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ABSTRACT 

 

 In this thesis we propose an automated process for the removal of non-precipitation 

echoes present in weather radar signals and accurate detection of rainfall. The process 

employs multifractal analysis using directional Gabor wavelets for accurate detection of 

the rain events.  An optoelectronic joint transform correlator is proposed to provide ultra 

fast processing and wavelet analysis.  

 Computer simulations of the proposed system show that the proposed algorithm is 

successful in the detecting rainfall accurately in radar images. The accuracy of the 

algorithms proposed are compared to accurate results that were generated under expert 

supervision. Results of the proposed system are also compared to results of QC algorithm 

for the ground validation software (GVS) used by TRMM ground validity Project and a 

previous QC algorithm. Several statistical measures computed for different reflectivity 

ranges show that the proposed algorithm gives accuracy as high as 98.95%, which exceed 

the 97.46% maximum accuracy for the GVS results. Also, the minimum error rate 

obtained by the proposed algorithm for different dB ranges decreases to 1.09% whereas 

the GVS results show a minimum error rate of 1.80%. The rain rate accumulation 

confirms the success of the proposed algorithm in the accurate removal of non-

precipitation echoes and a higher precision in rain accumulation estimates.  
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CHAPTER 1 

1. INTRODUCTION  

 
 Weather plays an important part in people’s lives today affecting day-to-day 

activities. Therefore, weather forecasting on the seasonal scale has become increasingly 

significant to make important decisions on a daily basis. Weather forecasting is not a new 

concept and the art dates back to the 650 B.C. In those days the predictions for short-term 

weather changes were made depending on the appearance of the clouds. The Greek 

philosopher Aristotle presented several theories related to the weather forecast until the 

seventeenth century. Numerous attempts were made over the centuries to produce 

weather forecast all based on the weather knowledge, experience and individual 

observations. Eventually this was found to be inadequate and a need for added knowledge 

regarding the atmosphere was felt. It was not until the fourteenth century that several 

instruments were invented to measure data which would make meteorological 

observations which would improve weather predictions. In the mid-nineteenth century 

several weather observation sites were set up across the globe where not only 

meteorological observations were made but, the data could also be exchanged between 

different sites. This data was then studied by observers’ and weather maps drawn. As 

these observation networks rapidly extended over the globe more and more data was 

available everywhere increasing knowledge facilitating weather forecast. Several 

instruments were developed which would make meteorological observations like the 

pressure, temperature and moisture. This data was then transmitted to the ground stations 

where they were fed into computers. One of the well known practices adopted is the 

launching of balloons in the air which record different meteorological parameters like 

temperature, pressure, humidity, speed of wind which is then transmitted and recorded in 

the computers.  

1.1. History of Weather Radars 

 The radar technology employed in the mid nineteenth century has resulted in a 

breakthrough in making accurate weather forecasts. Radars were used to detect, locate 
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and measure the amount of precipitations in the atmosphere by meteorologists. These 

were interpreted as colorful areas in the radar images. Initial radar images were in 

grayscale however; with the advent of modern technology the demand for color imagery 

was stimulated. Current radar images are colored with wide range of intensity which 

helps the precipitation identifiable. The National Weather Service (NWS) provides 

weather, hydrologic, and climate forecasts and warnings for the United States, its 

territories, adjacent waters, and ocean areas for the protection of life and property and the 

enhancement of the national economy. In 1980 the United States Weather Services 

deployed NEXRAD (Next Generation Weather Radar) system which has 137 Doppler 

radars (called WSR-88D) throughout the country. The image data from all these sites is 

collected to detect the presence of precipitation in the atmosphere.  

 

1.2. Problem Description 

 Though the radar images which are expected to depict only precipitations in 

weather they also include a lot of false information affecting its quality of the decision. 

Hence it is extremely important to analyze the images and to detect and eliminate this 

false information from the radar image retaining only the precipitation echoes. This 

process basically is referred to as the quality control. Quality control of radar image is 

thus important major step involved after the acquisition of the images. Previous quality 

control methods were based on just the visual observation of the image data. This 

required experienced personnel who made decisions on the basis of his experiences and 

knowledge. However, this subjective analysis was rather slow and not completely 

reliable. Thus, these limitations demanded a faster quality control process with minimum 

human interference i.e. automation. With the massive use of computers, several 

algorithms have since been generated to provide effective quality control algorithms. The 

TRMM (Tropical Rainfall Measurement Mission) satellite launched by the NASA has 

developed a quality control algorithm which makes use of echo height and reflectivity 

values. However it is not completely automated and involves a high number of 

parameters. Research in this area has been extensively done and algorithms employing 

different methods are used. Some of the algorithm use neural networks, fuzzy logic 

which involves use of several parameters like the temperature, reflectivity, velocity, echo 
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heights and many more. One such quality control algorithm makes use of multifractal 

analysis along with the textural and intensity information. Hence, there is a need for the 

development of systems and algorithms which are: accurate in the detection of rain 

events and elimination of false echoes, automated to minimized or eliminated human 

supervision, and fast to provide response in or close to real-time. 

 

1.3. Multifractal Analysis and Wavelets 

 Radar images have shown to exhibit a lot of irregularity and can be treated as 

texture images. They do not have regular textures which can be defined by simple 

models. In this irregularity is embedded a lot of essential information which can help in 

analyzing the image and hence cannot be disregarded. Use of multifractal analysis is not 

new and it has been employed in the area of geophysics and proved to be successful in 

image analysis [13-16]. However, very few quality control algorithms are present in the 

literatures which are based on multifractal analysis. The multifractal analysis mainly 

exploits the scale invariant behavior of the images. This analysis aids in extracting 

underlying information in the texture of the image. Multifractal analysis is helpful in 

characterizing radar images based on the textural information and also in improving the 

quality control. Another significant feature of the radar images is its directionality. This 

directionality feature of the radar images can be exploited to acquire important 

information.  

 Wavelets analysis can be employed to extract features such as directionality from 

the images. Roots of wavelet analysis date back to the eighteenth century and its uses in 

modern technology are quite common. The major advantage of wavelets is the ability to 

characterize textural properties in multiple resolutions. Thus, the application of wavelets 

analysis for irregular image textures, like radar images has been a helpful tool for radar 

image analysis [14,17]. Directional wavelets can be used to characterize the directionality 

of the radar images at different scales. The idea is to analyze the image using different 

directions of the wavelets to extract useful information. 
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1.4. Optical Processing 

 The quality control algorithms using multifractal analysis certainly involve 

extensive image analysis. With the inclusion of the directional wavelets the task becomes 

even more complex and slow. Thus, these computationally intensive operations often are 

time consuming. Consequently, the need for some way to ensure fast quality control 

arises.  

 Optical processing has the potential for providing the processing power needed for 

real-time analysis of weather images. Optical processing is not an innovative field and its 

use dates back to the eighteenth century. Optical signal processing has witnessed a rapid 

growth in recent years. The speed of optical systems and its massive parallelism of make 

it possible for real time image processing. Another advantage of the optical processing is 

the ability to generate the Fourier transforms using a simple converging lens and at the 

speed it takes the coherent light to pass through the lens. The most time consuming 

operations in the image processing are the filtering and wavelet processing operations. 

Performing these operations optically would ensure a speedy computation without 

compromising the quality of the algorithm. 

  

1.5. Thesis Organization 

 This thesis is organized into five major chapters. Chapter 2 deals with the basics of 

radar imagery. It describes the operation of the NEXRAD weather radar system and 

acquisition of the weather radar images. In chapter 3 the concept of quality control in 

weather radar images is introduced. It presents the different quality control algorithm 

pertinent to this thesis. It also is devoted to the explanation of the quality control 

algorithm proposed in this thesis. Chapter 4 describes the role of optics in this thesis. It 

gives an overview of the optics and is devoted exclusively to the optical implementation 

of the algorithm proposed in the thesis. The results and comparisons of the proposed 

algorithm are presented in chapter 5 along with performance measures and comparisons 

to other algorithms. Finally, chapter 6 presents the conclusion of the work in this thesis 

and suggestions for future work in this field. Finally, the appendix comprises of the 
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original test images used for every hour, the corresponding results obtained using the 

proposed algorithm and the accurate rain events. 
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CHAPTER 2 

2. NEXRAD AND WEATHER RADAR 

 
2.1. Background  [3],[4] 

The current radar system used by the United States National Weather Services 

sites is known as NEXRAD which is an acronym for NEXt Generation Weather RADar. 

These sites provide meteorological data and the official designation is WSR-88D 

(Weather Service Radar 1988 – Doppler).  It uses the advanced Doppler type radar 

network and has replaced the conventional radar. The Doppler radar as the name suggests 

works on the basis of the Doppler Theory. It detects the change in the frequency or 

wavelengths of the storms that move towards or away the radar. This concept is used to 

derive all the velocity products obtained by the radar. 

2.1.1. Workings of the NEXRAD 

 The radar transmitter creates pulses of radio waves, which are focused in a beam by 

an antenna and is transmitted through the atmosphere. Targets scatter the electromagnetic 

energy is in all directions and a fraction of this scattered energy returns back to the radar. 

This backscattered radiation is called the “radar echo”. The process is depicted in Fig.2.1. 

 

 

 

 

 

 

 

 

 

 

 

Returned signal / 
Radar Echo 

Radar pulse 

Distant 
targets 

Radar beam

Radar 
Transmitter/ 
Receiver 

Fig.  2.1 Working of the Radar 
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 The magnitude of the reflected signal is directly proportional to the size of the 

object in the path of the beam and is analyzed by computers. The NEXRAD being a 

Doppler radar also detects the "shift in the phase" of the reflected signals caused by the 

motion of the objects in the atmosphere.  

The complete process of transmitting the electromagnetic pulses, listening to the 

returned signal, and emitting the next pulse is a extremely fast and takes place for about 

1300 times every second. The radar spends quite a long period in listening to the reflected 

signals. When the total transmission and listening time of the radar is calculated it’s 

understood that the former takes place just for 7 seconds in each hour while the rest of the 

time is spent in listening to the reflected signals. The radar dish makes 360O azimuth 

scans for different elevations. The radar images used in the thesis were acquired from the 

radar site at Melbourne, Florida on March 31, 1999. These images that were scanned for 

24 hours by the radar for every 9 minutes are acquired at the lowest two elevations.   

2.1.2. Precipitation Echoes 

 Precipitation occurs when cloud particles become too heavy to remain 

suspended in the air and fall to the earth in the forms of hail, rain, freezing rain, sleet or 

snow. Precipitations intercepted by the radar beam is scattered at different rates 

depending on the movement of the distant targets like precipitation and in different 

directions. The reflected signals from the precipitation, known as “precipitation echoes” 

are assembled to produce the radar reflectivity images. The precipitation intensity 

(reflectivity) is measured in dBZ which is actually the local radar base reflectivity 

product. Larger precipitations and higher precipitation concentration produces a stronger 

radar echo seen as high dBZ reflectivity value in the radar image.  While radars can 

detect precipitation, it does not detect the condensation that forms the clouds. The time 

elapsed between the transmission and reception of the pulse at the radar and the 

orientation of the radar antenna is used to determine the location of events.  
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2.1.3. Non-Precipitation Echoes 

Radars can usually detect most intense precipitations within a certain range, 

typically 5dBZ-75 dBZ.  However, light rain, snow or drizzle from shallow cloud 

weather systems is not necessarily detected. In addition to this, radar reflectivity images 

may depict false echoes mainly caused by the following effects:  

Atmospheric Effects: The majority of the non-precipitation echoes in radar images is 

caused by anomalous propagation. These are legitimate meteorological, non-precipitation 

phenomenon detected by the radar and not a result of the radar errors. The anomalous 

propagation occurs in specific atmospheric conditions when the typical state of the 

atmosphere is reversed. In this particular non-standard condition the atmosphere is cool 

near the ground and warmer higher up and appears typically on clear nights with calm 

winds. This consequently causes temperature variation between the cool air near the 

ground and the layer of warm air above, which in-turn causes the difference in the density 

in the air. When the radar beam travels through the atmosphere in these conditions the 

refracted radar beam is reflected back to the radar and it appears as a strong echo in the 

radar images. Echoes from this atmospheric phenomenon are usually characterized by 

large uniformly colored areas usually centered on the radar site. 

 

Ground Clutter: These non-precipitation echoes are a result of the reflections that are 

caused by the radar beam side lobes as seen in Fig. 2.2. The energy from the side lobes 

reflected back to the radar by non-weather related ground objects like tall buildings, hills 

which appear as strong echoes in the radar reflectivity image. As the presence of these 

objects is inevitable, this type of non-precipitation echoes appears in almost all radar 

reflectivity images and are known as “ground clutter”. Other semi-stationary objects such 

as fluttering leaves and cars also produce ground clutter returns. The ground clutter 

generally appears near the radar as a circular region with a random pattern. It has a have 

high reflectivity value due to the high density of the target and it exhibits rapidly 

changing intensities in an unrealistic fashion. These characteristics are atypical of the 

precipitation echoes and make ground clutter easily identifiable in the radar images.  
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Side lobe 
signal 

Backscattered 
radiation 

Main radar 
beam 

Radar 
Transmitter/ 
Receiver 

Fig.  2.2 Ground Clutter 

 
False Echoes: In addition to pulses reflected from the precipitation, energy is also 

reflected from moving objects like aircraft, areas of smoke or ash. The reflected signals 

from large fires, swarms of insects, flocks of birds or even the surface appear in almost 

all radar reflectivity images.  

 

Beam Spreading: The radar beam spreading is not a result of an inaccuracy in the radar 

but just a result of the beam characteristics. The radar beam is focused in a shape of a 

cone as seen in Fig.2.1 with its tip at the radar site. As the beam progresses into the 

atmosphere it starts to widen. In this process the energy of the radar beam is attenuated as 

the targets in the path of the radar beam absorb energy. Also, the energy reflected from 

the targets close to the radar will be greater. This affects the resolution of the radar. As a 

result the reflectivity value will be lower even if it is from actual precipitation leading to 

inaccuracies.  

 

    Due to the aforementioned effects, the weather images acquired from the weather 

radars is not an accurate depiction of the actual rainfall. It is not always the case that high 

reflectivity values correspond to precipitations echoes but are sometimes a result of 

pulses reflected back from non-precipitation related objects.  Therefore, it becomes 

extremely necessary to distinguish between these non-precipitation echoes and the 

precipitation echoes to provide accurate detection. To reduce non-precipitation echoes 

radars can be set to operate in two basic modes: ‘clear air mode’ and ‘precipitation mode’ 

depending on the significant and insignificant precipitation in the atmosphere 

respectively.  
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Clear Air Mode: The radar operates in the ‘clear mode’ when the atmosphere is clear and 

there is no significant precipitation in the atmosphere. In this operating mode the radar 

becomes more sensitive so that it can detect very small precipitation if present in the 

atmosphere. Due to the absence of significant precipitation the radar scans and acquires 

an image every 10 minutes. Moreover, it also scans at few elevations (typically 5).  

