
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

5-21-2004

A Fuzzy/Neural Approach to Cost Prediction with Small Data Sets A Fuzzy/Neural Approach to Cost Prediction with Small Data Sets

Holly Danker-McDermot
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Danker-McDermot, Holly, "A Fuzzy/Neural Approach to Cost Prediction with Small Data Sets" (2004).
University of New Orleans Theses and Dissertations. 86.
https://scholarworks.uno.edu/td/86

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of New Orleans

https://core.ac.uk/display/216835005?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/86?utm_source=scholarworks.uno.edu%2Ftd%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

A FUZZY/NEURAL APPROACH TO COST PREDICTION
WITH SMALL DATA SETS

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirement for the degree of

Master of Science
in

The Department of Electrical Engineering

by

Holly A. Danker-McDermot

B.S., University of New Orleans, 2002

May 2004

ACKNOWLEDGEMENTS

I would like to thank Dr. Bourgeois for all of her help and assistance to me throughout

the duration of this project. I would also like to thank my family starting with my father, Robert

Danker, for his ongoing love, support and encouragement during all my years of higher

education; my grandparents, Vi and Carl Clements, my “second set of parents” who have always

been there for me, and Henry and Emily Danker for their loving generosity and support, my

stepfather Jeffrey Sandler, who gives great advice and always makes me laugh, and especially

my mother, Debra, for being my source of inspiration on attaining my masters degree. Most

importantly, I want to thank my husband, Kyle, whose constant love and support is vital to my

success.

ii

ABSTRACT

 The project objective in this work is to create an accurate cost estimate for NASA engine

tests at the John C. Stennis Space Center testing facilities using various combinations of fuzzy

and neural systems. The data set available for this cost prediction problem consists of variables

such as test duration, thrust, and many other similar quantities, unfortunately it is small and

incomplete. The first method implemented to perform this cost estimate uses the locally linear

embedding (LLE) algorithm for a nonlinear reduction method that is then put through an

adaptive network based fuzzy inference system (ANFIS). The second method is a two stage

system that uses various ANFIS with either single or multiple inputs for a cost estimate whose

outputs are then put through a backpropagation trained neural network for the final cost

prediction. Finally, method 3 uses a radial basis function network (RBFN) to predict the engine

test cost.

iii

TABLE OF CONTENTS

ABSTRACT... iii
LIST OF FIGURES ... vi
LIST OF TABLES... viii
1. INTRODUCTION ... 1
2. PAST WORK... 4

2.1. HACEM .. 4
2.2. Nonlinear Dimensionality Reduction ... 4
2.3. Dealing with Incomplete Data Sets... 6

3. DATA AND PROCESSING ISSUES... 8
3.1. Testing and Training Sets Selection ... 10
3.2. Data Analysis .. 11
3.3. Normalization of Data... 14

4. ANFIS .. 16
4.1. Membership Functions.. 18
4.2. ANFIS Rules... 19
4.3. ANFIS Structure ... 21

5. METHOD 1: LLE... 23
5.1. Implementation of Method 1 .. 25

6. METHOD 2: ANFIS/NEURAL COMBINED SYSTEMS ... 27
6.1. Method 2A: Single Input ANFIS... 29
6.2. Method 2B: Multiple Input ANFIS.. 30

7. METHOD 3: RBFN.. 33
8. RESULTS .. 36

8.1. Results for Method 1: LLE .. 36
8.2. Results for Method 2: ANFIS/Neural Combined System.. 40

8.2.1. Method 2A ... 40
8.2.2. Method 2B ... 48

8.3. Results for Method 3: RBFN ... 58
8.4. Comparison of Results for All Methods ... 62

9. CONCLUSIONS.. 65
9.1. Suggestions for Future Work .. 65

10. REFERENCES .. 67
11. APPENDICES.. 69
 11.1 Engine Test Data Set... 70

 11.2. Variable Codes ... 71

iv

11.3. Method 1: LLE/ANFIS Development .. 72
11.4. LLE Code .. 73
11.5. Example of Method 2 Development .. 75
11.6. Method 3: RBFN Development... 76
11.7. Method 3: RBFN Cluster Costs, Center Values, and Variance Values......................... 80
12. VITA.. 83

v

LIST OF FIGURES

Figure 3.1: Total Cost of Engine Tests .. 9
Figure 4.1: Example of Membership Functions in a Temperature System 17
Figure 4.2: Block Diagram of a Method 2 Fuzzy Inference System ... 18
Figure 4.3: Membership Functions for PressuraPr Variable (Method 2) 19
Figure 4.4: ANFIS Rules for PressuraPr Variable (Method 2).. 20
Figure 4.5: Graphical ANFIS Rules for PressuraPr Variable (Method 2)................................... 21
Figure 4.6: ANFIS Structure for PressuraPr Variable (Method 2) .. 22
Figure 5.1: Block Diagram of Method 1: LLE .. 23
Figure 6.1: Block diagrams of Method 2A and Method 2B .. 28
Figure 6.2: Graphs of Tansig and Logsig Transfer Functions ... 29
Figure 6.3: Typical Method 2 Neural Network ... 29
Figure 7.1: Method 3 Radial Basis Function Network .. 34
Figure 8.1: Method 1: LLE Training Set ... 37
Figure 8.2: Method 1: LLE Testing Set ... 38
Figure 8.3: Method 1: LLE Testing Data Results.. 40
Figure 8.4: Single Input TestStand ANFIS Testing Results (gaussmf) 42
Figure 8.5: Single Input Thrust ANFIS Testing Results (gaussmf)... 43
Figure 8.6: Single Input FuelFlow ANFIS Testing Results (gaussmf).. 43
Figure 8.7: Single Input TestDurMax ANFIS Testing Results (gauss2mf)................................. 44
Figure 8.8: Single Input PressuraPr ANFIS Testing Results (gauss2mf).................................... 44
Figure 8.9: Single Input OxidizerFl ANFIS Testing Results (gaussmf)...................................... 45
Figure 8.10: Single Input Pressurant ANFIS Testing Results (gaussmf) 45
Figure 8.11: Method 2A Final Testing Results.. 48
Figure 8.12: Method 2B Double Input FuelFlow and Thrust ANFIS Testing Results (gauss2mf)
... 51
Figure 8.13: Method 2B Double Input TestStand and Thrust ANFIS Testing Results (gauss2mf)
... 52
Figure 8.14: Method 2B Double Input TestDurMax and PressuraPr ANFIS Testing Results
(gaussmf)... 52
Figure 8.15: Method 2B Double Input FuelFlow and OxidizerFl ANFIS Testing Results
(gauss2mf)... 53
Figure 8.16: Method 2B Triple Input TestStand, Thrust, and DuratDd ANFIS Testing Results
(gbellmf) ... 53
Figure 8.17: Method 2B Triple Input TestDurMax, PressuraPr, and Pressurant ANFIS Testing
Results (gaussmf).. 54
Figure 8.18: Method 2B Triple Input FuelFlow, OxidizerFl, and Fuel ANFIS Testing Results
(gaussmf)... 54
Figure 8.19: Method 2B Final Testing Results.. 58

vi

Figure 8.20: Method 3 Final Testing Results... 62
Figure 8.21: Final Testing Results for All Methods .. 64

vii

LIST OF TABLES

Table 3.1: Data Variables for Engine Tests ... 10
Table 3.2: Variable Importance for a Single Input .. 13
Table 3.3: Variable Importance for 2 Inputs.. 13
Table 3.4: Variable Importance for 3 Inputs.. 14
Table 3.5: Variable Importance for 4 Inputs.. 14
Table 6.1: List of Data Variable Inputs to ANFIS for Method 2A.. 30
Table 6.2: List of Data Variable Input Combinations to ANFIS for Method 2B 31
Table 8.1: Method 1: LLE Variables ... 36
Table 8.2: Method 1: LLE Training and Testing Results ... 39
Table 8.3: Method 2A: Single Input ANFIS Training and Testing Results 41
Table 8.4: Method 2A: Training and Testing Final Results from the Neural Network.............. 47
Table 8.5: Method 2B: Double Input ANFIS Training and Testing Results 49
Table 8.6: Method 2B: Triple Input ANFIS Training and Testing Results 50
Table 8.7: Method 2B: Double Input ANFIS Training and Testing Final Results from the Neural

Network... 56
Table 8.8: Method 2B: Triple Input ANFIS Training and Testing Final Results from the Neural

Network... 57
Table 8.9: Method 3: RBFN (Training Set of 11) Training and Testing Final Results............... 60
Table 8.10: Method 3: RBFN (Training Set of 7) Training and Testing Final Results............... 61
Table 8.11: Training and Testing Final Results for All Methods .. 63

viii

 1

1. INTRODUCTION

 Cost estimation is a vital aspect of any project. Some form of cost estimation must be

performed to determine if a design is feasible to actually realize or, as in this case, to present an

estimate to a customer. Even small adjustments to already designed systems require some sort of

cost projection analysis to determine the viability of the proposed improvements. The project

objective in this work is to create an accurate rough order of magnitude cost estimate for engine

tests at NASA’s John C. Stennis Space Center testing facilities or in other words create an

accurate nonlinear mapping between the data available to the total cost of the test. NASA also

specified the use of fuzzy networks to create this cost prediction system.

 This research stems from the development of HACEM (Highly Accurate Cost Estimating

Model) [1-2]. The HACEM system used a small set of data attained from project requirement

documents to predict the total cost of component and engine tests. This model used adaptive

network based fuzzy inference systems (ANFIS), realized in Matlab, that were trained by the

given data to predict these test costs. Different realizations of these ANFIS were tested including

a simple ANFIS system, an ANFIS system using principal component analysis, and a cascaded

ANFIS system. While the results obtained from the HACEM system were good, the study

presented in this paper attempts to attain better results. This presents many complications

because the only available data sets are small and incomplete.

 The data sets utilized were extremely small because much of the information was

eliminated due to incomplete data. Even the remaining small data sets contained incomplete data

 2
in some variable columns. The various data variables included in each set consisted of quantities

like engine thrust, duration of tests in days, and other quantities that will be discussed in the

following sections. Finally, the number of variables in each data set was much larger than the

size of the items itself, which creates numerous problems when attempting to train fuzzy systems

and neural networks. Three different methods were applied to the problem of predicting engine

test costs despite the incomplete data; method 1 using locally linear embedding; method 2 using

both ANFIS and neural networks; and method 3 using a radial basis function network.

 The dimensionality of the data set needs to be reduced because typically for neural

networks to train accurately, the dimension of the input data should be much smaller than the

actual number of training examples. In method 1, the locally linear embedding (LLE) algorithm

[17-18] is used to reduce the dimensionality of the data set which is then used to train an ANFIS

to predict the cost of engine tests. One of the systems developed in HACEM, PCA-ANFIS, used

principal component analysis (PCA) to reduce the dimensionality of the data set. PCA is a linear

operation, however, and this system is highly nonlinear. LLE is a nonlinear method of reducing

the dimensionality of the data set and was expected to produce better results.

 Method 2 is a more heuristic approach using several ANFIS with a small number of

inputs, respectively, and then combining the resulting ANFIS predictions with a neural network

to attain a more accurate cost prediction. Several different sizes of ANFIS systems and neural

networks were tried to see which produced better results. Method 2A refers to the system

developed with each ANFIS taking a single variable as an input, respectively, and the resulting

ANFIS outputs are then combined in a neural network. Method 2B is similar, except instead of

each ANFIS taking only one variable, each ANFIS takes multiple variables whose outputs are

then combined with a neural network to produce the final cost estimate.

 3
 Method 3 uses a Radial Basis Function Network (RBFN) to predict the output costs. This

method contains no ANFIS part, however, the RBFN is similar to an ANFIS in that it uses

membership functions to classify the data. As with method 2, several different sizes of RBFN

are used. Also, two different implementations of the RBFN were realized. The first was to use

the entire data set of eleven for training, due to the difficulty of clustering such a small data set.

This is not a fair way to develop and test a network, however these results will be a good

comparison to the correct way of implementing the RBFN because it shows how the results are

being affected by the small size of the data set. Because of the inherent inaccuracies of this

approach, these results were then compared to the correct way of developing and testing the

RBFN by dividing the data set into seven training examples and four testing items.

 The organization of the report is presented below. Section 2, past work, contains a brief

summary of some of the research performed on this topic, including the HACEM project.

Section 3, data and processing issues, discusses in depth the data itself and the choice of data

variables used to test each method. Section 4 contains details on ANFIS, specifically the ANFIS

toolbox in Matlab. Section 5 contains a brief discussion of the locally linear embedding

algorithm and a description of how this algorithm was used to predict engine test costs in method

1. Section 6 discusses the fuzzy/neural approach used in method 2 for the cost prediction.

Section 7 includes a discussion of the radial basis function network used in method 3 for cost

prediction. Section 8 contains a lengthy presentation, discussion, and comparison of the results

attained from using methods 1, 2, and 3. Section 9 contains concluding remarks and suggestions

for future work. Finally, the appendices contain the actual data used, the codes used to represent

information about the data, and the Matlab code used to develop and implement these methods.

 4

2. PAST WORK

2.1. HACEM

HACEM or Highly Accurate Cost Estimating Model is a system using several Adaptive

Network-Based Fuzzy Inference Systems (ANFIS) developed to predict the cost of engine and

component tests for the testing facilities of NASA’s John C. Stennis Space Center (SSC). This

system was needed because the current method of cost prediction is more of a heuristic method.

Three different systems were developed as part of the HACEM project relating to engine testing.

The first, ANFIS-E, was a simple ANFIS developed through trial and error. The second, PCA-

ANFIS-E, was also a simple ANFIS, however principal component analysis was used to reduce

the data dimensionality. The third ANFIS scheme developed for estimation was the Parallel

ANFIS-E. This method consists of several parallel ANFIS handling particular inputs whose

outputs are then combined in the final stage consisting of a single ANFIS [1-2].

