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Abstract 
 

 

 

6,6’-Dimethoxygossypol (DMG) is a natural product of the cotton variety Gossypium 

barbadense and a derivative of gossypol. Gossypol has been shown to form an abundant 

number of clathrates with a large variety of compounds. One of the primary reasons why 

gossypol can form clathrates has been because of its ability to from extensive hydrogen 

bonding networks due to its hydroxyl and aldehyde functional groups. Prior to this work, 

the only known solvate that DMG formed was with acetic acid. DMG has methoxy 

groups substituted at two hydroxyl positions, and consequently there is a decrease in its 

ability to form hydrogen bonds. Crystallization experiments were set up to see whether, 

like gossypol, DMG could form clathrates. The following results presented prove that 

DMG is capable of forming clathrates (S1 and S2) and two new polymorphs (P1 and P2) 

of DMG have been reported.       

 

 

 

 

 

 

 

Keywords: Gossypol, x-ray crystallography, clathrates, solvates, hydrogen bonding, 

functional groups, polymorphs, and space groups
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Introduction 
 

Gossypol [1,1’,6,6’,7,7’-hexahydroxy-5,5’-diisopropyl-3-3’-dimethyl-(2,2’-

binaphthalene)-8,8’-dicarboxaldehyde] is a natural occurring compound found in the 

cotton plant Malvaceae gossypium that has a multitude of interesting biological, 

chemical, and crystallographic properties [1,2]. Gossypol has been tested as an oral 

contraceptive [3], and a number of its derivatives are currently being tested as potential 

pharmaceutical drugs in human trials [4, 5]. Gossypol acts as a natural insecticide and 

contains both anti-viral and anti-fungal properties as well [6]. Gossypol contains a 

number of functional groups that includes six alcohol groups and two aldehyde groups, 

centered on two naphthalene rings. In addition, gossypol also contains aliphatic side 

chains consisting of two isopropyl and two methyl groups. The presence of all the 

functional groups is a primary reason why gossypol exhibits a plethora of biological and 

chemical activity, and a primary reason why gossypol is currently being researched as a 

potential medicinal agent in a numbers of areas. The structure of gossypol and how it 

behaves chemically is vital in understanding the pharmacological behavior of this 

polyphenolic terpene. Crystallographic data provides a very detailed description of the 

molecular structure of gossypol [7, 8] and further aids in understanding the 

intermolecular and intramolecular forces present within the molecule. The following 

thesis provides information on how one of gossypol’s naturally occurring derivatives, 

6,6’-dimethyl gossypol (DMG), forms polymorphs and solvates. Like gossypol, 6,6’-

dimethyl gossypol has an array of interesting biological and chemical properties that 

further elucidate the complex interactions between gossypol and its derivatives and the 

chemical and biological environment.  
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Gossypol was first discovered and isolated in the late ninetieth century by 

Marchlewski [9] and Longmore [10] as a natural occurring yellow pigment present in the 

intercellular pigment glands of leaves, stems, roots, and seeds of the cotton plant. The 

initial research conducted by Adams and coworkers [11-25] led to the structural 

arrangement of gossypol through series of diverse chemical reactions that included 

degradation, esterfication, etherfication, oxidation, and substitution reactions. In the 

pioneering work of Edwards and coworkers [26-29], a total synthesis of gossypol was 

realized.  

One of the first applications of gossypol was its use as a dye, but it proved 

unsuccessful because of gossypol’s instability in the presence of light. Until the early 20
th

 

century, cottonseed meal was used as a feed in livestock because of its high protein 

content. However, in high dosages, cottonseed meal proved to be toxic and by 1915 it 

was suggested that gossypol was the main contributor to the toxicity of the cottonseed 

meal [30-32]. In the following years, further evidence accumulated that the yellow 

pigment was toxic to monogastric animals which included rodents, poultry, and swine. It 

was later discovered that cottonseed meal containing gossypol required cooking to 

promote unbound gossypol to the bound gossypol state which is evidently less toxic. 

Agriculture research, at this point, focused on methods of decreasing gossypol content in 

cotton varieties, and methods of removing gossypol from cotton derived products such as 

meals and naturally occurring cotton seed oil. The overall consensus was that gossypol 

was a toxic by product of the cotton plant that had little to no use in agriculture and 

farming. Then, during the 1960’s research was began on combating  tumor cells with 

alkaloids that, fortunately, included gossypol. It was this preliminary cancer research that 
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helped catalyze a shift in the perception of gossypol from being a detrimental agent to a 

possible pharmaceutical drug [137].  

In the 1970’s, large scale testing was conducted with gossypol as a reversible oral 

contraceptive by Chinese scientists. It proved to be a highly successful contraceptive 

agent for 99.89% of male users where dosages consisted of 20 mg/daily for the first two 

months followed by 150-220 mg/month the next four months. While the initial studies 

provided supporting evidence for gossypol as a potential contraceptive in adult men, 

there were undesirable side effects that raised numerous concerns. The initial studies 

reported that 10% of patients acquired low potassium levels (hypokalemia) that were 

thought due to physiological changes in the sodium/potassium pump. Other symptoms 

included increased fatigue, decreased libido (6%), epigastric discomfort (2.0%), loss of 

appetite (2.4%), and nausea (1.0%). However, the most undesired effect was sustained or 

irreversible azoospermia in men (10%) after the initial study [33]. Azoospermia is a 

medical condition where there is no measurable amount of sperm in semen and is 

commonly confused with aspermia which is the absence of semen. A number of other 

researchers conducted similar experiments throughout the following years with 

conflicting data (34-37). A symposium was held in 1986 from leading gossypol 

researchers on the viability of gossypol as a potential contraceptive agent. It was 

concluded because of the irreversible sterilization and the occurrence of hypokalemia, 

gossypol was not deemed a plausible antifertility drug. Since then, a number of other 

researchers have continued to study gossypol as a contraceptive agent and newer studies 

are beginning to shed light on the outcomes presented in the preliminary studies [38, 39]. 

A recent 10 year investigation, reported by Coutinhou, documents that blood potassium 



4 

 

levels remained unchanged for the majority of gossypol users. It was suggested that 

additional regional and economical factors that may have contributed to the ailments seen 

in the initial trials. The initial reports of hypokalemia may have been exaggerated, and 

mainly due to restrictions in the Chinese diet, which was already deficient in potassium 

and not a result of gossypol adversely effecting homeostatic renal physiology [40]. 

Specifically, samples of the testicular germinal epithelium showed no change after 

gossypol administration. Hormones, such as testosterone, were found at the same 

concentrations after the gossypol study and no permanent changes were seen in hormonal 

levels. Irreversible azoospermia was still present in few subjects; however, recent studies 

have provided that in many subjects, azoospermia was more likely due to subclinical 

varicocele. These recent findings have sparked renewed interest into gossypol’s 

contraceptive abilities. 

Gossypol also exhibits unique anticancer characteristics, and it is being 

investigated by a number of clinical researchers in combating a number of cancer types. 

Basic cell theory states that the homeostatic life cycle of tissue is regulated by the precise 

balance of both cellular proliferation and the death of cells. Defects that do not promote 

cell death lead to tumorgenesis if left unchecked, and in many cases chemoresistance. In 

general, gossypol and its derivatives affect the Bcl-2 (B-cell lymphocyte/leukemia-2) 

family of proteins that promotes the regulation of cellular apoptosis. It has been 

demonstrated that enantiomeric (-)-gossypol specifically inhibits Bcl-2, Bcl-xl, and Mcl-1 

anti-apoptotic regulator proteins [41]. Bcl-2 inhibition or activation of cancer cells relies 

on the functionality of the mitochondria inner-membrane permeable transition pores 

which are responsible for Calcium concentrations, pH, voltage potential in the inner 
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cristea, and the release of cytochrome c in the cytosol.  The Bcl-2 gene has been presently 

linked to a number of cancers which include melanoma, breast, and prostate cancers, and 

this specific gene lineage has been associated with a number of autoimmune diseases. 