 

Precipitation Mode:  The radar switches to the precipitation mode when the amount of 

precipitation in the atmosphere is very high. In such conditions it is not required for the 

radar to be very sensitive and hence the radar is less sensitive. However, it provides 

higher resolution for stronger. Unlike the ‘clear air mode’ the radar operating in this 

mode scans for more number of times producing images every 6 minutes. Also, it uses 

more number of elevations (typically 9) and a greater range. Thus, the maximum 

precipitation echoes are detected by the weather radar.  

 However, these precautions do not eliminate the possibility of introducing 

undesirable echoes in the radar images. Some non-precipitation echoes like ground clutter 

can be easily detected and removed by viewing, but others cannot be easily identified. 

Also, over-interpretation can result in errors when echoes are mistaken to be stronger 

than actual. 
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Fig.  2.3 Reflectivity image at elevation 1 
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Fig.  2.4 Reflectivity image at elevation 2 
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Fig.  2.5 Actual precipitation echoes 

 
 The images seen in Fig.2.3 and Fig.2.4 were acquired from the radar site situated at 

Melbourne, Florida on 31, March 1991 at two different elevations. The image in Fig 2.3 

is acquired at a lower elevation and it can be observed that it contains a lot of non-

precipitation echoes along with the precipitation echoes. On the other hand the image in 

Fig. 2.4 is acquired at a higher elevation and as discussed it has a considerably few non-

precipitation echoes. Fig. 2.5 depicts the image with only the precipitation echoes 

present. As can be seen, the ground clutter at the center of the images as well as the lower 

reflectivity value echoes surrounding the actual precipitation echoes caused due to 

atmospheric effects are eliminated. 
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CHAPTER 3 

3. QUALITY CONTROL 

 
3.1. Identifying Precipitation 

 Reflectivity can be defined as the amount of energy that is reflected back to the 

radar receiver from a precipitation, as compared to a reference power density at a distance 

of 1 meter from the radar antenna. It is apparent from the previous sections that the radar 

base reflectivity product image is an interpretation of the radar echoes detected by the 

radar receiver for a 360-degree volume scan at every elevation. However, the operational 

characteristics have their own limitations resulting in the corruption of the data discussed 

in preceding section 2.1.3. Apart from the consequence of anomalous propagation, the 

radar beam misses a lot of information at higher elevations. It is necessary that the 

undesired false information be removed or corrected from the acquired image data. The 

process of extracting accurate data and the removal of false data related to rainfall is 

referred as the ‘quality control’ (QC).  

 Knowing the characteristics of precipitation and non-precipitation echoes helps in 

discriminating one from the other. The operating mode of the radar indicates the 

proportionality between the reflectivity values and the strength of precipitation. 

Accordingly, the intensity of the precipitation can be examined and a preliminary 

distinction between the different echoes can be made. The following table shows how 

precipitation intensity corresponds with the dBZ values: 

Table 3.1 Relation between reflectivity values and precipitation intensity 

 
Range (dBZ) Precipitation intensity 

15-30 Light 

30-45 Moderate 

45 and higher Heavy 

 

 It is known that precipitation usually reflects at least 15 dBZ and hence values 

below this do not represent any significant precipitation. Precipitation has a characteristic 
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look and with practice one can identify the precipitations. One such image shown in Fig. 

3.1 depicts a typical base reflectivity radar image from a particular radar site.  

 

 

 

 

 

 

 

 

 

 

 

Fig.  3.1 Base Reflectivity Image 
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 The radar image was acquired from Melbourne, Florida on March 31, 1999. The 

color bar on the lower left hand corner shows the reflectivity values corresponding to 

different colors. As seen in the figure at the center of the radar there are echoes, which 

follow a random pattern and also have high values. These are mainly the ground clutter 

returns explained in the previous section. There are also some other pixels in the image, 

which are spread out in a random fashion and have low values and can be identified as 

non-precipitation echoes. While the larger areas with high reflectivity values and uniform 

patterns are the precipitation echoes. Though non-precipitation echoes and non-

precipitation echoes with distinguishable characteristics can be classified by observing 

just one image it is also important to study adjacent images to make an accurate 

classification. The reflectivity values can used to convert to rainfall rate using a simple 

equation. The relationship between the rainfall rate R (units) and the reflectivity Z (units) 

can be derived from [1] as, 

3
2

300
⎟
⎠
⎞

⎜
⎝
⎛=

ZR
                                                                         ……....……………………… (1) 
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 However, these methods are subjective and do not provide accurate and reliable 

results. All these limitations generate the necessity for developing an automated process 

which would provide fast and accurate results without the need for human supervision or 

feedback.  Numerous algorithms have been proposed based on different techniques like 

fuzzy logic rules [6], reflectivity neural networks [5].  

 

3.1.1. WSR-88D Quality Control 

 The QC algorithm [6] used in the national Weather Service’s WSR-88D makes use 

of the fuzzy logic to identify echoes. It makes use of moments, which are the mean radial 

velocity field, the standard deviation of the radial velocity field, the vertical difference of 

the reflectivity and the mean spectrum width field. These are used by three different 

algorithms to classify the radar echoes. The description of this algorithm is beyond the 

scope of this thesis and is detailed in [11] for reference. The major disadvantage [130] of 

this approach is that it is a relatively complex process that involves many parameters. 

Another limitation of the process is it inefficiency to detect mixed precipitation i.e. 

ground clutter embedded in precipitation [24]. 

 

3.1.2. Radar Data Quality Control 

 The Tropical Rainfall Measuring Mission (TRMM) is a joint mission between 

NASA and the Japan Aerospace Exploration Agency (JAXA). It is designed to monitor 

and study the tropical rainfall. The TRMM office provides support to the Global 

Validation Program (GVP), which consists of 10 or more different ground validation sites 

over the tropics.  Radar data is collected from all these different sites which is then 

processed and analyzed to determine the rainfall and related parameters.   

 A software referred as the Global Validation Software (GVS) is developed for the 

GVP. The software has a set of programs for three different levels. The quality control of 

the radar reflectivity image is performed in level 1. The quality control algorithm is 

referred to as the 1C-51 algorithm [10]. 
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3.1.2.1. The IC-51 Algorithm 

 The objective of the 1C-51 algorithm is to improve the quality of the radar 

reflectivity images by removing the non-precipitation echoes caused by anomalous 

propagation and other effects. It uses eight different parameters: three echo height 

(maximum height of reflectivity above a certain threshold) thresholds and five radar 

reflectivity thresholds. These parameters are adjusted so as to optimize the performance 

of the algorithm. A brief description of the 1C-51 algorithm is given below [10],[12]. 

1. Check in a ~5x5 km2 area in polar coordinates. 

2. Height checks are made only when the top volume scan is higher than the 

examined volume. 

3. Remove echo if any of the 4 criteria are satisfied: 

i (Ztop < H3.or.  Zmax(3 km) ≤ Z1) .and. (Zmax(H1)<Z3) 

   ii  Ztop < H2 

 iii Zmax(1.5 km) < Z0 

 iv (Z > dBZnoise .and. Z ≤ Z2) in lowest tilt 

 

The parameters H1, H2, and H3 represent echo height thresholds, Z0, Z1, Z2, Z3, and 

dBZnoise are the reflectivity thresholds, and Z is a reflectivity value. 

 The major limitation of this algorithm is that it is time consuming and tedious. It 

requires an experienced analyst who can select a different set of parameters for optimal 

performance. Also, the process must be repeated for every volume scan. In addition to 

this the process the literature shows [10] that it sometimes requires several iterations for 

every parameter until an optimal set of parameters is achieved. Thus, the shortcoming of 

the 1C-51 quality control algorithm is that it is not fully automated and requires human 

intervention. 
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3.1.3. Multifractal Analysis 

 Radar images have shown to display extreme variability. It has a lot of irregular 

but essential information. Multifractals have been successfully used for characterizing 

meteorological radar data to characterize the inhomogeneities of the radar images [13-

16].  The scale independent multifractal analysis of the radar images helps to study 

precipitation echoes at various scales.  The multifractals formulation can be done by a 

variety of different techniques. The following describes the approach for QC from which 

is the basis for the QC algorithm proposed in this thesis. 

 

3.1.3.1.  Scale-Invariant Multifractal Analysis  

   Consider a N-dimensional signal denoted as f(x1 , x2 ,….., xN ). The 

multifractal analysis of an N-dimensional signal f(x1 , x2 ,….., xN )  is deployed to 

characterize the different statistical characteristics of the signal f. The signal is 

characterized by observing its behavior at different scales and establishing a scale-

independent relationship. This is done by evaluating a statistical measure (µq) for every 

location with co-ordinates (x1 , x2 ,…, xN ) in the signal at different scales ‘s’. A “partition 

function” denoted as ‹εq
s› is defined for this statistical measure. This partition function is 

actually the qth moment ensemble average of the measure which is scale dependent. The 

statistical measure µq(s,)  is defined as 

),...,(),...,,( 2121 N
q
sNq xxxxxxs εµ =                                        …….………..………………(2) 

where sε  is defined as 

              …………………………….(3) ∑∑
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and, s denotes the scale and q denotes the power 

 Eq. (2) described the ensemble average as the sum of the value of the function ‘f’ 

inside a box of size s x s x s x s …x s centered at location (x1 , x2 ,…,xN ). The scale 

independent statistical behavior of the function f can be inspected by changing the 

statistical moments around the location (x1 , x2 ,…, xN ) at every scale. A power-law 
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relation between the partition function and the scale parameter under consideration is 

developed. If a single power law exponent is adequate for describing the statistics of the 

function then the model is referred to as a monofractal. Since only a single scale can be 

used to describe the function statistics the model is said to have a monoscaling behavior. 

However, if more that one exponent is required to characterize the statistics of the 

function then the model is referred to as a multifractal and is said to have multiscaling 

behavior. For a discrete function the power law relation can be defined as  
)(~ qKq

s sε    ……………………………. (4) 

where the function K(q) is the moment scaling function which is responsible for 

characterizing the multifractal behavior of the signal f. Similarly, if a single exponent is 

adequate to characterize all the statistics within the family that it’s said to show 

monofractal behavior. On the other hand, if more than one exponent is enough to 

characterize all the statistics within the family than it shows multifractality. Appling a log 

on both the sides of equation (4) results in, 

)log(
log

)(
s

qK
q
sε=    …………………………….(5) 

The slope of the line that best fits the points (log(s), log‹εq
s›) where, s = s1,s2,…..sL 

(shown in ascending order) can be an estimation of the function K(q). 

3.1.3.2.   Multifractal Based QC  

 The preceding section described how moments can be generation for of 

scale-independent multifractal analysis. This section explains how the multifractal 

analysis is used for QC as described in [1].  The QC algorithm in [1] is applied to both 

the textural and the intensity information. Only two radar reflectivity images acquired at 

two lower level elevations are used because they have the maximum information. It is in 

these elevations that non-precipitation echoes are present to a greater extent. Each radar 

pixel in the image corresponds to and area of 1 km2. the textural information is significant 

for differentiating non-precipitation echoes from precipitation echoes. This information is 

characterized by the multifractal exponents given in equation (5).  The non-precipitation 
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echoes exhibit a larger spatial variability in both the horizontal and vertical directions 

which produce more negative valued exponents. Precipitation echoes have a higher 

correlation with the neighboring pixels compared to the non-precipitation echoes. 

Intensity information is analyzed to exploit this feature. The objective of the algorithm is 

achieved by first extracting the textural information at different scales using multifractal 

exponents and then analyzing the intensity information of the radar image. Prior to 

processing it is necessary to convert the radar reflectivity image from the polar to the 

Cartesian form. This is done so that the conventional textural analysis can be performed 

in the image data. Also, for the computation of the multifractal exponents the reflectivity 

values are converted to linear units. The following sub-sections give a detailed 

description of the computation of the multifractal exponents and the steps involved in the 

QC algorithm in [1] in detail. 

 

3.1.3.3. Description of the QC algorithm [1] 

 The multifractal exponent K(q) characterizes the multifractal behavior of a given 

function – the function in this case being the two dimensional radar image.  If the 

function is a temporally stationary signal, the ensemble average ‹εq
s› is practically 

approximated by a spatial filter. Since the images are considered at two different 

elevations, the multifractal exponent is computed in 3-dimensional blocks. 

 The multifractal QC algorithm uses two scales, s1 and s2, in which the µq measure 

is computed in a 3-D box expressed as: 
q

q zyxfzyxs )],,([),,,( 1 =µ                            …….……………………… (6) 
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where, x is the position in the x-direction, y is the position in the y-direction, and z is the 

elevation. 

 The measure µq (s1,x,y,z) is essentially the reflectivity value of a pixel with 

coordinates (x,y,z) in the radar image raised to a power q. The measure µq (s2,x,y) derived 

at scale s2 is eventually derived from a 2-D box which is explained further in the section. 
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 To make the separation between the non-precipitation and precipitation echoes 

evident to a greater extent the multifractal exponent K(q) is  computed in small windows 

of the radar image. To do so the ensemble average in equation (4) is approximated with a 

spatial average of the measures in small three-dimensional windows. The ensemble 

averages for the scales s1 and s2 are expressed as, 
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where, w is window size. In this work two window sizes were selected: a 1x1x1 pixels 

window and 8x8x1 pixels window.  

When using two scales the multifractal exponent K(q) in (5) is modified to  
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Fig.  3.2 Radar volume scan 

 

The scale s can be related to the volume (V) of the three dimensional box as follows, 
3 Vs =                                                                  …………………..………… (11) 
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and, 

ddRV ∆××= )(2π                                                              ……………………………… (12) 

where,  d denoted the distance from the radar ,R (d) is the beam width at distance d from 

the radar, and ∆d  is the  disk width of the radar beam as seen in Fig. 3.2. 

Since the filter size used is 3 x 3, the number of pixels considered in every elevation is 

nine.  The resulting equation after applying log to the above equation (11) becomes  

))(log()3/1()log( 2
1 ddRs ∆××= π                                ... …………………………… (13) 

log (s2) = 18 x π x R2(d) x ∆d                               ……..  ……………………….. (14) 

where 18 represents the number of pixels considered from both elevations. Equation (14) 

can be written as follows, 

))(log()3/1()18log()3/1()log( 2
2 ddRs ∆××+= π      ……..……………………….. (15) 

 

The difference between equation (13) and equation (15) is the constant (1/3) log (18). 

This proves that the exact knowledge of s1 and s2 is not required. 

 

The multifractal QC algorithm computes the measures using two different powers, 2 and 

8. The multifractal analysis yields four exponents corresponding to each scale and each 

power which are denoted as Kw
x,y(q) where w:(w1, w2)=(1,8) and q:(q1, q2)=(2,8). 

The flowchart in Fig. 3.2 depicts the final stages of  the QC algorithm [1]. 
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Step 1 

 
Fig.  3.3 QC algorithm flow diagram 

 
Step 1: In this step each multifractal exponent is compared with a specific threshold. If 

any of the multifractal exponents have a value greater than the specified threshold the 

pixel is labeled as rain. These thresholds are crossover points of the histograms of rain 

versus non-rain events of the training images. These images are used with expert 

guidance that exactly identifies the areas of rain and non-rain. 

