically zero but v is not equal to zero we obtain the
linear Klein-Gordon equation with constant external damping. The scheme
associated with this equation is again explicit, and we will prove that it is
likewise consistent and conditionally stable order n.

e If (3 is zero but neither v nor G’ is equal to zero then our equation becomes
the nonlinear Klein-Gordon equation with constant external damping. The
finite-difference scheme associated is nonlinear and implicit. In fact, v"Jrl

n+1

must be obtained using Newton’s method in our scheme with v belng

variable and all other terms constants (c¢f. Section 3.1).

e If G’ is identically zero but neither § nor v are equal to zero then our
third-order differential equation is linear and the associated finite-difference
scheme is likewise linear and implicit. Our scheme can be written as

n+1 n+1 n+l __ n n n n+1 n+1 n+1
+ b+ anl ] = (o] + dv) + cofyy) + (] + eof T 4+ aulf)

forevery j=1,.... M —landn=1,..., N — 1. Here
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a = 5
2At (Ar)
gl 1 m? &
b = =+ + =+ :
2AL (AP 2 At (Ar)?
1
c = ,
(Ar)”
1 1
d = ( 5 — 2), and
(At) (Ar)
gl 1 m? A
(& = —_— . —
2At (At 2 At (Ar)?
Let 0., = (vf, 08, ...,0%_,), for every n € N. Recall that v} and v},
are equal to zero for every n, and assume that vy, vs,...,0, have all been

computed. Then v,,; can be computed following the expression of our
finite-difference scheme in matricial form

A@n—l—l - Cl_)n + E@n—l’

where A, C', and E are the band matrices

b a 0 --- 0 d c 0
b a -+ 0 c d c -+ 0
A= 0O a b --- 0 ., C= 0O cd -+ 0 : and
0 0 0 b 000 d
e 0 0
a e a 0
E = 0 e 0
000 --- €

The matrix equation described above can be solved for v,,,1 by computing
Upy1 = A71C,+ A1 Ev,_1, at the risk of loosing significant decimal places
in the approximation to ©,,; when calculating A~!. Alternatively, it is
possible to decompose matrix A as the product of a lower-band and an
upper-band matrices, and solve the equivalent linear system using Crout
reduction for tridiagonal linear systems [35].

If neither  nor v nor G’ are equal to zero our third-order differential equa-
tion is nonlinear and its finite-difference scheme is likewise nonlinear and
implicit. The way to approach the solution to this problem is by making use
of Newton’s method for solving numerically nonlinear systems of equations
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(see [35]) assuming ©,, and ©,,_1 constant. The vectors v,, are defined as in
the previous item.

To be more precise, suppose that F' is the vector function (f1, fa, ..., far—1)
in the vector variable & = (z1, ...,z _1). Let xg and x); be both equal to
zero and, for every j =1,..., M — 1, let the function f; be given by

L mp =20+ U?_l Uiy — 207 + i Tj — U;’_l
@ = T a0 o
ol = 2m 4 a) — (i — 207" +ujT))
2AL (Ar)?
2 G(z;/r;) — G r
+m [x]+vn 1] —|—’I"2 ( ]/ ]) ( ] / ])
2 J Xy — jn !

The Jacobian matrix J(Z) containing all first-order partial derivatives of
the vector function F'(Z) is a band matrix. To see thislet j =1,..., M —1
and 2 = 1,..., M — 1. Notice that if the absolute value of the difference
© — j is greater than 1 then the partial of f; with respect to x; is equal to
zero. Otherwise, following the notation of the previous item it is easy to

check that
—a, i1
n—1
of ) e () nfe(2) o))
Ox; b+, (5= 1)’ L i=
7Y
o i=j+1

The vector v, is defined as having the property that F'(v,.1) = 0. Al-
ternatively, it is the limit at which the recursive sequence %,y = 7, —
JY(Z,)F(x,) converges for a sufficiently close approximation Zg of U, 1, in
which case the convergence is quadratic [35]. In each iteration the vector
Un = J1(Z,)F(z,) will be computed alternatively solving the linear system
J(Z,)Yn = F(x,), using Crout’s reduction method for tridiagonal systems.

If G'(w) = wP then our modified initial-value problem assumes the form

?v 0% ov v

2 "o Ve Paam TV TG ) =0, for0<r <L,
subject to : <T 0)=ré(r), 0<r<L, (4.7)
at(rO)—r@/}( r), 0<r<lL,
v(0,t) =0, t>0,

and our finite-difference scheme has the simpler expression
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n+l n n—1 n n n n+l _  n—1
v 207 + v; Uiy — 207 4 vf v U

; Y j—1 ~y J J _
e (Ar)? 24t
(v = 207"+ or ) — (o — 207" o))
3 5 - (4.8)
2At (Ar)
2 1 Gt — Gt
2ot o]+ — (J 3 (—f b
2 / (GArp=t it =y

4.1.3 The externally undamped formulation

As we will prove later, the damped formulation described in the previous
section provides us with a conditionally stable scheme that converges to the radial
solution of the modified nonlinear Klein-Gordon equation, with order of convergence
O(Ar?) + O(At?). From a practical point of view it is unnecessary to derive a finite-
difference scheme for the undamped formulation (4.4). From a theoretic point of view,
though, it is an interesting exercise to derive the properties of scheme(4.4).

Let w(z,t) = e"*/?u(z,t) and assume that w is a radially symmetric solution
to the modified nonlinear Klein-Gordon equation in the open sphere D with center
in the origin and radius L, with nonlinear term G'(w) = w?, and radially symmetric
data ¢ and v smooth and of compact support in D, and small at infinity. Then u
must satisfy (4.4). Moreover, letting « and p? be as in Lemma 1 and using the change
of variable v(r,t) = ru(r,t), we obtain the mixed-value problem

0% 0%v d3v

57~ 052 +58t 57 + o + (re”t/Q)lpr’(v) =0, for 0 <r < L,
subject to : %(7"7 0) = ro(r), 0<r<L, (4.9)
Y _ (7
5 (1 0) = <2¢(T) +¢(T)> r, 0<r<L,
v(0,1) =0, t>0.