Gossypol has been also tested at numerous cancer stages (stage 0 -stage IV) and cancer 

types. Currently, gossypol and gossypol derivatives are being tested as a potential 

pharmaceutical drug in the treatment of prostate cancer. Both androgen deprivation and 

chemotherapy have already proved unsuccessful methods in treating prostate cancer 

because of chemotherapeutic resistance. It has been known that prostate cancer is 

primarily due to over expression of antiapoptotic members of the Bcl-2 family of proteins 

which is believed to be the primary reason enantiomeric (-)-gossypol helps in regression 

of cancer growth. Specifically, Bcl-xL is over expressed in all refractory prostate cancers 

and further aids in metastasis, recurrence, and shortened survival.  In other advanced 

human cancers, however, gossypol is unlikely to be clinical useful in the regression of 

cancer cells.      

In other recent investigations, apogossypol, a derivative of gossypol where both 

aldehyde groups have been removed is being investigated in structural studies on cancer 

research [42]. Bcl-2 anti-apoptotic proteins, Bcl-2, Mcl-1, Bfl-1, Bcl-W, Bcl-Xl and Bcl-

2 pro-apoptotic protein members, Bak, Bax, Bad, Bim, and Bid are able to form dimers 

that negate each other’s functions in cell death or cell proliferation. Anti-apoptotic 

protein members contain a hydrophobic cavity, the BH3 domain, which binds to the pro-

apoptotic proteins. Apogossypol mimics and binds to the BH3 domain of anti-apoptotic 

proteins which decreases anti-apoptotic behavior and promotes apoptosis. 

Apogossypolone, a derivative of apogossypol where the naphthalene ring is substituted 
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for 1, 4-Naphthoquinone, is currently being tested for follicular lymphoma (FL), the fifth 

leading cancer in the United States and the most common lymphoma worldwide [43]. 

Like apogossypol, apogossypolone acts as an antagonist against anti-apoptotic Bcl-2 

protein members.  

The gossypol molecule is composed of two naphthalene rings joined by an 

internapthyl bond at the 2- and 2’- carbon atoms forming a 2-fold axis, and is composed 

of a number of functional groups and aliphatic side chains (Fig. 1). Six hydroxyl groups 

exist within the substituted 2, 2’ binaphthalene ring structure at positions 1, 1’ and 6, 6’ 

and 7, 7’ positions. The hydroxyl groups existing at the 1- and 1’- positions are more 

reactive than the remaining hydroxyl groups. The aldehyde groups are located at the 8- 

and 8’- carbon positions, and because of aldehyde group’s ability to lend pi electron 

character to the naphthalene rings give rise to the varied and rich chemistry that gossypol 

and many of its derivatives posses. Both the aldehyde and hydroxyl groups participate in 

extensive intramolecular hydrogen bonding networks within each naphthalene ring 

structure (Fig. 2). There exist a strong hydrogen bond between the aldehyde group at C-8 

and the C-7 hydroxyl group that forms a pseudo third ring that is coplanar to each 

naphthalene structure. This particular hydrogen bond is the strongest of the all the 

hydrogen bonds, and has been estimated to be approximately 10.7 kcal/mol [44]. The 

locations of the hydroxyl and aldehyde groups form a lipophobic region within the 

gossypol molecule. Four alkyl groups exist on the other half of the gossypol structure,  
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Figure 1. 6,6’-Dimethoxygossypol (DMG) structure. DMG contains a mirror plane 

between the 2 and 2’ carbon atoms forming an internaphthyl bond. DMG consist of two 

central naphthalene rings and several functional groups: 6 alcohol groups, 2 aldehyde 

groups, 2 isopropyl groups, and 2 methyl groups. Both the aldehyde and alcohol groups 

contribute to both inter and intramolecular bonding between adjacent DMG molecules 

and solvates in crystallographic structures.     



8 

 

two methyl groups at the 3, 3’- positions and two isopropyl groups at 5, 5’- positions. The 

alkyl groups are usually oriented in the plane of both naphthalene rings, but both the 1, 1’ 

hydroxyl groups and methyl substituents restrict rotation of the two naphthalene planes 

around the 2, 2’- internaphthyl bond.       

The 8, 8’- aldehyde groups contribute to extensive tautomerization present in 

gossypol and provide for the complex chemistry inherent within the molecule. Gossypol 

exists in three tautomeric states centralized around its aldehyde groups which consist of 

an aldehyde tautomer, ketone tautomer, and a lactol or hemiacetal tautomer. The 

environment and/or solvent that gossypol is immersed in will dictate which tautomeric 

state is thermodynamically favored. In vitro, gossypol can still exist in two or more 

states, and depending on which tautomeric state(s) are present, will produce an 

assortment of undesired reaction products. A simple example can be illustrated with the 

following example. Suppose a specific chemical reaction, targeted for the aldehyde form 

reacts to form a single product. If the aldehyde form exists in a 50% equilibrium state 

with the ketone tautomer, then a number of other reaction products can ensue from the 

ketone form. Experimentally, this is what is observed with gossypol reactions.    

The tautomeric aldehyde (-) - gossypol form has the highest biological activity, 

and it is believed that reactions with other tautomers, in vitro, produce by products that 

contribute to the toxicity of gossypol [45]. Gossypol’s complex reactionary chemistry is 

further increased by its ability to form different tautomeric forms on each naphthalene 

ring simultaneously. As a consequence, it has been suggested that the aldehyde functional 

groups are the primary cause of toxicity for the gossypol molecule. Recent studies of 
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apogossypol, a derivative of gossypol, minus the aldehyde group seems to retain a 

majority of gossypol’s therapeutic effects along with decreased toxicity [30].             

Gossypol exists as a racemic mixture, naturally, in most cotton species. Both the 

(+)- and (-)- enantiomeric forms are stable at ambient temperature. The (+)- enantiomer 

has the S form designation and the (-)- enantiomer is labeled the R form. Crystallographic 

studies of a pure enantiomeric form have proven difficult because of the difficulty in 

growing pure R or S enantiomeric crystals suitable for x-ray structure analysis [16]. 

Certain varieties of cotton plants, however, favor production of either enantiomer, and 

ratios range from 97:3 to 31:69 for the (+)- and (-)- forms respectively. An abundance of 

research has suggested that (-)-gossypol is more biological active, but the (+)- gossypol 

form may serve an advantage in specific cotton varieties. For example, in commercial 

cotton seed Gossypium hirsutum, the ratio between (+)- to (-)- enantiomers is 3:2. In 

other cotton species such as Gossypium barbadense, the (-)- enantiomer predominates. 

Research conducted on the variety Thespesia populnea suggest that it produces 

enantiomerically pure (+)-gossypol [138]. Interestingly, the (+)- is less toxic to 

nonruminant animals, and feeds consisting of predominant (+)-gossypol are considered 

safe in general. More recently, research has focused on whether the (+)-enantiomer is 

toxic to insects [47] and certain studies suggest that there are benefits of the (+)-

enantiomer as an active naturally occurring insecticide. Separation of racemic mixtures of 

gossypol have proven difficult, but reacting gossypol with amine groups to create Schiff 

bases and then using reverse phase high performance chromatography has proven a 

successful technique for separating the S and R forms.          
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Because gossypol has an extensive number of functional groups, mainly the 

alcohol and aldehyde groups, the combination of these reactive centers provide for an 

assortment of rich reaction chemistry. In addition, the conjugated dimeric naphthalene 

ring system further adds to the complexity of reaction products that gossypol and several 

of its derivatives exhibit in both chemical and biological environments. As previous 

stated, the conjugated bonds lend pi character to gossypol’s functional groups, primarily 

the aldehyde groups and their various tautomeric states. In some cases, tautomerization 

restricts the types of reactions that are feasible with gossypol. This includes alkali-

mediated methylation due to gossypol’s instability with basic ionic salts, and limitations 

in esterfication of gossypol’s hydroxyl groups because it creates a number of undesired 

by products. Researchers, however, have made significant progress in developing novel 

methods of modifying gossypol’s central naphthalene framework and functional groups 

by imposing strict reaction conditions, and by an assortment of regimented processes 

such as protecting alcohol groups and the implementation of multiple catalysts for desired 

products.  