 

Step 2: It is possible that the pixels which were actually rain were erroneously labeled as 

non rain. In step two a check is done to identify these pixels and to reactivate them. The 

original reflectivity image at elevation one is averaged by a window size of 20x20 and 

the center pixel value is compared with a specific predetermined threshold. Also, the 

original reflectivity image at elevation two is averaged by a window size of 5x5 and the 

center pixel value is compared with another specific predetermined threshold. If any pixel 

in any of the elevations has a value larger than the threshold the pixel is checked for each 

multifractal exponent value greater than the new respective ’soft’ thresholds. In case the 

multifractal exponent value is smaller than the new thresholds the pixel is labeled as rain 

and reactivated. Again the thresholds are obtained from histograms of rain versus non-

rain events in the training images. 
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Step 3: In this step non-rain pixels that were mislabeled by steps 1 and 2, are identified 

and eliminated. The thresholding in this step is applied only to the reflectivity image 

obtained from the lower radar elevation. This image is averaged by using a spatial filter 

of size 3x3 pixels and the center pixel value is compared with a noise threshold. If the 

pixel value is smaller than the threshold it is labeled as non-rain and eliminated. 

The result is an image that shows the rain events with the non-precipitation echoes 

eliminated. This noise threshold is also evaluated from the training images. 

Following Fig. 3.4 shows the raw radar images acquired at 02:19 hrs on March 31, 1999 

at elevation 1. As seen it contains both the precipitation and the non-precipitation echoes, 

some of which are marked based on subjective analysis. 
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Fig.  3.4 Original image at elevation 1 
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Fig.  3.5 Result of Step 1 

 
 

 
 

Fig. 3.6 Result of Step 2 
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Fig.  3.7 Result of Step 3 
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 Figure 3.5 to 3.7 depict the intermediate results at various steps of the described 

process. Fig. 3.5 gives the results after the first thresholding in step 1. The white pixels 

are labeled as rain. Although, majority of the pixels are retained, due to values of the 

background pixels, this is taken care of in step 3. Fig. 3.6 shows the result after step 2. 

Although the difference is very difficult to view, some pixels that were eliminated as 

non-rain in step2 are reactivated back. Fig 3.7 depicts the results at the end of the last 

deactivation step. It can be clearly seen that most of the non-precipitation echoes are 

removed. Finally the last Fig. 3.8 shows the final result of the QC algorithm. The echoes 

that were identified by the QC algorithm as precipitation are marked in the original image 

given in Fig.3.4. Also, the marked areas also show the areas that are identified as non-

precipitation echoes and eliminated by the QC algorithm, which can clearly be seen 

missing in the final result seen in Fig. 3.8. However, it should be understood that though 

the QC algorithm does remove or retain the pixels dependent on the values neither all 

actual rain pixels are retained nor all actual non-rain pixels are eliminated.  

 

3.1.4. Proposed QC Algorithm 

 Each of the QC algorithms described in the preceding sections 3.1.1-3.1.3 

requires numerous parameters to optimize the performance of the QC algorithm. The QC 

algorithm described in Section 3.1.3 overcomes this limitation but uses average spatial 

filters which take into account the intensity of the textural features only. The presence of 

the sharp edges in these filters introduces high frequency components adding false 

information. Another very significant textual feature exhibited by the precipitation echoes 

in radar images is directionality. Directionality basically refers to the orientation of the 

echoes in certain direction. Exploitation of this aspect in radar images can better improve 

the detection of precipitation echoes. However, none of the aforementioned QC 

algorithms make an attempt to utilize this aspect of the radar images. The textural feature 

of the radar images is important for discriminating between precipitation echoes and non- 

precipitation echoes for the following reason. Non-precipitation events occur in a random 

fashion. This is due to the fact that they are dependent on various factors that do not have 

any structure. These factors are explained in section 2.1.3. As opposed to this, the 
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precipitation echoes occur in a more spatially correlated manner. This is because the 

cause of precipitation has a typical pattern as explained in section 2.1.2. Thus 

precipitation echo events exhibit a particular directionality in their texture. However the 

non-precipitation echoes do not demonstrate any such behavior. Thus the directionality of 

the precipitation echoes in the radar images enhances its distinction from non-

precipitation echoes. The main motivation behind the development of the proposed 

algorithm was to exploit this feature in the texture of the precipitation echoes in radar 

images to achieve superior QC. 

 The idea is implemented by applying various directional wavelets to the radar 

images to better differentiate the precipitation echoes from other directionless non-

precipitation echoes.  The algorithm eliminates the use of average spatial filters assuring 

that no additional undesired information is introduced in the data. 

 

3.1.4.1. Gabor Wavelets 

  Gabor wavelets have proven to be a very useful tool in image processing 

especially for the texture analysis and are widely adopted in the literature [17, 19]. They 

have been demonstrated to be very useful in detection of the texture direction.  The major 

advantage of the Gabor wavelet analysis over the Fourier Transform is that it can achieve 

optimal direction in both spatial and frequency domain. The Gabor filters are band pass 

filters with tunable center frequency, orientation and bandwidth.  The Gabor wavelets are 

a set of filters that have the ability to analyze the directional aspect of a given data. 

Properly tuned Gabor wavelets react strongly to specific texture and weakly to others. 

These basic characteristics of the Gabor wavelets served the purpose of the proposed 

algorithm, i.e. of exploiting the directionality of the radar images. A Gabor function is a 

Gaussian function modulated by an oriented complex sinusoidal signal. 

A 2-D Gabor wavelet in the spatial domain is defined as: 

(x,y)s(x,y)w g(x,y) r=  …..……………………….. (16) 

where, s (x,y) denotes the  complex sinusoidal carrier and wr(x,y) is the 2-D Gaussian 

shaped  envelop. The carrier s (x,y) the envelop wr(x,y) are expressed as, 
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P))y)vxπ(u(j(s(x,y) ++= 002exp  ….……………………….. (17) 

)))()((exp( 2
0

22
0

2
rrr y-ybx-xa-πK(x,y)w +=  ….……………………….. (18) 

As evident from the equations (16) to (18) the complex Gabor wavelet can be defined by 

using the following nine parameters, 
(u0, v0)   denotes the spatial frequency in the Cartesian coordinates   

(x0, y0) denotes the  peak of the function 

 P is the phase of the sinusoidal carrier 

a, b  are the scaling parameters of the Gaussian in (3) 

θ is the rotation angle of the Gaussian envelope 

r   subscript stands for a rotation operation such that, 

θ)(y-y)(x-x)(x-x r sincos 000 += θ  ….……………………….. (19)

θ)(y-y)-(x-x)(y-y r cossin 000 += θ  ….……………………….. (20) 

The following Fig. 3.9 depicts a Gabor wavelet of size 21, scaling parameters x and y 

direction as 8 and 2 respectively in three different orientations (θ). 
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 Fig.  3.9 Gabor filter at different orientations 

 
 In this thesis the Gabor wavelets are used at different orientations to analyze the 

radar images. It is obvious that, the process would produce a large response when the 

wavelet is more finely tuned to frequency and orientation characteristics of the echoes. 

Thus, the Gabor wavelet tuned at optimal settings would exploit the directionality of 
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precipitation echoes present in the radar images. The approach was to use the Gabor 

wavelets in conjunction with the multifractal analysis to characterize the directionality of 

the texture of the radar images. The obtained textural information would aid in a more 

comprehensible distinction between the precipitation and the non-precipitation echoes.  

Gabor wavelets with optimal set of orientations were used to filter the radar 

images. These filtered results were then used further to compute multifractals. Echoes 

which were oriented with a particular wavelet would give better response.  

 The replacement of the spatial average filter by a Gabor wavelet and Gaussian filter 

also eliminated the high frequency components that were introduced by the averaging 

square filter. This is a result of the smoothness due to the absence of sharp edges in the 

Gabor and Gaussian filter  

  

3.1.4.2. The Proposed QC algorithm 

 The proposed QC algorithm uses similar multifractal analysis as used in  

the QC algorithm in [1]. The computations of the two scales used for the construction  

of the multifractals are very similar to that of the previous algorithm. However there are 

some modifications that have been implemented to extract more useful information that 

can help better discriminate between precipitation echoes and non-precipitation echoes. 

The proposed QC algorithm uses Gabor wavelets to exploit the directionality in the 

precipitation echoes. It then applies multifractal analysis for scale-invariant 

characterization of radar images. The proposed QC algorithm uses two different scales to 

extract the textural information in the radar images. The radar images used are acquired 

from two elevations. The multifractal behavior in the radar images is characterized by 

multifractal exponents. The multifractal exponents at each scale are computed and used 

to categorize a pixel as rain or non-rain. The description of the process involved at the 

two scales is given below and the corresponding flowchart depicted in Figs. 3.10 and 

3.11. 

 

Scale 1 (Refer to Fig. 3.10): This scale is used to enhance the local irregularities in the 

textures of the images. Every pixel in the radar images at the elevation 1 (Im1) and 
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elevation 2 (Im2) is raised to a power q. These images are placed one over the other to 

form a 3-D box then convolved with the Gabor wavelet (denoted as Gabor (θ) in Fig. 

3.10) at different orientations instead of a simple average filter as described in [1]. The 

result at every orientation (M1) is eventually used to compute a multifractal exponent 

K(q) as described in section 3.1.3.3. From section 3.1.3.2 we are well acquainted with the 

fact that the non-precipitation echoes have larger variability than a rain event. Also, a rain 

event doesn’t show sudden changes in values. They rather, vary uniformly over a certain 

area. It was observed that depending on the type of echoes and their directionality, the 

multifractals will consequently have lower values for non-precipitation echoes while the 

rain echoes will have high values. However, this would not be the case for all 

multifractals as it also depends on the direction of the different echoes. The basic 

difference between the proposed QC algorithm and the QC algorithm mentioned in 

section 3.1.3.2 is the replacement of the average filter by Gabor wavelets. Also, unlike a 

single multifractal exponent obtained in the previous QC algorithm, a multifractal 

exponent corresponding to every orientation is obtained in the proposed QC algorithm. 
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Fig.  3.10 Steps in Scale 1 
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Scale 2 (Refer to Fig. 3.11):  In this scale the variation of the texture over a larger area, 

i.e. the global distinction of the texture, is obtained. As seen in Fig.3.11 the images at two 

lower elevations (Im1 and Im2) are added together and the result is filtered with a 

Gaussian filter (denoted as Gaussian in the flowchart in Fig.3.12) instead of the average 

filter described in section 3.1.3.3. The lower radar elevation image depicts non-rain 

echoes to a greater extent than the radar image at higher elevation. Although, most of the 

non-rain echoes visible in the lower elevation are eliminated in the higher elevation, there 

is a high possibility of certain rain echoes being absent in it. Hence, the two elevations 

are combined together so that the resulting image has values contributed by both 

elevations. Also, it is considered that rain reflectivity values do not have abrupt alteration 

[1]. Hence, to enhance this characteristic a small Gaussian averaging window of size 3x3 

is used. The advantage of using a Gaussian filter is that, unlike the averaging filter in QC 

algorithm in mentioned in section 3.1.3.2 is that, it does not artificially introduce any high 

frequency components into the output due to its smooth edges. Thus it reduces the 

chances of erroneous results.  

The resulting image is then raised to the power q to enhance the variation of the 

values. This is then filtered using a Gabor wavelet with same set of orientations as used 

for scale 1. The result would eventually produce a multifractal (M2), which would make 

the discrimination between the rain and non-rain event more evident. Fig.3.11 depicts the 

steps that are involved in computing the ensemble average. 

 

 

 

 

 

 

 

 

 

 

 

 



32 

 

 

 

Convolved 
with Gaussian

^q

^q

^q

^q <εq
s2> 

Convolved 
with Gabor   

 

 

 

 

 

 

 

 

 

Fig.  3.11 Steps in Scale 2 

 
A local multifractal (L1 and L2) is obtained by filtering the images obtained at 

each scale using a 1x1x2 average filter to produce the local information in the two radar 

elevation images. As apparent from the preceding section another set of multifractals (M1 

and M2) is obtained as result of the filtering using Gabor filter for each orientation. The 

flowchart in Fig. 3.12 summarizes the process.  
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Fig.  3.12 Flowchart of steps at scales 
  

 It was observed that each multifractal enhanced the difference between rain 

events and the non-rain events depending on the orientation of the Gabor filter. It was a 

difficult and a complex task to extract out the best multifractal to be further used. Hence, 

a new concept of computing a maximum multifractal was applied. This can be supported 

by the fact that the nature of the precipitation echoes would result in the multifractal 

exponents having a relative larger value as compared to the non-precipitation echoes. 

This is unlike the QC algorithm in [1] which does not use such a concept as it does not 

involve multiple orientations. A maximum multifractal is essentially the multifractal, 

which contains only the maximum values amongst the multifractals obtained for all the 

orientations. This multifractal still retains the characteristics of the radar images that are 

necessary for the rain and non-rain discrimination.  

 After the computation of the multifractal exponents i.e. local as well as the Gabor 

filtered multifractals, they are passed through different thresholding steps. The decision is 

based on the textural multifractal exponents as well as the intensity data from reflectivity 

images. The original reflectivity images are also passed through some of these 
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thresholding steps.  The QC algorithm uses this combined information and makes a 

decision at the end of every step. This decision results in a pixel being identified as either 

rain or non-rain. 

 After the development of the algorithm the subsequent segments comprised of two 

main parts which are the training and the testing of the algorithms. The database used 

constituted of radar reflectivity images which were acquired on March 31, 1999 from the 

site Melbourne, Florida. It was a typical day which comprised of varying degree of 

rainfall over the 24 hours.  The following sections provide a detailed description of the 

training stage involved in development of the algorithm. 

3.1.4.3. Training  

  Training is a vital part of the algorithm development wherein selection of the 

different parameters is done to achieve best quality results. The advantage of training is 

the reduction of the algorithmic complexity. The choice of the parameters is a trade off 

between the quality of the results and the complexity of the algorithm. The training of the 

images for the proposed algorithm involves computation of the optimal thresholds for the 

different steps, optimal parameters for the Gabor filter. The training set consisted of five 

images which were randomly chosen from the data base. All the images had varying 

amount of precipitation which assisted to improve the robustness of the algorithm.  

The training set consisted of the 5 images acquired at the following hours: 01:09hrs, 

06:09hrs, 10:09 hrs, 18:09 hrs, 23:09 hrs shown in the order 1 to 5. 

 The thresholds are determined based on the normalized histograms of the two 

multifractals i.e. local multifractals and the maximum multifractal. First the histograms 

for the rain and the non-rain events were computed from the multifractal exponents. The 

histograms are estimates of the probability density functions of the two multifractal 

exponents. The performance of the proposed algorithm was evaluated by evaluating how 

well the two histograms were separated from each other. For this evaluation the following 

two techniques were used.  
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3.1.4.4. t-test 

The t-test is commonly used for statistical analysis. It is used in this thesis to 

evaluate the performance of the proposed algorithm. The t-test is used to determine 

whether there is a significant difference between the means of two samples. Usually the 

test works well for normally distributed data, which is not strictly the case in the thesis. 

However, we conveniently assumed that the samples in this case are normally distributed.  