Using the conventions and nomenclature of the preceding section, we must
have v = r;¢(r;) and

A\ ? v
v =00+ [0)_) — 209 + 0] (A_r> 7 (§¢(7"j) + w(rj)) At,

for every j = 1,...,M — 1. Moreover, v and v}, are equal to zero for every
n=20,1,...,N. A discrete scheme associated with (4.9) is described by the finite-
difference equation
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n+1 n—1
21} +v; 21} + v 1
J+1 7—1 n+1 n—1
- —[v- + v; } —

(At> (Ar) o L7
5(0?;1 2v n+1 +Un+1) ("U?Jrll — 221" 1 —i—Un 11) +
2AL (A1)’
R e R
@ gt

4.1.4 Numerical properties

In this section we study the numerical properties of consistency and stability
of finite-difference scheme (4.8) with G’ identically equal to zero. We prove that our
scheme is consistent O(A#?) + O(Ar?), and derive a necessary stability condition.
Throughout we assume that v(r,t) = ru(r,t) has continuous partial derivatives of all
orders.

Let L be positive and suppose that v is a solution of initial-value problem
(4.7) that has smooth partial derivatives of all orders for every 0 < r < L and ¢. We
use Maclaurin series expansions on v: For every positive increments Ar and At, and
for every r and t with Ar <r < L — Ar and At < t,

v(r+ Art) = i (Ar)* &(r, t) and

k! Ork
k=0
=, (At)* kv
v(r,t+ At) = Z(k,) (1)
k=0 )

As before, we discretize our problem by taking partitions 0 = ry < r; <

<ry=aand 0 =1t <t <--- <ty =T of [0,a] and [0,T], consisting of M

and N subintervals of lengths Ar = a/M and At = T /N, respectively. Denote the
approximate value of v(r;,t,) by v7.

With this conventions observe that

J

U]n—i—l _ ’U;L_I B ov 2 o0 At 2k—=2 H2k+1,, .
oA T gt Z (2k + 1)1 9e2h+1 (5, tn).
;’l—‘rl 2,0 + ,UT’L 1 B @2/0 0 At 2k—4 82’6
P e S
VP — 207 o) *v 2(Ar)%=1 52ky
= ,t d
(ar)? gz 77 In kz k) or w(pt),
Uﬂ+1 4 ,UT‘Lfl 00 At 2k—2 a?k‘

_ 2
5 I = w(rj,t,) + (Al) Z t%(r tn)-

=1
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We proceed to determine the consistency of the fourth term in scheme (4.8)
using Taylor series expansions of scalar functions in two independent variables (see
for instance [36]). In the next equations we use the notation dj; to represent the
number 1 if £k =4, or 0 if k # 4. The partial derivatives are all evaluated at (r;,t,).

oo k I k—1i k
il o (Ar)' (At) 0%v
Vjiyr =V = Z Z il(k — 1)l Orioth—i

k=1 i=0
oo k i k—i
(Ar)" (At) kv
ntl g = -1 i
Y T ;ZO( T T = S

ik —i) Coriot—i

We subtract the double of the second equation from the sum of the first and
third equations to obtain a central second-difference that approximates the second
partial derivative of v with respect to r? evaluated at (r;,t,;1). Moreover, changing
At for —At in the equations above we can obtain a central second difference for the
second partial derivative of v with respect to 2 at (r;,t,_1). Using this information
we obtain

o~ k i k—i k
n+1 n+1 nt1 n—1 n-1 (Ar)" (At) d"v
(Vi =207+ 0im) = (0 — 20 Zkl Zzo A =) B

where A\ = [1— 28,0 + (—1)] [L — (=1)¥7"], for every k € N and i = 0,1,...,k.
Instead of proceeding analytically now we prefer to appeal to Table 4.1, which gives
some few values of the coefficients \,;. We notice that A3s, M52 and As4 are the first

nonzero coefficients in the above difference of central second-differences. Dividing this
difference by 2At (Ar)* we get

(W — 207+ of ) — (i — 200 i) n (A1)* Do
2AL (Ar)? ot orz T 120 Or2ot3
(Ar)? 0Py SR At)’“ Tk
T va +;;Am Ak —i) orop—

It is clear now that scheme (4.8) is consistent order O(At?) + O(Ar?) with
initial-value problem (4.7) whenever G’ is identically equal to zero. Furthermore, we
have the following result whose proof makes use of the fact that ||A|| > ||, for every
squared matrix A and every eigenvalue A of A.

THEOREM 4. Let G’ be identically zero. Then scheme (4.8) is consistent order
O(At?) + O(Ar?) with initial-value problem (4.7). Moreover, in order for the scheme
to be stable (and thus convergent) it is necessary that

At\® At At L (At)?
(=) |

<1 —
Ar +7—+0 +m

4 (Ar)? 4
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TABLE 4.1: Coefficients Ag; in the difference of central second differences approximating
the internal damping term of the nonlinear Klein-Gordon equation.

Proof.  Following the nomenclature of this section we define Vf}“ = U;LH and

V;}H = v} for each j =0,1,...,M and n =0,1,..., N — 1. Observe that V] = v
and V{}:v;‘_l for j=0,1,...,Mandn=1,...,N — 1. Let R = At/Ar. Scheme

(4.6) can be rewritten as

v}”’l — 0} + v?_l 521);-‘ N v;l“ — v;‘_l
(At)? (Arz 7T oA
2, n+1 _ §2, n—1 2
0 v; 0 v; n ﬁ [UTH_I —|—U7-L_1} = 0
2At (Ar)° 2 - g '

For every j =0,1,....M and n =0,1,..., N let ‘_/J” be the column vector

+1

w ‘ ol 1 . .
hose components are V{; and V5. Solving for v7" in our modified numeric scheme

.. 1
and noticing that V{f =V,

k0N onn [ 24R%? —h\ o
(o 1) =" )

our problem can be written in matricial form as

where

2 2
At ﬂAtéZ 2 (A) | nd
2 2(Ar) 2
At BALS? 5 (At)?

