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ABSTRACT 
 
 The project objective in this work is to create an accurate cost estimate for NASA engine 

tests at the John C. Stennis Space Center testing facilities using various combinations of fuzzy 

and neural systems.  The data set available for this cost prediction problem consists of variables 

such as test duration, thrust, and many other similar quantities, unfortunately it is small and 

incomplete.  The first method implemented to perform this cost estimate uses the locally linear 

embedding (LLE) algorithm for a nonlinear reduction method that is then put through an 

adaptive network based fuzzy inference system (ANFIS).  The second method is a two stage 

system that uses various ANFIS with either single or multiple inputs for a cost estimate whose 

outputs are then put through a backpropagation trained neural network for the final cost 

prediction.  Finally, method 3 uses a radial basis function network (RBFN) to predict the engine 

test cost.
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1.  INTRODUCTION 
 
 Cost estimation is a vital aspect of any project.  Some form of cost estimation must be 

performed to determine if a design is feasible to actually realize or, as in this case, to present an 

estimate to a customer.  Even small adjustments to already designed systems require some sort of 

cost projection analysis to determine the viability of the proposed improvements.  The project 

objective in this work is to create an accurate rough order of magnitude cost estimate for engine 

tests at NASA’s John C. Stennis Space Center testing facilities or in other words create an 

accurate nonlinear mapping between the data available to the total cost of the test.  NASA also 

specified the use of fuzzy networks to create this cost prediction system.       

 This research stems from the development of HACEM (Highly Accurate Cost Estimating 

Model) [1-2].  The HACEM system used a small set of data attained from project requirement 

documents to predict the total cost of component and engine tests.  This model used adaptive 

network based fuzzy inference systems (ANFIS), realized in Matlab, that were trained by the 

given data to predict these test costs.  Different realizations of these ANFIS were tested including 

a simple ANFIS system, an ANFIS system using principal component analysis, and a cascaded 

ANFIS system.  While the results obtained from the HACEM system were good, the study 

presented in this paper attempts to attain better results.  This presents many complications 

because the only available data sets are small and incomplete. 

 The data sets utilized were extremely small because much of the information was 

eliminated due to incomplete data.  Even the remaining small data sets contained incomplete data 
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in some variable columns.  The various data variables included in each set consisted of quantities 

like engine thrust, duration of tests in days, and other quantities that will be discussed in the 

following sections.  Finally, the number of variables in each data set was much larger than the 

size of the items itself, which creates numerous problems when attempting to train fuzzy systems 

and neural networks.  Three different methods were applied to the problem of predicting engine 

test costs despite the incomplete data; method 1 using locally linear embedding; method 2 using 

both ANFIS and neural networks; and method 3 using a radial basis function network. 

 The dimensionality of the data set needs to be reduced because typically for neural 

networks to train accurately, the dimension of the input data should be much smaller than the 

actual number of training examples.  In method 1, the locally linear embedding (LLE) algorithm 

[17-18] is used to reduce the dimensionality of the data set which is then used to train an ANFIS 

to predict the cost of engine tests. One of the systems developed in HACEM, PCA-ANFIS, used 

principal component analysis (PCA) to reduce the dimensionality of the data set.  PCA is a linear 

operation, however, and this system is highly nonlinear.  LLE is a nonlinear method of reducing 

the dimensionality of the data set and was expected to produce better results.  

 Method 2 is a more heuristic approach using several ANFIS with a small number of 

inputs, respectively, and then combining the resulting ANFIS predictions with a neural network 

to attain a more accurate cost prediction.  Several different sizes of ANFIS systems and neural 

networks were tried to see which produced better results.  Method 2A refers to the system 

developed with each ANFIS taking a single variable as an input, respectively, and the resulting 

ANFIS outputs are then combined in a neural network.  Method 2B is similar, except instead of 

each ANFIS taking only one variable, each ANFIS takes multiple variables whose outputs are 

then combined with a neural network to produce the final cost estimate. 
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 Method 3 uses a Radial Basis Function Network (RBFN) to predict the output costs.  This 

method contains no ANFIS part, however, the RBFN is similar to an ANFIS in that it uses 

membership functions to classify the data.  As with method 2, several different sizes of RBFN 

are used.  Also, two different implementations of the RBFN were realized.  The first was to use 

the entire data set of eleven for training, due to the difficulty of clustering such a small data set.  

This is not a fair way to develop and test a network, however these results will be a good 

comparison to the correct way of implementing the RBFN because it shows how the results are 

being affected by the small size of the data set.  Because of the inherent inaccuracies of this 

approach, these results were then compared to the correct way of developing and testing the 

RBFN by dividing the data set into seven training examples and four testing items. 

 The organization of the report is presented below.  Section 2, past work, contains a brief 

summary of some of the research performed on this topic, including the HACEM project.  

Section 3, data and processing issues, discusses in depth the data itself and the choice of data 

variables used to test each method.  Section 4 contains details on ANFIS, specifically the ANFIS 

toolbox in Matlab.  Section 5 contains a brief discussion of the locally linear embedding 

algorithm and a description of how this algorithm was used to predict engine test costs in method 

1.  Section 6 discusses the fuzzy/neural approach used in method 2 for the cost prediction.  

Section 7 includes a discussion of the radial basis function network used in method 3 for cost 

prediction.  Section 8 contains a lengthy presentation, discussion, and comparison of the results 

attained from using methods 1, 2, and 3.  Section 9 contains concluding remarks and suggestions 

for future work.  Finally, the appendices contain the actual data used, the codes used to represent 

information about the data, and the Matlab code used to develop and implement these methods. 
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2.  PAST WORK 

2.1.  HACEM
 

HACEM or Highly Accurate Cost Estimating Model is a system using several Adaptive 

Network-Based Fuzzy Inference Systems (ANFIS) developed to predict the cost of engine and 

component tests for the testing facilities of NASA’s John C. Stennis Space Center (SSC).  This 

system was needed because the current method of cost prediction is more of a heuristic method.  

Three different systems were developed as part of the HACEM project relating to engine testing.  

The first, ANFIS-E, was a simple ANFIS developed through trial and error.  The second, PCA-

ANFIS-E, was also a simple ANFIS, however principal component analysis was used to reduce 

the data dimensionality.  The third ANFIS scheme developed for estimation was the Parallel 

ANFIS-E.  This method consists of several parallel ANFIS handling particular inputs whose 

outputs are then combined in the final stage consisting of a single ANFIS [1-2].   

These methods attained various degrees of accuracy.  The ANFIS-E performed the best 

with a total root mean squared error of 8%, even with one article being estimated with an error of 

about 40%.  Likewise, the PCA-ANFIS-E had the same article estimated with a 40% error.  

Finally, the Parallel-ANFIS-E system also had trouble estimating that outlying article, while it 

estimated the other articles closely [1]. 

2.2.  Nonlinear Dimensionality Reduction 
 

When dealing with fuzzy systems or neural networks it is always preferable to have more 

data sets than the dimensionality of the data because inputting too much information for each 
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data set into the system will make the results less accurate.  This was a large problem for the 

NASA engine test data because there were only eleven viable data sets with a dimensionality of 

nineteen.  One method to ensure the system attains more accuracy is to somehow reduce this data 

set so that only the most important information is given to the network, while all other data is 

eliminated so as not to confuse the system.  In HACEM, principal component analysis was used 

to reduce the dimensionality of the data set [1].  The only problem with using PCA in this 

situation was that it is a linear transformation and the data has a highly nonlinear relationship 

between individual data components.  This is why using a nonlinear dimensionality reduction 

method is a favorable alternative to using PCA.  Unfortunately, there does not seem to be a large 

amount of research in this field.  Most of the research found on this topic was usually related to 

image processing, which does not suffer from the problem of small data sets as in the case of the 

engine test data. 

The Isomap (isometric feature mapping) method, developed by Tenenbaum, Silva, and 

Langford [3], is one of the nonlinear dimensionality reduction methods that have been applied to 

image processing.  This algorithm attempts to use classical multidimensional scaling (MDS) to 

map data points from a high dimensional input space into low dimensional coordinates of a 

nonlinear manifold [4].  This method works by first finding the neighborhood of each point.  

This neighborhood can be calculated using the k nearest neighbors or the set of points within a 

certain radius.  These neighborhoods are represented as a weighted graph over the data points 

with edges weighted by the Euclidean distance between neighbors.  Next, the approximated 

geodesic distance between two points is found by computing the sum of the arc lengths along the 

shortest path connecting both points [5].  Finally, the classical metric MDS method is applied to 
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the approximated geodesic distances.  MDS is used to compute the largest eigenvectors, which 

give the coordinates of the data points in the lower-dimensional space [4-5].   

The Isomap method is relies heavily on the nearest neighbor algorithm, which is not 

viable for use in extremely small data sets because almost any point could be considered a 

neighbor.  Most of the nonlinear dimensionality reduction methods, however, required some sort 

of nearest neighbor processing [4-7].  There is simply not enough data to make a good 

neighborhood grouping.  This is especially true of the meager eleven data sets for engine testing. 

2.3.  Dealing with Incomplete Data Sets 
 

Another problem with the engine test data is that frequently there is information missing 

in each data set.  Ideally, if this information cannot be found it would be best to eliminate these 

data variables entirely.  This is not a viable option in this situation, however, since almost all of 

the data variables have at least one quantity missing.  Further, even if a certain variable has no 

missing data, it may not be predictive of the cost.  As with the nonlinear dimensionality 

reduction problem, there does not seem to be a large amount of research in dealing with 

incomplete data sets. 

Much of the research dealing with incomplete data sets involve neural classification 

systems.  Ishibuchi et al. [8] proposed a method for dealing with incomplete data by using an 

interval representation of incomplete data with missing inputs.  After a network is trained using 

learning algorithms for interval training data, a new sample consisting of the missing inputs, is 

presented along with an interval vector.  The output from the neural network is also an interval 

vector.  This output is then classified using four definitions of inequality between intervals [8].  

This method is more theoretical in its implementation than is desirable for the cost prediction 

problem. 
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Granger et al. [9] proposed using a fuzzy ARTMAP neural network to deal with 

incomplete data for a classification problem.  This approach presented the fuzzy ARTMAP with 

an indicator vector that described whether a data component was present or not.  Unlike 

replacement methods, the weight vector is modified as well as the input vector in response to 

missing components [9].  A future implementation of this method might perform well with the 

engine test cost prediction problem.     

Another method to deal with incomplete data is using the normal information diffusion 

model, which divides an observation into many parts according to a normal function [10].  This 

technique attempts to find a suitable membership function to represent a fuzzy group that 

represents the incomplete data.  This fuzzy group is then used to derive more data samples [10].  

Unfortunately, this method can be computationally intensive. 

Finally, some other methods viable for the engine data test sets are mean and multiple 

imputation.  Mean imputation is simply replacing the missing data with the mean value of the 

sample.  This method can cause misleading results because the changed data cannot reflect the 

uncertainty due to the missing data.  Multiple imputation is another method that is similar to 

mean imputation, however, the missing data is replaced by a set of possible values from their 

predictive distribution.  This set reflects the uncertainty of the values predicted from the 

observed ones [11].  This method yields much better results than mean imputation, however, it 

can be computationally intensive.  A variation on mean imputation was used in methods 2 and 3.

 



 8

3.  DATA AND PROCESSING ISSUES 
 
 The primary challenge with predicting the engine test cost is due to the small amount of 

data available for training and testing.  The goal of this project is to create an accurate nonlinear 

mapping between the data available to the total cost of the test.  If the quality of the data is poor 

or the amount of data is small, an accurate nonlinear mapping is very difficult to attain.  The 

project requirement documents (PRD) attained from NASA provided all of the data.  This data 

totaled an original amount of 38 data sets of which only 32 were determined to be viable because 

of completeness.  Then, it was further reduced since only about one third of this data was from 

engine tests, the rest was provided from component tests [2].  The component tests involve 

testing individual engine components while the engine tests involve testing the entire engine 

system.  The engine test was the only quantity used in this work. This reduced the total number 

of examples available for use for predicting engine test cost to 11.  This set then had to be 

divided into training and testing data, which will be discussed later in this section.  The reduced 

data set used for engine cost prediction is contained in the Appendix 12.1.  An article number 

denotes the actual data sets.  The article numbers that were used are 1, 2, 5, 6, 14, 15, 28, 29, 30, 

34, and 35.  However, for convenience and greater clarity the article numbers used in this paper 

are different than the actual NASA article numbers.  The correspondence between article 

numbers is illustrated in Appendix 12.1.
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 In Figure 3.1, the engine test articles costs are shown.  The article labeled 6 in the plot is 

clearly much more costly than any of the others in the set of 11.  These are the costs that are to 

be predicted using the methods presented in later sections (5 and 6) of this paper.