These methods attained various degrees of accuracy. The ANFIS-E performed the best

with a total root mean squared error of 8%, even with one article being estimated with an error of

about 40%. Likewise, the PCA-ANFIS-E had the same article estimated with a 40% error.

Finally, the Parallel-ANFIS-E system also had trouble estimating that outlying article, while it

estimated the other articles closely [1].

2.2. Nonlinear Dimensionality Reduction

When dealing with fuzzy systems or neural networks it is always preferable to have more

data sets than the dimensionality of the data because inputting too much information for each

 5
data set into the system will make the results less accurate. This was a large problem for the

NASA engine test data because there were only eleven viable data sets with a dimensionality of

nineteen. One method to ensure the system attains more accuracy is to somehow reduce this data

set so that only the most important information is given to the network, while all other data is

eliminated so as not to confuse the system. In HACEM, principal component analysis was used

to reduce the dimensionality of the data set [1]. The only problem with using PCA in this

situation was that it is a linear transformation and the data has a highly nonlinear relationship

between individual data components. This is why using a nonlinear dimensionality reduction

method is a favorable alternative to using PCA. Unfortunately, there does not seem to be a large

amount of research in this field. Most of the research found on this topic was usually related to

image processing, which does not suffer from the problem of small data sets as in the case of the

engine test data.

The Isomap (isometric feature mapping) method, developed by Tenenbaum, Silva, and

Langford [3], is one of the nonlinear dimensionality reduction methods that have been applied to

image processing. This algorithm attempts to use classical multidimensional scaling (MDS) to

map data points from a high dimensional input space into low dimensional coordinates of a

nonlinear manifold [4]. This method works by first finding the neighborhood of each point.

This neighborhood can be calculated using the k nearest neighbors or the set of points within a

certain radius. These neighborhoods are represented as a weighted graph over the data points

with edges weighted by the Euclidean distance between neighbors. Next, the approximated

geodesic distance between two points is found by computing the sum of the arc lengths along the

shortest path connecting both points [5]. Finally, the classical metric MDS method is applied to

 6
the approximated geodesic distances. MDS is used to compute the largest eigenvectors, which

give the coordinates of the data points in the lower-dimensional space [4-5].

The Isomap method is relies heavily on the nearest neighbor algorithm, which is not

viable for use in extremely small data sets because almost any point could be considered a

neighbor. Most of the nonlinear dimensionality reduction methods, however, required some sort

of nearest neighbor processing [4-7]. There is simply not enough data to make a good

neighborhood grouping. This is especially true of the meager eleven data sets for engine testing.

2.3. Dealing with Incomplete Data Sets

Another problem with the engine test data is that frequently there is information missing

in each data set. Ideally, if this information cannot be found it would be best to eliminate these

data variables entirely. This is not a viable option in this situation, however, since almost all of

the data variables have at least one quantity missing. Further, even if a certain variable has no

missing data, it may not be predictive of the cost. As with the nonlinear dimensionality

reduction problem, there does not seem to be a large amount of research in dealing with

incomplete data sets.

Much of the research dealing with incomplete data sets involve neural classification

systems. Ishibuchi et al. [8] proposed a method for dealing with incomplete data by using an

interval representation of incomplete data with missing inputs. After a network is trained using

learning algorithms for interval training data, a new sample consisting of the missing inputs, is

presented along with an interval vector. The output from the neural network is also an interval

vector. This output is then classified using four definitions of inequality between intervals [8].

This method is more theoretical in its implementation than is desirable for the cost prediction

problem.

 7
Granger et al. [9] proposed using a fuzzy ARTMAP neural network to deal with

incomplete data for a classification problem. This approach presented the fuzzy ARTMAP with

an indicator vector that described whether a data component was present or not. Unlike

replacement methods, the weight vector is modified as well as the input vector in response to

missing components [9]. A future implementation of this method might perform well with the

engine test cost prediction problem.

Another method to deal with incomplete data is using the normal information diffusion

model, which divides an observation into many parts according to a normal function [10]. This

technique attempts to find a suitable membership function to represent a fuzzy group that

represents the incomplete data. This fuzzy group is then used to derive more data samples [10].

Unfortunately, this method can be computationally intensive.

Finally, some other methods viable for the engine data test sets are mean and multiple

imputation. Mean imputation is simply replacing the missing data with the mean value of the

sample. This method can cause misleading results because the changed data cannot reflect the

uncertainty due to the missing data. Multiple imputation is another method that is similar to

mean imputation, however, the missing data is replaced by a set of possible values from their

predictive distribution. This set reflects the uncertainty of the values predicted from the

observed ones [11]. This method yields much better results than mean imputation, however, it

can be computationally intensive. A variation on mean imputation was used in methods 2 and 3.

 8

3. DATA AND PROCESSING ISSUES

 The primary challenge with predicting the engine test cost is due to the small amount of

data available for training and testing. The goal of this project is to create an accurate nonlinear

mapping between the data available to the total cost of the test. If the quality of the data is poor

or the amount of data is small, an accurate nonlinear mapping is very difficult to attain. The

project requirement documents (PRD) attained from NASA provided all of the data. This data

totaled an original amount of 38 data sets of which only 32 were determined to be viable because

of completeness. Then, it was further reduced since only about one third of this data was from

engine tests, the rest was provided from component tests [2]. The component tests involve

testing individual engine components while the engine tests involve testing the entire engine

system. The engine test was the only quantity used in this work. This reduced the total number

of examples available for use for predicting engine test cost to 11. This set then had to be

divided into training and testing data, which will be discussed later in this section. The reduced

data set used for engine cost prediction is contained in the Appendix 12.1. An article number

denotes the actual data sets. The article numbers that were used are 1, 2, 5, 6, 14, 15, 28, 29, 30,

34, and 35. However, for convenience and greater clarity the article numbers used in this paper

are different than the actual NASA article numbers. The correspondence between article

numbers is illustrated in Appendix 12.1.

9
 In Figure 3.1, the engine test articles costs are shown. The article labeled 6 in the plot is

clearly much more costly than any of the others in the set of 11. These are the costs that are to

be predicted using the methods presented in later sections (5 and 6) of this paper.

Figure 3.1: Total Cost of Engine Tests

In Table 3.1, the data variables are listed and described. An X in the last column denotes

that the variable that was considered for use in the cost estimating system. These variables were

picked for various reasons, however, they were not all used. Some were eliminated after

performing exhaustive and sequential searches, which are described later in this section. A (b) in

the third column denotes a quantity that was made a Boolean value, 1 indicating yes and 0

indicating no. Article number 1 has the following data: 9, 2, 70, 4250, 3, 550000, which

corresponds to variables 1, 2, 3, 7, 17, and 19. This means that article number 1 has an estimated

 10
duration of 9 days, with 2 tests to be performed, each test lasting a maximum of 70 seconds, with

a thrust of 4250, performed on test stand E3, with a total cost of testing equal to $550,000.

Table 3.1: Data Variables for Engine Tests

 Variable Description Use
1 DuratDd Duration of tests in days X
2 NoTest Number of tests X
3 TestDurMax Maximum duration of test X
4 Fuel Fuel code X
5 Pressurant Pressurant code X
6 Oxidizer Oxidizer code X
7 Thrust Thrust X
8 FuelFlow Fuel flow rate X
9 FuelPressfl Fuel pressurant flow rate
10 OxidizerFL Oxidizer flow rate X
11 PressuraPr Pressurant pressure X
12 ThrustMeas Thrust measurement (b)
13 Cooling? Cooling system (b)
14 GimbalAxes Number of gimballing axes
15 Safety? Special safety requirement (b)
16 Handling? Special handling requirement (b)
17 TestStand Test stand code X
18 FacilitMod Level of facility modifications
19 TotalCost Total cost of tests X

3.1. Testing and Training Sets Selection

 When developing an ANFIS or neural network a set of data for training and a separate set

of data for testing must be chosen. Theoretically, as long as the entire data set is large, the set

could be divided randomly into training and testing. However, in practice it is important to make

sure that the training set chosen is representative of all the data, including the current testing set

and all future data that will enter the system. This is exceedingly difficult for the small set of 11

articles used for this project. Since the set is so small, the outcome is heavily dependent on

 11
which articles are chosen. Therefore, the strategy that was used was to choose the training set

having the largest range of cost, from the largest to the smallest. This is not necessarily the

optimal choice, however, taking too much care to manipulate the choice of the training and

testing sets can lead to misleading results.

 The other important concern when choosing training and testing sets is to determine the

actual size of each, respectively. Normally, neural networks perform better when the training set

is large. This is not possible with the small data set used here. Different sizes of training and

testing sets were tried. The majority of the work was done using a training set of six or seven

and a testing set of five or four.

3.2. Data Analysis

 As mentioned earlier in this section, only certain data variables were determined to have

the most predictive power for the engine test cost. These were primarily chosen from variables

that were considered to be the most predictive by using exhaustive and sequential searches. Both

searches were performed in Matlab with the commands exhsrch and seqsrch to determine which

input variables have the most predictive power for ANFIS modeling. The exhaustive and

sequential searches operate by searching for the minimum training error for different

permutations of inputs to the ANFIS. The exhaustive search calculates all possible permutations

of inputs, creating an ANFIS for all input combinations. The sequential search observes the

ANFIS results for each input candidate independently. These searches are important because the

dimensionality of our data set was too large compared to the size of the data set. However, it is

important to only eliminate the variables that were the least predictive for the total engine test

cost. The exhaustive search yielded the best results, however, was considerably more time

 12
consuming than the sequential search, and cannot deal with more than four variables

simultaneously.

The entire data set, number of membership functions, and number of variables that were

used in the ANFIS were inputs to these search functions. The accuracy of these search functions

was probably somewhat compromised due to the small size of our data set. However, these

searches were the best estimate we could obtain to the predictive power of variables without

attaining more data sets.

Tables 3.2 through 3.5 contain all of the results from the searches. Different numbers of

inputs into the ANFIS were chosen, varying from one input to four inputs. The single input

searches have four variables listed because after each search was performed, the most predictive

variable was removed from the set, then another search was performed. The inputs varying from

2 to 4 were simply searched once for each membership function number. A search for

membership function sizes varying from 2 to 5 was performed in almost all cases. The only case

where a membership function of size 5 was not performed was for the case with four inputs. The

searches for this case became too lengthy and would not complete. For the single input variable

case, both the exhaustive and sequential searches produced the same results (Table 3.2).

However, for the multiple variable cases this is not so. In fact, the sequential search also has a

tendency to choose redundant variables, as seen in Table 3.3-5 with Thrust and various other

variables. For the single input ANFIS, all of the variables found to be relevant by these searches

were used. For the multiple input ANFIS, some of the variables found to be predictive were

used, however, not all were. Mostly the single input variables found to be predictive were used

throughout the various methods.

 13
Table 3.2: Variable Importance for a Single Input

Exhaustive Search
MF # 1st 2nd 3rd 4th

2 Thrust OxidizerFL FuelFlow TestStand
3 TestStand TestDurMax PressuraPa Pressurant
4 TestStand TestDurMax DuratDd Pressurant
5 TestStand OxidizerFL TestDurMax DuratDd

Sequential Search
MF # 1st 2nd 3rd 4th

2 Thrust OxidizerFL FuelFlow TestStand
3 TestStand TestDurMax PressuraPa Pressurant
4 TestStand TestDurMax DuratDd Pressurant
5 TestStand OxidizerFL TestDurMax DuratDd

Table 3.3: Variable Importance for 2 Inputs

Exhaustive Search
MF # 1 2

2 DuratDd TestDurMax
3 TestDurMax Pressurant
4 TestDurMax FuelPresFL
5 TestDurMax Pressurant

Sequential Search
MF # 1 2

2 Thrust Thrust
3 TestDurMax TestStand
4 TestDurMax TestStand
5 TestDurMax TestStand

 14
Table 3.4: Variable Importance for 3 Inputs

Exhaustive Search
MF # 1 2 3

2 DuradDd Thrustmeas Cooling?
3 NoTest Fuel TestStand
4 Fuel Pressurant TestStand
5 Fuel Pressurant TestStand

Sequential Search
MF # 1 2 3

2 Thrust Thrust Thrust
3 TestDurMax Fuel TestStand
4 TestDurMax GimbalAxes TestStand
5 TestDurMax TestStand FacilitMod

Table 3.5: Variable Importance for 4 Inputs

Exhaustive Search
MF # 1 2 3 4

2 NoTest Pressurant Oxydizer Cooling?
3 Fuel Pressurant Oxydizer TestStand
4 Fuel Pressurant Oxydizer TestStand

Sequential Search
MF # 1 2 3 4

2 Thrust Thrust Thrust Thrust
3 TestDurMax Fuel Fuel TestStand
4 TestDurMax GimbalAxes GimbalAxes TestStand

3.3. Normalization of Data

 All of the data was normalized before it was used in the ANFIS and neural network

systems. The maximum of each respective data variable was found and increased by 10%

(). The minimum of each respective data variable was also found and reduced by 10%

(). These percentages were used to accommodate any future data outside the range already

maxx

minx

 15
presented into the training set. These values were then used to normalize each data variable

including the total cost using the following formula (3.1).

minmax

min

xx
xx

x orig
norm −

−
= (3.1)

This normalization caused all of the values of the normalized normx to be between zero and one.

To attain the un-normalized predicted cost the inverse of equation 3.1 is used. The only

exception to this method of normalization was any of the variables that included codes, for

example TestStand. These variables were normalized according to the possible values to account

for any instances that were not included in the testing data set.