h = 1—v—+ +m
i) 2(Ar)2 2

E = 1+7y

Denoting the Fourier transform of each ‘_/J” by V}”, we get

. 2 (1 _—9R2gin2 &) —MO \ .
Vit = ( T (1 21R sin” 3) o )V”,

where
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. At BAE ., & (At)?
k(g) = 1+77+2W81n2§+m27, and
. At BAE . & , (At)?
= 1—9——-2 = —
h(§) 5 (Ar) sin” o+ me—

The matrix A(¢) multiplying 173" in the last vector equation is the amplifi-
cation matrix of the problem. The characteristic equation |A\I — A(§)| = 0 provides
us with the eigenvalues of he amplification matrix, which are given by

N 2R?sin® § 1/ (1 - 2R2sin® §) — h()k(E)
k(€) '

In particular, for £ = 7 the expressions for the eigenvalues of A are

N Ja — 2822 — hmh(r)
k()

Suppose for a moment that 1 —2R? < —12:(7). If the radical in the expression
for the eigenvalues of A(7) is a pure real number then |A_| > 1. So for every n € N,
[|A™|| > |A_|" grows faster than K + nkK; for any constants K; and K,. A similar
situation happens when the radical is a pure imaginary number, except that in this
case | - | represents the usual Euclidean norm in the field of complex numbers.

Summarizing, if 1 — 2R? < —k(7) then scheme (4.8) is unstable order n.
Therefore in order for our numeric method to be stable order n it is necessary that
1 —2R2 > —k(r), which is what we needed to prove. Convergence follows now from
Lax theorem. ]

4.2 Energy analysis

As expected, the rate of change of the energy associated with the damped
nonlinear Klein-Gordon equation is negative, provided that the 3 and ~ are positive.
In the present section, we formally prove this statement and describe a discrete scheme
to approximate the energy at every time. Moreover, we demonstrate that the discrete
rate of change of the energy yields a second-order approximation to the instantaneous
rate of change.

4.2.1 Continuous energy

Let 8 and v be positive numbers. For the sake of simplicity, suppose that
G is a continuously differentiable function in all R. Then the differential equation in
(4.1) can be rewritten as

40



Pw , ow 0 ,_,
W—Vw+mw+G( w) = —7§+5§(Vw). (4.10)

The left-hand side of this equation represents the conservative part of our
modified nonlinear Klein-Gordon equation, whereas the right-hand side contains its
nonconservative contributions. We consider the Lagrangian of the nonlinear Klein-
Gordon equation derived in Section 3.2,

c-1 { (%—f) ~ [Vl - m2w2} ~ Glw).

From Lemma 2 it follows that £ is the Lagrangian of the left-hand side of
Equation (4.10). The following result is then straight-forward.

LEMMA 5. The Hamiltonian associated with the modified nonlinear Klein-Gordon
equation is given by

1 ow\? 2 2.2
H—§{(E) +|VU}’ + m-w +G(w). O]

THEOREM 6. Let D be a domain in R3 and assume that Vu - i = 0 in the boundary
of D, where 11 is the unit vector normal to the surface 0D. Then the rate of change
of the total energy

1 /ow\® 1 m?

t) = — | = - 2y —w? dz
) ///D{2<8t) +2|Vw\+2w+G(w)} T

of the modified nonlinear Klein-Gordon equation is given by
ow\” ow\ ||
— — — dz.
LG+l G
Proof.  Taking first the derivative on both sides of the energy equation, using then

Equation (3.6) for w and substituting next the modified nonlinear Klein-Gordon equa-
tion, we obtain that

o e ] e
- /// {W—V2w+mw+G’ }dx+//aD—Vw n do
o (Y e ] 5 () e, e
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On the other hand, from Green’s first identity

ow ow 0 ow\ ||?
—_— 2 —_— T —_——— J— —_—
/// V(@t)d //aDatat (Vw-1) do V(@t)

The surface integrals in these equations are all equal to zero, whence the
result follows. 0

dz.

The same conclusion can be obtained in the previous theorem if we drop
the assumption of normality in the boundary of D and suppose that ¢ and v are
smooth functions of compact support in D which are small at infinity.

Assume that w is a radially symmetric solution of the modified nonlinear
Klein-Gordon equation, and let D be the open sphere with center in the origin and
radius L. Then the energy equation of the damped nonlinear Klein-Gordon equation
can be written as Equation (3.5). The energy adopts the form E(t) = 4w Ey(t) with
Ey given in Corollary 3.4, when we use the transformation v(r,t) = rw(r,t).

Let G be any continuously differentiable function. If w is a radially symmet-
ric solution of the modified nonlinear Klein-Gordon equation then the instantaneous
rate of change of energy with respect to time in terms of v is given by E'(t) = 4w E{(t),

where , ,
dEy,,. L ov 0*v  10v
S0 = —/0 {7 (§> 49 (87’875 - FE) }dr. (4.11)

For 3 equal to zero, this last equation is in agreement with the instantaneous
rate of change of the energy associated with the telegraph equation, proposed by
Strauss in [37] as an exercise.

4.2.2 Discrete energy

The present section aims at deriving a discrete energy scheme with the
property that the average rate of change of energy yields an approximation to the
actual value of the corresponding instantaneous rate of change. In other words, for
every n = 0,1,...,N — 1 we wish to construct a numerical approximation E? of
FEy(t,), in such a way that for every n =1,..., N — 1, the quotient (E° — EY_,)/At
approximates E(t,). Throughout this section G'(v) = vP.