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1:  Total Cost of Engine Tests  

In Table 3.1, the data variables are listed and described.  An X in the last column denotes 

that the variable that was considered for use in the cost estimating system.  These variables were 

picked for various reasons, however, they were not all used.  Some were eliminated after 

performing exhaustive and sequential searches, which are described later in this section.  A (b) in 

the third column denotes a quantity that was made a Boolean value, 1 indicating yes and 0 

indicating no.  Article number 1 has the following data: 9, 2, 70, 4250, 3, 550000, which 

corresponds to variables 1, 2, 3, 7, 17, and 19.  This means that article number 1 has an estimated 
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duration of 9 days, with 2 tests to be performed, each test lasting a maximum of 70 seconds, with 

a thrust of 4250, performed on test stand E3, with a total cost of testing equal to $550,000. 

Table 3.1:  Data Variables for Engine Tests 

  Variable Description Use 
1 DuratDd Duration of tests in days X 
2 NoTest Number of tests X 
3 TestDurMax Maximum duration of test X 
4 Fuel Fuel code X 
5 Pressurant Pressurant code X 
6 Oxidizer Oxidizer code X 
7 Thrust Thrust X 
8 FuelFlow Fuel flow rate X 
9 FuelPressfl Fuel pressurant flow rate   
10 OxidizerFL Oxidizer flow rate X 
11 PressuraPr Pressurant pressure X 
12 ThrustMeas Thrust measurement (b)   
13 Cooling? Cooling system (b)   
14 GimbalAxes Number of gimballing axes   
15 Safety? Special safety requirement (b)   
16 Handling? Special handling requirement (b)   
17 TestStand Test stand code X 
18 FacilitMod Level of facility modifications   
19 TotalCost Total cost of tests X 

 

3.1.  Testing and Training Sets Selection 
 
 When developing an ANFIS or neural network a set of data for training and a separate set 

of data for testing must be chosen.  Theoretically, as long as the entire data set is large, the set 

could be divided randomly into training and testing.  However, in practice it is important to make 

sure that the training set chosen is representative of all the data, including the current testing set 

and all future data that will enter the system.  This is exceedingly difficult for the small set of 11 

articles used for this project.  Since the set is so small, the outcome is heavily dependent on 
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which articles are chosen.  Therefore, the strategy that was used was to choose the training set 

having the largest range of cost, from the largest to the smallest.  This is not necessarily the 

optimal choice, however, taking too much care to manipulate the choice of the training and 

testing sets can lead to misleading results.  

 The other important concern when choosing training and testing sets is to determine the 

actual size of each, respectively.  Normally, neural networks perform better when the training set 

is large.  This is not possible with the small data set used here.  Different sizes of training and 

testing sets were tried.  The majority of the work was done using a training set of six or seven 

and a testing set of five or four.   

3.2.  Data Analysis 
 
 As mentioned earlier in this section, only certain data variables were determined to have 

the most predictive power for the engine test cost.  These were primarily chosen from variables 

that were considered to be the most predictive by using exhaustive and sequential searches.  Both 

searches were performed in Matlab with the commands exhsrch and seqsrch to determine which 

input variables have the most predictive power for ANFIS modeling.  The exhaustive and 

sequential searches operate by searching for the minimum training error for different 

permutations of inputs to the ANFIS.  The exhaustive search calculates all possible permutations 

of inputs, creating an ANFIS for all input combinations.  The sequential search observes the 

ANFIS results for each input candidate independently.  These searches are important because the 

dimensionality of our data set was too large compared to the size of the data set.  However, it is 

important to only eliminate the variables that were the least predictive for the total engine test 

cost.  The exhaustive search yielded the best results, however, was considerably more time 
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consuming than the sequential search, and cannot deal with more than four variables 

simultaneously. 

The entire data set, number of membership functions, and number of variables that were 

used in the ANFIS were inputs to these search functions.  The accuracy of these search functions 

was probably somewhat compromised due to the small size of our data set.  However, these 

searches were the best estimate we could obtain to the predictive power of variables without 

attaining more data sets.   

Tables 3.2 through 3.5 contain all of the results from the searches.  Different numbers of 

inputs into the ANFIS were chosen, varying from one input to four inputs.  The single input 

searches have four variables listed because after each search was performed, the most predictive 

variable was removed from the set, then another search was performed.  The inputs varying from 

2 to 4 were simply searched once for each membership function number.  A search for 

membership function sizes varying from 2 to 5 was performed in almost all cases.  The only case 

where a membership function of size 5 was not performed was for the case with four inputs.  The 

searches for this case became too lengthy and would not complete.  For the single input variable 

case, both the exhaustive and sequential searches produced the same results (Table 3.2).  

However, for the multiple variable cases this is not so.  In fact, the sequential search also has a 

tendency to choose redundant variables, as seen in Table 3.3-5 with Thrust and various other 

variables.  For the single input ANFIS, all of the variables found to be relevant by these searches 

were used.  For the multiple input ANFIS, some of the variables found to be predictive were 

used, however, not all were.  Mostly the single input variables found to be predictive were used 

throughout the various methods. 
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Table 3.2:  Variable Importance for a Single Input  

Exhaustive Search 
MF # 1st 2nd 3rd 4th 

2 Thrust OxidizerFL FuelFlow TestStand 
3 TestStand TestDurMax PressuraPa Pressurant 
4 TestStand TestDurMax DuratDd Pressurant 
5 TestStand OxidizerFL TestDurMax DuratDd 

Sequential Search 
MF # 1st 2nd 3rd 4th 

2 Thrust OxidizerFL FuelFlow TestStand 
3 TestStand TestDurMax PressuraPa Pressurant 
4 TestStand TestDurMax DuratDd Pressurant 
5 TestStand OxidizerFL TestDurMax DuratDd 

 

Table 3.3:  Variable Importance for 2 Inputs 

Exhaustive Search 
MF # 1 2 

2 DuratDd TestDurMax
3 TestDurMax Pressurant 
4 TestDurMax FuelPresFL 
5 TestDurMax Pressurant 

Sequential Search 
MF # 1 2 

2 Thrust Thrust 
3 TestDurMax TestStand 
4 TestDurMax TestStand 
5 TestDurMax TestStand 
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Table 3.4:  Variable Importance for 3 Inputs 

Exhaustive Search 
MF # 1 2 3 

2 DuradDd Thrustmeas Cooling? 
3 NoTest Fuel TestStand 
4 Fuel Pressurant TestStand 
5 Fuel Pressurant TestStand 

Sequential Search 
MF # 1 2 3 

2 Thrust Thrust Thrust 
3 TestDurMax Fuel TestStand 
4 TestDurMax GimbalAxes TestStand 
5 TestDurMax TestStand FacilitMod 

 

Table 3.5:  Variable Importance for 4 Inputs 

Exhaustive Search 
MF # 1 2 3 4 

2 NoTest Pressurant Oxydizer Cooling? 
3 Fuel Pressurant Oxydizer TestStand 
4 Fuel Pressurant Oxydizer TestStand 

Sequential Search 
MF # 1 2 3 4 

2 Thrust Thrust Thrust Thrust 
3 TestDurMax Fuel Fuel TestStand 
4 TestDurMax GimbalAxes GimbalAxes TestStand 

3.3.  Normalization of Data 
 
 All of the data was normalized before it was used in the ANFIS and neural network 

systems.  The maximum of each respective data variable was found and increased by 10% 

( ).  The minimum of each respective data variable was also found and reduced by 10% 

( ).  These percentages were used to accommodate any future data outside the range already 

maxx

minx
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presented into the training set.  These values were then used to normalize each data variable 

including the total cost using the following formula (3.1).   

                                                             
minmax

min

xx
xx

x orig
norm −

−
=                                                          (3.1) 

This normalization caused all of the values of the normalized normx  to be between zero and one.  

To attain the un-normalized predicted cost the inverse of equation 3.1 is used.  The only 

exception to this method of normalization was any of the variables that included codes, for 

example TestStand.  These variables were normalized according to the possible values to account 

for any instances that were not included in the testing data set.
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4.  ANFIS 
 
 The adaptive network-based fuzzy inference systems (ANFIS) were first developed by 

Jang and Sun [12-13], to take advantage of the best attributes from neural networks and fuzzy 

systems.  ANFIS is a fuzzy inference system (FIS) that uses neural network algorithms to adapt 

itself in order to achieve better results.  The direct advantage that it has over neural networks is 

that it can also accept linguistic information and adapt itself using numerical data [12].  

The basic structure of any fuzzy inference system includes a fuzzification interface, a rule 

base, a database that defines the membership functions used in the rules, a fuzzy reasoning 

method that performs the inference procedure, and a de-fuzzification interface.  A membership 

function provides a measure of an input’s similarity to the fuzzy set [14].  For example, in Figure 

4.1 these two membership functions could represent a fuzzy model for determining how cold or 

hot the temperature is outside.  If the temperature is 80º F then it has a degree of membership of  

0.3 cold and 0.5 hot.  This is how a membership function defines inputs.  An ANFIS uses neural 

network training techniques to adjust the membership functions.  The rule base is usually in the 

form of fuzzy if-then rules.  Using this example, a possible fuzzy rule could be if the input has a 

higher degree of hotness, then turn on the air conditioner.  

The Sugeno fuzzy inference system, proposed by Takagi and Sugeno [15-16] is a type of 

fuzzy system where only the input set is considered fuzzy, i.e., the output of a Sugeno fuzzy 

inference system is not fuzzy, instead it is crisp.  In Matlab, for a Sugeno system, the final output 
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membership function is either constant or linear.  In the problem dealt with in this research, a 

linear output membership function was always used. 

 
Figure 4.1:  Example of Membership Functions in a Temperature System 

Matlab’s implementation of ANFIS uses a Sugeno-type fuzzy inference system whose 

parameters are trained using an adaptive neural network technique.  The membership function 

parameters of the FIS are adjusted by a combination of a back propagation gradient descent 

algorithm and least squares method.  The input training data consists of a matrix of the training 

data with the last column consisting of the target output data.  Test input data is entered in the 

same way.  The user must manually provide the number of inputs.  While the fuzzy toolbox 

provides many membership function types, the Gaussian type membership functions always

performed the best for the engine test data, namely gaussmf and gauss2mf.  Figure 4.2 illustrates 

the block diagram of one FIS used in the engine test cost estimation in method 2B.  The three 

inputs enter the ANFIS and are then processed to predict the cost.
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Figure 4.2:  Block Diagram of a Method 2 Fuzzy Inference System 
 

4.1.  Membership Functions 
 
 Membership functions were developed for each data input.  The number, shape, and 

overall range interval of membership functions were chosen according to the number of inputs.  

The most desirable number of membership functions was determined heuristically for each 

individual system.  Given the small number of inputs, no more than five and no less than two 

membership functions per input were used.  The best shape was also determined heuristically for 

each system with the best results always attained from the Gaussian types (gaussmf and 

gauss2mf).  The range interval value was determined from the range of data plus or minus ten 

percent, as discussed in the normalization section 3.3.  Figure 4.3 shows the membership 

 



 19
functions of one FIS developed for the PressuraPr variable used to predict the engine test cost in 

method 2A.  This FIS has a single input variable with three Gaussian membership functions.   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3:  Membership Functions for PressuraPr Variable (Method 2)  

4.2.  ANFIS Rules 
The ANFIS rules were obtained from Matlab’s Fuzzy Toolbox.  While in the case of 

most fuzzy systems it is simple to derive logical rules directly, this ceases to be practical when 

dealing with an ANFIS.  The neural network derives rules that are often not logical, however, 

optimal results are still obtained.  In Figure 4.4 an example of ANFIS rules from the same 

PressuraPr FIS used in Figure 4.3 is shown.  This is a relatively uncomplicated rule set because 

there is only one input.  The top box shows the actual rules.  The bottom boxes allow the user to 

individually alter each rule.  A more visual representation of these rules is given in Figure 4.5.  