There exists extensive research published not only on gossypol’s rich chemistry 

but also on its derivatives. In many cases, the chemical processes are well understood but 

in other cases they are not. Structural studies of derivatives produced by various reactions 

are vital in aiding the understanding of reaction mechanisms and pathways. Furthermore, 

chemical reactions and crystallographic analysis of modified forms of gossypol, like 

dimethyl gossypol, facilitate an understanding of how specific functional groups affect 

the overall chemistry of gossypol.         
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Etherfication reactions were vital in deducing the structure of gossypol in the 

early to mid twentieth century [48-52]. Adams and coworkers lead some of the first 

pioneering work dealing with modifying and understanding basic principles of gossypol 

chemistry. Their initial starting point consisted of the synthesis of hexamethyl gossypol 

ether that was subjected to reduction, oxidation, alkylation, esterfication, hydrolysis, and 

Schiff’s base reactions that aided in elucidating gossypol’s complex and dynamic 

structural arrangement. One of first methods used in etherfication was methylation of the 

aldehyde groups and 7, 7’ alcohol groups with dimethyl sulfate and methanol, forming 

gossypol tetramethyl ether, and with further changes in reaction conditions, methylation 

of the 6, 6’ alcohol groups, forming gossypol hexamethyl ether. These reactions served as 

the basis for the synthesis of more elaborate ether products. Synthesis of other ether 

derivatives involved replacement of hydrogen atoms with methyl groups at alcohol group 

locations that lead to the creation of gossypol dialdehyde hexamethyl ether, creating a 

new hexamethyl ether form altogether. Seshadri and coworkers [50, 51] focused on 

selectively methylating particular hydroxyl groups. These modifications lead to the 

formation of gossypol containing four, six, or eight ether groups that were positioned 

symmetrically or asymmetrically across the naphthalene rings. Ether synthesis has not 

been limited to methylation, and has included silylation with various combinations of 

gossypol’s hydroxyl groups. Selective methylation of gossypol’s 6, 6’ hydroxyl groups 

with sodium tetraborate has yielded the ability to synthesize 6-methoxy gossypol and 6, 

6’-dimethoxy gossypol, which are naturally occurring gossypol products in Gossypium 

barbadense. Biological research has also been conducted with ether based gossypol 

products. Specifically, gossypol tetramethyl and hexamethyl ethers were tested on 
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whether they decreased metabolic fructose degradation in human sperm cells [53]. While 

research shows that gossypol ethers are biological active, they are not as active as 

gossypol. In addition, various reviews in the literature support the proposal that for 

gossypol derivatives to be biological active, a number of free hydroxyl groups must exist 

on the molecule [54]. 

Reactions promoting ester group synthesis on gossypol has proven difficult 

because of the electron delocalization present in gossypol’s ring system. A number of 

esters have been synthesized that include the hexaacetate, hexabenzoate, and hexapmitate 

esters [55-58]. Acetylated gossypol has been also successfully separated via preparative 

HPLC analysis. However, gossypol acetylate groups have proven to be very unstable and 

degrade in multiple pathways.  

Oxidation of gossypol is a relatively well known reaction because it degrades so 

easily in nature and at ambient conditions. Since the first large scale processing of 

cottonseed oil, oxidation has been observed and created undesirable and degraded 

cottonseed oil components [59]. Gossypol’s conjugated alkene rings are very susceptible 

to absorbing electromagnetic radiation within the visible spectrum. This creates the 

potential for highly energetic electron states that aid in the production of free radicals. In 

general, many oxidation reactions require protecting groups, such as acetyl groups and 

dithiane derivatives, on all six alcohol groups of gossypol [60]. A number of alkaline 

solutions also elicit favorable oxidation reactions. Reacting gossypol with ferric chloride 

in an acetic acid/acetone solution with heat oxidizes gossypol to gossypolone [61, 62]. 

This oxidation converts gossypol’s naphthalene rings to 1, 4-napthoquinone ring 
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structures. Recent studies have also shown that gossypolone is optically active and has 

biological activity [63].  

The chemistry resulting in the synthesis of apogossypol was first discovered by 

Carruth in the late 1910’s while investigating gossypol extractions with fatty acids and 

reacting gossypol with hot alkali solutions [64, 65]. The apogossypol reaction involves 

the removal of both aldehyde groups, and as previous stated, eradicates gossypol’s 

tautomeric properties. Apogossypol formation is also feasible with sodium hydroxide, 

potassium hydroxide, and other strong bases under nitrogen atmospheres for prolonged 

periods of times at moderately high temperatures [66]. Apogossypolone is produced by 

reacting apogossypol with aqueous ferric chloride in an acetone/acetic acid mixture with 

mild heat that removes two hydrogen atoms and replaces them with two ketone groups on 

both naphthalene rings creating a 1, 4-napthoquinone central backbone. Zhan and Jia [67] 

were able to convert apogossypol to apogossypolone using protecting groups of pyridine 

in acetic acid and subjecting the protected apogossypol structure to a Kiliani’s solution, 

creating the quinone. Removal of the protecting groups on apogossypolone was achieved 

with a 20% sodium carbonate solution, dioxane, and a 4M hydrochloric solution at 80 

degrees Celsius. Apogossypolone has significant biological activity, especially in cancer 

research. However, it’s not known whether apogossypolone is more suitable for cancer 

studies than apogossypol. While apogossypol seems to be more unstable than 

apogossypolone at ambient temperatures, it’s not well known whether this instability also 

exists in vitro.   

Pharmacokinetical and metabolic analogs have been tested on gossypol, 

apogossypol, and apogossypol hexaacetate to better understand stability in vitro. A 
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pharmaceutical study conducted by Lee and coworkers [68] supported evidence that 

gossypol, apogossypol, and apogossypol hexaacetate are stable in vitro and clear from 

human plasma. Analogs were tested quantitavely and ascertained with liquid 

chromatography-mass spectrometry (LC/MS/MS). All three gossypol forms didn’t 

exhibit any permanent conjugate binding to blood proteins but apogossypol binding to 

mono- and di-glucuronide conjugates were observed. Apogossypol was the most stable 

showing the lowest amount of metabolites but the slowest clearance rate. Interestingly, 

20-40% of apogossypol hexaactetate was converted to apogossypol and the hexaacetate 

derivative formed various penta-acetate forms. Both gossypol and apogossypol had 

similar intravenous and oral pharmacokinetic rates and profiles. Apogossypol hexaacetate 

when administered orally converts to apogossypol and lacks any oral bioavailability [68]. 

Gossypol reactions involving ammonia and primary amines are some of the most 

researched and published studies [69-71]. Amination of gossypol usually involves a 

condensation reaction involving gossypol’s aldehyde group. In general, the carbonyl 

bond on the aldehyde is replaced with a carbon-nitrogen double bond, where the nitrogen 

is bonded to a R group containing of a carbon backbone. The R groups themselves can 

consist of other functional groups such as alcohols, benzyl groups with complex aliphatic 

carbon chains, such as –(CH2)17CH3 and aliphatic chains with their own functional 

groups. R groups that consist of aromatic groups have also been extensively studied and 

synthesized, ranging from phenolic to multi substituted alkene ring systems.  

Reacting gossypol with amines (R-NR1R2 where R1=H or C, R2=H or C, and 

R=C) that react with its aldehyde groups, in general, forms Schiff’s bases. Substitution of 

gossypol’s aldehyde groups removes a degree of tautomerization and thus, decreases 
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gossypol’s toxicity while retaining its therapeutic effects. Gossypolone Schiff’s bases, 

however, have been found to be more toxic than their gossypol counterparts [72-74]. 

Substitutions with primary amines that form Schiff’s bases are characterized with 

tautomerization that exists in the imine and enamine forms, and have been extensively 

studied by NMR, IR, and semiemperical molecular modeling [75-85]. Certain amine R 

groups, such as anilinogossypol (R=C6H5) register signals on NMR analysis indicating 

that the enamine structure is favored. Schiff’s bases consisting of R groups belonging to 

hydrazines (R=NHCH2CH(OCH2CH3)2 favor a shift to the imine form. Thus, the identity 

of the R group and the chemical environment determines which tautomeric structure is 

chemically favored. It has been postulated that the degree of electronegativity that the R 

group imposes on the primary nitrogen of the Schiff’s base determines the nucleophilicity 

of the nitrogen. The nitrogen group has a decreased electron environment creating an 

environment less likely to accept a proton required for tautomerization. Schiff’s Base 

tautomeric equilibrium is also influenced by the presence of monovalent and bivalent 

metals, and involves complex electronic interactions from d-orbitals [86-89].  

In many cases, synthesis of gossypol and gossypol Schiff’s base derivatives 

require complete saturation of starting material in alcohols such as ethanol and methanol. 