Let w(r,t) be a radially symmetric solution of the dissipative nonlinear
Klein-Gordon equation in the sphere D with center in the origin and radius L. Let
a < L and T be positive numbers, and let v(r,t) = rw(r,t). Construct partitions
O=ro<rm<--<ry=aand 0=ty <t; < - <ty =T of[0,a] and [0,T],
respectively, into M and N subintervals of lengths Ar = a/M and At = T/N, and
denote the approximate value of v(r;,t,) by v'. We propose the scheme

m—1 n n 2 m—1 n n n n
B _ 1 —”JH ’ +1 aill %“ Vit Y
Ar 2 = 2 — Ar

R Ui i O R

Z 2(jAr)r—1

§=0 j=1
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We proceed now to compute the difference (E2 — E°_;)/Ar. Observe that
foreachn=1,..., N—1land j=0,1,...,m —1,

n+1 n 2 n n—1 2 n+1 n n—1
e I W A (T =200 40 (o7 — )
At At - A2 A A
A G SN U /s N 1 A WP
5 — 9 = 9 (Uj — U] ) N aln
Gy +Gy) G +Gw™) [ Gt —Glop ™) (o — o)
(jAr)r (jAr)r GArp=t (of =) |2

The difference between the respective second terms of E°/Ar and E°_,/Ar
presents some algebraic complications. We now state the way to express conveniently
such difference. For every n=1,...,N — 1l andevery j=1,...,m—1

n+1 _ n+1 n P ) n o n—1 _ n—1
Yir1 — Y Vis1 Y\ (U 7Y Yir1 — Y _
Ar Ar Ar Ar

U?H B 21}? + U;L—l (vn“ _ n—l) + (U?Jrl B v]n) (/U;'lill - U;'ill)

Y

v

Ar? J J Ar?
n n n+1 n—1
B (v —vjy) (o7 =) )
Ar? '

Notice that if j equals 0 then the left-hand sides of all equations above
are zero except for the last one which yields v (v)! — v7~!)/Ar?. These equations
together with the discrete expression for the energy, scheme (4.8), the method of
telescoping series, and the fact that v and v}, are all zero for n =0,1,..., N, yield

m—1 n+1 n—1 n+1 n n—1
E° - E° | _ Z () viT =200 4o ol — 20 o)
Ar : 2 (At)? (Ar)?
J=1
1 1 G -Gt
T ) R < il
(JAr) V] v
m—1 n+1 n—1 n+1 n—1
+Z (U?Jrl —“?) (”j;-rl _“j+1) B (U? ~ ?—1) (“j+ — Y )
‘= Ar? Ar?
of (o = op)
Ar?
Therefore

43



If § is equal to zero then the left-hand side of this last equation is a second-
order approximation for the instantaneous rate of change of the total energy of the
modified nonlinear Klein-Gordon equation.

4.3 Numerical results

In this section we explore the numerical effects of external and internal
damping. Throughout G'(w) = w?, for p > 1 an odd number.

4.3.1 External damping

Let 3 be equal to zero. Scheme (4.8) represents a generalization of the nu-
merical method described in the previous chapter. Stability of the radially symmetric
solutions for an initial-value problem involving a modified nonlinear Klein-Gordon
equation with small v should lead us to solutions similar to those we would obtain for
the same initial-value problem without damping term. Moreover, we would expect
that the larger the value of the coefficient v the faster the solutions of the damped
Klein-Gordon equation will diverge with respect to the undamped solution.

In order to confirm numerically these claims, let us consider initial-value
problem (4.7) with p = 7, v = 0.5, Ar = At = 0.002, and initial data ¢(r) = h(r)
and ¢ (r) = h/(r) + h(r)/r, where

1
1 1-— if 0 < 2
h(r) = 5exp{ 00[ 1—(107"—1)2]}’ it 0 <r<0.2,
0, if 0.2<r<04.

We compare graphically the numerical solutions of the damped and the
undamped nonlinear Klein-Gordon equations with the data recorded above, obtaining
the graphs shown in Figure 4.2. Radially symmetric solutions to the undamped case
are graphically represented by solid lines, whereas the solutions corresponding to
the damped case are shown in dash-dotted lines. We observe that the solutions
for the damped and the undamped case are close indeed. More precisely, let us
consider the approximations vy and v to the undamped and damped nonlinear Klein-
Gordon equations, respectively, for n = 0, 20, 40, 60, 80, 100. We compute the relative
differences in the energy space using the formula

N — g
195 112,20
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FIGURE 4.2: Approximate radial solutions at successive times of the undamped (solid line)
and the damped (dash-dotted line) nonlinear Klein-Gordon equations with v = 0.5,
G'(u) = u7, initial data ¢(r) = h(r), ¥(r) = K’ (r) + h(r)/r, and boundary condition
u(0.4,¢) = 0.
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FIGURE 4.3: Approximate radial solutions at successive times of the undamped (solid
line) and the damped nonlinear Klein-Gordon equation with v = 5 (dashed line)
and v = 10 (dotted line), nonlinear term G’(u) = u”, initial data ¢(r) = h(r),
¥(r) = h'(r) + h(r)/r, and boundary condition u(0.4,t) = 0.
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FI1GURE 4.4: Approximate radial solutions for the damped nonlinear Klein-Gordon equation
with nonlinear function G’(u) at time ¢ = 0.2, for initial data ¢(r) = 0 and ¢(r) =
100A(r), boundary condition u(0.4,¢) = 0, and damping coefficients v = 0 (solid

line), v

=5 (dashed line), and v = 10 (dotted line), respectively.

47

0.35

0.4



t=0 t =0.04

10 10
8 4 8l 1
6 4 61 1
4 B ar .
2 4 20 1
0 s 0
-2 4 -2t 1
-4 B -4l 4
-6 4 -6l 1
-8 4 -8l 1
10 | | | | | | | _10 i 1 1 1 1 1 i
0 0.05 0.1 015 0.2 0.25 03 035 0.4 0 0.05 0.1 015 0.2 025 03 035 0.4
r r
t =0.08 t=0.12
10 107
B
~10 i | | | i | i _10 i | | | | | 1
0 0.05 0.1 0.15 0.2 0.25 03 035 0.4 0 0.05 0.1 015 0.2 025 03 035 0.4
r r
t=0.16 t=20.2
10 10
8- 4 8- 1
6F 4 61 1
4 g 4 1
B 2L
s 0
B s
_al 4 _al 1
6| 4 6l 1
8| 4 8l 1
_10 i | | | i | i _10 | | | | | | 1
0 0.05 0.1 015 0.2 0.25 03 035 0.4 0 0.05 0.1 015 0.2 025 03 035 0.4