The figures labeled 1, 2, and 3 represent each rule.  The red line represents a given input.  Its 
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effect on each rule is shown in yellow.  The output column represents the output of each rule.  

The bottom right output plot demonstrates how the output of each rule is combined and 

defuzzified to form an output value.   

effect on each rule is shown in yellow.  The output column represents the output of each rule.  

The bottom right output plot demonstrates how the output of each rule is combined and 

defuzzified to form an output value.   

  

  

  

  

  

  

  

  

  

  

  

  

Figure 4.4:  ANFIS Rules for PressuraPr Variable (Method 2)  Figure 4.4:  ANFIS Rules for PressuraPr Variable (Method 2)  
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Figure 4.5:  Graphical ANFIS Rules for PressuraPr Variable (Method 2)  Figure 4.5:  Graphical ANFIS Rules for PressuraPr Variable (Method 2)  

4.3.  ANFIS Structure 4.3.  ANFIS Structure 
The ANFIS structure for the above PressuraPr variable example is show in Figure 4.6.  

The input goes into three membership functions where the ANFIS rules that were developed 

during training are applied.  These rules produce three outputs that are then combined and 

defuzzified to produce a single output, the estimated engine test cost.   

The ANFIS structure for the above PressuraPr variable example is show in Figure 4.6.  

The input goes into three membership functions where the ANFIS rules that were developed 

during training are applied.  These rules produce three outputs that are then combined and 

defuzzified to produce a single output, the estimated engine test cost.   

 The ANFIS were also created using grid partitioning rather than clustering.  Grid 

partitioning is superior to the clustering method because the data sets are so small.  If the data 

sets were larger, clustering would be a better option for creating the FIS [2]. 

 The ANFIS were also created using grid partitioning rather than clustering.  Grid 

partitioning is superior to the clustering method because the data sets are so small.  If the data 

sets were larger, clustering would be a better option for creating the FIS [2]. 
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Figure 4.6:  ANFIS Structure for PressuraPr Variable (Method 2) 
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5.  METHOD 1:  LLE 
 
 The first method implemented to solve the engine test cost estimation problem was to use 

locally linear embedding (LLE) as a nonlinear dimensionality reducer to condition the input data.  

Then, an ANFIS is used to predict the engine test cost based only on the reduced data.  Figure 

5.1 is a block diagram that visually represents this method.  LLE, developed by Saul and Roweis 

[17-18], is a nonlinear dimensionality reduction method originally applied to image processing.  

LLE attempts to map the input data to a lower dimensional global coordinate system that 

preserves the relationships between neighboring points [4].  Locally linear neighborhoods of the 

input data are then mapped into a lower dimensional coordinate system. 

Normalization
Processing Cost

EstimatedANFISLLE

Raw Data

 
Figure 5.1:  Block Diagram of Method 1: LLE 
 
 
 The LLE algorithm is divided into three steps: selecting neighbors; computation of 

weights that best reconstruct each data point by it’s neighbors, and; mapping to embedded 

coordinates [5][17].  The first step simply involves finding K nearest neighbors for each data 

point.  This can be accomplished using different methods including finding the Euclidean 

distances between respective points or finding all neighbors within a fixed radius. 
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 The second step involves finding the weights that best reconstruct each data point.  The 

data consists of  real-valued vectors N iX
v

, each of dimensionality  sampled from an 

underlying manifold.  As long as there are enough sample points, it is expected that each data 

point lies on or close to a locally linear section on the manifold.  The local area is then 

characterized by linear coefficients that reconstruct each data point from its neighbors.  The 

reconstructed errors are then measured by the following cost function (5.1) 

D

                                                        ( )
2

∑ ∑−=
i j

jiji XWXW
vv

ε

iX

                                                 (5.1) 

This cost function (5.1) adds up the squared distances between all of the data points and their 

reconstructions.  The weights W represent the contribution of the jij
th data point to the 

reconstruction of the ith data point.  The weights are computed by minimizing the cost function 

on two conditions: 1) that each data point 
v

is reconstructed only from its neighbors or, in other 

words, W if  is not part of the set of neighbors of 0=ij jX
v

iX
v

, and; 2) that the cost function is 

minimized so that the rows of W  sum to one.  For any particular data point, these weights are 

invariant to rotations, rescalings, and translations of that data point from its neighbors, meaning 

these weights reflect intrinsic geometric properties of each neighborhood.  It follows that the 

weights characterization of the local geometry in the original data space is also valid for local 

patches on the manifold [18]. 

ij

 The final step in the LLE algorithm is mapping the data set to the new lower dimensional 

space coordinates.  Each high dimensional data point iX
v

is mapped to the lower dimensional 

vector Yi

v
 representing the embedding coordinates.  The embedding coordinates,Yi

v
, are obtained 

by once again minimizing an embedding cost function (5.2). 
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                                                   (5.2) 

Again, as with the previous function (5.1), this cost (5.2) is based on locally linear reconstruction 

errors, but the weights are now fixed while Yi

v
 is optimized.  This cost function can be 

manipulated into a quadratic form, which can be minimized by solving a sparse NxN eigenvalue 

problem whose bottom d non-zero eigenvectors provide the set of orthogonal coordinates 

centered on the origin, where d is the desired reduced dimension size [17].  In other words, Yi

v
 is 

equal to these eigenvectors. 

5.1.  Implementation of Method 1 
 
 In Method 1, the LLE algorithm was used to reduce the dimensionality of the data set.  

The new, smaller dimensioned data set was then put into an ANFIS to finally predict the cost of 

the engine test.  The weakness of this method lies in the LLE algorithm’s reliance on the k 

nearest neighbor algorithm during the first step, which was difficult to accomplish due to the 

small data set we utilized. 

Saul and Roweis provide the Matlab code that implements the locally linear embedding 

algorithm [18].  This code uses the Matlab eigensolver eigs, which unfortunately has 

convergence issues in version R12.  In order to circumvent this problem, we used the version of 

eigs in R11 is used instead.  This version of eigs was saved as a different function, eigs_o, and 

replaced in the LLE code.  The code lle.m is included in Appendix 12.4.  The LLE code simply 

required the data matrix in the form of the dimensionality by the number of data points, the K 

number of neighbors desired, and the reduced dimensionality desired.  With these inputs, the 

LLE code performed the LLE algorithm described previously. 
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The ANFIS was then developed from the new lower dimensional data set that was 

transformed by the LLE code, using grid partitioning and a linear output membership function 

type.  Several trials were performed to develop the best ANFIS by varying the number and type 

of membership functions.  The best results of these trials are presented in section 8.1.
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6.  METHOD 2: ANFIS/NEURAL COMBINED SYSTEMS 
 

The second method implemented to estimate engine test cost consists of a combined 

ANFIS and neural network system.  The data is either entered singly or in small groups into 

separate ANFIS.  The outputs of these ANFIS are then combined into a single neural network to 

produce the final result.  Figure 6.1 illustrates these methods visually.  Method 2A has a single 

input variable into each individually developed ANFIS.  The outputs of these ANFIS are then 

combined into a neural network.  Method 2B is the same as Method 2A, except that multiple 

inputs are provided to each ANFIS network.   Several different ANFIS were developed for this 

method. 

 The neural networks used for this method were feed-forward backpropagation trained 

networks created using the newff command in Matlab.  The Matlab commands traingdx and 

learngdm was chosen for the training and learning function of the network, respectively.  These 

functions train the network using gradient descent with momentum and an adaptive learning rate. 

This means that, for each epoch, if the performance decreases towards the goal, then the learning 

rate is increased by a factor, however if the performance increases more than a certain factor, the 

learning rate is decreased and the change is not made.  The error criteria used was sum of 

squared errors.

 A two-layer network was used.  More complicated networks were not practical due to the 

size of the data sets.  The number of neurons in the input layer of the network was always set 

equal to the number of inputs to the network.  The output layer consisted of a single neuron.  The 
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transfer functions of each layer were either tansig or logsig.  Figure 6.2 shows both the tansig 

and logsig functions that were used as the transfer functions of the neurons.  Figure 6.3 shows a 

typical neural network developed for this method. 
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(a) Method 2A:  Single Input to ANFIS, Combined into Neural Network

(b) Method 2B:  Multiple Inputs to ANFIS, Combined into Neural Network

 
Figure 6.1:  Block diagrams of Method 2A and Method 2B 

 
 
 
 
 
 
 
 
 

 



 29

Figure 6.2:  Graphs of Tansig and Logsig Transfer Functions 
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Figure 6.3:  Typical Method 2 Neural Network 

 

6.1.  Method 2A:  Single Input ANFIS 
 
 

network, which provides the final cost estimate.  The variables used to develop the single ANFIS 

As shown in Figure 6.1a, this method involves individual variables to be used by 

individual ANFIS, respectively.  These ANFIS outputs then provide an input for the neural 
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were found to be most predictive through the use of exhaustive and sequential searches, as 

described in section 3.2.  Table 6.1 contains the list of variables used as single inputs to the 

ANFIS.  Some of these variables were not used in the final neural stage because they were fo

to create inaccurate ANFIS.  Various combinations of ANFIS results were used to find the best 

results from the neural network.  The results of the ANFIS and neural networks are presented in 

section 8.2. 

Table 6.1:  L

und 

ist of Data Variable Inputs to ANFIS for Method 2A 

  Variable Description 
1 DuratDd Duration of tests in days 
2 TestDurMax Maximum duration of test 
3 Pressurant Pressurant code 
4 Thrust Thrust 
5 FuelFlow Fuel flow rate 
6 O L Oxidizer flow rate xidizerF
7 P Pre re ressuraPr ssurant pressu
8 TestStand Test stand code 
9 TotalCost Total cost of tests 

 
 

.2.  Method 2B:  Multiple Input ANFIS 
 

 using two and three input variables.  These 

e 

s 

6

 In Method 2B, ANFIS were developed

ANFIS estimates were then combined into a neural network whose output is the final cost 

estimate for the engine test.  The variables combined together were chosen by examining th

response from the single input ANFIS.  Variables that would compliment each other to attain 

more accuracy were placed as inputs into the same ANFIS.  For example, if one variable alway

overestimated the cost in the single input ANFIS and another always underestimated the cost, 

they would be combined into a single ANFIS.  A similar method was also used to choose the 

combination of variables for the three input ANFIS.  Table 6.2 is a list of some of the 
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combinations of inputs that were used for Method 2B.  Varying numbers of inputs into

network were tried.     

Table 6.2:  List of Dat

 the neural 

a Variable Input Combinations to ANFIS for Method 2B 

  Variable 1 Variable 2 Variable 3
1 Thrust TestStand - 
2 TestDurMax PressuraPr - 
3 F  uelFlow OxydizerFL - 
4 DuratDd Pressurant - 
5 FuelFlow Thrust - 
6 Thrust TestStand DuratDd 
7 T PressuraPr PressurantestDurMax
8 F  uelFlow OxydizerFL Fuel 

ria that have be n used have m
 
 Some of the data va bles e any missing values, namely 

re 

ed 

 

 

 

 

 

, 

Pressurant, FuelFlow, and PressuraPr.  In an effort to attain more accuracy, these values we

filled in with various values (mean, median, or mode) then the results of the respective combin

input ANFIS were compared to the ANFIS with no filled in values.  The number used to fill in 

for missing Pressurant values was found by going back to the original data set of 38 and finding

the most often occurring value, 2.  This is more logical than taking the mean or median of the set,

since Pressurant is a code referring to a type of pressurant.  Unfortunately, Pressurant was only 

predictive in the three input variable systems.  It was not predictive with or without filled in 

values in the two variable input systems even when paired with the most predictive quantities

like Thrust.  However, for both FuelFlow and PressuraPr, better results were obtained by using

the filled in data value rather than leaving the missing information blank.  Both the mean and 

median value of FuelFlow in the set of eleven was used to see which provided a more accurate

result.  The median value looked like a better choice since FuelFlow had a large range of values

however, the mean value always performed better.   For PressuraPr, the median value provided 
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the best results, and was chosen since PressuraPr also had a very large spread of values.  All of 

the results for the systems are presented in section 8.
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7.  METHOD 3:  RBFN 
 
 The third method implemented to estimate engine test costs is a radial basis function 

neural network (RBFN).  RBFNs are similar to ANFIS in that they consist of membership 

functions that are adjusted through the training stage of a neural network.  They typically consist 

of Gaussian-type membership functions.  First, the centers of the Gaussian functions are found 

using a k-means clustering algorithm on the training data.  In this case, the k-means algorithm 

groups the data sets into clusters, so that costs are associated with each cluster.  After the clusters 

are found, the p-nearest neighboring clusters are found.  The variance of each membership 

function is then found using the p-nearest neighbors.  Equation 7.1 is the formula used to 

determine the variance of each cluster.  The respective centers are represented by c , where  

represents the cluster of interest.  The variance is represented by 

k k

kσ  and p represents the p-

nearest neighbors. 