 16

4. ANFIS

 The adaptive network-based fuzzy inference systems (ANFIS) were first developed by

Jang and Sun [12-13], to take advantage of the best attributes from neural networks and fuzzy

systems. ANFIS is a fuzzy inference system (FIS) that uses neural network algorithms to adapt

itself in order to achieve better results. The direct advantage that it has over neural networks is

that it can also accept linguistic information and adapt itself using numerical data [12].

The basic structure of any fuzzy inference system includes a fuzzification interface, a rule

base, a database that defines the membership functions used in the rules, a fuzzy reasoning

method that performs the inference procedure, and a de-fuzzification interface. A membership

function provides a measure of an input’s similarity to the fuzzy set [14]. For example, in Figure

4.1 these two membership functions could represent a fuzzy model for determining how cold or

hot the temperature is outside. If the temperature is 80º F then it has a degree of membership of

0.3 cold and 0.5 hot. This is how a membership function defines inputs. An ANFIS uses neural

network training techniques to adjust the membership functions. The rule base is usually in the

form of fuzzy if-then rules. Using this example, a possible fuzzy rule could be if the input has a

higher degree of hotness, then turn on the air conditioner.

The Sugeno fuzzy inference system, proposed by Takagi and Sugeno [15-16] is a type of

fuzzy system where only the input set is considered fuzzy, i.e., the output of a Sugeno fuzzy

inference system is not fuzzy, instead it is crisp. In Matlab, for a Sugeno system, the final output

 17
membership function is either constant or linear. In the problem dealt with in this research, a

linear output membership function was always used.

Figure 4.1: Example of Membership Functions in a Temperature System

Matlab’s implementation of ANFIS uses a Sugeno-type fuzzy inference system whose

parameters are trained using an adaptive neural network technique. The membership function

parameters of the FIS are adjusted by a combination of a back propagation gradient descent

algorithm and least squares method. The input training data consists of a matrix of the training

data with the last column consisting of the target output data. Test input data is entered in the

same way. The user must manually provide the number of inputs. While the fuzzy toolbox

provides many membership function types, the Gaussian type membership functions always

performed the best for the engine test data, namely gaussmf and gauss2mf. Figure 4.2 illustrates

the block diagram of one FIS used in the engine test cost estimation in method 2B. The three

inputs enter the ANFIS and are then processed to predict the cost.

 18

Figure 4.2: Block Diagram of a Method 2 Fuzzy Inference System

4.1. Membership Functions

 Membership functions were developed for each data input. The number, shape, and

overall range interval of membership functions were chosen according to the number of inputs.

The most desirable number of membership functions was determined heuristically for each

individual system. Given the small number of inputs, no more than five and no less than two

membership functions per input were used. The best shape was also determined heuristically for

each system with the best results always attained from the Gaussian types (gaussmf and

gauss2mf). The range interval value was determined from the range of data plus or minus ten

percent, as discussed in the normalization section 3.3. Figure 4.3 shows the membership

 19
functions of one FIS developed for the PressuraPr variable used to predict the engine test cost in

method 2A. This FIS has a single input variable with three Gaussian membership functions.

Figure 4.3: Membership Functions for PressuraPr Variable (Method 2)

4.2. ANFIS Rules
The ANFIS rules were obtained from Matlab’s Fuzzy Toolbox. While in the case of

most fuzzy systems it is simple to derive logical rules directly, this ceases to be practical when

dealing with an ANFIS. The neural network derives rules that are often not logical, however,

optimal results are still obtained. In Figure 4.4 an example of ANFIS rules from the same

PressuraPr FIS used in Figure 4.3 is shown. This is a relatively uncomplicated rule set because

there is only one input. The top box shows the actual rules. The bottom boxes allow the user to

individually alter each rule. A more visual representation of these rules is given in Figure 4.5.

The figures labeled 1, 2, and 3 represent each rule. The red line represents a given input. Its

 20
effect on each rule is shown in yellow. The output column represents the output of each rule.

The bottom right output plot demonstrates how the output of each rule is combined and

defuzzified to form an output value.

effect on each rule is shown in yellow. The output column represents the output of each rule.

The bottom right output plot demonstrates how the output of each rule is combined and

defuzzified to form an output value.

Figure 4.4: ANFIS Rules for PressuraPr Variable (Method 2) Figure 4.4: ANFIS Rules for PressuraPr Variable (Method 2)

20

 21

Figure 4.5: Graphical ANFIS Rules for PressuraPr Variable (Method 2) Figure 4.5: Graphical ANFIS Rules for PressuraPr Variable (Method 2)

4.3. ANFIS Structure 4.3. ANFIS Structure
The ANFIS structure for the above PressuraPr variable example is show in Figure 4.6.

The input goes into three membership functions where the ANFIS rules that were developed

during training are applied. These rules produce three outputs that are then combined and

defuzzified to produce a single output, the estimated engine test cost.

The ANFIS structure for the above PressuraPr variable example is show in Figure 4.6.

The input goes into three membership functions where the ANFIS rules that were developed

during training are applied. These rules produce three outputs that are then combined and

defuzzified to produce a single output, the estimated engine test cost.

 The ANFIS were also created using grid partitioning rather than clustering. Grid

partitioning is superior to the clustering method because the data sets are so small. If the data

sets were larger, clustering would be a better option for creating the FIS [2].

 The ANFIS were also created using grid partitioning rather than clustering. Grid

partitioning is superior to the clustering method because the data sets are so small. If the data

sets were larger, clustering would be a better option for creating the FIS [2].

21

22

Figure 4.6: ANFIS Structure for PressuraPr Variable (Method 2)

 23

5. METHOD 1: LLE

 The first method implemented to solve the engine test cost estimation problem was to use

locally linear embedding (LLE) as a nonlinear dimensionality reducer to condition the input data.

Then, an ANFIS is used to predict the engine test cost based only on the reduced data. Figure

5.1 is a block diagram that visually represents this method. LLE, developed by Saul and Roweis

[17-18], is a nonlinear dimensionality reduction method originally applied to image processing.

LLE attempts to map the input data to a lower dimensional global coordinate system that

preserves the relationships between neighboring points [4]. Locally linear neighborhoods of the

input data are then mapped into a lower dimensional coordinate system.

Normalization
Processing Cost

EstimatedANFISLLE

Raw Data

Figure 5.1: Block Diagram of Method 1: LLE

 The LLE algorithm is divided into three steps: selecting neighbors; computation of

weights that best reconstruct each data point by it’s neighbors, and; mapping to embedded

coordinates [5][17]. The first step simply involves finding K nearest neighbors for each data

point. This can be accomplished using different methods including finding the Euclidean

distances between respective points or finding all neighbors within a fixed radius.

 24
 The second step involves finding the weights that best reconstruct each data point. The

data consists of real-valued vectors N iX
v

, each of dimensionality sampled from an

underlying manifold. As long as there are enough sample points, it is expected that each data

point lies on or close to a locally linear section on the manifold. The local area is then

characterized by linear coefficients that reconstruct each data point from its neighbors. The

reconstructed errors are then measured by the following cost function (5.1)

D

 ()
2

∑ ∑−=
i j

jiji XWXW
vv

ε

iX

 (5.1)

This cost function (5.1) adds up the squared distances between all of the data points and their

reconstructions. The weights W represent the contribution of the jij
th data point to the

reconstruction of the ith data point. The weights are computed by minimizing the cost function

on two conditions: 1) that each data point
v

is reconstructed only from its neighbors or, in other

words, W if is not part of the set of neighbors of 0=ij jX
v

iX
v

, and; 2) that the cost function is

minimized so that the rows of W sum to one. For any particular data point, these weights are

invariant to rotations, rescalings, and translations of that data point from its neighbors, meaning

these weights reflect intrinsic geometric properties of each neighborhood. It follows that the

weights characterization of the local geometry in the original data space is also valid for local

patches on the manifold [18].

ij

 The final step in the LLE algorithm is mapping the data set to the new lower dimensional

space coordinates. Each high dimensional data point iX
v

is mapped to the lower dimensional

vector Yi

v
 representing the embedding coordinates. The embedding coordinates,Yi

v
, are obtained

by once again minimizing an embedding cost function (5.2).

 25

 ()
2

∑ ∑−=Φ
i j

jiji YWYY
vv

 (5.2)

Again, as with the previous function (5.1), this cost (5.2) is based on locally linear reconstruction

errors, but the weights are now fixed while Yi

v
 is optimized. This cost function can be

manipulated into a quadratic form, which can be minimized by solving a sparse NxN eigenvalue

problem whose bottom d non-zero eigenvectors provide the set of orthogonal coordinates

centered on the origin, where d is the desired reduced dimension size [17]. In other words, Yi

v
 is

equal to these eigenvectors.

5.1. Implementation of Method 1

 In Method 1, the LLE algorithm was used to reduce the dimensionality of the data set.

The new, smaller dimensioned data set was then put into an ANFIS to finally predict the cost of

the engine test. The weakness of this method lies in the LLE algorithm’s reliance on the k

nearest neighbor algorithm during the first step, which was difficult to accomplish due to the

small data set we utilized.

Saul and Roweis provide the Matlab code that implements the locally linear embedding

algorithm [18]. This code uses the Matlab eigensolver eigs, which unfortunately has

convergence issues in version R12. In order to circumvent this problem, we used the version of

eigs in R11 is used instead. This version of eigs was saved as a different function, eigs_o, and

replaced in the LLE code. The code lle.m is included in Appendix 12.4. The LLE code simply

required the data matrix in the form of the dimensionality by the number of data points, the K

number of neighbors desired, and the reduced dimensionality desired. With these inputs, the

LLE code performed the LLE algorithm described previously.

 26
The ANFIS was then developed from the new lower dimensional data set that was

transformed by the LLE code, using grid partitioning and a linear output membership function

type. Several trials were performed to develop the best ANFIS by varying the number and type

of membership functions. The best results of these trials are presented in section 8.1.

 27

6. METHOD 2: ANFIS/NEURAL COMBINED SYSTEMS

The second method implemented to estimate engine test cost consists of a combined

ANFIS and neural network system. The data is either entered singly or in small groups into

separate ANFIS. The outputs of these ANFIS are then combined into a single neural network to

produce the final result. Figure 6.1 illustrates these methods visually. Method 2A has a single

input variable into each individually developed ANFIS. The outputs of these ANFIS are then

combined into a neural network. Method 2B is the same as Method 2A, except that multiple

inputs are provided to each ANFIS network. Several different ANFIS were developed for this

method.

 The neural networks used for this method were feed-forward backpropagation trained

networks created using the newff command in Matlab. The Matlab commands traingdx and

learngdm was chosen for the training and learning function of the network, respectively. These

functions train the network using gradient descent with momentum and an adaptive learning rate.

This means that, for each epoch, if the performance decreases towards the goal, then the learning

rate is increased by a factor, however if the performance increases more than a certain factor, the

learning rate is decreased and the change is not made. The error criteria used was sum of

squared errors.

 A two-layer network was used. More complicated networks were not practical due to the

size of the data sets. The number of neurons in the input layer of the network was always set

equal to the number of inputs to the network. The output layer consisted of a single neuron. The

 28
transfer functions of each layer were either tansig or logsig. Figure 6.2 shows both the tansig

and logsig functions that were used as the transfer functions of the neurons. Figure 6.3 shows a

typical neural network developed for this method.

Cost
EstimatedNeural

Network

ANFIS

ANFIS

ANFIS

Variable 1

Variable 2

Variable 3

Variable 3

Variable 2

Variable 1

ANFIS

ANFIS

ANFIS

Neural
Network

Estimated
Cost

Variable 5

Variable 4

Variable 6

(a) Method 2A: Single Input to ANFIS, Combined into Neural Network

(b) Method 2B: Multiple Inputs to ANFIS, Combined into Neural Network

Figure 6.1: Block diagrams of Method 2A and Method 2B

 29

Figure 6.2: Graphs of Tansig and Logsig Transfer Functions

Output of FIS,
Input to NN

Σ

.

.

.

x1

x2

xn

.

.

.

y

Hidden Layer

Output Layer
Predicted Cost

Input
Weights

Layer 2
Weights

Transfer
Functions

Transfer
Functions

Σ

Σ

Σ

Figure 6.3: Typical Method 2 Neural Network

6.1. Method 2A: Single Input ANFIS

network, which provides the final cost estimate. The variables used to develop the single ANFIS

As shown in Figure 6.1a, this method involves individual variables to be used by

individual ANFIS, respectively. These ANFIS outputs then provide an input for the neural

 30
were found to be most predictive through the use of exhaustive and sequential searches, as

described in section 3.2. Table 6.1 contains the list of variables used as single inputs to the

ANFIS. Some of these variables were not used in the final neural stage because they were fo

to create inaccurate ANFIS. Various combinations of ANFIS results were used to find the best

results from the neural network. The results of the ANFIS and neural networks are presented in

section 8.2.

Table 6.1: L

und

ist of Data Variable Inputs to ANFIS for Method 2A

 Variable Description
1 DuratDd Duration of tests in days
2 TestDurMax Maximum duration of test
3 Pressurant Pressurant code
4 Thrust Thrust
5 FuelFlow Fuel flow rate
6 O L Oxidizer flow rate xidizerF
7 P Pre re ressuraPr ssurant pressu
8 TestStand Test stand code
9 TotalCost Total cost of tests

.2. Method 2B: Multiple Input ANFIS

 using two and three input variables. These

e

s

6

 In Method 2B, ANFIS were developed

ANFIS estimates were then combined into a neural network whose output is the final cost

estimate for the engine test. The variables combined together were chosen by examining th

response from the single input ANFIS. Variables that would compliment each other to attain

more accuracy were placed as inputs into the same ANFIS. For example, if one variable alway

overestimated the cost in the single input ANFIS and another always underestimated the cost,

they would be combined into a single ANFIS. A similar method was also used to choose the

combination of variables for the three input ANFIS. Table 6.2 is a list of some of the

 31
combinations of inputs that were used for Method 2B. Varying numbers of inputs into

network were tried.