FIGURE 4.5: Approximate radial solutions at successive times of the undamped (solid)
and the damped nonlinear Klein-Gordon equation with v = —1 (dashed), v = =5
(dash-dotted), and v = —10 (dotted), nonlinear term G’(u) = u”, and initial data
o(r) = h(r), ¥(r) = K (r) + h(r)/r, and boundary condition «(0.4,t) = 0.
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Time step Relative differences
n 720.1\720.5\7:1\7:5\7:10
0 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
20 0.0028 | 0.0142 | 0.0283 | 0.1395 | 0.2693
40 0.0103 | 0.0509 | 0.1006 | 0.4491 | 0.7706
60 0.0167 | 0.0821 | 0.1611 | 0.6579 | 0.9573
80 0.0192 | 0.0942 | 0.1836 | 0.6954 | 0.9387
100 0.0200 | 0.0977 | 0.1896 | 0.6994 | 0.9308

TABLE 4.2: Table of relative differences of solutions of the damped nonlinear Klein-Gordon
equation (nonlinear term G’(w) = w” and varying damping coefficient ) with
respect to the corresponding undamped solution at different time steps, using Ar =
At = 0.002 and initial data ¢(r) = h(r), ¥(r) = B/ (r) + h(r)/r.

Relative differences for values of v equal to 0.1, 0.5, 1, 5, and 10 are shown in
Table 4.2. We conclude that the larger the value of v the larger the relative difference
of v7 with respect to vg. To verify this claim graphically, we appeal to Figure 4.3,
which compares radially symmetric numerical solution of our initial-value problem
for values of v equal to 0, 5, and 10. The graphs and the results included in the table

suggest that our method is stable for our choice of time and space steps.

In Figure 4.4 we have printed numerical solutions of the modified nonlinear
Klein-Gordon equation with v = 0, 5 and 10, nonlinear terms G’(u) = 0, u3, u®, u”, u?,
and sinh(5u) — bu, initial data ¢(r) = 0 and 1 (r) = 100h(r), and Ar = At = 0.002.
This figure together with the information on the relative differences of these solutions
with respect to the undamped case contained in Table 4.3, indeed provide us with

support to establish the dependence of the relative differences over the parameter ~.

Notice that the choice of v is reflected in the amplitude of the solutions.
More accurately, the larger the value of v the smaller the value of the amplitude will
become eventually in time after all the oscillations have been created. To verify this
claim, we appeal to Figure 4.3 for t = 0.2. The same observation can be more easily
drawn from the graphs in Figure 4.4. For negative values of 7 we observe again this
dependence between amplitude and +: The more negative the value of v the larger

Nonlinear Term Relative differences
G'(w) y=01]y=05[y=1]~1=5]~7=10
0 0.0098 | 0.0478 | 0.0923 | 0.3642 | 0.5631

3 0.0097 | 0.0477 | 0.0929 | 0.3528 | 0.5554
> 0.0137 | 0.0665 | 0.1287 | 0.4024 | 0.6418
7 0.0171 | 0.0833 | 0.1618 | 0.5068 | 0.7819
) 0.0204 | 0.0999 | 0.1728 | 0.5736 | 0.8488
sinh(bw) — bw 0.0263 | 0.1377 | 0.2518 | 0.6284 | 0.8813

E|E|E|E

TABLE 4.3: Table of relative differences of solutions of the damped nonlinear Klein-Gordon
equation (varying nonlinear term G’(w) and varying damping coefficient +) with
respect to the corresponding undamped solution at time ¢ = 0.2, using Ar = At =
0.002 and common initial data.
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the value of the amplitude. This observation can be corroborated after looking at
Figure 4.5 for time ¢t = 0.2.

To close this section we must mention that the rate of change of the energy
with respect to time is negative for positive values of 7, as expected from the theory.
For positive values of v the rate of change of energy is positive, and if 7 is equal to 0
the rate of change is likewise equal to zero. Experimental results show us that small
values of v go with small values of the rate of change of energy, whereas large values
of v yield large values of the rate of change of energy.

4.3.2 Internal damping

Our main goal in this section is to study the effect of internal damping in
scheme (4.8). We first consider the case when ~ is zero and study the behavior of
solutions for small values of 3. Since our method is a generalization of the method
presented in Chapter 3, we expect that small values of 3 will yield solutions very
similar to those we would get for the undamped case.

The externally undamped case

Let us study the case v =0 and p = 7. Let Ar = At = 0.002, and let the
initial data be ¢(r) = h(r) and ¥ (r) = h/(r) + h(r)/r, where the function A is given
as in the previous section. From the graphical results displayed in Figure 4.6 we infer
that small values of 3 lead to slight changes in the behavior of the solution of the
modified nonlinear Klein-Gordon equation with respect to the undamped case.

To be more precise in this matter, we appeal again to the relative difference
of damped solutions on the nonlinear Klein-Gordon equation with respect to the cor-
responding undamped solution under the ¢5 o, norm proposed in the previous section.
Table 4.4 records these relative differences for various values of 3. As expected, we
notice that the relative differences tend to increase when the value of (3 increases.

Time step Relative differences
n ,6:10_6\5210_5\6:10_4\620.0005\520.001
0 0.0000 0.0000 0.0000 0.0000 0.0000
20 0.0007 0.0056 0.0524 0.2229 0.3779
40 0.0034 0.0304 0.2648 0.8282 1.1467
60 0.0563 0.0996 0.8819 1.6798 1.1486
80 0.1881 0.1738 0.6767 1.1556 1.2242
100 0.1362 0.1164 0.5442 1.0439 1.1637

TABLE 4.4: Table of relative differences of solutions of the damped nonlinear Klein-Gordon
equation (nonlinear term G’(w) = w” and varying damping coefficient 3) with
respect to the corresponding undamped solution at different time steps, using Ar =
At = 0.002 and initial data ¢(r) = h(r), ¥(r) = B/ (r) + h(r)/r.

In Figure 4.7 we have plotted numerical solutions of the nonlinear Klein-
Gordon equation for v equal to zero and different positive and small values of 5. We
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observe again that small values of 3 yield solutions which are close to the solution of
the undamped Klein-Gordon equation.

Throughout our experiments we have inevitably observed that the value of
the discrete energy is decreasing at an apparently exponential rate. Moreover, we
have noticed that the larger the value of § the larger the absolute value of the rate
of change of the energy with respect to time. Furthermore, it seems that the limit of
the value of the energy when time increases to infinity is equal to zero.