The t-value, which deter mines the degree of separation between the two 

samples, is defined as: 
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where,  1µ  and 2µ  are the means of the two distributions and  and  are the 

standard deviations of the two distributions. 
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Fig.  3.13  Examples of distributions 

 
The distribution shown in Fig 3.13(a) has less overlap which denotes that both of them 

have significantly different means. However, in Fig. 3.13(b) the two distributions have a 

high overlap due to closely similar means. Thus, the t-value gives a measure of the 

difference between the means of two distributions. A smaller t-value signifies a higher 

overlap while a higher t-value reflects a greater separation between the two distributions. 

This is the measure used to evaluate the separation between the normalized histograms of 

the rain and the non-rain events.    
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3.1.4.5. Receiver operating characteristics (ROC) test 

 ROC curves are commonly used in the field of communications to estimate 

the ability of a feature to discriminate between the data samples of two classes (c1,c2). 

The classifier employs a hard threshold to classify this data. If x* is the threshold used to 

compute the probability of a sample belonging to any of the above class then, the 

following four probabilities exist, 

P (x > x* | x∈c2): a hit, i.e. a data sample of c2 is classified as that of c2. 
P (x > x* | x∈c1): a false alarm, i.e. a data sample of c1 is classified as that of c2. 
P (x < x* | x∈c2): a miss, i.e. a data sample of c2 is classified as that of c1. 
P (x < x* | x∈c1): a correct rejection, i.e. a data sample of c1 is classified as that of c1. 
 

The ROC curve is computed by increasing the threshold x* from the start of the c2 range 

to its end and plotting the correct rejection rate against the miss rate. Accordingly, the 

curves for the three different cases are shown in Fig.3.14. The y-axis in the ROC curves 

represents the probability of correct rejection. This is the probability that a sample 

belonging from class c1 is correctly identified and rejected as not belonging to class c2. 
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Fig.  3.14 Different ROC curves (a) Case 1 (b) Case 2 (c) Case 3 

 
 The classes in Fig.3.14 (a) show a complete overlap resulting in the ROC curve 

being a straight line. This is the worst case and the area under the ROC curve will have a 

value of 0.5. In other words the probability of a sample being actually from class c1 but 

identified erroneously as from class c1 is 50%.  The case in Fig. 3.14 (c) shows no 
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overlap at all between the two classes. This is the best case and results in a ROC curve 

area of 1.0. Fig 3.14 (b) is an intermediate case wherein there is a partial overlap between 

the two classes resulting in a smooth ROC curve. Thus depending on the different cases 

the area under the ROC curve will vary between 0.5 to 1.0. In this thesis the value of the 

area under the ROC curve is desired as close as possible to 1.0 ensuring maximum 

separation between the two classes (histograms). 

 

 The above two tests were used to evaluate the training images. In other words 

evaluation was based on how well the histograms were separated. The normalized 

histograms for the five training images were computed for the local multifractal exponent 

and the maximum multifractal exponent. The average of all the normalized histograms 

was computed and the results are shown in Figs. 3.15 and 3.16. 

 

 
Fig.  3.15 Normalized histogram for local multifractal exponents 
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0.16

 

Fig.  3.16 Normalized histogram for Maximum Multifractals exponent 

 
 The blue curve represents the normalized histogram for non-rain and the red curve 

on the other hand represents the normalized histogram for rain. From Fig.3.15 and 

Fig.3.16 it can be observed that the two histograms in are well separated. This can be 

proved by the t-test values and the ROC values given in the table 3.2. 

 

Table 3.2 t-test and ROC values 

Histograms t-test value ROC value 

Local multifractal exponent 1.726 0.957 

Max. multifractal exponent 1.569 0.944 

Crossover  0.582 0.216 

 

 

 As evident from the figures in Table 3.2 the t-test values, for normalized 

histograms of both the local multifractal exponent maximum multifractal exponent is 

acceptable. Also, the ROC values for the normalized histograms of the local and 

maximum multifractal exponent are very much closer to 1.0. These results verify the 
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adequate separation between the rain and non-rain events in the radar images. Thus it can 

be noticed that the multifractal exponents can discriminate between the precipitation and 

the non-precipitation echoes. 

 The normalized histograms are estimates of probability density functions of two 

exponents. Assuming that the occurrence of the rain and non-rain echoes has ‘equal’ 

probability the optimal threshold estimate is the one for which the probability density 

functions are equal. Thus the optimal threshold is the crossover point of the two 

histograms. Thus the strict thresholds used in the Step 1 over the multifractal exponents is 

chosen as the crossover points for both the local and maximum multifractal exponent. 

The relaxed thresholds in step 2 used for reactivation of the rain pixels are values chosen 

left of the crossover points on the left. This increases the probability of more rain pixels 

being reactivated. The thresholds used for the reflectivity images used in step 2 and the 

noise threshold used in step 3 are similar to those used in [1].  

 The thresholds used for neighboring pixel activation in step 4 were based on the 

fact that precipitation values occurred between 0-75dB. Hence, to avoid abrupt edges of 

the precipitation echoes detected in steps 1-3 the threshold chosen was a low value of 5 

dB. The choice of the threshold in the last step 5 was a trade off as; in the centre area of 

200x200 pixels the intensity was higher for non-precipitation echoes. However, they 

follow a random pattern and so a threshold that differentiates between the precipitation 

and non precipitation echoes within the area was chosen which was 0.12 dB.  

  
Table 3.3 Thresholds for different steps 

 
Thresholds for steps  Multifractal exponents  Reflectivity images 

 Local  Maximum   

Strict  0.6 0.2 NA 

Relaxed  0.5 0.1  

Reactivation of edge 

pixels  

NA NA 4 

Clutter mask  

 

NA 0.12 NA 
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 Table 3.3 shows the thresholds values that were chosen for multifractal exponents 

or reflectivity images for every corresponding step. Some of the cells are blank as not 

every step involves computation of threshold on multifractal exponents and the 

reflectivity images. For example the last step i.e. in the clutter mask removal the 

thresholding is done only on the maximum multifractal exponent and hence 

corresponding threshold is included. Thus, only the thresholds involving a particular 

image for every step is tabulated. 

 

Another significant section of the training was the evaluation of optimal parameters for 

the Gabor wavelets.  

Table 3.4 Parameters values for Gabor wavelets 

 
Parameters for Gabor wavelets 

Scale Steps of angles Size  

x y degrees 

21 8 2 15 

 
 
 

 
 
 

 
 

These parameters related to the Gabor wavelets were essentially the step changes in the 

orientations and the variances of the Gaussian window in both the x and y direction. The 

orientation step sizes were analyzed ranging from 1 degree to 30 degrees. The various 

combinations of the x and y direction variances, ranging from 2 to 20, were analyzed.  

After multiple attempts and satisfactory results the optimal set of parameters were chosen 

to be, an orientation step size of 15 degrees, variance in x-direction as 8 and variance in 

y-direction as 2.  All these values corresponding to each parameter are clearly tabulated 

in Table. 3.4 

A detailed description of different steps involved in the proposed QC algorithm follows 

below. Steps 1-3 are essentially similar to the steps used in QC algorithm in [1].  

 

Step 1: After all the multifractals corresponding to the combination of the different filter 

orientation and the power ‘q’ =2 are computed, they are passed through a strict 
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thresholding. These thresholds, TH1 =0.6 dBZ and TH2 =0.2 dBZ, are computed from the 

training process that is explained in section 3.1.4.3 

 

Step 2: The possibility of an actual rain pixel being labeled as non-rain and eliminated in 

step 1 cannot be ruled out completely. The basic reason for this is the application of strict 

thresholds used in step 1. Hence, it is necessary to find and reactivate these pixels. This is 

done using the actual reflectivity images and the multifractal exponents.  

  

 A window p1 of size 20x20 is used to average the image obtained at first 

elevation and is compared with a specific threshold THint1 =25 dBZ. Another window 

p2 of size 5x5 is used for averaging the image obtained at the second elevation and the 

values below the threshold THint2 =20 are clipped. The choice of the window sizes is 

based on the nature of the precipitation echoes present in both the elevations. The 

precipitation reflectivity values are expected to be high and widespread in the first 

(lower) elevation as compared to that in the higher elevation. Thus a large averaging 

window is used. This is empirically chosen to be 20 based on the training data set. 

However, in the second (higher) elevation image, the precipitation echoes are lower and 

less widespread than the lower elevation image. Thus the size of the averaging window is 

smaller. This is empirically chosen to be 5 based on the training data set. 

Hence, thresholding on the reflectivity images selects these pixels which have the 

probability of being precipitation echoes. These are then cross checked by comparing the 

pixels in the multifractal exponents with new thresholds TH1rex=0.5 and TH2rex =0.1 

These thresholds are relaxed thresholds compared to the ones used in step 1. If any of the 

values in the multifractal exponent is smaller than these thresholds then the pixel at that 

particular location is identified as rain and is reactivated. Once again the thresholds are 

calculated from the normalized histograms of the rain and non-rain events. 

 

Step 3: There is also a possibility that the pixels, which were actually non-rain, passed 

through the above steps and were mislabeled. To eliminate these pixels the lower 

elevation image is averaged using a window size 3x3 and is compared to a noise 
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threshold THint
3 =4. If the value is smaller than the noise threshold those pixels are 

identified as non-rain and are removed. 

 

Step 4: Echoes belonging to rain event have smooth edges do not exhibit sudden changes.  

Therefore, the algorithm reactivates pixels neighboring the rain events. These pixels are 

identified and reactivated if they are greater than a particular threshold THn
4=5 dBZ. The 

threshold chosen is a little higher then the noise threshold used in step 3. This threshold 

needs to be low enough such that even the mild rain events surrounding the strong rain 

events are reactivated. However it should not be as low as the noise threshold, else the 

random noise surrounding the main rain event will also be identified as rain. Thus the 

threshold THn
4 was chosen to be 5 dBZ. 

 

Step 5: It is observed that in many cases a lot of non-precipitation clutter is located in the 

center 200x200 pixel area. This clutter is inevitable and is present in almost all of the 

images. A lot of these events do have high intensity values and can be mistaken as rain. 

Thus, a lot of these clutter pixels are labeled as rain in the previous steps and it is 

important that these pixels be identified and deactivated. Hence, an additional step was 

included in the proposed QC algorithm. For these 200x200 pixels around the radar center, 

the multifractal exponents are checked for values less than a new threshold THclut
5 =0.12. 

If the pixels have values less than this threshold they are identified as non-rain and are 

eliminated to obtain the final product. 

 

Step 5 yields the final image that comprises of only the rain events identified by the 

proposed QC algorithm. Fig.3.17 depicts the flowchart showing the different steps 

involved in the QC algorithm after the computation of the multifractal exponents. 
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Fig.  3.17 Flowchart after computation of multifractals. 
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Fig.  3.18 Original reflectivity image at elevation 1 
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Fig.  3.19 Output image after step 1 
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Fig.  3.20 Output image after step 2 
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Fig.  3.21 Output image after step 3 

 
 
 
 
 
 
 

 



47 

 
 

 50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

Clutter to be 
eliminated 

Fig.  3.22 Output image after step 4 
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Fig.  3.23 Output image after step 5 
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Fig.  3.24 Final Output image 

 
 Fig.3.18 shows the original reflectivity image obtained at 15:09 hrs on March 

31,1999 at the lowest elevation. The precipitation and the non-precipitation echoes which 

are retained and eliminated respectively by the proposed QC algorithm are clearly 

marked in the figure. Figures 3.19 through 3.24 show the outputs at each step of the 

algorithm and the final output obtained. As explained before the image in step 1 is result 

of a hard thresholding done on the multifractal exponents. The result is depicted in Fig. 

3.19 where the white areas are the ones identified as rain by the QC algorithm while the 

rest is labeled as non-rain. Result after the end of Step 2 which is pixel reactivation is 

depicted in Fig. 3.20. It can be seen that there is not much difference in the two images. 

The reason being the choice of threshold in step 1 due to which, most of the rain pixels 

are already chosen. Thus, very few pixels are left to be reactivated back in step2. The 

results at the end the final thresholding step 3 is given in Fig. 3.21 It is obvious that 

several pixels are eliminated as they are identified as non-rain in step 3.  In Fig.3.22 it can 

be seen that the pixels surrounding the rain events are activated back in the image in step 

4.  The last step is the clutter removal step 5 in which the clutter pixels in the centre 200 x 

200 area in the image are identified and eliminated. This result is given in Fig.3.23 and 

the pixels which were removed are marked in Fig. 3.22. Finally, the Fig. 3.24 shows the 
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image which is the final output of the proposed QC algorithm. The difference between 

the original reflectivity image in Fig.3.8 and the final processed image in Fig. 3.24 can 

clearly be seen. It can be observed that the non-precipitation echoes are removed while 

the precipitation echoes are retained. These are correspondingly marked in Fig.3.18  

3.1.4.6. Testing 

 The testing set comprised of 15 images which were selected randomly from the 

database. None of these test images were the ones selected as training images. The 

images were selected so that the amount of precipitation ranged from low to high. 

Following list depicts the hours at which the test images were acquired. 

02:09 hrs,04:09 hrs,05:09 hrs,07:09 hrs,08:09 hrs,11:09 hrs,12:09 hrs,14:09 hrs,15:09 

hrs,16:09 hrs,17:09 hrs,20:09 hrs,21:09 hrs,22:09 hrs,24:09 hrs 

3.1.4.6.1. Evaluation of the Performance of the proposed algorithm 
 
 The evaluation of performance of the proposed algorithm is done by comparing 

the accurate rain events with the results obtained by using each of the following 

algorithms  

• the proposed QC algorithm : These are the results obtained by using the QC 

algorithm proposed in this thesis discussed in section 3.1.4.2 

• the GVS (Ground Validation Software) : These are the results obtained by the QC 

algorithm used by the TRMM project discussed in section 3.1.2.1 

• the QC algorithm in [1]: These are the results obtained by the QC algorithm 

described in [1] which is also discussed in section 3.1.3.2 

 As discussed before the images used for these evaluations were obtained from the 

NEXRAD site located in Melbourne, FL.  

 Although, a comparison can be made between the results of the GVS, QC 

algorithm in [1] and the proposed algorithm, it is understood that these results are not 

perfect. This implies that not all the non-rain is removed and not all rain is retained [1]. 

Hence, accurate rain events were computed on subjective analysis under expert 

supervision and all the three algorithm results were compared with the same. 
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 The images worked on were taken from a set of radar images acquired on a 

particular day. Several images were chosen for the training and testing from the early and 

end hours of the day, which comprise of a varied amount of rainfall.  

  

3.1.4.6.2. Statistical Measures 
 
 As subjective analysis of the results do not distinctly convey the performance of the 

proposed QC algorithm, some statistical measures were required for evaluation of the 

performance of the proposed QC algorithm. The a description of the statistical measures 

used for the analysis in the testing and training stages is given below; 

[i] Errors: 

Errors are classified in two categories as given below 

• Misses:  

This measure gives the percentage of the pixels that were missed by the 

proposed QC algorithm. These are the number of pixels, which were 

identified as rain pixels by the accurate rain events but were missed by the QC 

algorithms. 

• False Alarms: 

This measure gives the percentage of the pixels that were erroneously retained 

by the QC algorithms. It gives the number of pixels, which were identified as 

non-rain pixels by the accurate rain events but were detected as rain pixels by 

the other QC algorithms. 