An amine group is then added with other reagents to ensure amination, followed by 

heating. In recent studies, gossypol Schiff’s bases have been synthesized with amino 

acids, specifically L-phenylalanine methyl ester, L-tyrosine methyl ester, and L-histidine 

methyl ester [90], adding to the family of gossypol amine substitutes . Other methods of 

synthesizing Schiff’s bases include catalyzing agents such as N, N-dimethyformamidine 



16 

 

[91], and the use of solid-state methods that have been successful in derivatizing only one 

aldehyde group [92].   

Gossypol containing azo derivatives have been extensively studied and for good 

reason. Diaznonium ions or diazonium salts, RN2X (X=an organic or inorganic anion) 

were first discovered by reacting sodium nitrite with phenolic compounds, specifically 

aniline, by Peter Griess in the 1850’s as an intermediate in the production of aryl sulfonyl 

compounds. Gossypol’s substituted naphthalene ring structures serves as an ideal 

candidate for diazoniation and the choice of the R groups is extensive which includes 

aliphatic and aromatic groups [93-98]. In general, the reaction mechanism of diazonium 

compounds with gossypol involves both aldehyde groups, where electrophilic aromatic 

substitution occurs. The aldehyde group is kept intact and substitution occurs at the 6, 6’-, 

and 7, 7’- hydroxyl groups, and the 4, 4’- hydrogen atoms of the aromatic ring. These 

reactions are light sensitive due to u-v degradation of the salts themselves. The azo 

derivatives of gossypol, generally, aren’t soluble in aqueous solutions unless –SO3 and 

carboxylic acids are introduced into the azo groups, but are soluble in organic media. Azo 

gossypol compounds are well known as dyes in many cotton varieties where they serve as 

intermediates in aromatic chemistry [138]. Aryl azo derivatives of gossypol also convey 

tautomerization between quinohydrazo and hydroxyazo forms and depending on the 

identity of the R group and chemical environment determines which form dominates. 

Aryl azo derivatives also seem to posses biological behavior by inducing interferon 

activity [30].    

Hexamethyl apogossypol has been the central starting material for halogenation 

reactions involving gossypol compounds. Bromination of hexamethyl apogossypol has 
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yielded a number of interesting derivatives, including the formation of brominated 5-

membered ether rings in acidic conditions [99]. The reagents and the experimental 

conditions determine where bromines cleave on the starting material which include 

brominating the 3-, 3’- methyl groups, and direct cleavage of the phenyl rings at the 4-, 

4’-, and 8-,8’- carbon positions. Halogenation has not been exclusive to just bromine and 

has included a limited number of products containing fluorine residues. Fluorination, in 

general, begins with the hexamethyl apogossypol already reacted with bromine. 

Potassium fluoride or silver fluoride is introduced with the appropriate experimental 

conditions to yield a replacement reaction where bromine is exchanged for fluorine. 

Attempts to add fluorine directly to hexamethyl apogossypol have proved unsuccessful. 

So far, all fluorinated gossypol derivatives require use of brominated apogossypol 

derivatives.  

Reacting gossypol with nitrile groups has been actively studied because of the 

removal of gossypol’s aldehyde groups, which reduces tautomerization. Royer and 

coworkers have extensively researched the chemical processes in the synthesis of various 

nitrile groups [100]. Nitrile based reactions consist of reacting gossypol dioxime with 

acyl anhydrides, followed with heat and carboxylic acid sodium salt. Research into these 

compounds has concluded most biological active nitrile compounds are doubly 

substituted.  Biological active nitrile derivatives consist of aldehyde groups that are 

substituted for simple nitrile groups but also the adjacent phenolic hydroxyl group, 

located at the 1-, 1’- carbon position, is substituted by acetyl groups [101]. Specifically, 

gossylic nitrile 1, 1’- diacetate exhibits antimalarial activity in Plasmodium falciparum by 

competitively inhibiting lactate dehydrogenase.  Other nitrile derivatives, gossylic nitrile 
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1, 1’-dibutyrate substantially decrease the cellular metabolic pathway of malaria by 

binding to NADH.    

Gossypol exhibits a wide range of reactions involving metals, ranging from light 

metals such as sodium and aluminum, to the lanthanides and even uranium [102-107]. 

Gossypol’s ability to form an abundant number of metal complexes has presented vested 

interest in the areas of molecular biology, analytical chemistry, and genetic research 

[108-110]. For instance, gossypol complexed with copper (+2), mediates DNA cleavage 

by the reduction of copper to the plus (+1) state, and infers the possibility of using 

gossypol metal complex as catalytic precursors in future genetic studies [111-112]. 

Numerous theoretical studies, with density function theory, have also been conducted on 

gossypol metal complexes, and how the presence of metals affects the tautomeric 

equilibrium within gossypol. Like much of gossypol’s rich chemistry, the ability for 

gossypol to form metal complexes is heavily dependent on the reactive hydroxyl groups 

present at the 1-, 1’- carbon positions and aldehyde groups.     

Currently researchers are developing new reaction methods for the synthesis of 

new gossypol derivatives as future drug candidates for a variety of human ailments. The 

possibilities in modifying gossypol and its derivative’s functional groups and ring 

system’s have yet to be exhausted [113-119]. Amination, azo derivatives, and nitrogen 

based chemistry are the most abundant papers published on gossypol chemistry. 

Biological research with gossypol and its derivatives, in the last twenty years, has 

increased dramatically and yielded promising results. Research is also continuing on how 

to attain better yields of gossypol, gossypol enantiomers, and gossypol derivatives [120-

122]. Recently, Dowd and coworkers have developed a method for separating gossypol 



19 

 

and its methylated derivatives using an acetone extraction and separating the compounds 

in an acetonitrile/potassium phosphate buffer on a reverse phase high performance 

chromatography. Apogossypol and apogossypolone are currently being used as 

therapeutic agents and are the most investigated form of gossypol tested for medicinal 

usage. A great deal of the literature, to date, reports low yields for both apogossypol and 

apogossypolone. Dowd and coworkers are currently developing methods for higher 

yields of both apogossypolone and apogossypol. Preliminary studies on increasing yields, 

by the Dowd research group, have already produced yields of apogossypolone as high 

68%. In addition, research is being conducted on methylated derivatives of apogossypol 

and apogossypolone.  

An extensive number of crystal structures for gossypol have been reported 

showing varied structure types [123-135, 140]. The gossypol molecule is very versatile in 

how it packs into the crystalline state due primarily to molecular flexibility both 

internally and externally with itself and other molecules. Additionally, gossypol has the 

capacity to rearrange itself, in the crystalline state, to accommodate guest molecules. This 

has lead to an extensive list of gossypol crystal structures that are not only inclusion 

complexes but polymorphs as well.  

Gossypol’s ability to form a varied array of inclusion complexes, in general, is not 

difficult to understand since it contains all the basic components that promote inclusion 

formation: axial symmetry, a globular irregular composition, hydrophobic and 

hydrophilic regions, and a restricted number of conformational degrees of freedom 

between its ring system and functional groups. Examination of the gossypol molecule 

reveals a C2 symmetry element at the center of the internaphthyl bond. Furthermore, 
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rotation is restrictive at the aryl-aryl bond because of the isopropyl groups at 1, 1’- and 3, 

3’- positions that give rise to severe steric hindrances. 

Observations of intermolecular and intramolecular hydrogen bonding of gossypol 

in the crystalline solid state overlap with observations of chemical reactivity. The six 

alcohol and two aldehyde groups are primarily responsible for creating the majority of 

bonding interactions between adjacent gossypol and guest molecules within all gossypol 

crystal structures. The intramolecular hydrogen bonding between O3-H
…

 O-2 atoms and 

O7-H
…

 O6 atoms are quite strong, where the donor-acceptor distances between these 

bonds range from 242-250 pm. In comparison, the equivalent bond length in 

salicylaldehyde is approximately 261.2(5) pm [30]. The hydroxyl protons at the O3-H 

and O7-H positions are thus considered to be strong intramolecular bonds and are very 

inaccessible to intermolecular hydrogen bonding within crystals. The alcohol groups, O8-

H and O4-H contribute to both intermolecular and intramolecular hydrogen bonding 

depending on the environment. In certain crystal structures, the O8-H atom forms 

hydrogen bonds with the O7 atom and the O4-H atom forms hydrogen bonds with the O3 

atom. In other structures, the O8-H and O4-H atoms hydrogen bond to neighboring 

gossypol molecules and or guest molecules, forming an extensive hydrogen-bonding 

network. This particular ability for the O8-H and O4-H hydroxyl groups to impart either 

intermolecular or intramolecular hydrogen bonding is probably the primary reason why 

when both alcohol groups are substituted for methoxy groups, DMG is still able to form a 

variety of crystal structures.  