                                                           ∑
=

−=
p

i
kikk ccp

1

21σ                                                   (7.1) 

After the variance of each cluster is determined, the training and testing sets can then be 

classified into the appropriate membership function.  As with the ANFIS system, a percentage of 

belonging to each membership function is obtained.  This is done to each data set with the 

following formula 7.2.  The degree of belonging to each cluster is represented by kφ and x  

represents each data point.
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After this percentage of belonging to each membership function is calculated, it is then 

normalized so that the percentages sum to one.  Each percentage is multiplied by the calculated 

average cost of each cluster, and then summed into a single value.  This final value is the 

predicted cost out of the RBF network.  Figure 7.1 illustrates the RBF network used in method 3. 
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Figure 7.1:  Method 3 Radial Basis Function Network 

 
The RBFN was implemented in two different ways.  The first implementation used the 

entire data set of eleven to train the network.  This is not the correct way to build a network since 

part of the data set should be saved for testing, so that the network has never seen the testing set.  

However, because of the small size of the data set, k-means clustering is difficult.  Using the 

entire data set of eleven allows for a better clustering.  These results were then compared to the 

second and correct implementation where the set of eleven is divided into seven training and four 
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testing sets.  Both of the RBFNs were developed with the variables with missing data filled in as 

in Method 2B.  The results of the RBFN are presented in section 8.3.
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8.  RESULTS 
 

8.1.  Results for Method 1:  LLE 
 

To implement the LLE method, all of the data was first normalized, as discussed in 

section 3.3.  A smaller subset of the most predictive variables was chosen out of the eighteen.  

The best results were obtained using a set of eight variables shown in table 8.1.  Using the full 

data set of dimension eighteen produced worse results as expected.  It would be difficult to find a 

proper lower dimensional space that corresponded to the eighteen-dimensional space with such 

few data points.  Different numbers of k clusters and d dimensions was chosen, however a k of 

three and a final dimension of three attained the best results. 

Table 8.1:  Method 1: LLE Variables  

  Variable 
1 DuratDd 
2 TestDurMax
3 Pressurant
4 Thrust 
5 FuelFlow 
6 OxidizerFl 
7 PressuraPr
8 TestStand 

 

 After the dimensionality of the data set was reduced, the new lower dimensional data set 

was then input into an ANFIS as described in section 5.  Different membership function types 

and different numbers of membership functions were tried.  The best results were obtained with a 
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gauss2mf membership function of size 4, 3, and 3, for each variable respectively.  This means 

that for the first input dimension 4 gauss2mf membership functions were used, for the second 3 

gauss2mf membership functions were used, and for the third dimension 3 gauss2mf membership 

functions were used.  Figures 8.1 and 8.2 show the training and testing results for the best ANFIS 

developed, respectively.  As can be seen in figure 8.1, the ANFIS learned the training set very 

well, with a negligible amount of error.  These results are still normalized, the un-normalized test 

result will be shown later.  For the remainder of the ANFIS results presented blue will refer to 

the actual cost and red will refer to the predicted cost. 

 

 
 

 

 

 

 
 
 
 
 
 
 
 
Figure 8.1:  Method 1: LLE Training Set 
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Figure 8.2:  Method 1: LLE Testing Set 

 
 The results using the LLE method to reduce the dimensionality were not promising.  

While the training results were good, the testing results were extremely inaccurate.  The best 

results attained still have an average percentage error of around 66%.  The first two testing set 

articles are both estimated at 90% lower than they actually are.  Table 8.2 contains the actual 

costs attained, percentage errors, average percent error, and another measure of similarity 

defined in equation 8.1.  This measure of similarity was developed since percent error is not 

necessarily the best measure to compare the values.  If testing articles 1 and 2 are examined, their 

respective percent errors are very similar.  However, by article 2 the cost estimate was 

approximately four million dollars too low, while article 1 was estimated approximately one 

million dollars too low.  Article 1’s under estimation was more acceptable than article 2’s.  

Therefore, the sum of the total differences divided by the number of total sets (Eq. 8.1) is used as 
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another measure of error.  represents the total number of sets,  represents actual cost, and  

represents the estimated cost. 

N ix ix̂

                                          ∑ −=
N

i
ii xx

N
SetsofTotalDiff ˆ1#/.Sum                                       (8.1) 

The smaller the sum of total differences quantity, the closer the estimation is to the actual value.  

This is clearly seen in Table 8.2 where the training set’s sum of differences divided is zero 

compared to the larger value for the testing set. 

Table 8.2:  Method 1:  LLE Training and Testing Results 

Predicted Cost Actual Cost Percent Errors (%)
1 550,000 550,000 1.05E-04
2 1,592,000 1,592,000 -9.02E-05
3 4,433,000 4,433,000 -8.69E-05
4 2,203,000 2,203,000 -2.17E-05
5 1,772,000 1,772,000 -4.99E-05
6 12,051,000 12,051,000 -2.92E-05
7 702,000 702,000 -2.06E-05

Average (%)
5.77E-05

Sum of Diff./Total 
Number of Sets

0

Predicted Cost Actual Cost Percent Errors (%)
1 534,040 1,590,000 -96.44
2 948,360 4,935,000 -89.79
3 933,940 1,713,000 -63.96
4 1,370,900 1,540,966 -16.26

Average (%)
66.61

Sum of Diff./Total 
Number of Sets

1,497,932

Training Set

Testing Set
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A graphical presentation of the method 1 testing results is shown in Figure 8.3.  These are 

the un-normalized values of the predicted and actual costs.  These results clearly indicate that 

using LLE as a dimensionality reduction method is not a viable method for the engine test cost 

prediction.  The only article that predicted with some degree of accuracy is article 4.  All testing 

sets estimated lower than the actual cost.  This most likely occurred because the data set was too 

small for the LLE method to find a valid lower dimensional coordinate system.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.3:  Method 1: LLE Testing Data Results 

8.2.  Results for Method 2:  ANFIS/Neural Combined System 

8.2.1.  Method 2A 
 
 Method 2A used ANFIS with single inputs to produce an estimate.  Several of these 

single input ANFIS outputs were then combined into a single backpropagation trained neural 
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network whose output represents the final predicted cost.  These single input ANFIS produced 

only very rough estimates of the predicted engine test, because the cost estimate was derived 

from only one single variable.  Table 8.3 shows the actual and predicted normalized costs of each 

ANFIS developed for both the training and testing set.  The columns with a variable name above 

them are the predicted cost that the ANFIS with that particular input produced.  These numbers 

are presented in a normalized form, because they will become the inputs to the neural network in 

the next stage.  Also, the average percent error along with the sum of differences quantity from 

equation 8.1 attained for each ANFIS developed is presented in Table 8.3.  Figures 8.4 through 

8.10 are the testing results of most of the single input ANFIS developed.  The membership 

function types are also listed for each ANFIS developed.   

Table 8.3:  Method 2A:  Single Input ANFIS Training and Testing Results 

TestStand Thrust FuelFlow TestDurMax PressuraPr OxidizerFL Pressurant DuratDd Actual Cost
1 0.040202 0.11681 0.075755 0.00431 0.022887 0.11279 0.0355 0.0043124 0.00431
2 0.085964 0.096306 0.17504 0.085964 0.080683 0.093042 0.0355 0.086098 0.085964
3 0.22122 0.12145 0.14126 0.16244 0.32635 0.11279 0.30859 0.30861 0.30859
4 0.22122 0.12354 0.12602 0.51967 0.13384 0.12324 0.13389 0.13371 0.13384
5 0.040202 0.077073 0.059087 0.10007 0.10007 0.093185 0.10007 0.10007 0.10007
6 0.90556 0.9056 0.90556 0.51967 0.89707 0.90556 0.90552 0.90554 0.90556
7 0.040202 0.11378 0.07185 0.16244 -0.006332 0.11396 0.0355 0.016219 0.016221

162.00 473.59 315.04 182.81 83.27 458.00 128.75 0.05

0.0421 0.0630 0.0618 0.1520 0.0104 0.0609 0.0144 0.0000

TestStand Thrust FuelFlow TestDurMax PressuraPr OxidizerFL Pressurant DuratDd Actual Cost
1 0.040202 0.10332 0.059087 0 0.18928 0.094724 0.90552 0.11701 0.085808
2 0.40224 0.4455 0.36759 0.09858 0.27341 0.44799 0.11941 0.64972 0.34793
3 0.22122 0.12807 0.062714 0.099451 0.13925 0.133 0.90552 0.64972 0.095446
4 0.040202 0.10332 0.091077 0.057187 0.89707 0.11365 0.90552 0.73499 0.081965

62.87 27.17 20.55 52.68 295.59 29.29 718.62 375.13

0.0669 0.0423 0.0221 0.0910 0.2592 0.0446 0.6705 0.3851

Average Percent Errors

Sum of Differences/Total Number of Sets

Training Set

Average Percent Errors

Sum of Differences/Total Number of Sets

Testing Set

 
 Each variable chosen for these single input ANFIS proved relevant to the cost prediction 

in the exhaustive and sequential searches.  Membership function types and numbers were 

changed for all ANFIS to determine which produced the best results.  Once again, the best results 
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were always obtained by using Gaussian type membership functions, either gaussmf, gauss2mf, 

or gbell.  The number of membership functions was never allowed to be less than two or more 

than four because the system is so small that if more were included, the ANFIS would become 

overly complicated. 

 Not all of the ANFIS that were developed were used as inputs to the neural network.  The 

variables Pressurant and DuratDd were eliminated due to their poor performance in the ANFIS .  

Figures 8.4, 8.5, 8.6, and 8.9 illustrate that the most predictive variables for the single input 

ANFIS are TestStand, Thrust, FuelFlow, and OxidizerFl.   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.4:  Single Input TestStand ANFIS Testing Results (gaussmf) 
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Figure 8.5:  Single Input Thrust ANFIS Testing Results (gaussmf) 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.6:  Single Input FuelFlow ANFIS Testing Results (gaussmf) 
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Figure 8.7:  Single Input TestDurMax ANFIS Testing Results (gauss2mf) 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 8.8:  Single Input PressuraPr ANFIS Testing Results (gauss2mf) 
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Figure 8.9:  Single Input OxidizerFl ANFIS Testing Results (gaussmf) 
 

 

 

 

 

 

 

 

 

 

 

Figure 8.10:  Single Input Pressurant ANFIS Testing Results (gaussmf) 
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 As discussed in section 6, the neural network utilized was a backpropagation-trained 

network with a variable learning rate and momentum.  The network has two layers, with the first 

layer size equal to the number of inputs to the network and the second layer size equal to one.  

Various initial learning rates were tried with the best results produced at 0.01.  Varying numbers 

of inputs, different values for momentum, and different membership functions were tried.  The 

best results were obtained with the set of six ANFIS outputs from the variables TestStand, 

Thrust, FuelFlow, TestDurMax, PressuraPr, and OxidizerFl, with a momentum value of 0.3, and 

logsig as the transfer function for both layers.  Table 8.4 contains the predicted cost of each 

article out of the neural network for the best trial of Method 2A.  This table also contains the 

percentage errors of each article, average percentage errors, and sum of differences value.  