 

[ii] Accuracy 

This measure evaluates the accuracy of the QC algorithms. It is the number of 

pixels, which are identified as rain or non-rain pixels in the accurate rain events and were 

respectively detected correctly as rain and non-rain pixels by the QC algorithms. 
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[iii]Signal to Noise Ratio 

This is the usual signal to noise ratio of the results obtained by the QC algorithm as 

compared to the accurate rain events.  

 

It is acknowledged that the significance of precipitation is directly proportional to 

the value of reflectivity. Thus, it is fair to evaluate the above statistical measure for 

different ranges of reflectivity values. Another, basis of this evaluation is that the 

reflectivity values less than 20dB do not contribute a lot to the rainfall whereas, greater 

values make a major contribution towards rainfall in the radar image. And hence, the 

ranges above 20 dB are of interest and are significant in evaluating the performance of 

the algorithm. 

 

 The testing images were processed using the proposed QC algorithm and the 

different statistical measures extracted. The statistical measures were also extracted for 

the results of the other two QC algorithms. All the results and the corresponding 

statistical measures are given in the chapter 5.   
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CHAPTER 4 

4. OPTICAL PROCESSING 

 
4.1. Introduction 

 The roots of optical processing extend back to the late 1850’s [26].1 Since then 

optical signal processing technology continues to grow at a rapid pace. The development 

of the laser in 1960 initiated a revolution in this field. The consequences of that 

revolution are still unfolding. Another application of optics signal processing is optical 

image processing. Vander Lugt [27, 28] introduced the first optical correlator in 1963 

containing the spatial matched filter which opened the era of coherent optical image 

processing.  Last decade has witnessed the development of the traditional area of optical 

information processing using Fourier optics. Hybrid optoelectronic systems that use 

optics and electronic comprise a powerful processing technology. The quality control 

algorithm proposed in this thesis is a combination of optical and digital processing  

 

4.2. Advantages of Optics 

 Numerous advantages of light over the conventional electronic systems have 

enhanced the efficacy and the need for the optical system today. Following are listed the 

major benefits offered by the optical processing systems which give them an edge over 

electronic systems when it comes to image processing. 

 

High Speed: The information in the optical systems is carried by photons. These photons 

have a very high information carrying capacity. They travel at the speed of light (3 x 108 

m/sec) thus transmitting the information encoded onto them at the same speed. This 

results in the processing taking place at the speed of light which is the major advantage of 

optical processing.  
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Massive Parallelism: In optical processing systems the entire pattern can be processed at 

the same time. The data encoded onto the photons is processed simultaneously at the 

same instant. Parallel processing can be implemented without a cost to computation time 

or complexity. This is much quicker as compared to the electronic systems where each 

pixel or picture element is processed sequentially. Also, different images can be 

processed simultaneously. This is definitely a vital feature since the processing time is 

minimized significantly.   

 

Real time: Due to the features like higher bandwidth and connectivity of the optical 

systems many image processing can be implemented in real time. The NEXRAD 

acquires each image every 5 minutes. Hence, it is extremely necessary that the processing 

of an image is fully completed before the next image is acquired. The real time response 

of optical processing makes these systems more advantageous over their electronic 

counterpart. 

 

Design Complexity: The optical processing is easy to realize once the optical setup is 

ready. Once the optical system is set up no new adjustments are necessary. The images 

can be simply loaded /unloaded changed and the processing takes place without any 

difficulty. The system involves simple and very low cost optical components which make 

its use very economic. 

4.3. Optical Components 

 An optical processing system comprises of numerous components. This section 

discusses the different and important components encompassed in the optical system in 

the thesis. 

 

Light Source 
 
 In an optical system the information/data is carried by the light. There are different 

types of light sources available and the most common amongst all are the light emitting 

diodes (LED’s), lasers, and laser diodes. The sources are chosen based on compactness, 

response speed, bandwidth, and application.  
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Mirrors 

Mirrors are used to steer light beams. They can be flat or have curved surfaces 

designed to converge or diverge beams. The mirrors are employed to control the direction 

of the light beam.   

Beam Splitters 

Beam splitters are devices comprised of prisms or two-way mirrors used to split 

the incoming light beams into two directions or combine incoming beams into a single 

beam. These optical devices control the flow of light in an optical system. 

 

Lenses 

  The lenses are an integral part of any optical system. Converging lens can perform 

two main tasks: 

a) Collimation of the light beams: The lenses are used to collimate the light beams so as 

to focus them in the desirable direction in an optical system. 

 b) Compute the 2-D Fourier transform and in its inverse transform: This is one of the 

properties of the lens that make them significant in optical systems used for image 

processing. It forms the basis for most of the analog optical processing 

 A converging lens when placed at a distance of focal length from an image 

produces its Fourier transform at a distance of one focal length away from the lens. Fig 

4.1 depicts this property of the lens. The transparency has the input image p(x,y), loaded 

onto it. When the light beams from the coherent light source with wavelength λ passes 

through the transparency, it is modulated by the contents of the transparency resulting in 

the image encoded on the light beam.  
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Fig.  4.1 Fourier transform property of a lens 

 
 When light beam passes through an ordinary converging lens it is integrated and 

converged onto the focal point on the output. The lens acts as a phase element causing a 

phase delay in each segment of light. This phase delay is dependent on the thickness of 

the lens. This effect is equivalent to a linear phase factor present in the integral form of 

the corresponding Fourier transform. Thus the combined effect of the phase factor on the 

corresponding integral generates the effect similar to that of Fourier transform on the 

input. 

This operation can be mathematically expressed as follows, 
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where, A is the amplitude of the wave, λ is the wavelength of the light, fc is the focal 

length of the lens, P is the image, x1,y1  are the coordinates in the x and y -direction 

respectively of the input image and x2, y2 are the coordinates in the x and y -direction 

respectively of the output image. The following variables are defined:  
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By substituting the Eq. (22) and (23) in Eq. (21) and assuming a normalized wave 

amplitude the P observed at the output plane can be expressed   

[ ]dxdyyvxujyxpAvuP ∫ ∫
∞

∞−

∞

∞−

+−= )(2exp),(),( π   …………………...……..(24) 

Eq. (24) is actually a 2-D Fourier transform. 

 Thus, light source when placed at the focal point fc of a converging lens can be used 

to collimate light beams passing through it. Also, converging lens can perform the 2-D 

Fourier transform and its inverse transform.  

 

Spatial Light Modulator (SLM) 

 The SLM is an optoelectronic input device for the optical processing system. The 

SLM essentially acts much like a transparency that encodes the input data on the light 

beam. The data are loaded onto an SLM and the intensity of the pixels of the SLM 

modulates the frequency of this light that passes through the SLM. In other words, in case 

of intensity SLM the amount of modulation of the light is determined by the write image 

intensity at the corresponding pixel on the SLM. The SLM’s are available in single pixel 

one-dimensional (1-D), 2-D (2-D) or three-dimensional (3-D) based on the requirement 

of the system. The modulation of light by the SLM’s is obtained by exploiting several 

different parameters like intensity, phase, polarization and spatial frequency. Different 

types of SLM’s are available amongst which few common 2-D SLM’s are: Liquid 

Crystal Television (LCTV), Magneto-optic SLM (MOSLM), and Deformable Mirror 

Device (DMD) [26].  

 

Charged Coupled Device (CCD) Detector 

 The CCD detector is also known as a square-law device. It uses an array of light 

detectors for recording optical input and converting it to an electronic signal. This output 

can then be stored digitally in storage devices like computers. The SLM and the CCD 

detector provide the interface between the electronic and optical systems.   

 

 



57 

Thus, the SLM and the CCD together provide an interface between the optical and the 

electronic systems. The hybrid use of optics along with the electronic system helps 

achieve an optimal operation in terms of performance, speed and cost.  

 

4.4. Joint Transform Correlator (JTC) 

 Optical correlaters are designed to perform the correlation between two input 

patterns optically. The Vander Lugt correlator requires the generation of complex valued 

input data and require meticulous alignment along the optical axis. The Joint Transform 

Correlator (JTC) is an improvement over such correlators since all input is generated in 

the spatial domain and there is no need for multiple optical components that require strict 

alignment conditions.  

 In a JTC, the two images to be correlated - referred to as the target image 

t(x,y)and the reference image r(x,y) - are placed side by side in the same input plane with 

a separation  between them,. The joint image f(x,y) comprising of these two images can 

be represented by the equation below, 

),(),(),( 00 yyxtyyxryxf ++−=       …………………………(25) 

where the displacement between the two images is 2y0. 

Then the 2-D Fourier transform F(u,v) of the input joint image f(x,y) is expressed as, 

{ } ]exp[),(]exp[),(),(),( 00 vjyvuRvjyvuTyxfvuF +−=ℑ= ...……………………….(26)

  

 ]exp[)],(exp[),(]exp[)],(exp[),( 00 vjyvuvuTvjyvuvuR tr −+= φφ   

                                                                                               .……………….…..……..(27) 

where, ),( vuR  and ),( vuT  are the magnitudes of the reference and the target images 

respectively. The phases ),( vurφ  and ),( vutφ  are the phases of the Fourier transforms of 

the reference and the target images respectively. As the CCD is a square law device it 

captures the intensity of the output. Then the intensity of the Fourier Transform defined 

in Eq. (26) known as the joint Power Spectrum (JPS) is given as, 
2),(),( vuFvuG =  

 ]2),(),(cos[),(),(2),(),( 0
2222 vyvuvuxvuTvuRvuTvuR tr +−++= φφ  
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                                                                 .……………….…..……..(28) 

The inverse Fourier transform (IFT) of the JPS in equation (28) is the correlation output 

and is given as, 

),(),(),(),(),( ** yxtyxtyxryxryxc ⊗+⊗=  

     )2,()2,()2,()2,( 00
*

0
*

0 yyxtyyxryyxtyyxr +⊗++−⊗−+

  ……………….…..……..(29) 

where, ⊗  denotes the correlation and * denotes the complex conjugate.  

 As can be seen from equations (28) and (29) the first two terms in the JPS represent the 

autocorrelation terms in IFT i.e. equation (29). Also the cosine term in the JPS converts 

into two cross-correlation terms in the IFT equation which are the only desired terms.  

 Fig. 4.2 shows the setup for a classical joint transform correlator. The input scene 

or the target image is loaded onto the upper part (or the lower part) of the SLM via the 

switching interface. The reference image (filter) which is already available in the digital 

system is loaded via the switching interface onto the lower (upper) part of the SLM. The 

light source LS provides the light and the light beam is collimated by lens L1. The light 

beam passing through the SLM is modulated by the joint images and passes through the 

second lens L2. This lens performs the Fourier transform of the joint image and the JPS 

of the resulting image is captured by the CCD1. The CCD1 transfers the image to the 

digital system where it is stored. The previous images are now replaced by this JPS onto 

the SLM. Similar operation takes place where the light source illuminates the SLM and 

the light beams are modulated by the new image. The light passes through the second 

lens L2 which now performs the inverse Fourier transform on the image and the power of 

the output is recorded by the CCD1 and again sent to the digital system for storage and 

further processing.  
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L2

 

Fig.  4.2 Classical JTC setup 

 
4.5. Fourier plane Image subtraction  

 It is observed that the first two terms in the JPS in equations (28) and (29) 

represented the autocorrelation terms. The cosine term in the JPS converts into two cross- 

correlation terms in the IFT equation which are the only desired terms. The additional 

autocorrelation terms are undesirable as they produce a very high zero order peak which 

overshadows the required cross-correlation peaks in presence of noise or distortion. 

Moreover, it becomes more dominant with the decreasing displacement between the two 

images. This can be improved by having a larger separation between the images but is not 

economical as it requires a larger size SLM. Also, a larger separation between images 

would mean sacrificing the image size leading to lower image resolution. This would 

create a constraint on the speed when it comes to correlating multiple images 

simultaneously. One effective technique for the elimination of the autocorrelation peaks 

is referred to as Fourier Image subtraction. It is especially useful when correlating more 

than two images simultaneously. For N  number of multiple targets equation (25) 

becomes,  
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The Fourier transform of the above equation can be given by, 
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Then the JPS of the above equation is given by, 
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 As seen in equation (32) the third term corresponds to the cross-correlation 

between the reference and the different targets and is the significant term. The first term 

is the autocorrelation of the reference and the target image while the second term 

corresponds to the cross-correlation between the different targets. As discussed in the 

previous section these terms are unnecessary and must be discarded. It can be seen from 

equation (32) that the subtraction of the intensity of the reference and the target images 

can easily eliminate both these terms. However, an additional step is required which 

involves the capturing of the power spectra of all the target images. This classical JTC 

with Fourier image subtraction is the technique used for the optical processing in this 

thesis. 

4.6. Optoelectronic Implementation 

The idea behind the algorithm proposed in this thesis is to exploit the 

directionality in the texture of the radar images. However, the hindrance in the 

implementation of this algorithm was that it was computationally extensive. The 

complexity of our algorithm lies in the computation of the filtering operation for the 

Gabor filter at different orientations. Every different orientation added an additional 
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filtering operation. The filtering operation adds to processing time of the radar images. 

The satellite scans the scene every 6 to10 minutes. Hence, the processing time should be 

such that the images acquired are processed by the time the new set of images are 

acquired and loaded in the system. Performing the filtering operation digitally consumed 

a lot of time. Hence, processing the images digitally wasn’t a good idea, as it did not 

serve our purpose of faster processing.  

As discussed in section 4.3.4, the 2-D Fourier transform can be computed by 

optical correlation. This is done by using optical correlators as explained in sections 4.4 

and 4.5. The optical correlators use simple multiplication in the frequency domain to 

correlate two images. One of the interesting properties of the optical implementation is 

that the correlation between different filters and different images can be computed in one 

single step. This is a major advantage over the electronic processing which would 

perform the operations sequentially at the expense of processing time.  

The optoelectronic system performs the most time consuming filtering operations 

of the QC algorithm optically while the rests of the thresholding processes are executed 

digitally. Finally, the combination of the optical and the electronic implementation 

explained below provides an optimal performance in terms of quality and processing 

time. 

 Following explains the Optoelectronic implementation used in the proposed 

algorithm.  
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Fig.  4.3 Optoelectronic set up 

 
 The classical Joint Transform Correlator (JTC) with Fourier image subtraction 

shown in Fig.4.2 was chosen to perform the filtering operation. The complete 

optoelectronic implementation involved in this thesis is comprised of the steps discussed 

in section 3.1.4.2 and depicted in Fig.3.10 to Fig.3.12. The radar reflectivity images 

acquired from the radar at the two lower elevations are in polar coordinates. They are first 

converted to the Cartesian coordinates and then to a linear form in the digital system. 

This is done so that the conventional textural analysis can be performed in the image 

data. The addition of the images and computation of their power q is done digitally. Also, 

the reference image which is the Gabor Filter with different orientations is computed 
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offline and stored in the digital system. Also, the intensities of the already available 

reference images required for the Fourier subtraction are also computed prior to initia

of the optical processing.  