Table 6.2: List of Dat

 the neural

a Variable Input Combinations to ANFIS for Method 2B

 Variable 1 Variable 2 Variable 3
1 Thrust TestStand -
2 TestDurMax PressuraPr -
3 F uelFlow OxydizerFL -
4 DuratDd Pressurant -
5 FuelFlow Thrust -
6 Thrust TestStand DuratDd
7 T PressuraPr PressurantestDurMax
8 F uelFlow OxydizerFL Fuel

ria that have be n used have m

 Some of the data va bles e any missing values, namely

re

ed

,

Pressurant, FuelFlow, and PressuraPr. In an effort to attain more accuracy, these values we

filled in with various values (mean, median, or mode) then the results of the respective combin

input ANFIS were compared to the ANFIS with no filled in values. The number used to fill in

for missing Pressurant values was found by going back to the original data set of 38 and finding

the most often occurring value, 2. This is more logical than taking the mean or median of the set,

since Pressurant is a code referring to a type of pressurant. Unfortunately, Pressurant was only

predictive in the three input variable systems. It was not predictive with or without filled in

values in the two variable input systems even when paired with the most predictive quantities

like Thrust. However, for both FuelFlow and PressuraPr, better results were obtained by using

the filled in data value rather than leaving the missing information blank. Both the mean and

median value of FuelFlow in the set of eleven was used to see which provided a more accurate

result. The median value looked like a better choice since FuelFlow had a large range of values

however, the mean value always performed better. For PressuraPr, the median value provided

 32
the best results, and was chosen since PressuraPr also had a very large spread of values. All of

the results for the systems are presented in section 8.

 33

7. METHOD 3: RBFN

 The third method implemented to estimate engine test costs is a radial basis function

neural network (RBFN). RBFNs are similar to ANFIS in that they consist of membership

functions that are adjusted through the training stage of a neural network. They typically consist

of Gaussian-type membership functions. First, the centers of the Gaussian functions are found

using a k-means clustering algorithm on the training data. In this case, the k-means algorithm

groups the data sets into clusters, so that costs are associated with each cluster. After the clusters

are found, the p-nearest neighboring clusters are found. The variance of each membership

function is then found using the p-nearest neighbors. Equation 7.1 is the formula used to

determine the variance of each cluster. The respective centers are represented by c , where

represents the cluster of interest. The variance is represented by

k k

kσ and p represents the p-

nearest neighbors.

 ∑
=

−=
p

i
kikk ccp

1

21σ (7.1)

After the variance of each cluster is determined, the training and testing sets can then be

classified into the appropriate membership function. As with the ANFIS system, a percentage of

belonging to each membership function is obtained. This is done to each data set with the

following formula 7.2. The degree of belonging to each cluster is represented by kφ and x

represents each data point.

34

 






 −−
= 2exp

k

k
k

cx
σ

φ (7.2)

After this percentage of belonging to each membership function is calculated, it is then

normalized so that the percentages sum to one. Each percentage is multiplied by the calculated

average cost of each cluster, and then summed into a single value. This final value is the

predicted cost out of the RBF network. Figure 7.1 illustrates the RBF network used in method 3.

Predicted Cost
Output Layer

Hidden Layer

y
.
.
.

xn

x2

x1

fΣ
.
.
.

σ

Input to NN
Center
Values

C11

C12

C13

C21

C22

C23

Cn1

Cn2

Cn3

σ

σ

Variances
Membership
Functions

Figure 7.1: Method 3 Radial Basis Function Network

The RBFN was implemented in two different ways. The first implementation used the

entire data set of eleven to train the network. This is not the correct way to build a network since

part of the data set should be saved for testing, so that the network has never seen the testing set.

However, because of the small size of the data set, k-means clustering is difficult. Using the

entire data set of eleven allows for a better clustering. These results were then compared to the

second and correct implementation where the set of eleven is divided into seven training and four

 35
testing sets. Both of the RBFNs were developed with the variables with missing data filled in as

in Method 2B. The results of the RBFN are presented in section 8.3.

 36

8. RESULTS

8.1. Results for Method 1: LLE

To implement the LLE method, all of the data was first normalized, as discussed in

section 3.3. A smaller subset of the most predictive variables was chosen out of the eighteen.

The best results were obtained using a set of eight variables shown in table 8.1. Using the full

data set of dimension eighteen produced worse results as expected. It would be difficult to find a

proper lower dimensional space that corresponded to the eighteen-dimensional space with such

few data points. Different numbers of k clusters and d dimensions was chosen, however a k of

three and a final dimension of three attained the best results.

Table 8.1: Method 1: LLE Variables

 Variable
1 DuratDd
2 TestDurMax
3 Pressurant
4 Thrust
5 FuelFlow
6 OxidizerFl
7 PressuraPr
8 TestStand

 After the dimensionality of the data set was reduced, the new lower dimensional data set

was then input into an ANFIS as described in section 5. Different membership function types

and different numbers of membership functions were tried. The best results were obtained with a

 37
gauss2mf membership function of size 4, 3, and 3, for each variable respectively. This means

that for the first input dimension 4 gauss2mf membership functions were used, for the second 3

gauss2mf membership functions were used, and for the third dimension 3 gauss2mf membership

functions were used. Figures 8.1 and 8.2 show the training and testing results for the best ANFIS

developed, respectively. As can be seen in figure 8.1, the ANFIS learned the training set very

well, with a negligible amount of error. These results are still normalized, the un-normalized test

result will be shown later. For the remainder of the ANFIS results presented blue will refer to

the actual cost and red will refer to the predicted cost.

Figure 8.1: Method 1: LLE Training Set

 38

Figure 8.2: Method 1: LLE Testing Set

 The results using the LLE method to reduce the dimensionality were not promising.

While the training results were good, the testing results were extremely inaccurate. The best

results attained still have an average percentage error of around 66%. The first two testing set

articles are both estimated at 90% lower than they actually are. Table 8.2 contains the actual

costs attained, percentage errors, average percent error, and another measure of similarity

defined in equation 8.1. This measure of similarity was developed since percent error is not

necessarily the best measure to compare the values. If testing articles 1 and 2 are examined, their

respective percent errors are very similar. However, by article 2 the cost estimate was

approximately four million dollars too low, while article 1 was estimated approximately one

million dollars too low. Article 1’s under estimation was more acceptable than article 2’s.

Therefore, the sum of the total differences divided by the number of total sets (Eq. 8.1) is used as

 39
another measure of error. represents the total number of sets, represents actual cost, and

represents the estimated cost.

N ix ix̂

 ∑ −=
N

i
ii xx

N
SetsofTotalDiff ˆ1#/.Sum (8.1)

The smaller the sum of total differences quantity, the closer the estimation is to the actual value.

This is clearly seen in Table 8.2 where the training set’s sum of differences divided is zero

compared to the larger value for the testing set.

Table 8.2: Method 1: LLE Training and Testing Results

Predicted Cost Actual Cost Percent Errors (%)
1 550,000 550,000 1.05E-04
2 1,592,000 1,592,000 -9.02E-05
3 4,433,000 4,433,000 -8.69E-05
4 2,203,000 2,203,000 -2.17E-05
5 1,772,000 1,772,000 -4.99E-05
6 12,051,000 12,051,000 -2.92E-05
7 702,000 702,000 -2.06E-05

Average (%)
5.77E-05

Sum of Diff./Total
Number of Sets

0

Predicted Cost Actual Cost Percent Errors (%)
1 534,040 1,590,000 -96.44
2 948,360 4,935,000 -89.79
3 933,940 1,713,000 -63.96
4 1,370,900 1,540,966 -16.26

Average (%)
66.61

Sum of Diff./Total
Number of Sets

1,497,932

Training Set

Testing Set

 40
A graphical presentation of the method 1 testing results is shown in Figure 8.3. These are

the un-normalized values of the predicted and actual costs. These results clearly indicate that

using LLE as a dimensionality reduction method is not a viable method for the engine test cost

prediction. The only article that predicted with some degree of accuracy is article 4. All testing

sets estimated lower than the actual cost. This most likely occurred because the data set was too

small for the LLE method to find a valid lower dimensional coordinate system.

Figure 8.3: Method 1: LLE Testing Data Results

8.2. Results for Method 2: ANFIS/Neural Combined System

8.2.1. Method 2A

 Method 2A used ANFIS with single inputs to produce an estimate. Several of these

single input ANFIS outputs were then combined into a single backpropagation trained neural

 41
network whose output represents the final predicted cost. These single input ANFIS produced

only very rough estimates of the predicted engine test, because the cost estimate was derived

from only one single variable. Table 8.3 shows the actual and predicted normalized costs of each

ANFIS developed for both the training and testing set. The columns with a variable name above

them are the predicted cost that the ANFIS with that particular input produced. These numbers

are presented in a normalized form, because they will become the inputs to the neural network in

the next stage. Also, the average percent error along with the sum of differences quantity from

equation 8.1 attained for each ANFIS developed is presented in Table 8.3. Figures 8.4 through

8.10 are the testing results of most of the single input ANFIS developed. The membership

function types are also listed for each ANFIS developed.

Table 8.3: Method 2A: Single Input ANFIS Training and Testing Results

TestStand Thrust FuelFlow TestDurMax PressuraPr OxidizerFL Pressurant DuratDd Actual Cost
1 0.040202 0.11681 0.075755 0.00431 0.022887 0.11279 0.0355 0.0043124 0.00431
2 0.085964 0.096306 0.17504 0.085964 0.080683 0.093042 0.0355 0.086098 0.085964
3 0.22122 0.12145 0.14126 0.16244 0.32635 0.11279 0.30859 0.30861 0.30859
4 0.22122 0.12354 0.12602 0.51967 0.13384 0.12324 0.13389 0.13371 0.13384
5 0.040202 0.077073 0.059087 0.10007 0.10007 0.093185 0.10007 0.10007 0.10007
6 0.90556 0.9056 0.90556 0.51967 0.89707 0.90556 0.90552 0.90554 0.90556
7 0.040202 0.11378 0.07185 0.16244 -0.006332 0.11396 0.0355 0.016219 0.016221

162.00 473.59 315.04 182.81 83.27 458.00 128.75 0.05

0.0421 0.0630 0.0618 0.1520 0.0104 0.0609 0.0144 0.0000

TestStand Thrust FuelFlow TestDurMax PressuraPr OxidizerFL Pressurant DuratDd Actual Cost
1 0.040202 0.10332 0.059087 0 0.18928 0.094724 0.90552 0.11701 0.085808
2 0.40224 0.4455 0.36759 0.09858 0.27341 0.44799 0.11941 0.64972 0.34793
3 0.22122 0.12807 0.062714 0.099451 0.13925 0.133 0.90552 0.64972 0.095446
4 0.040202 0.10332 0.091077 0.057187 0.89707 0.11365 0.90552 0.73499 0.081965

62.87 27.17 20.55 52.68 295.59 29.29 718.62 375.13

0.0669 0.0423 0.0221 0.0910 0.2592 0.0446 0.6705 0.3851

Average Percent Errors

Sum of Differences/Total Number of Sets

Training Set

Average Percent Errors

Sum of Differences/Total Number of Sets

Testing Set

 Each variable chosen for these single input ANFIS proved relevant to the cost prediction

in the exhaustive and sequential searches. Membership function types and numbers were

changed for all ANFIS to determine which produced the best results. Once again, the best results

 42
were always obtained by using Gaussian type membership functions, either gaussmf, gauss2mf,

or gbell. The number of membership functions was never allowed to be less than two or more

than four because the system is so small that if more were included, the ANFIS would become

overly complicated.

 Not all of the ANFIS that were developed were used as inputs to the neural network. The

variables Pressurant and DuratDd were eliminated due to their poor performance in the ANFIS .

Figures 8.4, 8.5, 8.6, and 8.9 illustrate that the most predictive variables for the single input

ANFIS are TestStand, Thrust, FuelFlow, and OxidizerFl.

Figure 8.4: Single Input TestStand ANFIS Testing Results (gaussmf)

 43

Figure 8.5: Single Input Thrust ANFIS Testing Results (gaussmf)

Figure 8.6: Single Input FuelFlow ANFIS Testing Results (gaussmf)

 44

Figure 8.7: Single Input TestDurMax ANFIS Testing Results (gauss2mf)

Figure 8.8: Single Input PressuraPr ANFIS Testing Results (gauss2mf)

 45

Figure 8.9: Single Input OxidizerFl ANFIS Testing Results (gaussmf)

Figure 8.10: Single Input Pressurant ANFIS Testing Results (gaussmf)

 46
 As discussed in section 6, the neural network utilized was a backpropagation-trained

network with a variable learning rate and momentum. The network has two layers, with the first

layer size equal to the number of inputs to the network and the second layer size equal to one.

Various initial learning rates were tried with the best results produced at 0.01. Varying numbers

of inputs, different values for momentum, and different membership functions were tried. The

best results were obtained with the set of six ANFIS outputs from the variables TestStand,

Thrust, FuelFlow, TestDurMax, PressuraPr, and OxidizerFl, with a momentum value of 0.3, and

logsig as the transfer function for both layers. Table 8.4 contains the predicted cost of each

article out of the neural network for the best trial of Method 2A. This table also contains the

percentage errors of each article, average percentage errors, and sum of differences value.

Figure 8.11 shows graphically the predicted and actual cost values.