Figure 8.11 shows graphically the predicted and actual cost values. 
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Table 8.4:  Method 2A:  Training and Testing Final Results from the Neural Network 

Predicted Cost Actual Cost Percent Errors (%)
1 966,330 550,000 75.70
2 1,442,300 1,592,000 -9.40
3 4,471,900 4,433,000 0.88
4 2,173,100 2,203,000 -1.36
5 1,406,900 1,772,000 -20.60
6 12,045,000 12,051,000 -0.05
7 1,075,400 702,000 53.19

Average Percent Error
23.03

Sum of Diff./Total 
Number of Sets

197,047

Predicted Cost Actual Cost Percent Errors (%)
1 1,377,400 1,590,000 -13.37
2 4,953,500 4,935,000 0.37
3 3,058,000 1,713,000 78.52
4 1,870,900 1,540,966 21.41

Average Percent Error
28.42

Sum of Diff./Total 
Number of Sets

476,509

Testing Set

Training Set
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Figure 8.11:  Method 2A Final Testing Results 

 While using method 2A to predict the engine test cost worked well for articles 1 and 2, 

articles 3 and 4 were not predicted well at all.  Also, the training results had high percent errors.  

This problem that occurred repeatedly in many of the methods used for this cost prediction.  The 

training errors should be negligible, but the errors are usually much larger due to the small size 

of the data set.  Also, each variable singly does not strongly relate with the cost.  This proved 

especially true with variables that have missing values (e.g. FuelFlow, Pressurant, and 

PressuraPr).

8.2.2.  Method 2B 
 
 Method 2B used multiple inputs to ANFIS whose outputs were combined once again into 

a feed forward backpropagation trained neural network which produced the final predicted cost.  

Two different sets of ANFIS were developed.  The first set of ANFIS utilized two variables as 
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inputs with filled in values for missing quantities.  The second set of ANFIS were developed 

using three variables as inputs, also with filled in values for missing quantities, as discussed in 

section 6.  The ANFIS were developed similarly to the ones developed in Method 2A, varying 

membership function types and numbers.  Again, Gaussian membership functions worked best 

and the number of membership functions was always maintained between two and four.  Table 

8.5 contains the training and testing results for the ANFIS with two inputs.  The training results 

are included because some had significant errors.  Table 8.6 contains the testing set results for 

the ANFIS developed with three inputs.  The training data is not included because the error rates 

were all below 1%.  Again, these values remain normalized because they will become the inputs 

to the neural network in the second stage.  The average percent error and sum of differences 

value are included as well. 

Table 8.5:  Method 2B:  Double Input ANFIS Training and Testing Results 

FuelFlow  and 
Thrust

TestStand and 
Thrust

TestDurMax and 
PressuraPr

FuelFlow and 
OxidizerFL Actual Cost

1 0.023922 0.0092527 0.0043098 0.019082 0.00431
2 0.087035 0.085964 0.085965 0.11078 0.085964
3 0.30067 0.22723 0.30859 0.27896 0.30859
4 0.13605 0.21521 0.13384 0.11682 0.13384
5 0.098533 0.10014 0.10007 0.20075 0.10007
6 0.90556 0.90556 0.90556 0.90555 0.90556
7 0.0027968 0.011209 0.016221 0.00020409 0.016221

77.827491 33.25776525 0.000693366 84.7544644

0.0065392 0.024679243 1.71429E-07 0.02899213

FuelFlow  and 
Thrust

TestStand and 
Thrust

TestDurMax and 
PressuraPr

FuelFlow and 
OxidizerFL Actual Cost

1 0.031928 0.018627 0.03019 0.21073 0.085808
2 -0.041581 0.50706 0.45494 -0.93182 0.34793
3 0.0090189 0.19006 0.10114 -0.064263 0.095446
4 0.038491 0.018627 0.060535 0.084687 0.081965

79.583 75.10825 31.920825 171.0126

0.143323 0.09606575 0.047438 0.39177575

Training Set

Average Percent Errors

Sum of Differences/Total # of Sets

Testing Set

Average Percent Errors

Sum of Differences/Total # of Sets
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Table 8.6:  Method 2B:  Triple Input ANFIS Training and Testing Results 

TestStand, Thrust, 
and DuratDd

TestDurMax, PressuraPr, 
and Pressurant

FuelFlow, OxidyzerFl, 
and Fuel Actual Cost

1 0.084547 0.057626 0.10373 0.085808
2 0.31657 0.45494 0.32568 0.34793
3 0.094349 0.060271 0.11495 0.095446
4 0.080778 0.10367 0.10772 0.081965

3.270575 31.7335 19.7851

0.00872625 0.048018 0.02135775

Testing Set

Average Percent Errors (%)

Sum of Differences/Total # of Sets

 
 The variables paired in the double ANFIS were chosen by examining the results of the 

single input ANFIS and choosing variables that complemented each other.  For example, if one 

variable always over estimated the cost then another variable that always underestimated the cost 

would be paired with it.  Several pairings of variables were tried and these four ANFIS produced 

the best results.  The variable Thrust was paired twice in the double input ANFIS because it was 

one of the most predictive variables, as is seen from the ANFIS results in method 2A.  Also, 

double input ANFIS were developed with and without the missing values filled in.  The filled in 

variables always produced the best ANFIS.  The ANFIS developed with three inputs achieved 

very good results.  Again, different pairings of three were tried, however these produced the best 

results.  Also, a new variable, Fuel, was included because in the exhaustive and sequential 

searches, it was found to be a predictive variable for three input ANFIS.  The ANFIS that used 

TestStand, Thrust, and DuratDd attained such good results that it could stand alone as a 

prediction without the neural network stage (Figure 8.16).  However, the neural network takes 

more inputs into account, so it would operate more accurately with future use.  The FuelFlow, 

OxidizerFl, and Fuel ANFIS also attained very good results, even though the variables 

individually were not the most predictive (Figure 8.18).  Figures 8.12, 8.13, 8.14, and 8.15 are 
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the testing results of the two input ANFIS.  Figures 8.17, 8.18, and 8.19 show the testing results 

of the three input ANFIS. 

 
 
  
 

 

 

 

 

 

 

 

Figure 8.12:  Method 2B Double Input FuelFlow and Thrust ANFIS Testing Results 
(gauss2mf) 
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Figure 8.13:  Method 2B Double Input TestStand and Thrust ANFIS Testing Results 
(gauss2mf) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.14:  Method 2B Double Input TestDurMax and PressuraPr ANFIS Testing 
Results (gaussmf) 
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Figure 8.15:  Method 2B Double Input FuelFlow and OxidizerFl ANFIS Testing Results 
(gauss2mf) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.16:  Method 2B Triple Input TestStand, Thrust, and DuratDd ANFIS Testing 
Results (gbellmf) 
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Figure 8.17:  Method 2B Triple Input TestDurMax, PressuraPr, and Pressurant ANFIS 
Testing Results (gaussmf) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.18:  Method 2B Triple Input FuelFlow, OxidizerFl, and Fuel ANFIS Testing 
Results (gaussmf) 
 

 



 55
 The neural network developed for both the two and three input ANFIS was very similar 

to Method 2A.  Again, the number of first layer neurons was set equal to the number of inputs 

and a single neuron was used for the second layer.  The initial learning rate used for both neural 

networks developed is 0.01.  The momentum and types of transfer functions were varied as 

before. Varying inputs were tried for the neural network using the two input ANFIS.  The best 

results were obtained by using all of the four two input ANFIS developed.  For the results 

presented here a momentum value of 0.3 and transfer functions of type logsig were used.  The 

network developed using the three input ANFIS also performed very well.  The results presented 

here did not have the lowest average percent error for the testing set that was found, however, 

some of the training average percent errors were higher.  This network was chosen to represent 

the best results because it was the only network developed that had percent errors of close to 

10% for both the training and testing set.  Tables 8.7 and 8.8 contain the results of both the 

neural networks developed for the two input ANFIS and the three input ANFIS, respectively.  

Figure 8.19 shows the predicted costs of both the networks compared to the actual cost. 
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Table 8.7:  Method 2B: Double Input ANFIS Training and Testing Final Results from the 
Neural Network 
 

Predicted Cost Actual Cost Percent Errors (%)
1 823,990 550,000 49.82
2 1,320,800 1,592,000 -17.04
3 4,446,500 4,433,000 0.30
4 2,235,700 2,203,000 1.48
5 1,785,000 1,772,000 0.73
6 12,042,000 12,051,000 -0.07
7 814,860 702,000 16.08

Average Percent Error
12.22

Sum of Diff./Total 
Number of Sets

103,750

Predicted Cost Actual Cost Percent Errors (%)
1 1,314,100 1,590,000 -17.35
2 5,231,100 4,935,000 6.00
3 1,268,500 1,713,000 -25.95
4 1,074,200 1,540,966 -30.29

Average Percent Error
19.90

Sum of Diff./Total 
Number of Sets

370,817

Testing Set

Training Set
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Table 8.8:  Method 2B: Triple Input ANFIS Training and Testing Final Results from the 
Neural Network 

Predicted Cost Actual Cost Percent Errors (%)
1 747,600 550,000 35.93
2 1,436,600 1,592,000 -9.76
3 4,613,100 4,433,000 4.06
4 2,058,700 2,203,000 -6.55
5 1,606,900 1,772,000 -9.32
6 11,976,000 12,051,000 -0.62
7 816,590 702,000 16.32

Average Percent Error
11.79

Sum of Diff./Total 
Number of Sets

147,441

Predicted Cost Actual Cost Percent Errors (%)
1 1,441,500 1,590,000 -9.34
2 5,306,200 4,935,000 7.52
3 1,546,200 1,713,000 -9.74
4 1,562,100 1,540,966 1.37

Average Percent Error
6.99

Sum of Diff./Total 
Number of Sets

176,909

Training Set

Testing Set
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Figure 8.19:  Method 2B Final Testing Results 
 
 The results attained from using method 2B were very good.  Even the double input 

ANFIS that initially presented very large individual percentage errors produced good cost 

predictions after the neural network stage.  The best results were derived from the systems 

created from the three input ANFIS which produced an average percent error of well under 10%.   

8.3.  Results for Method 3:  RBFN 
 
 Method 3 uses an RBFN to predict the engine test cost.  As previously discussed, two 

RBFNs were implemented: one with a training set of the entire data set (eleven) and the second 

with a training set of seven.  The RBFN with the training set of eleven is used simply as a 

comparison to the RBFN with a training set of seven due to the difficulty of training an RBFN, 

which uses a k-means clustering algorithm, on such a small data set of size seven.  This is 

evident from the results of method 1 which also uses k-means in the LLE algorithm.  The first 

RBFN’s (training set of eleven) results are misleading because unlike in every other method 
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implemented, the RBFN has already seen the testing set as part of the training set.  The 

comparison of the two RBFNs, however, demonstrates that this would be a more effective 

method if more data sets were available.   

 The RBFNs were both developed by varying the number of clusters k and the number of 

nearest neighbors p.  The number of inputs was also varied, however, both RBFNs always 

performed better with the full data set of eighteen variables.  The best results were usually 

attained when k and p were allowed to reach their highest values, 6 and 4 respectively.  This is 

true of the RBFN developed with the training set of eleven values.  The exception to this would 

be the RBFN developed with the training set of seven values, which attained the best results with 

three clusters and two neighbors (k = 3, p = 2).  Tables 8.9 and 8.10 contain the predicted values 

and percentage errors of the RBFN with a training set of 11 and a training set of 7, respectively.  