The functions of the differe

tion 

nt elements in the Optoelectronic set up depicted in Fig. 4.3 

ight source (LS): Provides the coherent light needed for the optical system. 

ens (L1): It performs the function of collimating the light beams from the light source 

patial Light Modulator (SLM1): The target and the reference images are loaded onto 

patial Light Modulator (SLM2): This is an phase only SLM. It depicts two phases 0 and 

hase 

eam Splitter (BS): The beam splitter splits the beam into two beams; the horizontal and 

ens (L2 and L3): These lenses perform the Fourier transform as well as the inverse 

ptical Stop (OS): The optical stop as the name suggests obstructs the lower part of the 

harged Couple Device (CCD1 and CCD2): These capture the JPS of the Fourier 

transform performed by the leans L2 and L3.  

are given below. 

 

L

 
L

LS. 

 
S

this SLM. 

 
S

π, to denote positive and negative amplitudes respectively. It is necessary to represent the 

negative values which might be present in the result obtained after Fourier image 

subtraction. These negative values cannot be represented by SLM1 and hence the p

only SLM2 is required. 

 
B

the vertical beam. The horizontal beam is incident on lens L2 while the vertical beam 

encounters a optical stop and incidents beam on the Lens L3. 

 
L

Fourier transform of the modulated light beam incident on them. 

 
O

vertical light beam transmitting only the upper part. This upper part basically consists of 

the target image which is incident on the lens L3. 

 
C
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Switching Interface: This is an interface between the optical system and the digital 

stem. It aids the transfer of images from the digital system onto the SLM1 and from the 

 the 

lters 

cluding the Gabor at different orientations and Gaussian. It also performs certain 

y 

l 

e complete process involved in the opto electronic implementation of the 

roposed algorithm is explained in detail below.  

r further processing. This involves computing the power q = 2 of the two images and 

ddition of the images in analysis in scale 1 is performed digitally in the 

igital system. The result is stored in the digital system. The Gaussian filter is also 

om

 the 

 

 

ter BS. 

 

sy

CCD’s to the digital system. Also, it transfers the images acquired from the radar to

digital system. In short it provides a connection between all these components.  

 
Digital system: The digital system is responsible for the storage of images, the fi

in

preprocessing on the image which is required to be done digitally and offline. Basicall

the addition, computation of the power of the images is all done digitally in the digita

system. 

 

 Th

p

 

1.  The two radar images are preprocessed as explained above so that they are ready 

fo

adding them up. This is done digitally and the resulting images are used for optical 

processing.  

 

2.  The a

d

prec puted and available in the digital system. The reference image (R) which is the 

precomputed Gaussian filter in the spatial domain and the target image (T) which is

added result of the radar images at the two elevations is uploaded onto the SLM via the

switching interface. The target and reference images are placed next to each there with a

certain separation. The light source LS emits the light necessary which is collimated by 

the lens L1. When the light travels through the SLM1 and phase only SLM2 it is 

modulated by the images and data encoded onto it. Here the phase only SLM2 acts as a 

simple clear transparency. The light beam splits into two beams by the beam split

The horizontal beam passes through the lens L2 which performs the Fourier transform of

the joint image (target and reference image together). The power of this result also 
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referred as the JPS is captured by the CCD1 and sent to the digital system. At the same 

time the vertical beam encounters an optical stop OS. This optical stop obstructs the

transmission of the reference image further and only the target image passes through the

lens L3. The Fourier transform of the target image is generated by the lens and its JPS

recorded by the CCD2 and sent to the digital system and stored. The Fourier transform of

the result and the intensities of the two images now available, the Fourier image 

subtraction is performed digitally. The result of the Fourier image subtraction is then 

loaded onto the SLM1 via the switching interface. The similar process again take

where the light source LS illuminates the SLM1while passing through the collimating

lens L1. The light passes through the SLM2 which is now a phase only SLM to represent

negative values and is then incident on the lens L2. Lens L2 now performs the inverse 

Fourier transform of the image which is the desired correlated output. The CCD1 

captures the power of this output. This output is then stored into the digital system 

 

3. The outputs obtained at the end of part 1 and part 2 stored in the digital syst

 

 

 is 

 

s place 

 

 

em are 

quired further to compute the multifractals. Also, they need to be filtered by the Gabor 

ers a

m 

age 

ts 

re

filt t different orientations. This whole process of filtering the images by Gabor 

wavelets is done optically as is explained in this section. The Gabor filter with the 

optimal settings and different orientations is computed and stored in the digital syste

before hand. The Gabor filter with a particular orientation which is the reference im

and both the target images i.e. outputs of part 1 and 2 and is loaded onto the SLM. The 

position of the target and the reference images loaded onto the SLM are seen in the Fig. 

4.4. The reference though present exactly at the centre of the SLM is not visible due to i

very small size. 
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g pTarget images are acquired at 2219 hrs from the database 

       Target T1 

    Reference R1 

      Target T2 

 

Fig.  4.4  Images on the SLM 
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Fig.  4.5 Correlation output of the images 
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 Fig.4.5 shows how the correlation outputs appear for the same target images. As 

e 

 Gabor filter is used to filter two different images as explained earlier, the 

s. 

he 

hich is 

ge. 

 this 

mage 

tep 

 filtering in the steps (1-3) explained 

 sec

e 

can be seen the correlation output for both the targets are achieved in a single output. Th

other two images are the conjugates of the output and are not required and hence 

discarded.  

 As the

final target image is a joint image containing both the processed radar reflectivity image

This facilitates similar operation on two different images to be done in a single step.  

The light source (LS) gives a coherent light beam which is collimated by the lens LI. T

beam is modulated by the SLMI so that the joint image comprising of the target image 

and the reference image is encoded onto it. The beam splitter (BS) splits the beam into 

two. The lens L2 performs Fourier transform of the horizontal beam and its JPS is 

captured by the CCD1. This is then stored to the digital system via the switching 

interface. At the same time, the second vertical beam encounters an optical stop, w

moved in such a position so that it obstructs the lower part of the beam, which essentially 

contains the reference image. Thus, only the input scene i.e. the joint target image is 

transmitted onto lens L3 which performs the Fourier transform of the joint target ima

This power spectrum is then recorded by CCD2 and sent to the digital system via the 

switching interface. The power spectrum of the reference image is precomputed and 

stored in the digital system. As the power spectrums of both the target image and the 

reference image are acquired, the Fourier image subtraction is done digitally. Further,

result replaces the previous image onto the SLM1 and the light beam from the light 

source LS is modulated. The lens L2 performs the inverse Fourier transform of this i

incident on it which is essentially the filtered joint target image using the Gabor filter. 

The power spectrum of this result is then captured by CCD1 and sent to the digital 

system. For the new orientation of the Gabor filter the filter is just rotated by a 150 s

and the same process, as explained above is carried out for different filter orientations 

and all the results are stored in the digital system.  

 The other filtering operations involved are the

in tion 3.1.4.2. They are filtering operations used to filter the multifractals and the 

reflectivity images by simple average filters. The operations are carried exactly the sam
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way as explained above with the reference and the target images replaced by the desired 

ones. The results are stored in the digital system and used for further analysis.  

 This concludes the optical processing involved in the proposed algorithm. The 

subsequent operations involving the computation of the multifractals using the above 

optically obtained results, the maximum multifractal and thresholding are all done 

digitally which do not consume a lot of time. 

 The final result is an image comprising only the rain events or precipitation echoes 

present in the original radar image. 
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CHAPTER 5 

5. RESULTS 

 
  As discussed in section 3.1.4.6 several testing images were processed using 

the proposed QC algorithm and the different statistical measures extracted. For 

comparison, the statistical measures were also extracted for the GVS algorithm and the 

QC algorithms in [1]. All the results and the corresponding statistical measures are 

tabulated below. 

  Five images were used for training the algorithm. These were at times 01:09 hrs, 

06:09 hrs, 10:09 hrs, 18:09 hrs and 23:09 hrs. Fifteen images were used for testing. These 

were at times 02:09 hrs, 04:09 hrs, 05:09 hrs, 07:09 hrs, 08:09 hrs, 11:09 hrs, 12:09 hrs, 

14:09 hrs, 15:09 hrs, 16:09 hrs, 17:09 hrs, 20:09 hrs, 21:09 hrs, 22:09 hrs and 24:09 hrs. 

The training images were chosen from different times of the day so as to better train the 

algorithm. The idea here is to expose the algorithm to a data set that is an exhaustive 

representation on the entire data. Also the test images were chosen from different times 

of the day to evaluate the ability of the algorithm to work in varied conditions. Table 5.1 

gives the statistical measures calculated for each of the test images using the proposed 

QC algorithm. All of these statistical measures are calculated for different dB ranges.  

Followed by this table are the corresponding plots shown in Fig.5.1 to 5.4 of each 

statistical measure for every test image. Table 5.2 is the average of these statistical 

measures in different ranges. The plots of these values follow the table given in Fig. 5.5 

to 5.8  

 Table 5.3 gives the different statistical measures obtained for the GVS algorithm. 

The corresponding figures are shown in Fig. 5.9 to 5.12. The average computed for these 

statistical measures for different ranges is depicted in Table 5.4. and the relative plots are 

shown in Fig. 5.13 to 5.16 

 The statistical measures obtained for the QC algorithm in [1] are tabulated in 

Table5.5 and the corresponding plots are shown in Fig. 5.17 to 5.20. The average of these 

statistical measures is given in Table 5.6 and the plots shown in Fig. 5.21 to 5.24.  
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 Finally, Table.5.7 shows the rain rates computed for results obtained by the three 

algorithms, accurate rain events and also the original reflectivity images. Fig.5.25 shows 

the corresponding rain rate plots assembled together. 

 

Table 5.1 Comparison results between accurate rain event and proposed algorithm results for each 
test image 

 
Test image 02:09 hrs 

Range 

(dB) 

Error 

misses (%) 

Error false 

Alarms (%) 

Accuracy 

(%) 

SNR 

(dB) 

0 – 10 0.000 3.712 96.288 -Inf 

10-20 3.018 26.154 70.828 3.715 

20-30 4.200 0.000 95.800 14.964 

30-40 0.000 0.000 100.000 Inf 

40-50 0.000 0.000 100.000 Inf 

Test image 04:09 hrs 

0 – 10 1.721 8.038 90.241 -2.696 

10-20 8.352 14.210 77.438 6.088 

20-30 6.632 2.007 91.361 12.021 

30-40 0.000 0.214 99.786 35.875 

40-50 0.000 0.000 100.000 Inf 

Test image 05:09 hrs 

0 – 10 1.1889 12.6459 86.1652 -4.2774 
10-20 6.1732 21.3283 72.4985 4.7635 
20-30 5.4511 6.203 88.3459 9.5724 
30-40 0.2685 1.4765 98.255 20.0362 
40-50 0 0 100 Inf 

Test  image  07:09 hrs 

0 – 10 0.9223 24.4451 74.6326 -4.8663 
10-20 1.6872 29.1378 69.175 6.0521 
20-30 1.0198 3.7296 95.2506 16.4652 
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30-40 0.2398 1.3589 98.4013 22.6766 
40-50 0 0.5236 99.4764 30.6474 

Test  image  08:09 hrs 

0 – 10 0 24.0437 75.9563 -Inf 
10-20 0.5381 45.5768 53.8851 4.9973 
20-30 0.6402 1.9739 97.386 18.6926 
30-40 0 0.7056 99.2944 21.0601 
40-50 0 0.9756 99.0244 25.4961 

Test  image  11:09 hrs 

0 – 10 1.2746 23.5942 75.1312 -4.8314 
10-20 2.0652 28.186 69.7489 6.4963 
20-30 2.5774 1.9926 95.4299 17.303 
30-40 0.3871 0.3226 99.2903 28.7298 
40-50 0 0 100 Inf 

Test  image  12:09 hrs 

0 – 10 5.393 12.1178 82.4892 0.671 
10-20 0.0364 22.1966 77.767 6.0702 
20-30 0.0454 6.7196 93.235 14.685 
30-40 0.0867 1.2132 98.7002 21.6619 
40-50 0 0 100 Inf 

Test  image  14:09 hrs 

0 – 10 7.3265 26.4167 66.2568 -2.0994 
10-20 6.8554 21.1763 71.9683 6.8226 
20-30 0.8689 3.1716 95.9595 17.2671 
30-40 0 1.2715 98.7285 16.0867 
40-50 0 1.1834 98.8166 22.1463 

Test  image  15:09 hrs 

0 – 10 5.7533 30.3772 63.8695 -2.6132 
10-20 11.5634 17.3368 71.0999 7.3334 
20-30 1.4552 1.8088 96.736 18.1283 
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30-40 0.2711 0.723 99.0059 16.3798 
40-50 0 0 100 Inf 

Test  image  16:09 hrs 

0 – 10 10.2133 21.0538 68.7329 0.3308 
10-20 8.9859 13.6647 77.3494 8.2386 
20-30 1.171 1.3889 97.4401 18.6488 
30-40 0 0.3047 99.6953 29.9134 
40-50 0 0.495 99.5049 18.7082 

Test  image  17:09 hrs 

0 – 10 2.549 33.0619 64.3891 -6.4894 
10-20 5.083 34.6374 60.2795 5.067 
20-30 1.4868 3.2896 95.2236 16.1758 
30-40 0.0555 1.2215 98.7229 15.8076 
40-50 0 1.6393 98.3607 21.2187 

Test  image  20:09 hrs 

0 – 10 12.8495 9.4799 77.6707 2.191 
10-20 10.2005 7.8092 81.9903 8.7746 
20-30 1.5622 2.7079 95.7299 15.9046 
30-40 0 3.1731 96.8269 12.5667 
40-50 0 7.3333 92.6667 9.4951 

Test  image  21:09 hrs 

0 – 10 6.6745 11.239 82.0865 0.1533 
10-20 16.022 10.138 73.84 7.3481 
20-30 1.805 2.9037 95.2913 15.5961 
30-40 0 2.4201 97.5799 15.6968 
40-50 0 2.7211 97.2789 23.2162 

Test  image  22:09 hrs 

0 – 10 7.9055 16.4339 75.6606 0.1459 
10-20 11.7273 10.595 77.6776 8.5448 
20-30 1.8394 3.2062 94.9544 12.9456 
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30-40 0 2.9 97.1 19.6301 
40-50 0 1.5504 98.4496 22.8224 

Test  image  24:09 hrs 

0 – 10 3.9285 15.6624 80.409 0.028 
10-20 0.0401 19.0656 80.8943 8.0067 
20-30 0 2.0922 97.9078 22.3113 
30-40 0 0.4108 99.5892 28.901 
40-50 0 0 100 Inf 
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Fig.  5.1 Proposed algorithm results - Percentage of misses 

 Fig. 5.1 displays the compilation of plots of the percentages, for different image 

cases, when a pixel was actually a precipitation pixel according to the accurate rain event 

information and was mislabeled as a non-precipitation pixel. Every plot represents the 

percentage of misses for a test image at different reflectivity ranges. These plots show 

that though the algorithm has a high miss error rate for the low-intensity pixels, it works 
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much better for the high-intensity pixels. The proposed algorithm does not miss as much 

of the high intensity pixels. This is a comforting fact as the high intensity pixels are 

characteristics of precipitation. 