Another interesting observation is the fact that the value of numerical so-
lutions near the origin tend to increase with 3. That can be easily established from
Figures 4.7 and 4.8. In the former we have plotted numerical solutions to the modified
nonlinear Klein-Gordon equation with nonlinear term G’(u) = u”, initial conditions
¢(r) = h(r) and ¢(r) = K'(r) + h(r)/r, and boundary condition «(0.4,¢) = 0 for
every t; our space and time steps were chosen as Ar = At = 0.002. This figure shows
that the solutions for 5 = 0.005 tend to increase near the origin almost immediately
after start. The latter figure shows numerical solutions of the dissipative nonlin-
ear Klein-Gordon equation for different nonlinear terms G’(u) = u?,u°, u” at time
t = 0.2. The first column shows numerical solutions for the initial data set ¢(r) =0
and 9 (r) = 100h(r), and the second shows the numerical solutions corresponding to
the conditions ¢(r) = h(r) and ¥(r) = 0.

We must remark that we ran our numeric scheme for negative values of f3.
For values close to zero the numeric solutions we obtained were close to the numeric
solutions of the undamped case. At the same time, we observed that the value of the
energy tended to increase at a seemingly exponential rate. As expected, the solutions

for large negative values of 3 blew up in finite time.

The externally damped case

We approximate the solution to our modified nonlinear Klein-Gordon equa-
tion at t = 0.2 for v = 5, using G'(u) = 0,u, v, u’,u’, and u” as nonlinear terms,
initial data ¢(r) = 0 and ¢ (r) = 100A(r), and Ar = 0.002 and At = 0.001. Different
values of 8 were chosen: 5 = 0,0.0006, and 0.005. The results—presented in Figure
4.9— make it clear that small values of 3 correspond with small changes in the solu-
tion of the nonlinear Klein-Gordon equation with respect to the internally undamped
case; this suggests continuity of our method with respect to the parameter .

As in the preceding section, solutions to the nonlinear Klein-Gordon equa-
tion tend to increase in time around the origin. Moreover, larger values of 3 yield
a faster growth of the numeric solution for values of r close to zero. On the other
hand, for values of r far away from zero we notice a decay in the amplitude of the
numeric solutions. We ran our method for larger periods of time and notice that
these observations were consistently true (graphical results not included). We must
mention that the values of energy were always decreasing. For larger values of 3 the
rate of decay was noticeably larger, always following an apparent exponential pattern.
Among other things, for positive values of 3 we observed that the energy tends to
converge to zero as time goes to infinity. On the other hand, for negative values of (3
the value of the energy rapidly blows up to infinity and the solutions tend to diverge
in finite time.
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FIGURE 4.6: Approximate radial solutions at successive times of the undamped (solid
line) and the damped (dash-dotted line) nonlinear Klein-Gordon equations with
B = 0.0001, G'(u) = u”, initial and boundary conditions ¢(r) = h(r) and ¥ (r) =
R (r)+ h(r)/r, and u(0.4,t) = 0, respectively.
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FIGURE 4.7: Approximate radial solutions at successive times of the undamped (solid) and
the damped nonlinear Klein-Gordon equation with 5 = 0.0001 (dashed), 5 = 0.001
(dash-dotted) and 8 = 0.005, nonlinear term G’(u) = u7, initial data ¢(r) = h(r)
and ¢ (r) = h'(r) + h(r)/r, and boundary condition u(0.4,t) = 0.
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FIGURE 4.11: Approximate radial solutions for the Klein-Gordon equation with nonlinearity
G'(u) = u® at time ¢t = 0.2, for initial data ¢(r) = 0 and (1) = 100h(r) (solid line),
boundary condition u(0.4,t) = 0, and the perturbation prescribed (dotted line).

As we observed before, the graphs of solutions corresponding to nonzero
values of 3 tend to increase near the origin for large values of t. To examine this
more accurately, we have obtained the values of solutions of the modified nonlinear
Klein-Gordon equation at » = 0.002, t = 0.2 and different values of # and ~, for two
different sets of initial conditions and exponents p = 3,5, 7 of the nonlinear term. The
results are shown in Figure 4.10. The first column of graphs depicts the values of the
approximate solution near 0 vs. (3 for the choices v = 0 (solid line), v = 5 (dashed
line), and v = 10 (dotted), and the initial data ¢(r) = h(r), ¥(r) = K (r) + h(r)/r.
The second column show the corresponding values of the solution near 0 vs. (3, but
now for the initial data ¢(r) = 0 and ¢ (r) = 100h(r). This figure shows that the
value of the numeric solution near the origin for large values of ¢ tends to increase
with 3. The effect of v seems to be really small compared to the effect of j3.

We have ran our algorithm for a long time, and we have been able to check
that the values of the solutions near the origin tend to increase for fixed positive
values of 3. However, it seems that those values do not blow up to infinity; indeed,
they seem to converge to some positive number. This agrees with the fact that the
total energy is bounded by E(0), but we have not been able to prove this formally.

It is interesting to observe the obvious bifurcation-like shift in the graphs of
Figure 4.10 corresponding to p = 7. We have noticed this behavior for several choices
of initial data, even when p = 9. We have proved that this shift does not correspond
to a numerical stability of our scheme. To prove that, we have computed numerical
solutions for different values of Ar and At, and we have obtained similar results. One
possible reason for this phenomenon is that for small values of 3 the solutions of the
modified Klein-Gordon equation resemble the solutions of the associated hyperbolic
equation with  equal to zero. For large values of (3, though, the hyperbolic features
of our equation are dropped and a new type of behavior is manifested in the solutions.
This change is more pronounced for higher exponents p. Right or wrong, our results
are in agreement with the theory for the nonlinear Klein-Gordon equation, which
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does not guarantee the existence and uniqueness of solutions for p > 5.