 47
Table 8.4: Method 2A: Training and Testing Final Results from the Neural Network

Predicted Cost Actual Cost Percent Errors (%)
1 966,330 550,000 75.70
2 1,442,300 1,592,000 -9.40
3 4,471,900 4,433,000 0.88
4 2,173,100 2,203,000 -1.36
5 1,406,900 1,772,000 -20.60
6 12,045,000 12,051,000 -0.05
7 1,075,400 702,000 53.19

Average Percent Error
23.03

Sum of Diff./Total
Number of Sets

197,047

Predicted Cost Actual Cost Percent Errors (%)
1 1,377,400 1,590,000 -13.37
2 4,953,500 4,935,000 0.37
3 3,058,000 1,713,000 78.52
4 1,870,900 1,540,966 21.41

Average Percent Error
28.42

Sum of Diff./Total
Number of Sets

476,509

Testing Set

Training Set

 48

Figure 8.11: Method 2A Final Testing Results

 While using method 2A to predict the engine test cost worked well for articles 1 and 2,

articles 3 and 4 were not predicted well at all. Also, the training results had high percent errors.

This problem that occurred repeatedly in many of the methods used for this cost prediction. The

training errors should be negligible, but the errors are usually much larger due to the small size

of the data set. Also, each variable singly does not strongly relate with the cost. This proved

especially true with variables that have missing values (e.g. FuelFlow, Pressurant, and

PressuraPr).

8.2.2. Method 2B

 Method 2B used multiple inputs to ANFIS whose outputs were combined once again into

a feed forward backpropagation trained neural network which produced the final predicted cost.

Two different sets of ANFIS were developed. The first set of ANFIS utilized two variables as

49
inputs with filled in values for missing quantities. The second set of ANFIS were developed

using three variables as inputs, also with filled in values for missing quantities, as discussed in

section 6. The ANFIS were developed similarly to the ones developed in Method 2A, varying

membership function types and numbers. Again, Gaussian membership functions worked best

and the number of membership functions was always maintained between two and four. Table

8.5 contains the training and testing results for the ANFIS with two inputs. The training results

are included because some had significant errors. Table 8.6 contains the testing set results for

the ANFIS developed with three inputs. The training data is not included because the error rates

were all below 1%. Again, these values remain normalized because they will become the inputs

to the neural network in the second stage. The average percent error and sum of differences

value are included as well.

Table 8.5: Method 2B: Double Input ANFIS Training and Testing Results

FuelFlow and
Thrust

TestStand and
Thrust

TestDurMax and
PressuraPr

FuelFlow and
OxidizerFL Actual Cost

1 0.023922 0.0092527 0.0043098 0.019082 0.00431
2 0.087035 0.085964 0.085965 0.11078 0.085964
3 0.30067 0.22723 0.30859 0.27896 0.30859
4 0.13605 0.21521 0.13384 0.11682 0.13384
5 0.098533 0.10014 0.10007 0.20075 0.10007
6 0.90556 0.90556 0.90556 0.90555 0.90556
7 0.0027968 0.011209 0.016221 0.00020409 0.016221

77.827491 33.25776525 0.000693366 84.7544644

0.0065392 0.024679243 1.71429E-07 0.02899213

FuelFlow and
Thrust

TestStand and
Thrust

TestDurMax and
PressuraPr

FuelFlow and
OxidizerFL Actual Cost

1 0.031928 0.018627 0.03019 0.21073 0.085808
2 -0.041581 0.50706 0.45494 -0.93182 0.34793
3 0.0090189 0.19006 0.10114 -0.064263 0.095446
4 0.038491 0.018627 0.060535 0.084687 0.081965

79.583 75.10825 31.920825 171.0126

0.143323 0.09606575 0.047438 0.39177575

Training Set

Average Percent Errors

Sum of Differences/Total # of Sets

Testing Set

Average Percent Errors

Sum of Differences/Total # of Sets

 50
Table 8.6: Method 2B: Triple Input ANFIS Training and Testing Results

TestStand, Thrust,
and DuratDd

TestDurMax, PressuraPr,
and Pressurant

FuelFlow, OxidyzerFl,
and Fuel Actual Cost

1 0.084547 0.057626 0.10373 0.085808
2 0.31657 0.45494 0.32568 0.34793
3 0.094349 0.060271 0.11495 0.095446
4 0.080778 0.10367 0.10772 0.081965

3.270575 31.7335 19.7851

0.00872625 0.048018 0.02135775

Testing Set

Average Percent Errors (%)

Sum of Differences/Total # of Sets

 The variables paired in the double ANFIS were chosen by examining the results of the

single input ANFIS and choosing variables that complemented each other. For example, if one

variable always over estimated the cost then another variable that always underestimated the cost

would be paired with it. Several pairings of variables were tried and these four ANFIS produced

the best results. The variable Thrust was paired twice in the double input ANFIS because it was

one of the most predictive variables, as is seen from the ANFIS results in method 2A. Also,

double input ANFIS were developed with and without the missing values filled in. The filled in

variables always produced the best ANFIS. The ANFIS developed with three inputs achieved

very good results. Again, different pairings of three were tried, however these produced the best

results. Also, a new variable, Fuel, was included because in the exhaustive and sequential

searches, it was found to be a predictive variable for three input ANFIS. The ANFIS that used

TestStand, Thrust, and DuratDd attained such good results that it could stand alone as a

prediction without the neural network stage (Figure 8.16). However, the neural network takes

more inputs into account, so it would operate more accurately with future use. The FuelFlow,

OxidizerFl, and Fuel ANFIS also attained very good results, even though the variables

individually were not the most predictive (Figure 8.18). Figures 8.12, 8.13, 8.14, and 8.15 are

 51
the testing results of the two input ANFIS. Figures 8.17, 8.18, and 8.19 show the testing results

of the three input ANFIS.

Figure 8.12: Method 2B Double Input FuelFlow and Thrust ANFIS Testing Results
(gauss2mf)

 52

Figure 8.13: Method 2B Double Input TestStand and Thrust ANFIS Testing Results
(gauss2mf)

Figure 8.14: Method 2B Double Input TestDurMax and PressuraPr ANFIS Testing
Results (gaussmf)

 53

Figure 8.15: Method 2B Double Input FuelFlow and OxidizerFl ANFIS Testing Results
(gauss2mf)

Figure 8.16: Method 2B Triple Input TestStand, Thrust, and DuratDd ANFIS Testing
Results (gbellmf)

 54

Figure 8.17: Method 2B Triple Input TestDurMax, PressuraPr, and Pressurant ANFIS
Testing Results (gaussmf)

Figure 8.18: Method 2B Triple Input FuelFlow, OxidizerFl, and Fuel ANFIS Testing
Results (gaussmf)

 55
 The neural network developed for both the two and three input ANFIS was very similar

to Method 2A. Again, the number of first layer neurons was set equal to the number of inputs

and a single neuron was used for the second layer. The initial learning rate used for both neural

networks developed is 0.01. The momentum and types of transfer functions were varied as

before. Varying inputs were tried for the neural network using the two input ANFIS. The best

results were obtained by using all of the four two input ANFIS developed. For the results

presented here a momentum value of 0.3 and transfer functions of type logsig were used. The

network developed using the three input ANFIS also performed very well. The results presented

here did not have the lowest average percent error for the testing set that was found, however,

some of the training average percent errors were higher. This network was chosen to represent

the best results because it was the only network developed that had percent errors of close to

10% for both the training and testing set. Tables 8.7 and 8.8 contain the results of both the

neural networks developed for the two input ANFIS and the three input ANFIS, respectively.

Figure 8.19 shows the predicted costs of both the networks compared to the actual cost.

 56
Table 8.7: Method 2B: Double Input ANFIS Training and Testing Final Results from the
Neural Network

Predicted Cost Actual Cost Percent Errors (%)
1 823,990 550,000 49.82
2 1,320,800 1,592,000 -17.04
3 4,446,500 4,433,000 0.30
4 2,235,700 2,203,000 1.48
5 1,785,000 1,772,000 0.73
6 12,042,000 12,051,000 -0.07
7 814,860 702,000 16.08

Average Percent Error
12.22

Sum of Diff./Total
Number of Sets

103,750

Predicted Cost Actual Cost Percent Errors (%)
1 1,314,100 1,590,000 -17.35
2 5,231,100 4,935,000 6.00
3 1,268,500 1,713,000 -25.95
4 1,074,200 1,540,966 -30.29

Average Percent Error
19.90

Sum of Diff./Total
Number of Sets

370,817

Testing Set

Training Set

 57
Table 8.8: Method 2B: Triple Input ANFIS Training and Testing Final Results from the
Neural Network

Predicted Cost Actual Cost Percent Errors (%)
1 747,600 550,000 35.93
2 1,436,600 1,592,000 -9.76
3 4,613,100 4,433,000 4.06
4 2,058,700 2,203,000 -6.55
5 1,606,900 1,772,000 -9.32
6 11,976,000 12,051,000 -0.62
7 816,590 702,000 16.32

Average Percent Error
11.79

Sum of Diff./Total
Number of Sets

147,441

Predicted Cost Actual Cost Percent Errors (%)
1 1,441,500 1,590,000 -9.34
2 5,306,200 4,935,000 7.52
3 1,546,200 1,713,000 -9.74
4 1,562,100 1,540,966 1.37

Average Percent Error
6.99

Sum of Diff./Total
Number of Sets

176,909

Training Set

Testing Set

 58

Figure 8.19: Method 2B Final Testing Results

 The results attained from using method 2B were very good. Even the double input

ANFIS that initially presented very large individual percentage errors produced good cost

predictions after the neural network stage. The best results were derived from the systems

created from the three input ANFIS which produced an average percent error of well under 10%.

8.3. Results for Method 3: RBFN

 Method 3 uses an RBFN to predict the engine test cost. As previously discussed, two

RBFNs were implemented: one with a training set of the entire data set (eleven) and the second

with a training set of seven. The RBFN with the training set of eleven is used simply as a

comparison to the RBFN with a training set of seven due to the difficulty of training an RBFN,

which uses a k-means clustering algorithm, on such a small data set of size seven. This is

evident from the results of method 1 which also uses k-means in the LLE algorithm. The first

RBFN’s (training set of eleven) results are misleading because unlike in every other method

 59
implemented, the RBFN has already seen the testing set as part of the training set. The

comparison of the two RBFNs, however, demonstrates that this would be a more effective

method if more data sets were available.

 The RBFNs were both developed by varying the number of clusters k and the number of

nearest neighbors p. The number of inputs was also varied, however, both RBFNs always

performed better with the full data set of eighteen variables. The best results were usually

attained when k and p were allowed to reach their highest values, 6 and 4 respectively. This is

true of the RBFN developed with the training set of eleven values. The exception to this would

be the RBFN developed with the training set of seven values, which attained the best results with

three clusters and two neighbors (k = 3, p = 2). Tables 8.9 and 8.10 contain the predicted values

and percentage errors of the RBFN with a training set of 11 and a training set of 7, respectively.

Figure 8.20 shows a graphical representation of the predicted costs of both RBFNs compared to

the actual costs. Appendix 12.7 contains the actual center values, variances, and average costs of

clusters for the results presented here.

 60

Table 8.9: Method 3: RBFN (Training Set of 11) Training and Testing Final Results

Predicted Cost Actual Cost Percent Errors (%)
1 2,205,800 550,000 301.05
2 2,143,800 1,592,000 34.66
3 1,767,800 4,433,000 -60.12
4 1,813,100 2,203,000 -17.70
5 1,695,900 1,772,000 -4.29
6 2,139,400 12,051,000 -82.25
7 1,697,100 702,000 141.75
8 1,542,400 1,590,000 -2.99
9 2,668,900 4,935,000 -45.92

10 1,726,800 1,713,000 0.81
11 1,674,000 1,540,966 8.63

Average Percent Error
91.69

Sum of Diff./Total
Number of Sets

2,320,786

Predicted Cost Actual Cost Percent Errors (%)
1 1,542,400 1,590,000 -2.99
2 2,668,900 4,935,000 -45.92
3 1,726,800 1,713,000 0.81
4 1,674,000 1,540,966 8.63

Average Percent Error
14.59

Sum of Diff./Total
Number of Sets

615,134

Training Set

Testing Set

 61

Table 8.10: Method 3: RBFN (Training Set of 7) Training and Testing Final Results

Predicted Cost Actual Cost Percent Errors (%)
1 2,519,200 550,000 358.04
2 2,339,300 1,592,000 46.94
3 1,567,200 4,433,000 -64.65
4 1,625,000 2,203,000 -26.24
5 1,788,300 1,772,000 0.92
6 2,389,400 12,051,000 -80.17
7 1,578,300 702,000 124.83

Average Percent Error
100.25

Sum of Diff./Total
Number of Sets

2,387,786

Predicted Cost Actual Cost Percent Errors (%)
1 1,802,100 1,590,000 13.34
2 1,850,200 4,935,000 -62.51
3 1,825,400 1,713,000 6.56
4 1,813,900 1,540,966 17.71

Average Percent Error
25.03

Sum of Diff./Total
Number of Sets

920,559

Training Set

Testing Set

 62

Figure 8.20: Method 3 Final Testing Results

 Both RBFNs predicted the cost of articles 1, 3, and 4 fairly accurately, but had trouble

predicting article 2. This is understandable since article 2 is so much larger than the others. The

RBFN with a training set of 11 had better results, as expected, since it has already seen the

testing set. It also had lower errors for the training set as well. This shows that if the data set

were larger, the network could train better, which would produce better results. Our data reflects

only a very small change because even with increasing the training set to eleven, it is still quite a

small set for the eighteen dimensions it has.