  

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

50
False Alarm

Pe
rc

en
ta

ge
 

dBZ 
 

Fig.  5.2 Proposed algorithm results - Percentage of false alarms 

 
 Fig. 5.2 displays the plots of the percentages, for different image cases, when a 

pixel was actually a non-precipitation pixel according to accurate rain events and was 

mislabeled as a precipitation pixel. It shows every plot corresponding to every test image. 

These plots also show that though the algorithm has a high false alarm error rate for the 

low-intensity pixels, it works a lot better for the high-intensity pixels. This shows that the 

proposed algorithm does not misidentify a non-precipitation pixel as precipitation for the 

high intensity pixels, which are characteristics of precipitation.  
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Fig.  5.3 Proposed algorithm results – Accuracy 

 
 Fig. 5.3 displays the plots of the percentages, for different image cases, when a 

pixel was actually a precipitation pixel according to the accurate rain event and was 

correctly labeled as a precipitation pixel, or when a pixel was actually a non-precipitation 

pixel according to the accurate rain event and was labeled appropriately as a non-

precipitation pixel. These plots also show that though the proposed algorithm has a low 

accuracy for the low-intensity pixels, it works desirably for the high-intensity pixels that 

are characteristics of precipitation. 
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Fig.  5.4 Proposed algorithm results – SNR 

 Fig. 5.4 displays the plots of the signal to noise ratios (SNR), for different image 

cases. Here the precipitation in the accurate rain event image is considered as the signal 

and the difference in the final result image and the ground truth is considered as the 

noise. These plots also show that though the proposed algorithm has a low accuracy for 

the low-intensity pixels, it works better for the high-intensity pixels that are 

characteristics of precipitation. The abrupt changes seen in some of these plots indicate 

an SNR value of either -∞ (for low intensities) or +∞ (for high intensities). 
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Table 5.2 Comparison results between accurate rain event and proposed algorithm results for testing 
set (average of 15 test image) 

 
Testing Set  

Range 

(dB) 

Error misses 

(%) 

Error false 

Alarms (%) 

Accuracy 

(%) 

SNR 

(dB) 

0 – 10 4.513 18.155 77.332 -Inf 

10-20 6.157 21.414 72.429 6.555 

20-30 2.050 2.880 95.070 16.045 

30-40 0.087 1.181 98.732 Inf 

40-50 0 1.095 98.905 Inf 

 

 

 

Fig.  5.5 Proposed algorithm results - Percentage of misses (Average of 15 images) 

 
 Fig. 5.5 shows the plot for the average miss error for all the fifteen test images. 

This clearly shows a general trend of improvement of the working of the algorithm with 

increasing pixel intensity. 
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Fig.  5.6 Proposed algorithm results - Percentage of False Alarms  

(Average of 15 images) 

 
 Fig. 5.6 shows the plot for the average false alarm error for all the fifteen test 

images. Again this figure shows the improvement of the working of the algorithm with 

increasing pixel intensity in general. 
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Fig.  5.7 Proposed algorithm results - Accuracy (Average of 15 images) 

 
 Fig. 5.7 shows the plot for the average accuracy for all the fifteen test images. This 

figure indicates the high performance of the proposed algorithm for high intensity pixels. 
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Fig.  5.8 Proposed algorithm results – SNR (Average of 15 images) 

 
 Fig. 5.8 shows the plot for the average SNR for all the fifteen test images. This 

figure also confirms that the for high intensity pixels, the proposed algorithm works so 

well that the SNR actually reaches +∞. 

 

Table 5.3 Comparison results between accurate rain event and GVS results for each test image 

 
Test  image  02:09 hrs 

Range 

(dB) 

Error misses 

(%) 

Error false 

Alarms (%) 

Accuracy 

(%) 

SNR 

(dB) 

0 – 10 0 73.4061 73.4061 -Inf 
10-20 1.7466 33.2962 41.0256 2.2635 
20-30 1.7982 13.5864 60.04 22.3033 
30-40 0 9.4241 75.1309 416.8279 
40-50 0 7.3684 97.8947 427.9789 

Test  image  04:09 hrs 
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0 – 10 0.3493 60.0452 63.0865 -2.3845 
10-20 0.7318 19.4832 47.2445 6.5284 
20-30 0 8.5119 64.3891 16.4734 
30-40 0 3.6145 79.8623 30.0946 
40-50 0 4.386 98.2456 427.4191 

Test  image  05:09 hrs 

0 – 10 0.1511 47.6291 50.5057 -4.6721 
10-20 0.1841 16.7392 41.4463 5.4021 
20-30 0 5.5164 57.1596 10.4122 
30-40 0 2.0833 76.4583 19.7267 
40-50 0 0 96.2791 22.4922 

Test  image  07 09 hrs 

0 – 10 0.2129 32.7221 35.7848 -4.3997 
10-20 0.3611 11.8508 37.5613 5.0453 
20-30 0 3.8982 67.0497 15.949 
30-40 0 1.8031 85.1595 21.2024 
40-50 0 4.712 99.4764 30.0082 

Test  image  08:09 hrs 

0 – 10 0 36.1432 36.1432 -Inf 
10-20 0.4479 17.3399 28.4857 3.2929 
20-30 0.3808 6.437 65.5666 16.7306 
30-40 0 2.0385 87.7123 19.4385 
40-50 0 5.7971 98.0676 25.4961 

Test  image  11:09 hrs 

0 – 10 0.3081 31.4768 34.6022 -4.9542 
10-20 0.6741 11.3771 40.412 5.3058 
20-30 0.2244 0.7855 71.9141 17.2399 
30-40 0 0.7403 95.3115 30.8786 
40-50 0 0 100 Inf 

Test  image  12:09 hrs 
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0 – 10 2.7502 38.2259 45.8959 0.6035 
10-20 1.0498 8.4628 40.1424 3.6375 
20-30 0.2114 0.8455 71.0763 13.709 
30-40 0.2358 0 89.3868 20.22 
40-50 0 0 98.3051 Inf 

Test  image  14:09 hrs 

0 – 10 2.2231 21.8028 26.2587 -1.4782 
10-20 2.2513 8.3686 43.7376 7.8972 
20-30 0.5665 1.5378 77.9396 19.8157 
30-40 0 0.6881 89.6789 19.4671 
40-50 0 0 97.6608 22.1463 

Test  image  15:09 hrs 

0 – 10 0.8658 15.6737 19.7909 -2.3128 
10-20 1.7979 4.6809 43.2454 8.6415 
20-30 0.8445 0.999 73.4706 17.6642 
30-40 0 0.4243 93.1269 19.2908 
40-50 0 1.3889 98.6111 436.5306 

Test  image  16:09 hrs 

0 – 10 3.3092 16.7611 24.2579 0.0986 
10-20 2.6626 6.5246 50.305 9.2079 
20-30 0.7396 1.5336 78.1162 17.8832 
30-40 0.1622 0.8108 88.3243 27.0829 
40-50 0 0.9569 96.6507 442.3445 

Test  image  17:09 hrs 

0 – 10 0.501 21.3225 23.4698 -6.5516 
10-20 1.4555 7.2886 37.1014 4.6177 
20-30 0.3396 1.3582 77.7872 17.3926 
30-40 0 0.8738 86.6019 20.2624 
40-50 0 0.3861 92.6641 20.8017 

Test  image  20:09 hrs 
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0 – 10 7.8893 26.9427 34.7449 0.7752 
10-20 8.0262 6.3228 53.1418 7.4305 
20-30 3.5088 1.136 76.9341 13.5363 
30-40 0.1676 0.6706 83.8223 12.7171 
40-50 0 2.6144 90.8497 9.4951 

Test  image  21:09 hrs 

0 – 10 3.7473 36.3439 40.5402 -1.1787 
10-20 13.0909 7.7815 45.9785 6.143 
20-30 3.0737 1.1308 76.6046 14.0852 
30-40 0.5922 1.4382 85.8714 19.5676 
40-50 0 2.0134 97.9866 28.1047 

Test  image  22:09 hrs 

0 – 10 3.0313 27.0327 33.2116 0.1331 
10-20 9.6573 6.7187 53.6138 7.7175 
20-30 3.0617 1.9702 79.8724 14.5515 
30-40 0 2.3915 88.2197 32.4509 
40-50 0 0.7752 99.2248 26.3615 

Test  image  24:09 hrs 

0 – 10 3.2952 26.9096 31.8651 -1.6038 
10-20 3.778 9.9272 38.2182 4.4094 
20-30 2.2106 0.1906 79.1005 16.6333 
30-40 0 0.0784 95.1373 29.0094 
40-50 0 0 100 Inf 

 

 In table 5.3, the results for the miss errors, the false alarm errors, the accuracies and 

the SNRs for all the fifteen test images are reported for the GVS results. All these results 

are also plotted in Figs. 5.9 to 5.12. Here it can be observed that the overall accuracy is 

lower that that of the results of the proposed algorithm for any pixel intensity range. The 

overall errors are also higher than the corresponding errors in the results of the proposed 

algorithm. Similar relationship between the performances can be observed between the 

two results while comparing the SNR results. 
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Fig.  5.9 GVS results - Percentage of misses 

 
 Fig. 5.9 displays the compilation of plots of the percentages, for different image 

cases, when a pixel was actually a precipitation pixel according to the accurate rain event 

information and was mislabeled as a non-precipitation pixel, for the GVS results. 
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Fig.  5.10 GVS results - Percentage of False Alarms 

 
 Fig. 5.10 displays the plots of the percentages, for different image cases, when a 

pixel was actually a non-precipitation pixel according to accurate rain events and was 

mislabeled as a precipitation pixel, for the GVS result. This plot shows that the false 

alarms are about 10 % for pixels with intensity of 20 dBZ. This is inferior as compared to 

the results of the proposed QC algorithm where, as seen in Fig. 5.2, the false alarms are 

under 5 % for pixels with intensity of 20 dBZ. 
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Fig.  5.11 GVS  results – Accuracy 

 
 Fig. 5.11 displays the plots of the percentages, for different image cases, when a 

pixel was actually a precipitation pixel according to the accurate rain event and was 

correctly labeled as a precipitation pixel, or when a pixel was actually a non-precipitation 

pixel according to the accurate rain event and was labeled appropriately as a non-

precipitation pixel, for the GVS results. Here it can be observed that the overall 

accuracies don’t rise beyond 80% where as from Fig. 5.3 it can be seen that the 

accuracies rise past 90 % for the results of the proposed algorithm. 
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Fig.  5.12 GVS results – SNR 

 
 Fig. 5.12 displays the plots of the signal to noise ratios (SNR), for different image 

cases, for the GVS results. Here the precipitation in the accurate rain event image is 

considered as the signal and the difference in the final result image and the ground truth 

is considered as the noise. All the images exhibit finite SNR as seen in the plot above, 

which indicates some residual error. However, in the proposed QC algorithm, most of the 

cases do not have any errors, which are demonstrated by an infinite SNR as seen ion Fig. 

5.4. 

Table 5.4 Comparison results between accurate rain event and GVS results for testing set (average of 
15 test image) 

 
Testing Set  

Range 

(dB) 

Error misses 

(%) 

Error false 

Alarms (%) 

Accuracy 

(%) 

SNR 

(dB) 

0 – 10 1.909 34.162 38.238 -Inf 

10-20 3.194 11.744 42.777 5.836 

20-30 1.131 3.296 71.801 16.292 
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30-40 0.077 1.805 86.654 49.216 

40-50 0.000 2.027 97.461 Inf 

 

 In table 5.4, the averages for the miss errors, false alarm errors, accuracies and 

SNRs for the fifteen test images are presented. These results, also plotted in Figs. 5.13 to 

5.16, also support the above discussion. 

 

 

Fig.  5.13 GVS results - Percentage of misses (Average of 15 images) 
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Fig.  5.14 GVS results - Percentage of False Alarms (Average of 15 images) 

 
 Fig. 5.14 shows the plot for the average false alarm error for all the fifteen test 

images, for the GVS results. Again this figure shows that the GVS results are inferior as 

compared to those of the proposed QC algorithm as seen in Fig. 5.6. 
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Fig.  5.15 GVS results – Accuracy (Average of 15 images) 

 

 Fig. 5.15 shows the plot for the average accuracy for all the fifteen test images, for 

the GVS results. As compared to the results of the proposed QC algorithm shown in Fig. 

5.7, these average accuracies are lower for any given pixel intensity level. 
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Fig.  5.16 GVS results - SNR (Average of 15 images) 

 
 Fig. 5.16 shows the plot for the average SNR for all the fifteen test images, for the 

GVS results. This figure also confirms that the average SNR is +∞ only for pixels with 

intensity greater than 30 dBZ as compared to the results of the proposed QC algorithm 

where the average SNR reaches +∞ after only 20 dBZ as seen in Fig. 5.8. 
 

Table 5.5 Comparison results between accurate rain event and QC algorithm in[1] for each test 
image 

 
Test  image  02:09 hrs 

Range 

(dB) 

Error misses 

(%) 

Error false 

Alarms (%) 

Accuracy 

(%) 

SNR 

(dB) 

0 – 10 0 15.5057 84.4943 -Inf 
10-20 5.2071 47.4556 47.3373 -0.0291 
20-30 14.378 11.9548 73.6672 6.1254 
30-40 4.5296 6.6202 88.8502 10.5356 
40-50 0 5.3763 94.6237 9.8206 
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Test  image  04:09 hrs 

0 – 10 2.5523 18.0129 79.4348 -4.9709 
10-20 10.2419 30.9902 58.768 3.1277 
20-30 6.6318 7.7661 85.6021 9.3048 
30-40 2.3555 2.1413 95.5032 17.2044 
40-50 0 1.7857 98.2143 23.8023 

Test  image  05:09 hrs 

0 – 10 1.8807 23.1518 74.9676 -5.9377 
10-20 8.309 35.1082 56.5828 2.8005 
20-30 5.3885 11.0276 83.584 8.9183 
30-40 0.9396 1.8792 97.1812 18.2731 
40-50 0.4808 0.4808 99.0385 17.7279 

Test  image  07:09 hrs 

0 – 10 2.2803 35.4718 62.2479 -6.0156 
10-20 5.534 39.4297 55.0363 3.45 
20-30 2.9429 7.3718 89.6853 11.6391 
30-40 0.4796 2.558 96.9624 17.5778 
40-50 0 2.6178 97.3822 17.5994 

Test  image  08:09 hrs 

0 – 10 0 37.2907 62.7093 -Inf 
10-20 2.0098 61.9085 36.0817 1.8148 
20-30 3.1475 9.5759 87.2766 10.9073 
30-40 0.5773 1.6677 97.755 16.6159 
40-50 0 2.9268 97.0732 17.0067 

Test  image  11:09 hrs 

0 – 10 3.1639 32.6586 64.1775 -6.1155 
10-20 5.4483 41.2723 53.2794 4.4687 
20-30 3.5737 2.6424 93.7838 14.2818 
30-40 0.9677 0.6452 98.3871 15.7334 
40-50 1.4085 0 98.5915 27.2975 
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Test  image  12:09 hrs 

0 – 10 10.2723 33.6777 56.0499 -3.3068 
10-20 7.7876 37.869 54.3433 3.2042 
20-30 2.8377 8.1725 88.9898 12.1526 
30-40 2.253 0.7799 96.9671 17.4108 
40-50 0.8621 0 99.1379 21.7977 