We finally wish to establish the stability of our method via a concrete
example. Let us consider the initial data ¢(r) = 0 and v (r) = 100h(r), where the
function h is given as before, and let Ar = 0.002 and At = 0.001. The approximation
to the exact solution of the modified nonlinear Klein-Gordon equation with nonlinear
term given by G'(u) = |ul*u at time 0.2 is depicted in Figure 4.11 in the form of a
solid line. The problem of approximating the solution of the same nonlinear Klein-
Gordon equation with the perturbed initial condition ¢(r) = 0.05, keeping all other
conditions unchanged yields the dotted-line graph in the left column of the same
figure. It is evident that both solutions, perturbed and not perturbed, are very close
indeed. We have obtained several graphs that show that smaller perturbations on this
initial condition yield smaller variations with respect to the unperturbed solution.
The values of the energy for the perturbed and the unperturbed case are very close

indeed.

It is worthwhile to observe that similar conclusions are drawn when we
consider the perturbed case ¥ (r) = 100h(r) + 0.15, keeping all other conditions un-
changed. We conclude that our method seems to be conditionally stable.

4.4 Discussion

Our numerical analysis of the modified nonlinear Klein-Gordon equation
with internal and external damping has led us to the following conclusions:

1.  The relative difference of the solution of the modified nonlinear Klein-
Gordon equation corresponding to a value of v with respect to the corre-
sponding externally undamped solution increases as 7 increases (continuity
of solutions with respect to ).

2. For a fixed value of v, the relative difference of the solution of the mod-
ified nonlinear Klein-Gordon equation corresponding to § with respect to
the corresponding internally undamped solution increases as [ increases
(continuity of solutions with respect to ().

3. In the internally undamped case and for fixed large values of ¢, the larger
the value of v the smaller the value of the amplitude at time ¢. Similarly,
for a fixed value of v, the larger the value of time the smaller the amplitude
of the solutions.

4. The rate of change of energy with respect to time is negative. The larger
the values of # and ~ the more drastic the rate of decay of the total energy.

5. The loss of total energy for nonzero (3 seems to follow an exponential-decay
pattern. For positive values of 3 we observe that

lim E(t) = 0 and lim E(t) = oo.

t—o00 t——o00

For negative values of  we see the opposite situation.
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For large values of time, the values of the solutions close to 0 tend to increase
as [ increases. The effect of changing the value of v in those situations is
almost imperceptible. Solutions do not seem to blow up in the neighborhood
of 0 at finite time.

59



Appendix

The numerical results were obtained using programs we especially wrote for
Matlab 6.1. We give here the computational routines employed without the subrou-
tines of graphical display.

The following routines were used to approximate radially symmetric solu-
tions to the nonlinear Klein-Gordon equation with external damping and no internal
damping. The method is implicit and makes use of Newton’s method in each iteration
to approximate the roots of a nonlinear equation.

function u = KleinGordon(p,Tol,Delta,k,m,N,damp);

yA To approximate radial solutions of the nonlinear Klein-Gordon
pA equation with constant external damping coefficient c=damp,
b
b 2 2
b du du du
b -———--—+c-—-+u+G@ =0
b 2 2 dt
b dt dr
b
% with
pA p-1
h G’(w) = lul |,
b
yA using N time steps of length equal to k and a regular partition
% of the interval [0,0.4] consisting of m subintervals.
yA Tol indicates the tolerance to be used in the applications of
% Newton’s method, and Delta is used in the determination of the
yA initial approximation in every iteration.
clear; % Clear all variables
h = 0.4/m; % Define the radial step
x = 0:h:0.4; %  Create radial partition
ul(1) =0 ; ul(m+1) = 0; yA
u2(1) = 0 ; u2(m+1l) = O; %  Apply boundary conditions
u3(1) = 0 ; u3(m+l) = 0; b
for i = 2:m; %  Apply first
ul(i) = InitFunc((i-1)*h); T initial
end pA condition
for i = 2:m; %  Apply second
u2(i) = ul(i)+k*InitDeriv((i-1)*h); % initial
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b
b
b
b
b
b
b

end % condition
for j = 2:N; % Compute the next N-1 approximations
for i = 2:m; % Use Newton’s method to approximate
% the solution in the j-th time step
u3(i) = Newton(u2(i-1),u2(i),u2(i+1),ul(i),...
p,h,k,i-1,Tol,Delta,damp);

end
E = CalcEnergy(u2,u3,h,k,p,m); % Calculate Energy
ul(:) = u2(:); % Update information vectors
u2(:) = u3(:); yA for the next time step

end

u = u2./x;

function x = Newton(a,b,c,d,p,h,k,j,Tol,Delta,damp);
Newton’s method to approximate the solutions to the nonlinear

equation
x-2b+d x-d c-2b+a  x+d G(x) - G(d)
f x) = -———- +f - - = e ittt ,
2 2k 2 2 p-1
k h (jh(x - d))

where f = damp.

Gd = FuncG(d,p,j,h);

Diff = 1.0; % Initialize difference

n=1; % Initialize iterations

x = btDelta; % Initialize approximation

while (Diff > Tol) & (n < 25)
Gx = FuncG(x,p,j,h);
DGx = FuncDG(x,p,j,h);
Fx = FuncF(x,a,b,c,d,p,h,k,j,Gx,Gd,damp); % Newton’s
DFx = FuncDF(x,d,p,h,k,j,DGx,Gx,Gd,damp); % method

x1 = x-Fx/DFx; % Compute new approximation
n = nt+l; % Update counter

Diff = abs(x1-x); % Compute difference

x = x1;

end

function y = InitFunc(r);

if r < 0.2

y = B*r*exp(100%(1-1/(1-(10*r-1)"2)));
else

y=0;
end

function y=InitDeriv(r);
if r < 0.195
y = Bxr*exp(100-5/(r-5*r~2))*(5-49*r-. ..

61



10*r~2+25%r~3) / (r"2* (1-5%r) "2) ;

end

function y = CalcEnergy(u2,u3,h,k,p,m);

y = .5x((u3(1)-u2(1))/k)"2+.5%(u3(2)-u3(1)). ..