Understanding how gossypol forms inclusion complexes and polymorphs is of 

central importance to understanding how dimethyl gossypol itself forms polymorphs and 
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inclusion complexes. Gdaniec [133] has classified gossypol crystal structures into 22 

groups based on polymorphic and inclusion complex characteristics. In addition, the 

hydroxyl and aldehyde groups that form hydrogen bonds, which are related by 

symmetrical relationships within the gossypol molecule, are taken into account with the 

classification schema. The gossypol crystal structures which contain inclusion groups 

exhibit a great deal of diversity in space groups, crystal symmetry, and host-guest 

stoichiometry. When attempting to predict how gossypol will orient in a crystalline state, 

not only should the number of inclusion complexes be taken into account but also the 

coordination interactions, topology, and the thermodynamics of crystal formation should 

be considered as well. The number of polymorphs reported by Gdaniec exists as three 

forms P1, P2, and P3 that are represented by the P21/c or C2/c space groups.  Four 

additional polymorphs, P4-P7 have been reported by Ibragimov and Talipov [139]. One 

of the polymorphic forms of gossypol, P3, results from the decomposition of the guest 

molecules from the type-XIII inclusion group. The ability for the host network to still 

remain intact, in P3, clearly demonstrates the strength and malleability of gossypol’s 

extensive hydrogen network in forming lattice networks.       

Research and detailed analysis conducted on the multitude of gossypol inclusion 

compounds has resulted in a basic understanding of the underlying factors affecting 

polymorph formation. Gossypol’s ability to form a large variety of hydrogen bonding 

networks is paramount to its ability to form a plethora of crystal configurations. On the 

other hand, when examining the geometric topology of gossypol’s intermolecular 

hydrogen bonding network, it should be remembered that the hydrogen bonds are not 

strong. The main contributing factor for the lattice stability is the effect of not just one 
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hydrogen bond but the additive contribution of many hydrogen bonds existing on 

multicentric naphthalene rings whose functional groups have a certain degree of angular 

flexibility. These factors when combined lead to a host lattice that can accommodate 

changes without the need for large changes in thermodynamic energy.  

While DMG is reduced in the number of hydrogen bonds it can form, it still 

contains a number of chemical characteristics that allow it to form a variety of crystal 

structures. The ability for DMG to readily crystallize has been known for some time. 

However, with the loss of two hydroxyl groups that are necessary in forming many 

gossypol inclusion complexes, it was not known whether DMG could incorporate guest 

molecules. The following thesis presents new data that validates the inclusion ability of 

DMG. Moreover, two polymorphs of DMG have been experimentally verified and 

support the recognition that the DMG molecule is also capable of forming a variety of 

crystal structures.    
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Methods 

 

            Isolated dimethyl gossypol (DMG)-acetic acid (1:1) (4-5 mg) was dissolved in 

various solvents including diethyl ether, pentan-2-one, acetone, and cyclohexanone in 

micro centrifuge tubes. The volumes for all four solvents consisted of approximately 200 

µL. A volume of 1-1.5 mL of petroleum ether (PE) was slowly pipetted into each micro 

centrifuge tube to create a supersaturated state. Care was taken not to mix the solvents 

with the petroleum ether. Then, the samples were placed in the dark at room temperature 

(~20°C) for extended periods of time. The two DMG polymorphs (P1 and P2) were 

generated from diethyl ether and acetone (and other conditions). Consideration was given 

to the possibility that the polymorphs were sensitive to temperature during crystallization 

formation, however this was not explicitly researched. The DMG-water (1:1) (S1) solvate 

was obtained from both the pentan-2-one/PE and chloroform/PE mixtures. The 

crystallization process required several months for the chloroform. Apparently, the long 

time for crystallization formation allowed for water vapor to slowly diffuse into the micro 

centrifuge tube. It should be noted that the pentan-2-one solution used was acknowledged 

to contain trace amounts of water (less than 1%). In addition, difficulty was experienced 

in reproducibly growing crystals of this form, which is believed due to its formation 

requiring a very narrow range of conditions dealing primarily with temperature and water 

concentration. Consequently, repeated attempts to recrystallize this structure from water-

saturated chloroform or penta-2-one invariably resulted in the formation of one of the 

non-solvated polymorphs. The DMG-cyclohexanone crystal (S2) was acquired from the 

cyclohexanone/PE solution. 
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            Once adequately sized crystals were formed in the micro centrifuge tubes, they 

were carefully removed from the mother liquor and examined under a polarizing 

microscope. All of the crystal specimens were examined to determine if they 

extinguished polarized light at 90 degrees, contained micro fractures, and whether or not 

they contained satellite crystals. The crystals were then attached to a thin glass fiber 

mounted on a goniometer head.   

            Diffraction data was collected with a Bruker single crystal x-ray diffractometer 

fitted with a graphite monochromator. The detector consisted of a SMART 1K CCD 

detector (Table 1). Diffraction data was collected at low-temperature (180-200 K) using a 

nitrogen flow cryostream generated by boiling liquid nitrogen. The diffraction data for S1 

was collected at room temperature because of frosting problems due to high humidity and 

mechanical problems with the cryostream. A minimum of two full sets of psi and omega 

scans were collected for each crystal structure. Bruker SMART and SAINT software was 

utilized to acquire and integrate the peak intensities, and SHELX NT was used for the 

structure solution and refinement. All four sets of structural data were solved by direct 

methods and refined by least squares of all observed reflections. All non-hydrogen atoms 

were modeled with anisotropic thermal parameters. In general, hydrogen atoms were 

found in difference maps and were refined isotropically. However, several CH3 and 

methylene hydrogen atoms, especially those associated with disordered groups, were 

placed at their theoretical calculated positions to improve geometries. In addition, the 

cyclohexanone molecules in S2 were also found to be disordered. The solid state 

structure of cyclohexanone is a “chair” form; this particular molecule was refined as two 

essentially “inverted” chair conformations. The methylene hydrogen atoms were also 
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placed at calculated positions to improve their spatial geometries. Both DELU and SIMU 

restraints were utilized for certain structures to improve their thermal distributions 

defined by the 3×3 thermal tensor.            

            Carbon, hydrogen, and oxygen atoms were labeled according to previous 

gossypol structures studies in the literature. Three of the four structures contain no 

internal symmetry between each naphthalene ring system for DMG. The carbon atoms 

pertaining to the naphthalene rings are labeled 1-10 and 11-20. The five carbon atoms of 

substituents on the first naphthalene ring are numbered 21-25, and the five carbon atoms 

of substituents on the second ring system are assigned numbers 26-30. There exists a 

non-crystallographic pseudo 2-fold axis between the internapthyl bond between C2- and 

C12- atoms. The methoxy methyl groups are labeled C31 and C32. The oxygen atoms on 

the first naphthalene ring system are labeled O1-O4, and the oxygen atoms on the second 

naphthalene ring system are assigned labels O5-O8. The isopropyl groups are assigned 

numbers via the first and second ring. For instance, the carbon on the first ring is assigned 

C23 and the corresponding carbon on the second ring has a label increased by 10 units 

C33. Labeling of solvent structures begins with C40 and O9, and the minor component of 

cyclohexanone begins with C50.      

            The DMG molecule crystallizing in the C2/c space group (P2) has an asymmetric 

unit containing one half of the DMG molecule. The labeling of carbon atoms consisting 

of the naphthalene ring system begins with C1-C10. The carbon atoms pertaining to the 

periphery of the naphthalene ring are labeled C21-C25, and oxygen atoms are assigned 

O1-O4. The methoxy carbon group is assigned C31.   
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Results 
 
 
Molecular conformation 

 

 

           The four crystal structures contain DMG in of the aldehyde tautomeric form. All 

gossypol and DMG structures, so far, have reported the aldehyde form in the crystalline 

solid state (Figure 2).  