Test  image  14:09 hrs 

0 – 10 6.6558 35.6179 57.7264 -2.7661 
10-20 3.7327 27.1213 69.146 6.9468 
20-30 1.4193 2.7227 95.8581 16.1915 
30-40 1.335 1.0807 97.5842 13.924 
40-50 0 0.5917 99.4083 29.9364 

Test  image  15:09 hrs 

0 – 10 5.1706 34.2234 60.6061 -2.8344 
10-20 3.2148 21.0915 75.6936 8.6459 
20-30 0.8568 2.4072 96.736 17.4158 
30-40 0.5423 0.9941 98.4636 17.1223 
40-50 0.7042 0.7042 98.5915 22.6017 

Test  image  16:09 hrs 

0 – 10 9.8746 26.7479 63.3775 -0.1608 
10-20 4.0948 18.3767 77.5285 8.4944 
20-30 1.811 2.2603 95.9286 14.84 
30-40 0.6703 0.6094 98.7203 19.5421 
40-50 0 0 100 Inf 

Test  image  17:09 hrs 

0 – 10 2.2233 45.9448 51.8319 -7.7629 
10-20 1.6844 42.3426 55.973 5.2106 
20-30 0.9248 3.8047 95.2704 15.1835 
30-40 0.3887 1.4436 98.1677 14.4753 
40-50 0 1.6393 98.3607 21.2187 
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Test  image  20:09 hrs 

0 – 10 9.411 29.9637 60.6253 -0.3374 
10-20 2.7401 17.4742 79.7858 9.9681 
20-30 1.2324 3.2112 95.5563 14.55 
30-40 0.2885 3.6538 96.0577 12.4698 
40-50 0 8.6667 91.3333 9.3693 

Test  image  21:09 hrs 

0 – 10 2.0316 40.2738 57.6947 -2.8276 
10-20 2.2735 20.7192 77.0072 9.5129 
20-30 1.0202 2.2366 96.7432 16.2829 
30-40 1.1617 1.7425 97.0958 14.9412 
40-50 0.6803 0.6803 98.6395 26.4989 

Test  image  22:09 hrs 

0 – 10 3.84 37.8464 58.3136 -1.715 
10-20 1.6869 17.2617 81.0514 10.553 
20-30 0.9112 3.1387 95.9501 13.7862 
30-40 0.4 2.4 97.2 17.4409 
40-50 0 1.5504 98.4496 22.8224 

Test image 24:09 hrs 

0 – 10 8.0513 43.7253 48.2234 -4.7041 
10-20 3.4117 43.7344 52.8538 5.1336 
20-30 0.9551 2.8805 96.1643 18.2211 
30-40 0.493 0.2465 99.2605 26.1795 
40-50 0 0 100 Inf 

 

 In table 5.5, the results for the miss errors, the false alarm errors, the accuracies and 

the SNRs for the entire fifteen test images are reported for the results of the QC algorithm 

proposed in [1]. All these results are also plotted in Figs. 5.17 to 5.20. Here also it can be 

observed that the overall accuracy is lower that that of the results of the proposed 

algorithm for any pixel intensity range. The overall errors are also higher than the 

corresponding errors in the results of the proposed algorithm. Similar relationship 

 



95 

between the performances can be observed between the two results while comparing the 

SNR results where the proposed algorithm exhibits an SNR of +∞ more frequently than 

that of the QC algorithm proposed in [1]. 
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Fig.  5.17 QC in[1] results - Percentage of misses 

 
 Fig. 5.17 displays the compilation of plots of the percentages, for different image 

cases, when a pixel was actually a precipitation pixel according to the accurate rain event 

information and was mislabeled as a non-precipitation pixel, for the results of the QC 

algorithm proposed in [1]. As can been seen these results are comparable to those of the 

proposed QC algorithm. 
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Fig.  5.18 QC in [1] results - Percentage of False Alarms 

 

 Fig. 5.18 displays the plots of the percentages, for different image cases, when a 

pixel was actually a non-precipitation pixel according to accurate rain events and was 

mislabeled as a precipitation pixel, for the results of the QC algorithm proposed in [1]. 

This plot shows that the false alarms are about 10 % for pixels with intensity of 20 dBZ. 

This is inferior as compared to the results of the proposed QC algorithm where, as seen in 

Fig. 5.2, the false alarms are under 5 % for pixels with intensity of 20 dBZ. 
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Fig.  5.19 QC in [1] results – Accuracy 

 
 Fig. 5.19 displays the plots of the percentages, for different image cases, when a 

pixel was actually a precipitation pixel according to the accurate rain event and was 

correctly labeled as a precipitation pixel, or when a pixel was actually a non-precipitation 

pixel according to the accurate rain event and was labeled appropriately as a non-

precipitation pixel, for the results of the QC algorithm proposed in [1]. Here it can be 

observed that the overall accuracies don’t rise beyond 95% where as from Fig. 5.3 it can 

be seen that the accuracies rise past 95 %.
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Fig.  5.20 QC in [1] results – SNR 

 

 Fig. 5.20 displays the plots of the signal to noise ratios (SNR), for different image 

cases, for the results of the QC algorithm proposed in [1]. Here the precipitation in the 

accurate rain event image is considered as the signal and the difference in the final result 

image and the ground truth is considered as the noise. Most the images exhibit finite SNR 

as seen in the plot above, which indicates some residual error. However, in the proposed 

QC algorithm, most of the cases do not have any errors, which are demonstrated by an 

infinite SNR as seen ion Fig. 5.4. 

Table 5.6 Comparison results between accurate rain event and QC algorithm [1] results for testing 
set (average of 15 test image) 

 
Testing  Set  

Range 

(dB) 

Error misses 

(%) 

Error false 

Alarms (%) 

Accuracy 

(%) 

SNR 

(dB) 
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0 – 10 4.494 32.674 62.832 -Inf 

10-20 4.492 33.477 62.031 5.554 

20-30 3.202 5.412 91.386 13.320 

30-40 1.159 1.897 96.944 16.630 

40-50 0.276 1.801 97.923 Inf 

 

 In table 5.6, the averages for the miss errors, false alarm errors, accuracies and 

SNR’s for the fifteen test images are presented for the QC algorithm proposed in [1]. 

These results, also plotted in Figs. 5.21 to 5.24, also support the comparison drawn 

above. 
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Fig.  5.21 QC in [1] results - Percentage of misses (Average of 15 images) 
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Fig.  5.22 QC in [1] results - Percentage of False Alarms (Average of 15 images) 

 
 Fig. 5.22 shows the plot for the average false alarm error for all the fifteen test 

images, for the results of the QC algorithm proposed in [1]. Again this figure shows that 

these results are inferior as compared to those of the proposed QC algorithm as seen in 

Fig. 5.6. 
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Fig.  5.23 QC in [1] results – Accuracy (Average of 15 images) 

 

 Fig. 5.23 shows the plot for the average accuracy for all the fifteen test images, for 

the results of the QC algorithm proposed in [1]. As compared to the results of the 

proposed QC algorithm shown in Fig. 5.7, these average accuracies are lower for any 

given pixel intensity level. 
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Fig.  5.24 QC in [1] results - SNR (Average of 15 images) 

 
 Fig. 5.24 shows the plot for the average SNR for all the fifteen test images, for the 

results of the QC algorithm proposed in [1]. This figure also confirms that the average 

SNR is +∞ only for pixels with intensity greater than 30 dBz as compared to the results 

of the proposed QC algorithm where the average SNR reaches +∞ after only 20 dBz as 

seen in Fig. 5.8. 

Table 5.7 Rain rates for test results using different algorithms 

 

Images QC algorithm 

Hrs 

Original 

Reflectivity 

Images 

Accurate 

Rain Events 
GVS QC [1] Proposed 

0219 0.0056 0.0013 0.002 0.0025 0.0018 

0419 0.0077 0.0033 0.0042 0.0044 0.0037 

0519 0.0094 0.0045 0.0061 0.0062 0.0055 
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0719 0.0149 0.0085 0.0113 0.0119 0.0111 

0819 0.0166 0.0078 0.0115 0.0131 0.0115 

1119 0.0211 0.0123 0.0163 0.0169 0.0158 

1219 0.0205 0.0119 0.0148 0.0162 0.0146 

1419 0.0249 0.0178 0.0201 0.0216 0.0205 

1519 0.0265 0.0203 0.0231 0.0235 0.022 

1619 0.0302 0.0229 0.0251 0.0258 0.0243 

1719 0.0342 0.0207 0.0282 0.03 0.0274 

2019 0.0313 0.0222 0.0219 0.0267 0.0219 

2119 0.0291 0.0182 0.0184 0.0244 0.0181 

2219 0.0311 0.0221 0.0223 0.0275 0.0229 

2419 0.0266 0.0164 0.0198 0.0234 0.0195 

 

 Table 5.7 shows the closeness of the results of the proposed algorithm and the GVS 

results in terms of the rain rate. As observed here, the proposed algorithm produces 

results much closer to the GVS results as compared to the results of the QC algorithm 

proposed in [1]. This is also shown in Fig. 5.25 
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Fig.  5.25 Rain rates 

 

 All the tables essentially list the results that are also plotted in the corresponding 

figures. The various colors represent results from different images. The final results are 

the averages of the results of all the fifteen test images for the corresponding statistic. As 

seen from Figs. 5.1, 5.2, 5.5 and 5.6, the misses and false alarms drop rapidly as the 

intensity of the pixels increase. These errors indicate the percentage of instances that a 

pixel was mislabeled. This demonstrates that the algorithm works almost perfectly for 

high intensity pixels. This is favorable as the precipitation events exhibit high intensity 

values in the radar images. This is also observed from the accuracy plots of all the images 

and the mean accuracy plots as seen in Figs. 5.3 and 5.7, respectively. The accuracy 

indicates the percentage of instances when a pixel was correctly labeled. From Fig. 5.7 it 

is observed that the accuracy rises up to 98.95% for the proposed algorithm. Also as seen 

from Figs. 5.4 and 5.8, the SNR plots for all the images and the mean SNR plots show a 

steady increase in performance of the algorithm as the intensity of the pixels increase. A 
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point to be noted in these SNR plots is the abrupt starting and abrupt ending of the some 

curves. At the start, this due to the fact that the SNR is -∞ and at the end it is due to the 

fact that the SNR is +∞. It is easily noted from the maximum attainable accuracies as 

seen in Figs. 5.7, 5.15 and 5.23, that the proposed algorithm works better that the QC 

algorithm in [1] and the results are better than the GVS results. As seen in Fig 5.25, the 

rain rate plot shows the closeness or accuracy on the results of the proposed algorithm 

w.r.t the GVS results. It is observed that the original image and the results of the QC 

algorithm in [1] are over-estimates of the rain-events and that the proposed algorithm 

produces results as close as possible to the GVS results. 
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CHAPTER 6 

6. CONCLUSION 

 
 As the tables suggest, the result of the proposed QC algorithm dramatically 

improve with increasing dB levels of the pixel intensity. The general trend of the error 

rate (false alarms and misses) is that they decrease as the range of intensity values 

increases. Also, the percentage of false alarms is lesser than the GVS results for high 

intensity ranges. Though, the misses are higher at lower intensity levels in comparison 

with the GVS results, they are not of much significance as it is well known that rain 

events are more likely to be present with intensities greater than 20dB. The overall 

average accuracy of the proposed algorithm reaches as high as 98.95%. The signal-to-

noise ratio values endorse the superior performance of the proposed QC algorithm for 

accurate rainfall detection. For the proposed algorithm the average false alarm drops to 

1.09%, average miss drops to 0.00% and the average accuracy rises to 98.95% whereas, 

in the GVS results the average false alarm drops to 1.80%, average miss drops to 0.00% 

and the average accuracy goes up to 97.46%. Also for the QC algorithm proposed in [1], 

the average false alarm drops to 1.8%, the average misses drops to 0.28% and the average 

overall accuracy goes upto 97.92%. These figures indicate the superior performance of 

the proposed algorithm. Another fact to be observed from the rain rate plots is that the 

proposed algorithm generates results as close as possible to the GVS results. This trend is 

observed in general for all the 15 test images used. This is another indication that the 

proposed algorithm produces more accurate results w.r.t. the GVS results than the QC 

algorithm proposed in [1] which overestimates the rain.  

 As observed from the various tables above, the misses for the lower intensity pixels 

are high. This can be attributed to the following fact. Normally precipitation shows up as 

a high reflectivity (dB) value on the image. While training the algorithm some of the low 

intensity pixels were considered as non-precipitation. This was done to avoid over 

training of the algorithm, else though the algorithm would work perfectly for the training 

data, it would not be robust enough to accurately process any given image. Thus the 
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various thresholds were chosen accordingly. This led to some misclassifications in terms 

of misses. 

 Another important fact to be noted is that the proposed algorithm uses multifractals 

based on only the second power of the average images as compared to those based using 

the power of eight in the QC algorithm proposed in [1]. The proposed algorithm uses the 

textural directionality via Gabor wavelet analysis to extract more useful information. 

Also, optical implementation of correlation was used to speed up the filtering stage for 

the above.  

From the results presented in the tables above, it can be concluded that the 

proposed algorithm successfully detects the rain events from the radar images. Also these 

results show that the proposed algorithm performs as good as or better that the QC 

algorithm proposed in [1]. 

 

FUTURE WORK 

 In this thesis most of the mathematical operations were done digitally. It would be 

of advantage to investigate optical method of performing these operations. Also, 

performing the thresholding operation optically would aid to make the system completely 

optical. Due to computational expense only second power of the filtered images were 

used to create multifractals. Higher powers of the images should be investigated to 

increase the robustness of the system. The limited scope of the thesis work allowed 

investigation of only Gabor wavelets for textural analysis. There are many other wavelets 

in the literature that are used for analysis of similar operations that need to be 

incorporated. Different type of thresholding techniques should be used for the decision-

making stages.  
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APPENDIX 
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time: 04 09 hrs  

Reflectivity Image  elevation 1 

 

Reflectivity Image  elevation 2 
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time: 05 09 hrs  

Reflectivity Image  elevation 1 

 

Reflectivity Image  elevation 1 

 
Final output after step 5 
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time: 07 09 hrs  

Reflectivity Image  elevation 1 

 

Reflectivity Image  elevation 2 
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time: 08 09 hrs  

Reflectivity Image  elevation 1 

 

Reflectivity Image  elevation 2 

Final output after step 5 

 

Final  Output 
50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400
50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

Accurate Rain Event  

 

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400
50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

 

 



116 

 
time: 11 09 hrs  

Reflectivity Image  elevation 1 
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Final output after step 5 
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time: 12 09 hrs  

Reflectivity Image  elevation 1 
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Final output after step 5 
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time: 14 09 hrs  

Reflectivity Image  elevation 1 
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time: 15 09 hrs  

Reflectivity Image  elevation 1 
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time: 16 09 hrs  
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time: 17 09 hrs  

Reflectivity Image  elevation 1 Reflectivity Image  elevation 2 
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time: 20 09 hrs  
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time: 21 09 hrs  
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time: 22 09 hrs  
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time: 24 09 hrs  
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