8.4. Comparison of Results for All Methods

 Table 8.11 compares the percentage errors obtained for the training and testing results for

all methods. Figure 8.22 contains a graphical representation of the comparison of all predicted

 63
costs to the actual costs for the testing sets. The best results were obtained from Method 2B,

especially the results obtained for the network developed using the three input ANFIS, which

achieved a testing average percent error of 7% with no quantity individually estimated with an

error above 10%. Other methods were not effective, namely method 1, which did a poor job of

predicting almost all the articles. Method 2A had trouble predicting article 3. This was

unexpected because it would be logical to assume it would have more trouble with article 2 due

to its larger cost. It is difficult for the neural network to find an accurate prediction when the

outputs of the ANFIS are so varied as is the case in Method 2A. Method 3 also had trouble

predicting the costs of the engine tests. This is due to the size of the training set, since it, like the

LLE method, must rely on clustering methods that usually require large data sets.

Table 8.11: Training and Testing Final Results for All Methods

Method 1 Method 2A
Method 2B (2
Input ANFIS)

Method 2B
(3 Input
ANFIS)

Method 3
(Training Set

of 11)*

Method 3
(Training
Set of 7)

1 1.05E-04 75.70 49.82 301.05 358.04
2 -9.02E-05 -9.40 -17.04 34.66 46.94
3 -8.69E-05 0.88 0.30 -60.12 -64.65
4 -2.17E-05 -1.36 1.48 -17.70 -26.24
5 -4.99E-05 -20.60 0.73 -4.29 0.92
6 -2.92E-05 -0.05 -0.07 -82.25 -80.17
7 -2.06E-05 53.19 16.08 141.75 124.83

5.77E-05 23.03 12.22 91.69 100.25

Method 1 Method 2A

Method 2B
(Double

Input ANFIS)

Method 2B
(Triple Input

ANFIS)

Method 3
(Training Set

of 11)

Method 3
(Training
Set of 7)

1 -96.435 -13.37 -17.35 -2.99 13.34
2 -89.789 0.37 6.00 -45.92 -62.51
3 -63.963 78.52 -25.95 0.81 6.56
4 -16.258 21.41 -30.29 8.63 17.71

66.61125 28.42 19.90 14.59 25.03
* The last four training sets are not placed here since they are identical to the four testing
sets.

Training Set Percent Errors (%)

Testing Set Percent Errors (%)

Average Percent Error (%)

Average Percent Error (%)

35.93
-9.76
4.06
-6.55
-9.32
-0.62
16.32

11.79

-9.34
7.52
-9.74
1.37

6.99

 64

Figure 8.21: Final Testing Results for All Methods

 65

9. CONCLUSIONS

 Several different fuzzy and neural methods were implemented to solve the problem of

predicting the cost of performing engine tests, with a small incomplete data set. Methods 1

(LLE) and 3 (RBFN) were found to be largely ineffective in this problem due to the small size of

the data set. Method 3, however, shows promise for use if the data set is ever enlarged, as

indicated in the comparison of the two RBFNs that were developed. Method 2 proved to

perform the best for small data set sizes, particularly method 2B with multiple variables as inputs

into the ANFIS stage. The problem of incomplete data sets was mitigated by filling in values

with either their mean, median, or mode values from the entire variable set. This was proven

with the method 2B ANFIS where both filled-in and non-filled-in ANFIS were developed. The

best engine test cost predicting system was method 2B using the three input ANFIS where an

error under 10% was achieved for every test article. In the future, if any further data could be

obtained, these same methods could be implemented to attain better results.

9.1. Suggestions for Future Work

A graphical user interface could be utilized when implementing the three input ANFIS

system developed in method 2B to make the task of actually predicting new data easier.

Currently, the data set must be manually entered into the Matlab script. Also, some way of

condensing the number of files would be helpful. Presently, the three ANFIS and the neural

network developed must be placed in the Matlab work file for the estimation to run.

 66
Another approach to create this cost estimating model could be to use a bimodal approach

where certain networks are used for very expensive tests and other networks are used for the less

expensive tests. For example the RBFN method generally worked very well with everything but

the most expensive test article. This method could be used for less expensive tests. However,

only method 2 predicted the most expensive test accurately. So these two systems could be used

based upon whether a test was expected to be expensive or less expensive.

Another addition to the method 2B three input ANFIS system could be to take into

account the fuzziness inherent in the variables themselves. This system is used to create a

prediction of cost, which means that the variables themselves still have some degree of

uncertainty. This uncertainty could be taken into account to give a probability of accuracy for

the cost prediction itself. For example if the Thrust was known with a 90% surety and

TestDurMax was known with a 50% surety, then the cost prediction would have some degree of

accuracy associated with itself as well. Although difficult to implement, this would be a useful

consideration when planning and proposing future projects.

 Finally, a study comparing these methods with the current methods for use at NASA and

other methods used to estimate cost in this field would also be a helpful addition to this work, to

determine which methods perform the best.

 67

10. REFERENCES

[1] E. J. Kaminsky, F. Douglas, “A fuzzy-neural highly accurate cost estimating model

(HACEM),” in CIEF’2003 Conf. (3rd. int. workshop on Computational Intelligence in
Economics and Finance), Cary, NC, Sept. 26-30, 2003; pp. 1035-1039.

[2] E. J. Kaminsky, “Highly accurate cost estimating model (HACEM),” Project Final

Report LA BoR Contract No. NASA(2001)-Stennis-15, NASA-SSC Space Operations,
May 2002.

[3] J. Tenenbaum, V. Silva, J. Langford, “A global geometric framework for nonlinear

dimensionality reduction,” Science, December 2000; 290:2319-2322.

[4] D. Gering, “Linear and nonlinear data dimensionality reduction,” University of Michigan

[online] April 2002, http://www.ai.mit.edu/people/gering/areaexam/areaexam.pdf,
(Accessed: November 2003).

[5] T. Friedrich, “Nonlinear dimensionality reduction with locally linear embedding and

isomap,” Ph.D. Dissertation, University of Sheffield, 2003.

[6] P. Demartines and J. Herault, “Curvilinear component analysis: A self-organizing neural

network for nonlinear mapping of data sets,” IEEE Transactions on Neural Networks,
January 1997; 8.1:148-154.

[7] M. Brand, “Continuous nonlinear dimensionality reduction by kernel eigenmaps,”

Mitsubishi Electric Research Laboratory [online] November 2002,
http://www.merl.com/reports/docs/TR2003-21.pdf, (Accessed: November 2003).

[8] H. Ishibuchi, A. Miyazaki, and H. Tanaka, “Neural-network-based diagnosis systems for

incomplete data with missing inputs,” Proceedings of IEEE International Conference on
Neural Networks, Orlando, USA, June1994;3457-3460.

[9] E. Granger, M. Rubin, S. Grossberg, P. Lavoie, “Classification of incomplete data using

the fuzzy ARTMAP neural network,” Proceedings of IEEE International Joint
Conference on Neural Networks, Como, Italy, July 2000; 6:35-40.

[10] H. Chongfu, “Deriving samples from incomplete data,” IEEE World Congress on

Computational Intelligence, Anchorage, Alaska, May 1998; 1:645-650.

http://www.ai.mit.edu/people/gering/areaexam/areaexam.pdf
http://www.merl.com/reports/docs/TR2003-21.pdf

 68
[11] Y. Zhou, “Neural network learning from incomplete data,” Washington University

[online] August 2000, http://www.cs.wustl.edu/~zy/learn.pdf, (Accessed: November
2003).

[12] J.S. Jang, C.T. Sun, “ANFIS: Adaptive-network-based fuzzy interference system,” IEEE

Transactions on Systems, Man, and Cybernetics, June 1993; 23:665-685.

[13] J.S. Jang, C.T. Sun, “Neuro-fuzzy modeling and control,” Proceedings of the IEEE,

March 1995; 83.3:378-403.

[14] J. Mendel, “Uncertain rule-based fuzzy logic systems: Introduction and new directions,”

Prentice Hall, 2001.

[15] T. Takagi, M. Sugeno, “Fuzzy identification of systems and its applications to modeling

and control,” IEEE Transactions on Systems, Man, and Cybernetics, Marseille, France,
February 1985; 1:116-132.

[16] T. Takagi, M. Sugeno, “Deriviation of fuzzy controls rules from human operator’s
control actions,” Iternational Federation of Automatic Control symposium, July 1983;
55-60.

[17] S. Roweis, L. Saul, “ Nonlinear dimensionality reduction by locally linear embedding,”
Science December 2000; 290:2323-2326.

[18] L. K. Saul and S. T. Roweis, “An introduction to locally linear embedding,” Toronto
University [online] , http://www.cs.toronto.edu/~roweis/lle/papers/lleintro.pdf,
(Accessed: December 2003).

http://www.cs.wustl.edu/~zy/learn.pdf
http://www.cs.toronto.edu/~roweis/lle/papers/lleintro.pdf

 69

11. APPENDICES

 70

11.1. Engine Test Data Set

 71

11.2. Variable Codes

Fuel Long Name Fuel short name Code
Liquid Oxygen LOX 1
Liquid Hydrogen LH2 2
Liquid Nitrogen LN2 3
Gaseous Helium GHe 4

RP1 5
Hydrogen Peroxide H202 6
Gaseous Nitrogen GN2 7

JP8 8
Gaseous Hydrogen GH2 9

GAr 10
Missile grade air 11
Natural gas 12
Diesel 13
CH4 14
JAk 15

Gasous oxygen GOX 16
LN 17

W ater H20 18
Carbon Dioxide CO2 19
High Pressure Air HPA 20
Carbon Monoxide CO 21
Liquified Nitrogen Gas LNG 22
Proprietary PRO 23
Standard Hybrid Rocket
Fuel (Hydroxyl-Terminated
Polybutadiene) HTPB 24

Test Stand Code
E1 1
E2 2
E3 3
B1 4
B2 5
H1 6

Modification Code
Low 1
Medium 2
High 3

Fuel Codes

Test Stand Codes

Facility Modification Codes

 72

11.3. Method 1: LLE/ANFIS Development

ose all;clear all;
 Method 1: LLE/ANFIS Development

sed are:

tDurMax';'Fuel ';'Pressurant';...
';'FuelFlow ';'FuelPresFl';'OxydizerFl';...

 'PressuraPr';'ThrustMeas';'Cooling? ';'GimbalAxes';'Safety? ';...

9
4250 4.75 10.44 25 600 1 1

2 0 0 3 3 550000;
64 0.55 139 800 0 1

 25 25 150 0 0
0;

 172 12 1512 0 1
00;

 12 140 2000 1 0
00;

 4620 0 1 1 0
051000;

 20 23.4 400 1 0 0
2000;

0 0 150 3000 1 0
00;

267 200 1667 15000 0 0
0;

 0 1.78 1000 1 1 0
13000;

 23.81 0 1 0 0 0
40966];

alization

max = 1.1*max(ttb(:,19));

b(:,1)))/(1.1*max(ttb(:,1))-.9*min(ttb(:,1)));
(:,3)))/(1.1*max(ttb(:,3))-.9*min(ttb(:,3)));

 (ttb(:,5)-1)/(9-1);

(:,10)))/(1.1*max(ttb(:,10))-.9*min(ttb(:,10)));
)));
e there are 6)

 for testing data

 % use the last column (total cost)

 % use the last column (total cost)

%% %%%% %%%%%%%%%%%%%%%%%%%%%%%%
rmatio

raining Data

mber of desired dimensions
 % LLE transformed input set (p)

% lleTesting.m
cl
%
% the variables u

input_name=['DuratDd ';'NoTest ';'Tes
 'Oxydizer ';'Thrust

 'Handling? ';'TestStand ';'FacilitMod';'TotalCost '];

% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1
ttb=[9 2 70 5 4 1

 252 48 150 5 4 1 80000
 1 0 0 5 2 1592000;
 180 70 200 1 2 5 2500 30
 0 0 0 2 1 443300
 240 10 180 5 1 7 1740 174
 0 0 0 2 1 22030
 360 14 34 23 7 1 60000 0
 0 0 0 3 1 17720
 75 10 180 5 0 1 1800000 2035 0
 0 0 4 1 12
 45 25 200 8 4 6 5450 3.6
 1 1 3 1 70
 540 153 100 24 0 1 10000
 0 0 0 3 1 15900
 120 42 8 2 9 1 645000
 0 0 1 1 2 493500
 120 21 45 23 0 6 150 1
 1 1 2 2 17
 105 17 60 22 0 1 10000 9.52 0
 0 3 1 15

% Norm
x_min = 0.9*min(ttb(:,19));
x_

data(:,1) = (ttb(:,1)-.9*min(tt
data(:,2) = (ttb(:,3)-.9*min(ttb
data(:,3) =
data(:,4) = (ttb(:,7)-.9*min(ttb(:,7)))/(1.1*max(ttb(:,7))-.9*min(ttb(:,7)));
data(:,5) = (ttb(:,8)-.9*min(ttb(:,8)))/(1.1*max(ttb(:,8))-.9*min(ttb(:,8)));
data(:,6) = (ttb(:,10)-.9*min(ttb
data(:,7) = (ttb(:,11)-.9*min(ttb(:,11)))/(1.1*max(ttb(:,11))-.9*min(ttb(:,11
data(:,8) = (ttb(:,17)-1)/(6-1); % Special Normalization for TestStand (sinc
data(:,9) = (ttb(:,19)-x_min)/(x_max-x_min);

train = data(1:7,:); % use 7 rows for training data
test = data(8:11,:); % use 4 rows

% Training and Testing
p = train(:,1:8)';
t = train(:,9)';
p2 = test(:,1:8)';
t2 = test(:,9)';

%%%%%%%%% % %%%
% LLE Transfo n
% T
K = 3; % LLE number of neighbors
d = 3; % Nu
p_new=lle(p,K,d);
in_train = [p_new;t]';
% Testing Data
K2 = 3; % LLE number of neighbors

 73
d2 = 3; % Number of desired dimensions

ut set (p)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
edicting Training Data

w,fismat));
0;

x_min)+x_min; % Multiplying by normilization factor
t.*(x_max-x_min)+x_min; % Multiplying by normilization factor