Figure 8.20 shows a graphical representation of the predicted costs of both RBFNs compared to 

the actual costs.  Appendix 12.7 contains the actual center values, variances, and average costs of 

clusters for the results presented here. 
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Table 8.9:  Method 3: RBFN (Training Set of 11) Training and Testing Final Results  

Predicted Cost Actual Cost Percent Errors (%)
1 2,205,800 550,000 301.05
2 2,143,800 1,592,000 34.66
3 1,767,800 4,433,000 -60.12
4 1,813,100 2,203,000 -17.70
5 1,695,900 1,772,000 -4.29
6 2,139,400 12,051,000 -82.25
7 1,697,100 702,000 141.75
8 1,542,400 1,590,000 -2.99
9 2,668,900 4,935,000 -45.92

10 1,726,800 1,713,000 0.81
11 1,674,000 1,540,966 8.63

Average Percent Error
91.69

Sum of Diff./Total 
Number of Sets

2,320,786

Predicted Cost Actual Cost Percent Errors (%)
1 1,542,400 1,590,000 -2.99
2 2,668,900 4,935,000 -45.92
3 1,726,800 1,713,000 0.81
4 1,674,000 1,540,966 8.63

Average Percent Error
14.59

Sum of Diff./Total 
Number of Sets

615,134

Training Set

Testing Set
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Table 8.10:  Method 3: RBFN (Training Set of 7) Training and Testing Final Results 

 

Predicted Cost Actual Cost Percent Errors (%)
1 2,519,200 550,000 358.04
2 2,339,300 1,592,000 46.94
3 1,567,200 4,433,000 -64.65
4 1,625,000 2,203,000 -26.24
5 1,788,300 1,772,000 0.92
6 2,389,400 12,051,000 -80.17
7 1,578,300 702,000 124.83

Average Percent Error
100.25

Sum of Diff./Total 
Number of Sets

2,387,786

Predicted Cost Actual Cost Percent Errors (%)
1 1,802,100 1,590,000 13.34
2 1,850,200 4,935,000 -62.51
3 1,825,400 1,713,000 6.56
4 1,813,900 1,540,966 17.71

Average Percent Error
25.03

Sum of Diff./Total 
Number of Sets

920,559

Training Set

Testing Set
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Figure 8.20:  Method 3 Final Testing Results 

 
 Both RBFNs predicted the cost of articles 1, 3, and 4 fairly accurately, but had trouble 

predicting article 2.  This is understandable since article 2 is so much larger than the others.  The 

RBFN with a training set of 11 had better results, as expected, since it has already seen the 

testing set.  It also had lower errors for the training set as well.  This shows that if the data set 

were larger, the network could train better, which would produce better results.  Our data reflects 

only a very small change because even with increasing the training set to eleven, it is still quite a 

small set for the eighteen dimensions it has. 

8.4.  Comparison of Results for All Methods 
 
 Table 8.11 compares the percentage errors obtained for the training and testing results for 

all methods.  Figure 8.22 contains a graphical representation of the comparison of all predicted 
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costs to the actual costs for the testing sets.  The best results were obtained from Method 2B, 

especially the results obtained for the network developed using the three input ANFIS, which 

achieved a testing average percent error of 7% with no quantity individually estimated with an 

error above 10%.  Other methods were not effective, namely method 1, which did a poor job of 

predicting almost all the articles.  Method 2A had trouble predicting article 3.  This was 

unexpected because it would be logical to assume it would have more trouble with article 2 due 

to its larger cost.  It is difficult for the neural network to find an accurate prediction when the 

outputs of the ANFIS are so varied as is the case in Method 2A.  Method 3 also had trouble 

predicting the costs of the engine tests.  This is due to the size of the training set, since it, like the 

LLE method, must rely on clustering methods that usually require large data sets. 

Table 8.11:  Training and Testing Final Results for All Methods

Method 1 Method 2A
Method 2B (2 
Input ANFIS)

Method 2B 
(3 Input 
ANFIS)

Method 3     
(Training Set 

of 11)*

Method 3    
(Training 
Set of 7)

1 1.05E-04 75.70 49.82 301.05 358.04
2 -9.02E-05 -9.40 -17.04 34.66 46.94
3 -8.69E-05 0.88 0.30 -60.12 -64.65
4 -2.17E-05 -1.36 1.48 -17.70 -26.24
5 -4.99E-05 -20.60 0.73 -4.29 0.92
6 -2.92E-05 -0.05 -0.07 -82.25 -80.17
7 -2.06E-05 53.19 16.08 141.75 124.83

5.77E-05 23.03 12.22 91.69 100.25

Method 1 Method 2A

Method 2B 
(Double 

Input ANFIS)

Method 2B 
(Triple Input 

ANFIS)

Method 3     
(Training Set 

of 11)

Method 3    
(Training 
Set of 7)

1 -96.435 -13.37 -17.35 -2.99 13.34
2 -89.789 0.37 6.00 -45.92 -62.51
3 -63.963 78.52 -25.95 0.81 6.56
4 -16.258 21.41 -30.29 8.63 17.71

66.61125 28.42 19.90 14.59 25.03
* The last four training sets are not placed here since they are identical to the four testing 
sets.

Training Set Percent Errors (%)

Testing Set Percent Errors (%)

Average Percent Error (%)

Average Percent Error (%)

35.93
-9.76
4.06
-6.55
-9.32
-0.62
16.32

11.79

-9.34
7.52
-9.74
1.37

6.99
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Figure 8.21:  Final Testing Results for All Methods 
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9.  CONCLUSIONS 
 
 Several different fuzzy and neural methods were implemented to solve the problem of  

predicting the cost of performing engine tests, with a small incomplete data set.  Methods 1 

(LLE) and 3 (RBFN) were found to be largely ineffective in this problem due to the small size of 

the data set.  Method 3, however, shows promise for use if the data set is ever enlarged, as 

indicated in the comparison of the two RBFNs that were developed.  Method 2 proved to 

perform the best for small data set sizes, particularly method 2B with multiple variables as inputs 

into the ANFIS stage.  The problem of incomplete data sets was mitigated by filling in values 

with either their mean, median, or mode values from the entire variable set.  This was proven 

with the method 2B ANFIS where both filled-in and non-filled-in ANFIS were developed.  The 

best engine test cost predicting system was method 2B using the three input ANFIS where an 

error under 10% was achieved for every test article.  In the future, if any further data could be 

obtained, these same methods could be implemented to attain better results.

9.1.  Suggestions for Future Work 
 
A graphical user interface could be utilized when implementing the three input ANFIS 

system developed in method 2B to make the task of actually predicting new data easier.  

Currently, the data set must be manually entered into the Matlab script.  Also, some way of 

condensing the number of files would be helpful.  Presently, the three ANFIS and the neural 

network developed must be placed in the Matlab work file for the estimation to run. 
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Another approach to create this cost estimating model could be to use a bimodal approach 

where certain networks are used for very expensive tests and other networks are used for the less 

expensive tests.  For example the RBFN method generally worked very well with everything but 

the most expensive test article.  This method could be used for less expensive tests.  However, 

only method 2 predicted the most expensive test accurately.  So these two systems could be used 

based upon whether a test was expected to be expensive or less expensive. 

Another addition to the method 2B three input ANFIS system could be to take into 

account the fuzziness inherent in the variables themselves.  This system is used to create a 

prediction of cost, which means that the variables themselves still have some degree of 

uncertainty.  This uncertainty could be taken into account to give a probability of accuracy for 

the cost prediction itself.  For example if the Thrust was known with a 90% surety and 

TestDurMax was known with a 50% surety, then the cost prediction would have some degree of 

accuracy associated with itself as well.  Although difficult to implement, this would be a useful 

consideration when planning and proposing future projects. 

 Finally, a study comparing these methods with the current methods for use at NASA and 

other methods used to estimate cost in this field would also be a helpful addition to this work, to 

determine which methods perform the best.
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11.1.  Engine Test Data Set 
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11.2.  Variable Codes 
 

Fuel Long Name Fuel short name Code
Liquid Oxygen LOX 1
Liquid Hydrogen LH2 2
Liquid Nitrogen LN2 3
Gaseous Helium GHe 4

RP1 5
Hydrogen Peroxide H202 6
Gaseous Nitrogen GN2 7

JP8 8
Gaseous Hydrogen GH2 9

GAr 10
Missile grade air 11
Natural gas 12
Diesel 13
CH4 14
JAk 15

Gasous oxygen GOX 16
LN 17

W ater H20 18
Carbon Dioxide CO2 19
High Pressure Air HPA 20
Carbon Monoxide CO 21
Liquified Nitrogen Gas LNG 22
Proprietary PRO 23
Standard Hybrid Rocket 
Fuel (Hydroxyl-Terminated 
Polybutadiene) HTPB 24

Test Stand Code
E1 1
E2 2
E3 3
B1 4
B2 5
H1 6

Modification Code
Low 1
Medium 2
High 3

Fuel Codes

Test Stand Codes

Facility Modification Codes
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11.3.  Method 1:  LLE/ANFIS Development  

ose all;clear all; 
 Method 1: LLE/ANFIS Development 

sed are: 

tDurMax';'Fuel      ';'Pressurant';... 
';'FuelFlow  ';'FuelPresFl';'OxydizerFl';... 

        'PressuraPr';'ThrustMeas';'Cooling?  ';'GimbalAxes';'Safety?   ';... 

9   
4250 4.75  10.44 25  600 1 1

2 0 0 3 3 550000; 
64   0.55 139  800 0 1

  25 25  150 0 0
0; 

  172 12  1512 0 1
00; 

  12 140  2000 1 0
00; 

   4620   0     1 1 0
051000; 

  20 23.4 400 1 0 0
2000; 

0   0     150  3000 1 0
00; 

267   200 1667 15000 0 0
0; 

  0    1.78   1000  1 1 0
13000; 

   23.81  0     1 0 0 0
40966]; 

alization 

max = 1.1*max(ttb(:,19)); 

b(:,1)))/(1.1*max(ttb(:,1))-.9*min(ttb(:,1))); 
(:,3)))/(1.1*max(ttb(:,3))-.9*min(ttb(:,3))); 

 (ttb(:,5)-1)/(9-1); 

(:,10)))/(1.1*max(ttb(:,10))-.9*min(ttb(:,10))); 
))); 
e there are 6) 

 for testing data 

   % use the last column (total cost) 
        

        % use the last column (total cost) 

%% %%%% %%%%%%%%%%%%%%%%%%%%%%%% 
rmatio

raining Data  

mber of desired dimensions 
          % LLE transformed input set (p) 

 
% lleTesting.m 
cl
%
% the variables u
 
input_name=['DuratDd   ';'NoTest    ';'Tes
            'Oxydizer  ';'Thrust    
    
            'Handling? ';'TestStand ';'FacilitMod';'TotalCost ']; 
 
%    1   2  3   4   5   6   7       8       9   10    11    12  13  14  15  16  17  18  1
ttb=[9 2 70 5 4 1 
 
    252 48 150 5 4 1 80000 
 1 0 0 5 2 1592000; 
    180 70 200 1 2 5 2500 30 
 0 0 0 2 1 443300
    240 10 180 5 1 7 1740 174 
 0 0 0 2 1 22030
    360 14 34 23 7 1 60000 0 
 0 0 0 3 1 17720
    75 10 180 5 0 1 1800000 2035  0 
 0 0 4 1 12
    45 25 200 8 4 6 5450 3.6 
 1 1 3 1 70
    540 153 100 24 0 1 10000 
 0 0 0 3 1 15900
    120 42 8 2 9 1 645000 
 0 0 1 1 2 493500
    120 21 45 23 0 6 150     1 
 1 1 2 2 17
    105 17 60 22 0 1 10000 9.52  0 
 0 3 1 15
 
% Norm
x_min = 0.9*min(ttb(:,19)); 
x_
 
data(:,1) = (ttb(:,1)-.9*min(tt
data(:,2) = (ttb(:,3)-.9*min(ttb
data(:,3) =
data(:,4) = (ttb(:,7)-.9*min(ttb(:,7)))/(1.1*max(ttb(:,7))-.9*min(ttb(:,7))); 
data(:,5) = (ttb(:,8)-.9*min(ttb(:,8)))/(1.1*max(ttb(:,8))-.9*min(ttb(:,8))); 
data(:,6) = (ttb(:,10)-.9*min(ttb
data(:,7) = (ttb(:,11)-.9*min(ttb(:,11)))/(1.1*max(ttb(:,11))-.9*min(ttb(:,11
data(:,8) = (ttb(:,17)-1)/(6-1); % Special Normalization for TestStand (sinc
data(:,9) = (ttb(:,19)-x_min)/(x_max-x_min); 
 
train = data(1:7,:);  % use 7 rows for training data 
test = data(8:11,:);  % use 4 rows
 