Least-squares planes were determined for each unique naphthalene ring in each 

crystal structure. Individual carbon positions generally don’t deviate significantly from 

the best-fit plane. However, variations of carbons positions from the planes were more 

prominent in both polymorphs than in the solvate structures. For example, the root-mean-

squared deviation for ring 2 in P1 is 0.108 Å and the root-mean-squared deviation for S2 

is 0.048 Å.  The naphthalene planes within each molecule are oriented in an 

approximately perpendicular fashion with dihedral angles ranging from 84.3 to 104.0 

degrees. Also the naphthalene rings are oriented so there is both hydrophobic and 

hydrophilic overlap between the rings of adjacent molecules.     

The DMG molecules exhibit intramolecular hydrogen bonding similar to 

gossypol. The hydroxyl hydrogen atom at carbon position 7 hydrogen bonds with the 

carbonyl oxygen atom at carbon position 6, and hydrogen bonding occurs between the 

hydroxyl hydrogen at carbon position 3 and the oxygen from the aldehyde group at 

carbon position 8. In all four DMG crystal motifs, the methoxy groups are oriented by 
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Figure 2. 6,6’-dimethoxygossypol (DMG) and solvate crystal structures. A.  DMG [P1] B.  DMG [P2] C.  DMG-H2O (1:1)  [S1] D. 

DMG-cyclohexanone (1:1) [S2].
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more than 80 degrees away from the naphthalene planes which is also observed in other 

DMG crystals. The DMG molecule contains four hydroxyl groups that may participate in 

hydrogen bonding, as opposed to the six hydroxyl groups in gossypol, and they are 

usually positioned within the plane of the naphthalene framework.  

The isopropyl groups for gossypol and DMG have similar spatial orientations. 

While there are differences in the spatial displacement of the isopropyl groups for all four 

DMG crystal structures, in general, they extend outward and away from the central 

naphthalene structures. The methyl groups position themselves in a similar spatial 

arrangement which has also been observed in gossypol crystal structures. The isopropyl 

groups do exhibit crowding of certain hydrogen atoms. The orientation of the H23 atom, 

from the isopropyl group, comes in close contact with the H4 atom within the 

naphthalene ring limiting the degrees of angular orientation from the naphthalene plane. 

The isopropyl group’s sigma bond between the C15 atom and C28 atom, however, allows 

for a degree of rotation of the isopropyl group that alleviates unfavorable steric 

interactions.  

Differences between the orientations of both isopropyl groups were observed for 

all DMG crystal structures except P2. Internal symmetry present in P2 resulted in both 

isopropyl groups having identical spatial geometries. Since the other crystal structures 

don’t possess internal symmetry, as in P2, the isopropyl group orientations are observed 

to be different for each half of the molecule (figure 2). P1 has an isopropyl group 

oriented away and outward from the central naphthalene ring while the other isopropyl 

group is more oriented towards the center of the naphthalene ring. The solvated structures 

contain less internal symmetry than the polymorphs primarily due to the presence of 
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guest molecules. The S1 structure contains an isopropyl group oriented away and 

outward from the center of the molecule like most DMG and gossypol isopropyl groups 

(figures 2 & 3). The second isopropyl group for S1 exists in a disordered state, with both 

an outward and inward position. The refined occupancy for the preferred position is 

83.8(4) % for the outward orientation and 16.2% for the inward orientation. The S2 

structure contains one isopropyl group positioned outward and away from the central 

structure. Similarly, the S2 structure contains the second isopropyl in a disordered state in 

both an inward and outward state (figure 3). In contrast, to S1, the S2 second isopropyl 

methyl groups favor the inward orientation at a refined occupancy of 67.5(6) %. The 

torsion angles for the outward orientation for the isopropyl groups are 8 and 34 degrees 

for S1 and S2 respectively.                      

              For S2, the cyclohexanone solvate is disordered and refinement yields 

occupancies of 22.2(4) % and 77.8(4) % for the two chair conformers. The hexagonal 

aliphatic ring system is assigned Cremer-Pople puckering parameters (q = 0.524 Å, O = 

9.4°, ψ = 161° for the major component; q = 0.527 Å, O = 6.3°, ψ = 136° for the minor 

component). The major and minor ring systems of cyclohexanone have similar Cremer-

Pople puckering parameters of pure crystalline cyclohexanone (q = 0.536 Å, O = 8.2°, ψ 

= 170°) [8].  

 

Crystal packing 

 

            DMG exhibits packing arrangements and internal symmetry similar to gossypol. 

The packing and molecular associations for gossypol crystal structures are extensive. 

Review papers by Ibragimov [139] and Gdaniec [133] have explored the different 
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Figure 3. Crystal disorder within 6, 6’-dimethoxygossypol (DMG) and solvates. A 

Isopropyl group in DMG:H2O (1:1) [S1].B Isopropyl group of DMG:cyclohexanone (1:1) 

[S2]. C cyclohexanone solvate in [S2]. 
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packing motifs, and these can be extended to DMG. Although DMG contains substituted 

methoxy groups in place of alcohol groups, it doesn’t appear to severely limit the range 

intramolecular bonding motifs that are found similarly in gossypol. DMG is still able to 

retain many of its centrosymmetric intermolecular associations. Gossypol commonly 

forms centrosymmetric dimer bundles that are fortified by hydrogen bonding between 

O5-H atoms and O3 atoms. Furthermore, hydrogen bonding between O4-H atoms and O5 

atom, along with hydrophobic stacking between the naphthalene rings further stabilizes 

dimer orientation. S1, S2, and P1 (figure 4a) have intermolecular hydrogen bonding 

between O5-H and O3 atoms. In contrast, the centrosymmetric dimer associations in P2 

are shifted, where the O1-H hydroxyl hydrogen atom hydrogen bonds to the O4 methoxy 

oxygen atom (figure 4b). S2 contains a greater degree of overlap between adjacent 

naphthalene rings. Additionally, the non-stacked naphthalene rings have a greater degree 

of overlap than what is observed in DMG dimmer orientations.     

           In S2, the centrosymmetric packing association between dimers is similar to the 

packing of gossypol-cyclohexanone (1:1) solvate crystal structures. Gossypol, however, 

is able to form columns from its centrosymmetric assemblies that arise from the 

intermolecular hydrogen bonding between O4-H and O8 atoms which is not present in 

DMG. The carbonyl oxygen atom, present in cyclohexanone, hydrogen bonds to the 

DMG O1 hydroxyl group. This solvate association is also present in the gossypol-

cyclohexanone (1:1) complex.  

           For S1, the DMG molecules organize themselves in the same fashion as in the 

DMG-acetic acid (1:1) crystal structure [140]. The packing motif for S1 is similar to the 

structural arrangement for Type-II triclinic inclusion compounds described by Gdaniec et 
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Figure 4. 6,6’-dimethoxygossypol (DMG) centrosymmetric dimer associations in the crystalline state, and atomic labeling of hydrogen 

(white) and oxygen atoms (red) that are in involved in hydrogen bonding between dimers. A. Top and side views of DMG dimer in 

P1. B. Top and side views of DMG dimer in P2. Shaded areas represent ring over lap from the top view perspective. Note that P2 

structure has greater ring overlap than the P1 structure.
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al. In S1, the guest water molecule interacts via hydrogen bonding donating to adjacent 

DMG molecules via the O6 carbonyl oxygen atom. Water guest molecules also hydrogen 

bond to the O7 hydroxyl oxygen atom, and the inclusion compounds are locked to the 

DMG dimers by a hydrogen bond existing between the O1-H… O9 atoms. The water 

molecules also form hydrogen bonds with the O6 carbonyl oxygen atom and O7 hydroxyl 

atoms that results with the water molecule interacting with adjacent DMG dimmers, 

forming large arrays of infinite columns (figures 5 & 6). The formation of these columns 

creates layers of repeating DMG units. The layers themselves are oriented where the 

polar groups point inward, thus creating hydrophobic surfaces on opposing sides of the 

layers. Overall, S1 has varying levels of structure. The primary structure involves 

interactions between adjacent DMG dimers that help in the assembly of infinite DMG 

columns forming a secondary structure. A tertiary structure is created by columns 

forming stacked layers.  