%%%
edicting Testing Data

w2,fismat));
0;

x_min)+x_min; % Multiplying by normilization factor
max-x_min)+x_min; % Multiplying by normilization factor

lot(res_test,'r*')
est,'o')

rticles')
tal Cost of Engine Test')

1.25,3.55e6,'* = estimated cost')

p_new2 = lle(p2,K2,d2); % LLE transformed inp
in_test = [p_new2;t2]';

%%%%%%%%%%%%
% Pr
fismat = readfis('lletest_final04');
fuz_train(:,1) = (evalfis(p_ne
e_train(:,1) = ((t'-fuz_train)./t')*10
er_train = mean(abs(e_train))

res_train = fuz_train.*(x_max-
tar_train =

%%
% Pr
fismat = readfis('lletest_final04');
fuz_test(:,1) = (evalfis(p_ne
e_test(:,1) = ((t2'-fuz_test)./t2')*10
er_test = mean(abs(e_test))

res_test = fuz_test.*(x_max-
tar_test = t2.*(x_

hold on
p
plot(tar_t
hold off
xlabel('Test Set A
ylabel('To

text(1.25,3.75e6,'o = actual cost')
text(

 74

11.4. LLE Code
% LLE ALGORITHM (using K nearest neighbors)
%
% [Y] = lle(X,K,dmax)
%
% X = data as D x N matrix (D = dimensionality, N = #points)
% K = number of neighbors
% dmax = max embedding dimensionality
% Y = embedding as dmax x N matrix
%%
function [Y] = lle(X,K,d)

[D,N] = size(X);
fprintf(1,'LLE running on %d points in %d dimensions\n',N,D);

% STEP1: COMPUTE PAIRWISE DISTANCES & FIND NEIGHBORS
fprintf(1,'-->Finding %d nearest neighbours.\n',K);

X2 = sum(X.^2,1);
distance = repmat(X2,N,1)+repmat(X2',1,N)-2*X'*X;

[sorted,index] = sort(distance);
neighborhood = index(2:(1+K),:);

% STEP2: SOLVE FOR RECONSTRUCTION WEIGHTS
fprintf(1,'-->Solving for reconstruction weights.\n');

if(K>D)
 fprintf(1,' [note: K>D; regularization will be used]\n');
 tol=1e-3; % regularlizer in case constrained fits are ill conditioned
else
 tol=0;
end

W = zeros(K,N);
for ii=1:N
 z = X(:,neighborhood(:,ii))-repmat(X(:,ii),1,K); % shift ith pt to origin
 C = z'*z; % local covariance
 C = C + eye(K,K)*tol*trace(C); % regularlization (K>D)
 W(:,ii) = C\ones(K,1); % solve Cw=1
 W(:,ii) = W(:,ii)/sum(W(:,ii)); % enforce sum(w)=1
end;

% STEP 3: COMPUTE EMBEDDING FROM EIGENVECTS OF COST MATRIX M=(I-W)'(I-W)
fprintf(1,'-->Computing embedding.\n');

% M=eye(N,N); % use a sparse matrix with storage for 4KN nonzero elements
M = sparse(1:N,1:N,ones(1,N),N,N,4*K*N);
for ii=1:N
 w = W(:,ii);
 jj = neighborhood(:,ii);
 M(ii,jj) = M(ii,jj) - w';
 M(jj,ii) = M(jj,ii) - w;
 M(jj,jj) = M(jj,jj) + w*w';
end;

% CALCULATION OF EMBEDDING
options.disp = 0; options.isreal = 1; options.issym = 1;
[Y,eigenvals] = eigs(M,d+1,0,options);
Y = Y(:,2:d+1)'*sqrt(N); % bottom evect is [1,1,1,1...] with eval 0

fprintf(1,'Done.\n');

%%
% other possible regularizers for K>D
% C = C + tol*diag(diag(C)); % regularlization
% C = C + eye(K,K)*tol*trace(C)*K; % regularlization

 75

11.5. Example of Method 2 Development
% method2Testing.m
% 3/8/04
% Method 2: ANFIS/Neural Development
% Properly normalized, 7 training, 4 testing, double fis 10
% filling in missing data in columns 5, 8, 11 (mean or median)
close all;clear all;
% ANFIS HACEM Developing & Processing for Engines
% the variables used are:

input_name=['DuratDd ';'NoTest ';'TestDurMax';'Fuel ';'Pressurant';...
 'Oxydizer ';'Thrust ';'FuelFlow ';'FuelPresFl';'OxidizerFl';...
 'PressuraPr';'ThrustMeas';'Cooling? ';'GimbalAxes';'Safety? ';...
 'Handling? ';'TestStand ';'FacilitMod';'TotalCost '];

% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
ttb=[9 2 70 5 4 1 4250 4.75 10.44 25 600 1 1
 2 0 0 3 3 550000;
 252 48 150 5 4 1 80000 64 0.55 139 800 0 1
 1 0 0 5 2 1592000;
 180 70 200 1 2 5 2500 30 25 25 150 0 0
 0 0 0 2 1 4433000;
 240 10 180 5 1 7 1740 174 172 12 1512 0 1
 0 0 0 2 1 2203000;
 360 14 34 23 7 1 60000 0 12 140 2000 1 0
 0 0 0 3 1 1772000;
 75 10 180 5 0 1 1800000 2035 0 4620 0 1 1 0
 0 0 4 1 12051000;
 45 25 200 8 4 6 5450 3.6 20 23.4 400 1 0 0
 1 1 3 1 702000;
 540 153 100 24 0 1 10000 0 0 150 3000 1 0
 0 0 0 3 1 1590000;
 120 42 8 2 9 1 645000 267 200 1667 15000 0 0
 0 0 1 1 2 4935000;
 120 21 45 23 0 6 150 1 0 1.78 1000 1 1 0
 1 1 2 2 1713000;
 105 17 60 22 0 1 10000 9.52 0 23.81 0 1 0 0 0
 0 3 1 1540966];

% Filling in missing data
% Correcting for Pressurant
pres = median(ttb(:,5));
[a,b] = find(ttb(:,5)==0);
ttb(a,5) = pres;
% Correcting for FuelFlow
ff = mean(ttb(:,8));
[a,b] = find(ttb(:,8)==0);
ttb(a,8) = ff;
% Correcting for PressuraPr
ppr = median(ttb(:,11));
[a,b] = find(ttb(:,11)==0);
ttb(a,11) = ppr;

% Data Variable Selection
data_un(:,1) = ttb(:,17); % Select TestStand as the first column
data_un(:,2) = ttb(:,7); % Select Thrust as the second column
data_un(:,3) = ttb(:,8); % Select FuelFlow as the third column
data_un(:,4) = ttb(:,3); % Select TestDurMax as the fourth column
data_un(:,5) = ttb(:,11); % Select PressuraPr as fifth column
data_un(:,6) = ttb(:,10); % Select OxidizerFl as sixth column
data_un(:,7) = ttb(:,19); % Select Total Cost as the seventh column

% Normalization
x_min = 0.9*min(data_un(:,7));
x_max = 1.1*max(data_un(:,7));
data(:,1) = (data_un(:,1)-1)/(6-1);% Special Normalization for TestStand (since there are 6)
data(:,2) = (data_un(:,2)-.9*min(data_un(:,2)))/(1.1*max(data_un(:,2))-.9*min(data_un(:,2)));
data(:,3) = (data_un(:,3)-.9*min(data_un(:,3)))/(1.1*max(data_un(:,3))-.9*min(data_un(:,3)));
data(:,4) = (data_un(:,4)-.9*min(data_un(:,4)))/(1.1*max(data_un(:,4))-.9*min(data_un(:,4)));

 76
data(:,5) = (data_un(:,5)-.9*min(data_un(:,5)))/(1.1*max(data_un(:,5))-.9*min(data_un(:,5)));
data(:,6) = (data_un(:,6)-.9*min(data_un(:,6)))/(1.1*max(data_un(:,6))-.9*min(data_un(:,6)));
data(:,7) = (data_un(:,7)-x_min)/(x_max-x_min);

train = data(1:7,:); % use 7 rows for training data
test = data(8:11,:); % use 4 rows for testing data

%%%
% Fuzzy Determination
%%%
% TestStand and Thrust
% Training Data
p(:,1) = train(:,1);
p(:,2) = train(:,2);
t = train(:,7); % Cost is the last data column
in_train = [p,t];
% Testing data
p2(:,1) = test(:,1);
p2(:,2) = test(:,2);
t2 = test(:,7); % Cost is the last data column
in_test = [p2,t2];
p_1 = p;
p2_1 = p2;

%%%
% TestDurMax and PressuraPr
% Training Data
p(:,1) = train(:,4);
p(:,2) = train(:,5);
t = train(:,7); % Cost is the last data column
in_train = [p,t];
% Testing data
p2(:,1) = test(:,4);
p2(:,2) = test(:,5);
t2 = test(:,7); % Cost is the last data column
in_test = [p2,t2];
p_2 = p;
p2_2 = p2;

%%%
% FuelFlow and OxidizerFL
% Training Data
p(:,1) = train(:,3);
p(:,2) = train(:,6);
t = train(:,7); % Cost is the last data column
in_train = [p,t];
% Testing data
p2(:,1) = test(:,3);
p2(:,2) = test(:,6);
t2 = test(:,7); % Cost is the last data column
in_test = [p2,t2];
p_3 = p;
p2_3 = p2;

%%%
% FuelFlow and Thrust
% Training Data
p(:,1) = train(:,3);
p(:,2) = train(:,2);
t = train(:,7); % Cost is the last data column
in_train = [p,t];
% Testing data
p2(:,1) = test(:,3);
p2(:,2) = test(:,2);
t2 = test(:,7); % Cost is the last data column
in_test = [p2,t2];
p_4 = p;
p2_4 = p2;

%%%

 77
% Predicting Training Data
fismat = readfis('m1_TS_Thrust_09');
ctrain(:,1) = (evalfis(p_1,fismat));
fismat = readfis('m1_TDM_PPr_10');
ctrain(:,2) = (evalfis(p_2,fismat));
fismat = readfis('m1_FF_OFL_10');
ctrain(:,3) = (evalfis(p_3,fismat));
fismat = readfis('m1_FF_Thrust_10');
ctrain(:,4) = (evalfis(p_4,fismat));

e_ctrain(:,1) = ((train(:,7)-ctrain(:,1))./train(:,7))*100;
e_ctrain(:,2) = ((train(:,7)-ctrain(:,2))./train(:,7))*100;
e_ctrain(:,3) = ((train(:,7)-ctrain(:,3))./train(:,7))*100;
e_ctrain(:,4) = ((train(:,7)-ctrain(:,4))./train(:,7))*100;

%%%
% Predicting Testing Data
fismat = readfis('m1_TS_Thrust_09');
ctest(:,1) = (evalfis(p2_1,fismat));
fismat = readfis('m1_TDM_PPr_10');
ctest(:,2) = (evalfis(p2_2,fismat));
fismat = readfis('m1_FF_OFL_10');
ctest(:,3) = (evalfis(p2_3,fismat));
fismat = readfis('m1_FF_Thrust_10');
ctest(:,4) = (evalfis(p2_4,fismat));

e_ctest(:,1) = ((test(:,7)-ctest(:,1))./test(:,7))*100;
e_ctest(:,2) = ((test(:,7)-ctest(:,2))./test(:,7))*100;
e_ctest(:,3) = ((test(:,7)-ctest(:,3))./test(:,7))*100;
e_ctest(:,4) = ((test(:,7)-ctest(:,4))./test(:,7))*100;

%%%
% NN input
ctrain_nn = ((ctrain(:,1:4)))';
ctest_nn = (ctest(:,1:4))';
tar_train = (train(:,7))';
tar_test = (test(:,7))';
dataMinMax = minmax(ctrain_nn); % Quantity to give the neural network for size determination

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Neural Network Creation (Backpropagation)
% Create a new network with the newff command (Backpropagation)
% net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)
% traingdx is for batch training with adaptive learning rate and momentum
% learngdm is for gradient descent with momentum
% sse is the the sum-squared error criterion
nBP = newff(dataMinMax, [3 1], {'logsig','logsig'}, 'traingdx', 'learngdm', 'sse');
nBP.trainParam.goal = 0.001; % Desired maximum error
nBP.trainParam.epochs = 3000; % Maximum no. of epochs
nBP.trainParam.lr = 0.01; % Learning rate
nBP.trainParam.mc = 0.3; % Momentum

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Training of network
nBP = init(nBP); % Initialize the new network
[nBP, trc] = train(nBP, ctrain_nn, tar_train); % Train the network

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Testing Data
c_results = [];
c_results = sim(nBP, ctest_nn); % Simulating the network using test data
c_results = c_results.*(x_max-x_min)+x_min; % Multiplying by normilization factor
tar_test = tar_test.*(x_max-x_min)+x_min; % Multiplying by normilization factor
error = [];
error = ((tar_test-c_results)./tar_test).*100
err = mean(abs(error)) % Mean error
sserror = 1/(length(c_results)).*sum((tar_test - c_results).^2)
c_results = c_results';
error = error';

 78
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Training Data
c_results = [];
c_results = sim(nBP, ctrain_nn); % Simulating the network using test data
c_results = c_results.*(x_max-x_min)+x_min; % Normilizating factor
tar_train = tar_train.*(x_max-x_min)+x_min; % Normilizating factor
error = [];
error = ((tar_train-c_results)./tar_train).*100
err = mean(abs(error)) % Mean error
sserror = 1/(length(c_results)).*sum((tar_train - c_results).^2)
c_results = c_results';
error = error';