% Training and Testing 
p = train(:,1:8)'; 
t = train(:,9)';
p2 = test(:,1:8)';  
t2 = test(:,9)'; 
 
%%%%%%%%% % %%%
% LLE Transfo n 
% T
K = 3;                      % LLE number of neighbors 
d = 3;                      % Nu
p_new=lle(p,K,d); 
in_train = [p_new;t]'; 
% Testing Data  
K2 = 3;                     % LLE number of neighbors 
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d2 = 3;                     % Number of desired dimensions 

ut set (p) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
edicting Training Data 

w,fismat)); 
0; 

x_min)+x_min; % Multiplying by normilization factor 
t.*(x_max-x_min)+x_min;         % Multiplying by normilization factor 

%%% 
edicting Testing Data 

w2,fismat)); 
0; 

x_min)+x_min;   % Multiplying by normilization factor 
max-x_min)+x_min;         % Multiplying by normilization factor 

lot(res_test,'r*') 
est,'o') 

rticles') 
tal Cost of Engine Test') 

1.25,3.55e6,'* = estimated cost') 

p_new2 = lle(p2,K2,d2);     % LLE transformed inp
in_test = [p_new2;t2]'; 
 
%%%%%%%%%%%%
% Pr
fismat = readfis('lletest_final04'); 
fuz_train(:,1) = (evalfis(p_ne
e_train(:,1) = ((t'-fuz_train)./t')*10
er_train = mean(abs(e_train)) 
 
res_train = fuz_train.*(x_max-
tar_train = 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Pr
fismat = readfis('lletest_final04'); 
fuz_test(:,1) = (evalfis(p_ne
e_test(:,1) = ((t2'-fuz_test)./t2')*10
er_test = mean(abs(e_test)) 
 
res_test = fuz_test.*(x_max-
tar_test = t2.*(x_
 
hold on 
p
plot(tar_t
hold off 
xlabel('Test Set A
ylabel('To
 
text(1.25,3.75e6,'o = actual cost') 
text(
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11.4.  LLE Code 
% LLE ALGORITHM (using K nearest neighbors) 
% 
% [Y] = lle(X,K,dmax) 
% 
% X = data as D x N matrix (D = dimensionality, N = #points) 
% K = number of neighbors 
% dmax = max embedding dimensionality 
% Y = embedding as dmax x N matrix 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [Y] = lle(X,K,d) 
 
[D,N] = size(X); 
fprintf(1,'LLE running on %d points in %d dimensions\n',N,D); 
 
% STEP1: COMPUTE PAIRWISE DISTANCES & FIND NEIGHBORS  
fprintf(1,'-->Finding %d nearest neighbours.\n',K); 
 
X2 = sum(X.^2,1); 
distance = repmat(X2,N,1)+repmat(X2',1,N)-2*X'*X; 
 
[sorted,index] = sort(distance); 
neighborhood = index(2:(1+K),:); 
 
% STEP2: SOLVE FOR RECONSTRUCTION WEIGHTS 
fprintf(1,'-->Solving for reconstruction weights.\n'); 
 
if(K>D)  
  fprintf(1,'   [note: K>D; regularization will be used]\n');  
  tol=1e-3; % regularlizer in case constrained fits are ill conditioned 
else 
  tol=0; 
end 
 
W = zeros(K,N); 
for ii=1:N 
   z = X(:,neighborhood(:,ii))-repmat(X(:,ii),1,K); % shift ith pt to origin 
   C = z'*z;                                        % local covariance 
   C = C + eye(K,K)*tol*trace(C);                   % regularlization (K>D) 
   W(:,ii) = C\ones(K,1);                           % solve Cw=1 
   W(:,ii) = W(:,ii)/sum(W(:,ii));                  % enforce sum(w)=1 
end; 
 
% STEP 3: COMPUTE EMBEDDING FROM EIGENVECTS OF COST MATRIX M=(I-W)'(I-W) 
fprintf(1,'-->Computing embedding.\n'); 
 
% M=eye(N,N); % use a sparse matrix with storage for 4KN nonzero elements 
M = sparse(1:N,1:N,ones(1,N),N,N,4*K*N);  
for ii=1:N 
   w = W(:,ii); 
   jj = neighborhood(:,ii); 
   M(ii,jj) = M(ii,jj) - w'; 
   M(jj,ii) = M(jj,ii) - w; 
   M(jj,jj) = M(jj,jj) + w*w'; 
end; 
 
% CALCULATION OF EMBEDDING 
options.disp = 0; options.isreal = 1; options.issym = 1;  
[Y,eigenvals] = eigs(M,d+1,0,options); 
Y = Y(:,2:d+1)'*sqrt(N); % bottom evect is [1,1,1,1...] with eval 0 
 
 
fprintf(1,'Done.\n'); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% other possible regularizers for K>D 
%   C = C + tol*diag(diag(C));                       % regularlization 
%   C = C + eye(K,K)*tol*trace(C)*K;                 % regularlization 
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11.5.  Example of Method 2 Development 
% method2Testing.m 
% 3/8/04 
% Method 2: ANFIS/Neural Development 
% Properly normalized, 7 training, 4 testing, double fis 10 
% filling in missing data in columns 5, 8, 11 (mean or median) 
close all;clear all; 
% ANFIS HACEM Developing & Processing for Engines 
% the variables used are: 
 
input_name=['DuratDd   ';'NoTest    ';'TestDurMax';'Fuel      ';'Pressurant';... 
            'Oxydizer  ';'Thrust    ';'FuelFlow  ';'FuelPresFl';'OxidizerFl';... 
            'PressuraPr';'ThrustMeas';'Cooling?  ';'GimbalAxes';'Safety?   ';... 
            'Handling? ';'TestStand ';'FacilitMod';'TotalCost ']; 
 
%    1   2  3   4   5   6   7       8       9   10    11    12  13  14  15  16  17  18  19   
ttb=[9 2 70 5 4 1 4250 4.75  10.44 25  600 1 1
 2 0 0 3 3 550000; 
    252 48 150 5 4 1 80000 64   0.55 139  800 0 1
 1 0 0 5 2 1592000; 
    180 70 200 1 2 5 2500 30   25 25  150 0 0
 0 0 0 2 1 4433000; 
    240 10 180 5 1 7 1740 174   172 12  1512 0 1
 0 0 0 2 1 2203000; 
    360 14 34 23 7 1 60000 0   12 140  2000 1 0
 0 0 0 3 1 1772000; 
    75 10 180 5 0 1 1800000 2035  0    4620   0     1 1 0
 0 0 4 1 12051000; 
    45 25 200 8 4 6 5450 3.6   20 23.4 400 1 0 0
 1 1 3 1 702000; 
    540 153 100 24 0 1 10000 0   0     150  3000 1 0
 0 0 0 3 1 1590000; 
    120 42 8 2 9 1 645000 267   200 1667 15000 0 0
 0 0 1 1 2 4935000; 
    120 21 45 23 0 6 150     1   0    1.78   1000  1 1 0
 1 1 2 2 1713000; 
    105 17 60 22 0 1 10000 9.52  0    23.81  0     1 0 0 0
 0 3 1 1540966]; 
 
% Filling in missing data 
% Correcting for Pressurant 
pres = median(ttb(:,5)); 
[a,b] = find(ttb(:,5)==0); 
ttb(a,5) = pres; 
% Correcting for FuelFlow 
ff = mean(ttb(:,8)); 
[a,b] = find(ttb(:,8)==0); 
ttb(a,8) = ff; 
% Correcting for PressuraPr 
ppr = median(ttb(:,11)); 
[a,b] = find(ttb(:,11)==0); 
ttb(a,11) = ppr; 
 
% Data Variable Selection 
data_un(:,1) = ttb(:,17);   % Select TestStand as the first column 
data_un(:,2) = ttb(:,7);    % Select Thrust as the second column 
data_un(:,3) = ttb(:,8);    % Select FuelFlow as the third column 
data_un(:,4) = ttb(:,3);    % Select TestDurMax as the fourth column 
data_un(:,5) = ttb(:,11);   % Select PressuraPr as fifth column 
data_un(:,6) = ttb(:,10);   % Select OxidizerFl as sixth column 
data_un(:,7) = ttb(:,19);   % Select Total Cost as the seventh column 
 
% Normalization 
x_min = 0.9*min(data_un(:,7)); 
x_max = 1.1*max(data_un(:,7)); 
data(:,1) = (data_un(:,1)-1)/(6-1);% Special Normalization for TestStand (since there are 6) 
data(:,2) = (data_un(:,2)-.9*min(data_un(:,2)))/(1.1*max(data_un(:,2))-.9*min(data_un(:,2))); 
data(:,3) = (data_un(:,3)-.9*min(data_un(:,3)))/(1.1*max(data_un(:,3))-.9*min(data_un(:,3))); 
data(:,4) = (data_un(:,4)-.9*min(data_un(:,4)))/(1.1*max(data_un(:,4))-.9*min(data_un(:,4))); 
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data(:,5) = (data_un(:,5)-.9*min(data_un(:,5)))/(1.1*max(data_un(:,5))-.9*min(data_un(:,5))); 
data(:,6) = (data_un(:,6)-.9*min(data_un(:,6)))/(1.1*max(data_un(:,6))-.9*min(data_un(:,6))); 
data(:,7) = (data_un(:,7)-x_min)/(x_max-x_min); 
 
train = data(1:7,:);  % use 7 rows for training data 
test = data(8:11,:);  % use 4 rows for testing data 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Fuzzy Determination 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% TestStand and Thrust 
% Training Data  
p(:,1) = train(:,1);             
p(:,2) = train(:,2); 
t = train(:,7);             % Cost is the last data column 
in_train = [p,t]; 
% Testing data  
p2(:,1) = test(:,1);   
p2(:,2) = test(:,2); 
t2 = test(:,7);             % Cost is the last data column 
in_test = [p2,t2]; 
p_1 = p; 
p2_1 = p2; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% TestDurMax and PressuraPr 
% Training Data  
p(:,1) = train(:,4);             
p(:,2) = train(:,5); 
t = train(:,7);             % Cost is the last data column 
in_train = [p,t]; 
% Testing data  
p2(:,1) = test(:,4);   
p2(:,2) = test(:,5); 
t2 = test(:,7);             % Cost is the last data column 
in_test = [p2,t2]; 
p_2 = p; 
p2_2 = p2; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% FuelFlow and OxidizerFL 
% Training Data  
p(:,1) = train(:,3);             
p(:,2) = train(:,6); 
t = train(:,7);             % Cost is the last data column 
in_train = [p,t]; 
% Testing data  
p2(:,1) = test(:,3);   
p2(:,2) = test(:,6); 
t2 = test(:,7);             % Cost is the last data column 
in_test = [p2,t2]; 
p_3 = p; 
p2_3 = p2; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% FuelFlow and Thrust 
% Training Data  
p(:,1) = train(:,3);             
p(:,2) = train(:,2); 
t = train(:,7);             % Cost is the last data column 
in_train = [p,t]; 
% Testing data  
p2(:,1) = test(:,3);   
p2(:,2) = test(:,2); 
t2 = test(:,7);             % Cost is the last data column 
in_test = [p2,t2]; 
p_4 = p; 
p2_4 = p2; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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% Predicting Training Data 
fismat = readfis('m1_TS_Thrust_09'); 
ctrain(:,1) = (evalfis(p_1,fismat)); 
fismat = readfis('m1_TDM_PPr_10'); 
ctrain(:,2) = (evalfis(p_2,fismat)); 
fismat = readfis('m1_FF_OFL_10'); 
ctrain(:,3) = (evalfis(p_3,fismat)); 
fismat = readfis('m1_FF_Thrust_10'); 
ctrain(:,4) = (evalfis(p_4,fismat)); 
 