           The P1 structure exists in a structural geometry reminiscent of the known P1 

polymorph for gossypol. While centrosymmetric DMG dimers are formed, they don’t 

form secondary structures like repeating columns. Dimers are formed by hydrogen bonds 

between the O1 hydroxyl hydrogen atom and the O6 carbonyl oxygen atom located on 

the adjacent DMG molecule. The orientation of these dimers is perpendicular to dimer 

associations between the assemblies containing the O1 hydroxyl group. Extended pairs 

due to these interactions lock the dimer assemblies into serpentine chains that form a 

zigzag pattern (figure 7). The chains are stabilized further by hydrophobic interactions 

that aid in stacking between naphthalene rings that don’t encompass the O5-H… O3- 

hydrogen bonds.
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Figure 5. S1 column structures arising from 6,6’-dimethoxygossypol (DMG) dimers bridged by water molecules. Water molecules 

interact to the DMG dimers by an O1-H
…

 O9 hydrogen bond. The water molecules also participate in hydrogen bonding to the O7 

hydroxyl oxygen atom and the O6 carbonyl oxygen atom.
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Figure 6. Crystalline hydrogen bond associations of 6,6’-dimethoxygossypol (DMG) and neighboring water molecules. The water 

molecule acts as bridging molecule between centrosymmetric dimers that form columns in DMG:water (1:1) [S1].
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Figure 7. 6’,6- Dimethoxygossypol (DMG) centrosymmetric dimer associations in P1. Hydrogen bonds are formed between the O1 

hydroxyl hydrogen atom and the O6 carbonyl oxygen atom on the adjacent dimer. Overlap of the naphthalene rings contributes to 

hydrophobic staking, further stabilizing dimer associations. Dimer associations form into serpentine assemblies.
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            P2 contains a packing motif that has not been observed in previous gossypol 

complexes. The DMG molecules assemble in pairs of enantiomeric dimers forming 

centrosymmetric dimers. Furthermore, every DMG molecule forms a similar 

centrosymmetric arrangement with a second adjoining DMG molecule, resulting in a 

symmetrical column structure. The primary difference between P2 and P1 is that P2 

contains a shift in the hydrogen bonding and a greater degree of intercalation between the 

naphthalene ring pairs of the centrosymmetric dimer, which presumably confers closer 

packing of the DMG columns (figure 8). According to the guidelines provided by 

Gdaniec [133], P2 is similar to the Type-5a gossypol clathrate group(s). Gossypol crystal 

structures exhibiting Type-5 structures have been found with various hydrogen bonding 

patterns, and a variety of gossypol to solvent ratios. This suggests that gossypol Type-5 

structures have versatility in their method of packing. However, one important factor 

differentiates DMG from gossypol: induced de-solvation of Type-5 gossypol frameworks 

results in the destruction of the crystal form, while the DMG lattice is fixed without the 

presence of a guest molecule.  
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Figure 8. Column formation in P2 by overlapping centrosymmetric 6,6’-dimethoxygossypol (DMG) dimers. Dimers are associated by 

hydrogen bonds between the O1-H hydroxyl hydrogen atom donating to the O4 methoxy oxygen atom.
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Discussion 
 

 

           The number of solvates that gossypol can form is extensive, which includes 

organic molecules, such as esters, alcohols, nitriles, carboxylic acids, nitro compounds, 

ketones, ethers, and a multitude of aromatic compounds. Gossypol also forms solvates 

with compounds that are chlorinated or brominated. Despite gossypol’s ability to form an 

array of solvates its chemical and crystalline structure does limit the possibilities of guest 

molecules. Gossypol’s central framework consist of two planer naphthalene rings that are 

interconnected by a bridged bond that allows for each ring to be oriented with an 

interplaner angle of approximately 70-110°. The limited rotational range of gossypol’s 

naphthalene planes restricts its ability to achieve optimal packing. Gossypol’s alcohol and 

aldehyde groups provide numerous hydrogen bond donor and acceptor groups that 

provide for an assortment of possibilities in intermolecular hydrogen bonding. The 

geometric orientations of the hydrogen bonds, to a certain degree, are flexible and further 

add to the possible crystalline states that gossypol has the potential to accommodate. 

Moreover, gossypol’s polar functional groups residing on approximately one half of each 

naphthalene ring and aliphatic groups which reside on the other half of the rings create 

hydrophilic and hydrophobic domains on the molecule itself. In many instances, the 

assembly of these hydrophobic and hydrophilic regions creates a unique way neighboring 

gossypol molecules position themselves creating channels and/or cavities of alternating 

degrees of hydrophobicity or hydrophilicity. The above-mentioned features provide the 

basis for how gossypol molecules can accommodate various categories of guest 

molecules based on charge, topology, and size. As a consequence, gossypol has the 

ability to make a diverse arrangement of packing motifs in the crystalline solid state. The 
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number of possible polymorphic and inclusion complexes appears to be only limited by 

the amount of time and energy one is willing to invest in growing crystals. The McCrone 

statement holds steadfast for gossypol that “the number of forms known for a given 

compound is proportional to the time and energy spent in research on that compound.”  

DMG contains two methyl groups in place of the hydrogen atoms at the 6 and 6’ 

hydroxyl positions. Methylation decreases the number of alcohol groups that are able to 

contribute to intramolecular and intermolecular bonding. Since the methoxy groups orient 

themselves out of the extended naphthalene plane, it allows for the possibility of adjacent 

DMG molecules to pack in a more compact geometry without solvent. For that reason, 

one would assume that DMG molecules packing would be more restrictive and diminish 

its ability to form diverse packing motifs when compared to gossypol crystals. 

Furthermore, these restrictions would decrease the number of solvates that DMG could 

accommodate into its crystal lattice. Literature reports and our data supports the idea that 

DMG is limited in its ability to form solvates, since no solvates are formed with pentan-

2-one, diethyl ether, chloroform, and acetone under experimental conditions that 

gossypol readily forms solvates. Despite the methoxy groups that differentiate DMG 

from gossypol, DMG still retains a majority of the bonding characteristics of gossypol 

including the presence of hydrophobic and hydrophilic groups existing on the opposing 

planes of the naphthalene rings, the perpendicular orientation of the naphthalene rings, 

the planer geometry of the naphthalene rings, and the presence of aldehyde groups. The 

preservation of these key features in DMG, infers that it should still have the capacity to 

form solvates, and the observation that DMG has formed solvates with cyclohexanone, 

water, and acetic acid confirm this assumption.  
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           The known gossypol solvates serve as a starting point for predicting possible 

DMG crystals. Prior to our investigations, while acetone and cyclohexanone inclusion 

complexes had been observed for gossypol, only the cyclohexanone solvate had been 

successfully crystallized for DMG. According to Gdaniec et al. [133], cyclohexanone and 

acetone solvates, in gossypol, are classified as Type-1 packing arrangements where the 

O8-H hydroxyl hydrogen atom donates to the O4 oxygen atom. Type-1 compounds are 

further defined by having triclinic space groups and a 1:1 host-guest stoichiometric ratio. 

The intermolecular interaction appears to be weak for the gossypol-cyclohexanone (1:1) 

solvate which has a long donor-acceptor oxygen distance of 3.75 Angstroms. This 

particular weak interaction most likely occurs in order for the gossypol lattice to 

coordinate the large globular cyclohexanone molecule. In comparison, the DMG and 

cyclohexanone solvate form a similar intermolecular arrangement even with the 

substituted methyl groups in place of the hydroxyl groups. This demonstrates that the 

absence of these hydroxyl groups in not essential to the packing motif. Nevertheless, 

DMG does not form the same packing arrangement with acetone which leads to the 

conclusion that DMG will not consistently form similar packing arrangements similar to 

gossypol. DMG’s inability not to form solvates with acetone may be assumed to be 

primarily due to the loss of hydroxyl groups. Either the hydroxyl groups provide for a 

host lattice structure that thermodynamically favors incorporation of acetone or the 

hydroxyl groups participate on intermolecular hydrogen bonding. The above enforces the 

suggestion that DMG is more predisposed to forming non-solvated crystalline structures 

than gossypol in identical chemical environments. 
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           The DMG solvates of acetic acid and water, according to Gdaniec et al. [133], are 

representative of gossypol Type-2 triclinic inclusion compounds. In Type-2 gossypol 

complexes, the O8 and O4 hydroxyl groups do not interface with adjacent gossypol 

molecules but with guest molecules, where the guest molecule is coordinated as a 

hydrogen bond acceptor and hydrogen bond donor. The guest molecules representative in 

Type-2 structures includes protic molecules, such as alcohols like methanol and ethanol 

and aliphatic acids, and aprotic molecules. As in many gossypol solvates, there exists 

flexibility in which hydroxyl groups make themselves available for hydrogen and the 

methoxy groups adopt angular arrangements to accommodate the guest molecules. These 

observations indicate that DMG’s additional methyl groups do not hinder the packing 

arrangement of Type-2 solvate formation. Consequently, with this particular type of 

packing motif, the guest molecules act as a bridging structure that links centrosymmetric 

gossypol dimers into networks of columns and layers. The formation of multiple DMG 

structures with this organization affirms that the loss of the guest-host intermolecular 

interaction does not destabilize the packing order.   