 79

11.6. Method 3: RBFN Development

% m3RBFN.m
% 3/14/04
% Method 3: RBFN Development
% Properly normalized, 7 training, 4 testing, double fis 10
% filling in missing data in columns 5, 8, 11 (mean or median)
% RBFN
close all;clear all;
% ANFIS HACEM Developing & Processing for Engines
% the variables used are:

input_name=['DuratDd ';'NoTest ';'TestDurMax';'Fuel ';'Pressurant';...
 'Oxydizer ';'Thrust ';'FuelFlow ';'FuelPresFl';'OxidizerFl';...
 'PressuraPr';'ThrustMeas';'Cooling? ';'GimbalAxes';'Safety? ';...
 'Handling? ';'TestStand ';'FacilitMod';'TotalCost '];

% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
ttb=[9 2 70 5 4 1 4250 4.75 10.44 25 600 1 1
 2 0 0 3 3 550000;
 252 48 150 5 4 1 80000 64 0.55 139 800 0 1
 1 0 0 5 2 1592000;
 180 70 200 1 2 5 2500 30 25 25 150 0 0
 0 0 0 2 1 4433000;
 240 10 180 5 1 7 1740 174 172 12 1512 0 1
 0 0 0 2 1 2203000;
 360 14 34 23 7 1 60000 0 12 140 2000 1 0
 0 0 0 3 1 1772000;
 75 10 180 5 0 1 1800000 2035 0 4620 0 1 1 0
 0 0 4 1 12051000;
 45 25 200 8 4 6 5450 3.6 20 23.4 400 1 0 0
 1 1 3 1 702000;
 540 153 100 24 0 1 10000 0 0 150 3000 1 0
 0 0 0 3 1 1590000;
 120 42 8 2 9 1 645000 267 200 1667 15000 0 0
 0 0 1 1 2 4935000;
 120 21 45 23 0 6 150 1 0 1.78 1000 1 1 0
 1 1 2 2 1713000;
 105 17 60 22 0 1 10000 9.52 0 23.81 0 1 0 0 0
 0 3 1 1540966];

% Filling in missing data
% Correcting for Pressurant
pres = median(ttb(:,5));
[a,b] = find(ttb(:,5)==0);
ttb(a,5) = pres;
% Correcting for FuelFlow
ff = mean(ttb(:,8));
[a,b] = find(ttb(:,8)==0);
ttb(a,8) = ff;
% Correcting for PressuraPr
ppr = median(ttb(:,11));
[a,b] = find(ttb(:,11)==0);
ttb(a,11) = ppr;
% Correcting for FuelPresFl
fpf = median(ttb(:,9));
[a,b] = find(ttb(:,9)==0);
ttb(a,9) = fpf;

x_min = 0.9*min(ttb(:,19));
x_max = 1.1*max(ttb(:,19));

data(:,1) = (ttb(:,1)-.9*min(ttb(:,1)))/(1.1*max(ttb(:,1))-.9*min(ttb(:,1)));
data(:,2) = (ttb(:,2)-.9*min(ttb(:,2)))/(1.1*max(ttb(:,2))-.9*min(ttb(:,2)));
data(:,3) = (ttb(:,3)-.9*min(ttb(:,3)))/(1.1*max(ttb(:,3))-.9*min(ttb(:,3)));
data(:,4) = (ttb(:,4)-1)/(24-1);
data(:,5) = (ttb(:,5)-1)/(9-1);

 80
data(:,6) = (ttb(:,6)-1)/(7-1);
data(:,7) = (ttb(:,7)-.9*min(ttb(:,7)))/(1.1*max(ttb(:,7))-.9*min(ttb(:,7)));
data(:,8) = (ttb(:,8)-.9*min(ttb(:,8)))/(1.1*max(ttb(:,8))-.9*min(ttb(:,8)));
data(:,9) = (ttb(:,9)-.9*min(ttb(:,9)))/(1.1*max(ttb(:,9))-.9*min(ttb(:,9)));
data(:,10) = (ttb(:,10)-.9*min(ttb(:,10)))/(1.1*max(ttb(:,10))-.9*min(ttb(:,10)));
data(:,11) = (ttb(:,11)-.9*min(ttb(:,11)))/(1.1*max(ttb(:,11))-.9*min(ttb(:,11)));
data(:,12) = (ttb(:,12));
data(:,13) = (ttb(:,13));
data(:,14) = (ttb(:,14)-0)/(2-0);
data(:,15) = (ttb(:,15));
data(:,16) = (ttb(:,16));
data(:,17) = (ttb(:,17)-1)/(6-1); % Special Normalization for TestStand (since there are 6)
data(:,18) = (ttb(:,18)-1)/(3-1);
data(:,19) = (ttb(:,19)-x_min)/(x_max-x_min);

train = data(1:7,:); % use 7 rows for training data
test = data(8:11,:); % use 4 rows for testing data

%%%
% NN input
ctrain_nn = (train(:,1:18));
ctest_nn = (test(:,1:18));
tar_train = (train(:,19));
tar_test = (test(:,19));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Neural Network Creation (RBFN)
k = 6; % Number of clusters k
p = 4; % Number of p-nearest neighbors chosen
[clus,cent] = kmeans(ctrain_nn,k); % Kmeans algorithm
ave_cost = []; % Finding the average cost of each cluster
for i = 1:k
 x = [];
 y = [];
 [x y] = find(clus(:,1)==i);
 ave_cost(i,:) = mean(data(x,7));
end
vari = zeros(k,1); % P-nearest neighbor
n = [];
n_sort = [];
n = dist(cent'); % Euclidean distances of each center for nearest determination
n_sort = sort(n,1);
for i = 1:k % For the number of clusters k
 a = 0;
 for j = 1:p
 x = [];
 y = [];
 [x y] = find(n(:,i) == n_sort(1+p,i));
 a = sum((cent(i,:)-cent(x,:)).^2) + a;
 end
 vari(i,1) = (1/p*a)^0.5;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Training
phi_k1 = [];
result1 =[];
for i = 1:size(ctrain_nn,1) % For the length of the training data set
 for j = 1:k % Calculating the output
 phi_k1(i,j) = exp(-(sum((cent(j,:)-ctrain_nn(i,:)).^2))^0.5/vari(j,:));
 end
 phi_k1(i,:) = 1/sum(phi_k1(i,:))*(phi_k1(i,:));% Normalizing probablities to sum to one
 result1(i,1) = phi_k1(i,:)*ave_cost;% Multiplying the propabilities by the
end % average cost of the respective cluster

% Error calculations
res_train = result1.*(x_max-x_min)+x_min; % Un-normilizating output
tar_train = tar_train.*(x_max-x_min)+x_min;
error = [];
err = [];

 81
error = ((tar_train-res_train)./tar_train).*100 % Error calculation
err = mean(abs(error)) % Mean error
sserror = 1/(length(res_train)).*sum((tar_train - res_train).^2) % Sum squared error

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Testing
phi_k2 = [];
result2 =[];
for i = 1:size(ctest_nn,1) % For the length of the testing data set
 for j = 1:k % Calculate the output
 phi_k2(i,j) = exp(-(sum((cent(j,:)-ctest_nn(i,:)).^2))^0.5/vari(j,:));
 end
 phi_k2(i,:) = 1/sum(phi_k2(i,:))*(phi_k2(i,:));% Normalizing probablities to sum to one
 result2(i,1) = phi_k2(i,:)*ave_cost;% Multiplying the propabilities by the
end % average cost of the respective cluster

% Error calculations
res_test = result2.*(x_max-x_min)+x_min; % Un-normilizating output
tar_test = tar_test.*(x_max-x_min)+x_min;
error = [];
err = [];
error = ((tar_test-res_test)./tar_test).*100 % Error calculation
err = mean(abs(error)) % Mean error
sserror = 1/(length(res_test)).*sum((tar_test - res_test).^2) % Sum squared error

 82

11.7. Method 3: RBFN Cluster Costs, Center Values, and Variance Values

For RBFN (11 for training)

Actual Costs Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
1 0.00431 0.14287 0.15005 0.15226 0.14491 0.15315 0.25676
2 0.085964 0.14697 0.14749 0.13535 0.18453 0.14104 0.24462
3 0.30859 0.15344 0.14703 0.14191 0.26302 0.14288 0.15172
4 0.13384 0.13147 0.14705 0.14868 0.28485 0.12378 0.16417
5 0.10007 0.19653 0.13449 0.1335 0.12317 0.2729 0.13941
6 0.90556 0.15415 0.14913 0.14835 0.15682 0.15031 0.24124
7 0.016221 0.142 0.14692 0.27997 0.15394 0.14288 0.1343
8 0.085808 0.33066 0.11491 0.12164 0.12164 0.18682 0.12432
9 0.34793 0.11553 0.3955 0.12344 0.12788 0.11586 0.12178

10 0.095446 0.14143 0.14137 0.29146 0.13734 0.14095 0.14744
11 0.081965 0.19152 0.12367 0.14041 0.13265 0.26627 0.14548

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
Average Cost
of Cluster 0.004983 0.32571 0.001346 0.001003 0.01761 0.31717

0.90783 0.19099 0.12698 0.3446 0.383 0.17733
0.90811 0.24144 0.12733 0.22943 0.082282 0.10931
0.43609 0.003759 0.54182 0.85902 0.18703 0.59273

1 0.043478 0.63043 0.086957 0.93478 0.17391
0.125 1 0.25 0.0625 0.4375 0.29167

0 0 0.83333 0.83333 0 0
0.004983 0.32571 0.001346 0.001003 0.01761 0.31717

0.10478 0.11892 0.000626 0.045182 0.054315 0.31299
0.045306 0.90889 0.067083 0.44648 0.04886 0.030288

0.02921 0.32781 0.002163 0.003326 0.015806 0.31357
0.17507 0.90834 0.034525 0.04253 0.077299 0.036562

1 0 1 0 1 0.66667
0 0 0.5 0.5 0 1
0 0 0 0 0
0 0 1 0 0 0
0 1 1 0 0 0

0.4 0 0.3 0.2 0.4 0.6
0 0.5 0.25 0 0 0.5

2.1051 2.4511 2.1051 1.9903 1.865 1.9923
Variance

RBFN: k = 6, p = 4

Center

0.5

83

Actual Costs Cluster 1 Cluster 2 Cluster 3
1 0.00431 0.48523 0.27206 0.24272
2 0.085964 0.44197 0.2451 0.31293
3 0.30859 0.24892 0.27964 0.47144
4 0.13384 0.26562 0.2308 0.50358
5 0.10007 0.29516 0.45465 0.25019
6 0.90556 0.45267 0.28009 0.26723
7 0.016221 0.24188 0.47962 0.2785
8 0.085808 0.30066 0.41204 0.2873
9 0.34793 0.31521 0.35841 0.32637

10 0.095446 0.30613 0.41839 0.27548
11 0.081965 0.30267 0.43059 0.26673

Cluster 1 Cluster 2 Cluster 3
Average Cost of
Cluster 0.31717 0.016461 0.001003

0.17733 0.3318 0.3446
0.10931 0.10631 0.22943
0.59273 0.51598 0.85902
0.17391 0.63043 0.086957
0.29167 0.5625 0.0625

0 0.41667 0.83333
0.31717 0.016461 0.001003
0.31299 0.052992 0.045182

0.030288 0.070636 0.44648
0.31357 0.015766 0.003326

0.036562 0.065078 0.04253
0.66667 1 0

1 0
0.5 0 0

0 0.5
0 0.5

0.6 0.4 0.2
0.5 0 0

1.6986 1.6986 1.6686

RBFN: k = 3, p = 2

Center

Variance

For RBFN (7 for training)

0.5

0
0

 84

12. VITA

 Holly Danker-McDermot was born in Miami, Florida. She graduated magnum cum laude

from the University of New Orleans with a Bachelor of Science in Electrical Engineering in the

spring of 2002. While attending the University of New Orleans as an undergraduate, in May of

2001 she was awarded the Electrical Engineering Outstanding Achievement Award. In May of

the following year she was then awarded the Electrical Engineering Robert Lee Chandler

Outstanding Graduate Award. She is currently a member of IEEE as well as the engineering

honor society Tau Beta Pi.

	A Fuzzy/Neural Approach to Cost Prediction with Small Data Sets
	Recommended Citation

	ACKNOWLEDGEMENTS
	ABSTRACT
	
	TABLE OF CONTENTS

	LIST OF FIGURES
	LIST OF TABLES
	1. INTRODUCTION
	2. PAST WORK
	2.1. HACEM
	2.2. Nonlinear Dimensionality Reduction
	2.3. Dealing with Incomplete Data Sets

	3. DATA AND PROCESSING ISSUES
	3.1. Testing and Training Sets Selection
	3.2. Data Analysis
	3.3. Normalization of Data

	4. ANFIS
	4.1. Membership Functions
	4.2. ANFIS Rules
	4.3. ANFIS Structure

	5. METHOD 1: LLE
	5.1. Implementation of Method 1

	6. METHOD 2: ANFIS/NEURAL COMBINED SYSTEMS
	6.1. Method 2A: Single Input ANFIS
	6.2. Method 2B: Multiple Input ANFIS

	7. METHOD 3: RBFN
	8. RESULTS
	8.1. Results for Method 1: LLE
	8.2. Results for Method 2: ANFIS/Neural Combined System
	8.2.1. Method 2A
	8.2.2. Method 2B

	8.3. Results for Method 3: RBFN
	8.4. Comparison of Results for All Methods

	9. CONCLUSIONS
	9.1. Suggestions for Future Work

	10. REFERENCES
	11. APPENDICES
	11.1. Engine Test Data Set
	11.2. Variable Codes
	11.3. Method 1: LLE/ANFIS Development
	11.4. LLE Code
	11.5. Example of Method 2 Development
	11.6. Method 3: RBFN Development
	11.7. Method 3: RBFN Cluster Costs, Center Values, and Variance Values

	11. VITA