*(u2(2)-u2(1)) /h~2+.25% ((u3(1)) "2+ (u2(1))"2);

for j = 2:m;

G2 = FuncG(u3(j),p,j-1,h);

Gl = FuncG(u2(j),p,j-1,h);

y = y+.5x((u3(j)-u2(j)) /k) "2+.5x (u3(j+1)-u3(j)) ...
*(u2(j+1)-u2(3)) /h~2+.25% ((u3(j)) 2. ..
+(u2(3))"2)+.5%(G2+G1) / ((j-1) *h) " (p-1) ;

end
y = y*h;

function y = FuncG(x,p,j,h);
y = (abs(x) "~ (p+1))/(p+1);

function y = FuncDG(x,p,j,h);
y = x*x(abs(x)"(p-1));

function y = FuncF(x,a,b,c,d,p,h,k,j,Gx,Gd,damp);
y = (x-2xb+d) /(k~2)+damp* (x-d) / (2%k) - (c-2*b+a) /(h~2) . ..
+(x+d) /2+(Gx-Gd) / ((x-d) *(j*h) ~ (p-1));

function y = FuncDF(x,d,p,h,k,j,DGx,Gx,Gd,damp) ;
y = 1/(k~2)+damp/ (2*k)+1/2+((x-d) *DGx+Gd-Gx) . . .
/((3*h) " (p-1)*(x-d) "2) ;

The following procedures were used to approximate radially symmetric so-
lutions to the dissipative nonlinear Klein-Gordon equation. Our method is implicit
and makes use of Newton’s method with tolerance Tol to approximate the roots of a
nonlinear system of equations in each iteration. In turn, each iteration of Newton’s
method makes use of Crout’s reduction method for tridiagonal linear systems. The
procedure CalcEnergy is the same one used in KleinGordon above. Likewise, all
the routines used by KleinGordonMult which are not explicitly written below are
assumed to be the same as those of KleinGordon.

function u2 = KleinGordonMult(p,Tol,Delta,k,m,N,damp,idamp);

yA To approximate radial solutions of the nonlinear Klein-Gordon
pA equation with constant external damping coefficient c=damp

yA and constant internal damping coefficient i=d=idamp, %

T 2 2 3

yA du du du d u
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b
b
b
b
b
b
b
b
b
b
b
b
b

——— - -———+c-- - 1i----- +u+ G =0

with
G’(u) = |ul u,

using N time steps of length equal to k and a regular partition
of the interval [0,0.4] consisting of m subintervals.

Tol indicates the tolerance to be used in the applications of
Newton’s method, and Delta is used in the determination of the
initial approximation in every iteration.

clear; % Clear all variables
h =0.4/m; % Define the radial step
x = 0:h:0.4; %  Create radial partition
ul(1) = 0 ; ul(m+1l) = 0; b
u2(1) = 0 ; u2(m+1l) = O; %  Apply boundary conditions
u3(1) = 0 ; u3(m+1) = 0; yA
for i = 2:m; %  Apply first
ul(i) = InitFunc((i-1)*h); YA initial
end % condition
for i = 2:m; %  Apply second
u2(i) = ul(i)+k*InitDeriv((i-1)*h); % initial
end % condition

for j = 2:N; % Compute the next N-1 approximations
for i = 2:m; Y Use Newton’s method to approximate
% the solution in the j-th time step
u3(i) = NewtonMult(ul,u2,p,h,k,Tol,Delta,c,d,m);

end
E = CalcEnergy(u2,u3,h,k,p,m); % Calculate Energy
ul(:) = u2(:); % Update information vectors
u2(:) = u3(:); pA for the next time step

end

u = u2./x;

function x = NewtonMult(ul,u2,p,h,k,Tol,Delta,c,d,m);

Diff = 10.0;

n-=1;

X = u2+Delta;

numa = c/(2xk*h"2);

numb = d/(2xk)+1/k~2+1/2+c/(k*h"2) ;

while (Diff > Tol) & (n < 15)
y = LUsolver(x,ul,u2,h,k,p,numa,numb,c,d,m);
n = n+i;
Diff = sqrt(y*transpose(y));
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X = xty;
end
x(1) = 0;
x(m+1)

0;

function y = LUsolver(x,ul,u2,h,k,p,numa,numb,c,d,m);
1u(l) Diagonal(1l,x,ul,u2,h,p,numb);
u(1l) = -numa/lu(l);
for i = 2:m-2;
11(i-1) = -numa;
lu(i) = Diagonal(i,x,ul,u2,h,p,numb)-11(i-1)*u(i-1);

u(i) = -numa/lu(i);
end
11(m-2) = -numa;
lu(m-1) = Diagonal(m-1,x,ul,u2,h,p,numb)-11(m-2)*u(m-2);

z(1) = Constants(l,x,ul,u2,h,k,p,c,d)/1u(l);
for i = 2:m-1;
z(i) = (Constants(i,x,ul,u2,h,k,p,c,d)-11(i-1)*...
z(i-1))/1u(i);
end
y(m) = z(m-1);
for i = m-2:-1:1;
y(i+1) = z(i)-u(i)*y(i+2);

function y = Diagonal(i,x,ul,u2,h,p,numb);
y = numb+i*h*((x(i+1)-ul(i+1))*Gprime(x(i+1)/(i*h),p)...
—-i*h* (Gfunc(x(i+1)/(i*h),p)-Gfunc(ul(i+1)/...
(i*h),p)))/(x(i+1)-ul(i+1))"2;

function y = Constants(i,x,ul,u2,h,k,p,c,d);

y = (x(i+1)-2%u2(i+1)+ul(i+1))/(k"2)-(u2(i+2)-2*u2(i+1)+. ..

u2(1))/(h"2)+d*x (x(i+1)-ul(i+1))/(2xk) -cx ((x(i+2)-...

2xx (i+1)+x (1)) -(u1(i+2)-2%xul (i+1)+ul(i)))/(2xk*h~2) ...

+(x(i+1)+ul(i+1))/2;
- (y+((i*h) "2)*(Gfunc(x(i+1)/(i*h) ,p)-...
Gfunc(ul(i+1)/(i*h),p))/(x(i+1)-ul(i+1)));

<
I

function y = Gfunc(x,p);
y = (abs(x) "~ (p+1))/(p+1);

function y = Gprime(x,p);
y = x*x(abs(x) " (p-1));
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