           Gossypol readily forms solvates with pentan-2-one in the crystalline state; 

however DMG in similar conditions does not readily form solvates. According to 

Gdaniec et al. [133], gossypol solvated with pentan-2-one corresponds to Type-X 

(monoclinic; C2/c or P21/n; host-guest ratio 2:1) compounds. The host molecules formed 

are inter linked between the O4-H and O8-H atoms which account for four hydrogen 

bonds that generally give rise to layer-type assemblies. In addition, the O1-H hydroxyl 

atom is aligned to the aldehyde O-6 atom on the adjacent gossypol molecule and is 

related by a twofold axis. The gossypol naphthalene structures (C1 – C10) are oriented in 
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a manner that forms symmetrical cavities where guest molecules are inserted in the 

pockets. The host layers form alternating R and S enantiomeric assemblies of gossypol 

molecules. Consequently, the gossypol molecules do not form centrosymmetric dimers 

and the guest molecules interface with the O1-H hydroxyl group forming coordination-

assisted clathrates. The gossypol O1-H hydroxyl atoms position themselves on one wall 

of the cavity, and donate to the guest molecule’s carbonyl oxygen atom. Since 

intermolecular bonding between the O4-H and O8-H hydroxyl groups for Type-X 

compounds serve as the central backbone for this particular motif, methylation of the 

hydroxyl groups eradicates the hydrogen bonding between sub-assemblies. Although 

DMG still retains the ability to form bonds at the O1-H and the aldehyde O-6 atom it still 

not sufficient to stabilize this particular packing arrangement. These observations lead to 

the conclusion that Type-X solvates are not possible with DMG.  
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Conclusion 
 

 

The structures of four new crystalline forms of DMG have been determined [8]. 

These structures provide evidence that while DMG is limited in its intramolecular 

bonding with other molecules, when compared to gossypol, it still retains the ability to 

incorporate guest molecules into the crystalline state. Like gossypol, DMG contains a 

number of functional groups, internal symmetry, and possible alternate tautomeric states. 

In addition, DMG retains a great deal of the rich chemistry present in gossypol. Much of 

gossypol’s complex chemical behavior has been elucidated by x-ray diffraction studies, 

and while DMG possesses many of structural components of gossypol, the presence of 

the methyl groups or absence of the alcohol group provides a significant change in both 

the chemical and physical behavior of DMG. Thus, crystallographic analysis of DMG is 

needed to understand how substitution of the hydroxyl groups with methyl groups 

changes the overall chemistry of the molecule.   

             The DMG molecular arrangement for P1 has been reported by Gdaniec et al. 

[133] and is a common polymorph. This particular crystal structure provides data 

supporting the ability of DMG to form dimers and extended column like structures. The 

methylation present in DMG doesn’t structurally alter the naphthalene rings, allowing 

hydrophobic effects from the ring system to still play an integral component in crystal 

packing. 

            The P2 packing arrangement introduces a lattice composition that has not been 

observed in gossypol. It’s interesting to note that while DMG has a reduction in the 

possible positions for allowing hydrogen bonding and contains bulkier methyl subunits in 
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place of alcohol groups, the P2 structure appears to pack in a denser fashion that has not 

been observed in gossypol. Like the P1 crystal, P2 inherently displays a high degree of 

symmetry within its unit cell where each DMG molecules forms two centrosymmetric 

units with neighboring molecules. The packing arrangement for P2 is similar to Type-5a 

gossypol clathrates where the major differences correspond to the greater overlap in the 

naphthalene rings pairs of the centrosymmetric dimers. Type-5a gossypol clathrates 

exhibit variability in hydrogen bonding, making DMG a likely candidate for this 

particular packing scheme.  

            The packing arrangement for S1, as noted, introduces a DMG-clathrate 

organization that has not been seen in gossypol but has similarities to DMG-acetic acid. 

S1, according to Gdaniec et al. [133], infers Type-2 structure designation where host-

guest complexes are classified as coordination-assisted clathrates. While this packing 

arrangement is unique to DMG and not found for gossypol, S1 is still defined by a 

triclinic crystal system where the host aggregates, to a certain extent, can adjust to the 

requirements of the guest molecule as in gossypol. This supports further evidence that 

DMG, like gossypol, may be flexible in forming other clathrates. An assortment of Type-

2 gossypol complexes that have been observed forming clathrates with protic molecules, 

aliphatic acid homologs, and DMSO. The Type-2 structure suggests DMG may still 

retain some of the ability to form guest with molecules of the same chemical nature.  

The DMG-cyclohexanone crystal system S2 provides supporting evidence for the 

existence of intermolecular bonding similar to gossypol Type-1 systems. While both 

gossypol and DMG form clathrates with cyclohexanone, DMG is not able to form bonds 

between the O8-H hydroxyl hydrogen atoms to an O4 atom at an adjacent gossypol 
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molecule as observed in Type-1 gossypol systems. This observation suggests that the 

hydrogen bonding present in gossypol is not as critical for this particular molecular 

architecture. Such information on the intermolecular interactions would not be 

recognized without the determination of the S2 structure.  

            While the number of publications for gossypol far exceeds that of DMG, the 

numbers of crystal structures for DMG will more than likely increase in the future. Few 

structural studies of gossypol derivatives, other than amino based gossypol derivatives, 

are currently present in the literature and many gossypol derivatives are being 

investigated. For instance gossypolone, a well known derivative of gossypol that has 

proven to be a central in many paths for synthesizing other gossypol derivatives, has only 

one known structure determination. However because of active research with gossypol 

and its derivatives; x-ray structure analysis is providing indispensable amounts of 

information on the molecular behavior of these biological active molecules. Currently, at 

the fore front of this research are apogossypol, apogossypol derivatives, apogossypolone, 

and apogossypolone derivatives. While the biochemistry and physiology of apogossypol 

and its derivative are moderately understood, there have yet to be any crystal structures 

reported for these molecules. In the last 30 years, enzymology has greatly advanced 

because of molecular structural studies and studies of how enzymes interact with their 

molecular counterparts. Thus, x-ray structural analysis of apogossypol and its derivative 

coupled with modeling and activity studies are crucial in providing a better understanding 

the biochemical mechanisms of these molecules in anticancer activity and other 

pharmacological effects.   
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            Future research endeavors will include not only attempts in generating new 

crystal forms of gossypol and gossypol derivatives, but will also include detailed charge 

density studies based on accurate high-resolution crystallographic data sets. Charge 

density studies yield three dimensional maps of the valance electron distribution that 

compromise the most chemically active regions of atoms and molecules [136]. The 

electron maps are calculated by taking a large number of intensity observations from the 

crystals being studied. Once the data is acquired, it’s processed and refined using various 

statistical programs and imaging software.  

            The core principle of charge density maps is to build a quantum mechanically 

derived electron distribution centered on the precise atomic positional framework of the 

solved x-ray data. Quantum mechanics provides the central mathematical model for the 

charge density within the crystal. The electron distribution within the molecule is 

described by a “multipole” model that has the same spherical harmonic angular functions 

as wavefunctions that are solutions to the three dimensional Schrödinger equation. The 

electron mappings provide a highly detailed analytical description of the electronic 

distribution within atoms and molecules (figure 9). Using the Atoms in Molecules Theory 

[141], properties can be extracted from the multipole maps which include the curvature of 

the charge distribution, critical points, maximum, minimum, saddle, deformation density, 

electrostatic potential, and a number of other properties.  
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