e_ctrain(:,1) = ((train(:,7)-ctrain(:,1))./train(:,7))*100; 
e_ctrain(:,2) = ((train(:,7)-ctrain(:,2))./train(:,7))*100; 
e_ctrain(:,3) = ((train(:,7)-ctrain(:,3))./train(:,7))*100; 
e_ctrain(:,4) = ((train(:,7)-ctrain(:,4))./train(:,7))*100; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Predicting Testing Data 
fismat = readfis('m1_TS_Thrust_09'); 
ctest(:,1) = (evalfis(p2_1,fismat)); 
fismat = readfis('m1_TDM_PPr_10'); 
ctest(:,2) = (evalfis(p2_2,fismat)); 
fismat = readfis('m1_FF_OFL_10'); 
ctest(:,3) = (evalfis(p2_3,fismat)); 
fismat = readfis('m1_FF_Thrust_10'); 
ctest(:,4) = (evalfis(p2_4,fismat)); 
 
e_ctest(:,1) = ((test(:,7)-ctest(:,1))./test(:,7))*100; 
e_ctest(:,2) = ((test(:,7)-ctest(:,2))./test(:,7))*100; 
e_ctest(:,3) = ((test(:,7)-ctest(:,3))./test(:,7))*100; 
e_ctest(:,4) = ((test(:,7)-ctest(:,4))./test(:,7))*100; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% NN input 
ctrain_nn = ((ctrain(:,1:4)))'; 
ctest_nn = (ctest(:,1:4))'; 
tar_train = (train(:,7))'; 
tar_test = (test(:,7))'; 
dataMinMax = minmax(ctrain_nn);     % Quantity to give the neural network for size determination 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Neural Network Creation (Backpropagation) 
% Create a new network with the newff command (Backpropagation) 
% net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) 
% traingdx is for batch training with adaptive learning rate and momentum 
% learngdm is for gradient descent with momentum 
% sse is the the sum-squared error criterion 
nBP = newff(dataMinMax, [3 1], {'logsig','logsig'}, 'traingdx', 'learngdm', 'sse'); 
nBP.trainParam.goal = 0.001;        % Desired maximum error 
nBP.trainParam.epochs = 3000;       % Maximum no. of epochs 
nBP.trainParam.lr = 0.01;           % Learning rate 
nBP.trainParam.mc = 0.3;            % Momentum 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Training of network 
nBP = init(nBP);                    % Initialize the new network 
[nBP, trc] = train(nBP, ctrain_nn, tar_train);  % Train the network 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Testing Data 
c_results = []; 
c_results = sim(nBP, ctest_nn);     % Simulating the network using test data 
c_results = c_results.*(x_max-x_min)+x_min;     % Multiplying by normilization factor 
tar_test = tar_test.*(x_max-x_min)+x_min;       % Multiplying by normilization factor 
error = []; 
error = ((tar_test-c_results)./tar_test).*100 
err = mean(abs(error))              % Mean error 
sserror = 1/(length(c_results)).*sum((tar_test - c_results).^2) 
c_results = c_results'; 
error = error'; 
 

 



 78
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Training Data  
c_results = []; 
c_results = sim(nBP, ctrain_nn);    % Simulating the network using test data 
c_results = c_results.*(x_max-x_min)+x_min;     % Normilizating factor 
tar_train = tar_train.*(x_max-x_min)+x_min;     % Normilizating factor 
error = []; 
error = ((tar_train-c_results)./tar_train).*100 
err = mean(abs(error))              % Mean error 
sserror = 1/(length(c_results)).*sum((tar_train - c_results).^2) 
c_results = c_results'; 
error = error'; 
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11.6.  Method 3:  RBFN Development 
 
% m3RBFN.m 
% 3/14/04 
% Method 3: RBFN Development 
% Properly normalized, 7 training, 4 testing, double fis 10 
% filling in missing data in columns 5, 8, 11 (mean or median) 
% RBFN 
close all;clear all; 
% ANFIS HACEM Developing & Processing for Engines 
% the variables used are: 
 
input_name=['DuratDd   ';'NoTest    ';'TestDurMax';'Fuel      ';'Pressurant';... 
            'Oxydizer  ';'Thrust    ';'FuelFlow  ';'FuelPresFl';'OxidizerFl';... 
            'PressuraPr';'ThrustMeas';'Cooling?  ';'GimbalAxes';'Safety?   ';... 
            'Handling? ';'TestStand ';'FacilitMod';'TotalCost ']; 
 
%    1   2  3   4   5   6   7       8       9   10    11    12  13  14  15  16  17  18  19   
ttb=[9 2 70 5 4 1 4250 4.75  10.44 25  600 1 1
 2 0 0 3 3 550000; 
    252 48 150 5 4 1 80000 64   0.55 139  800 0 1
 1 0 0 5 2 1592000; 
    180 70 200 1 2 5 2500 30   25 25  150 0 0
 0 0 0 2 1 4433000; 
    240 10 180 5 1 7 1740 174   172 12  1512 0 1
 0 0 0 2 1 2203000; 
    360 14 34 23 7 1 60000 0   12 140  2000 1 0
 0 0 0 3 1 1772000; 
    75 10 180 5 0 1 1800000 2035  0    4620   0     1 1 0
 0 0 4 1 12051000; 
    45 25 200 8 4 6 5450 3.6   20 23.4 400 1 0 0
 1 1 3 1 702000; 
    540 153 100 24 0 1 10000 0   0     150  3000 1 0
 0 0 0 3 1 1590000; 
    120 42 8 2 9 1 645000 267   200 1667 15000 0 0
 0 0 1 1 2 4935000; 
    120 21 45 23 0 6 150     1   0    1.78   1000  1 1 0
 1 1 2 2 1713000; 
    105 17 60 22 0 1 10000 9.52  0    23.81  0     1 0 0 0
 0 3 1 1540966]; 
 
% Filling in missing data 
% Correcting for Pressurant 
pres = median(ttb(:,5)); 
[a,b] = find(ttb(:,5)==0); 
ttb(a,5) = pres; 
% Correcting for FuelFlow 
ff = mean(ttb(:,8)); 
[a,b] = find(ttb(:,8)==0); 
ttb(a,8) = ff; 
% Correcting for PressuraPr 
ppr = median(ttb(:,11)); 
[a,b] = find(ttb(:,11)==0); 
ttb(a,11) = ppr; 
% Correcting for FuelPresFl 
fpf = median(ttb(:,9)); 
[a,b] = find(ttb(:,9)==0); 
ttb(a,9) = fpf; 
 
x_min = 0.9*min(ttb(:,19)); 
x_max = 1.1*max(ttb(:,19)); 
 
data(:,1) = (ttb(:,1)-.9*min(ttb(:,1)))/(1.1*max(ttb(:,1))-.9*min(ttb(:,1))); 
data(:,2) = (ttb(:,2)-.9*min(ttb(:,2)))/(1.1*max(ttb(:,2))-.9*min(ttb(:,2))); 
data(:,3) = (ttb(:,3)-.9*min(ttb(:,3)))/(1.1*max(ttb(:,3))-.9*min(ttb(:,3))); 
data(:,4) = (ttb(:,4)-1)/(24-1); 
data(:,5) = (ttb(:,5)-1)/(9-1); 
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data(:,6) = (ttb(:,6)-1)/(7-1); 
data(:,7) = (ttb(:,7)-.9*min(ttb(:,7)))/(1.1*max(ttb(:,7))-.9*min(ttb(:,7))); 
data(:,8) = (ttb(:,8)-.9*min(ttb(:,8)))/(1.1*max(ttb(:,8))-.9*min(ttb(:,8))); 
data(:,9) = (ttb(:,9)-.9*min(ttb(:,9)))/(1.1*max(ttb(:,9))-.9*min(ttb(:,9))); 
data(:,10) = (ttb(:,10)-.9*min(ttb(:,10)))/(1.1*max(ttb(:,10))-.9*min(ttb(:,10))); 
data(:,11) = (ttb(:,11)-.9*min(ttb(:,11)))/(1.1*max(ttb(:,11))-.9*min(ttb(:,11))); 
data(:,12) = (ttb(:,12)); 
data(:,13) = (ttb(:,13)); 
data(:,14) = (ttb(:,14)-0)/(2-0); 
data(:,15) = (ttb(:,15)); 
data(:,16) = (ttb(:,16)); 
data(:,17) = (ttb(:,17)-1)/(6-1); % Special Normalization for TestStand (since there are 6) 
data(:,18) = (ttb(:,18)-1)/(3-1); 
data(:,19) = (ttb(:,19)-x_min)/(x_max-x_min); 
 
train = data(1:7,:);  % use 7 rows for training data 
test = data(8:11,:);  % use 4 rows for testing data 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% NN input 
ctrain_nn = (train(:,1:18)); 
ctest_nn = (test(:,1:18)); 
tar_train = (train(:,19)); 
tar_test = (test(:,19)); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Neural Network Creation (RBFN) 
k = 6;                              % Number of clusters k 
p = 4;                              % Number of p-nearest neighbors chosen 
[clus,cent] = kmeans(ctrain_nn,k);  % Kmeans algorithm 
ave_cost = [];                      % Finding the average cost of each cluster 
for i = 1:k                          
    x = []; 
    y = []; 
    [x y] = find(clus(:,1)==i); 
    ave_cost(i,:) = mean(data(x,7)); 
end 
vari = zeros(k,1);                  % P-nearest neighbor                   
n = []; 
n_sort = []; 
n = dist(cent');                    % Euclidean distances of each center for nearest determination 
n_sort = sort(n,1); 
for i = 1:k                         % For the number of clusters k 
    a = 0; 
    for j = 1:p                      
        x = []; 
        y = []; 
        [x y] = find(n(:,i) == n_sort(1+p,i)); 
        a = sum((cent(i,:)-cent(x,:)).^2) + a; 
    end 
    vari(i,1) = (1/p*a)^0.5; 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Training 
phi_k1 = []; 
result1 =[]; 
for i = 1:size(ctrain_nn,1)         % For the length of the training data set 
    for j = 1:k                     % Calculating the output 
        phi_k1(i,j) = exp(-(sum((cent(j,:)-ctrain_nn(i,:)).^2))^0.5/vari(j,:)); 
    end 
    phi_k1(i,:) = 1/sum(phi_k1(i,:))*(phi_k1(i,:));% Normalizing probablities to sum to one 
    result1(i,1) = phi_k1(i,:)*ave_cost;% Multiplying the propabilities by the 
end                                     % average cost of the respective cluster 
        
% Error calculations 
res_train = result1.*(x_max-x_min)+x_min; % Un-normilizating output 
tar_train = tar_train.*(x_max-x_min)+x_min; 
error = []; 
err = []; 
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error = ((tar_train-res_train)./tar_train).*100 % Error calculation 
err = mean(abs(error))              % Mean error 
sserror = 1/(length(res_train)).*sum((tar_train - res_train).^2) % Sum squared error 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Testing 
phi_k2 = []; 
result2 =[]; 
for i = 1:size(ctest_nn,1)          % For the length of the testing data set 
    for j = 1:k                     % Calculate the output 
        phi_k2(i,j) = exp(-(sum((cent(j,:)-ctest_nn(i,:)).^2))^0.5/vari(j,:)); 
    end 
    phi_k2(i,:) = 1/sum(phi_k2(i,:))*(phi_k2(i,:));% Normalizing probablities to sum to one 
    result2(i,1) = phi_k2(i,:)*ave_cost;% Multiplying the propabilities by the 
end                                     % average cost of the respective cluster 
 
% Error calculations 
res_test = result2.*(x_max-x_min)+x_min;  % Un-normilizating output 
tar_test = tar_test.*(x_max-x_min)+x_min; 
error = []; 
err = []; 
error = ((tar_test-res_test)./tar_test).*100 % Error calculation 
err = mean(abs(error))               % Mean error 
sserror = 1/(length(res_test)).*sum((tar_test - res_test).^2) % Sum squared error 
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11.7.  Method 3:  RBFN Cluster Costs, Center Values, and Variance Values 
 
For RBFN (11 for training) 

Actual Costs Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
1 0.00431 0.14287 0.15005 0.15226 0.14491 0.15315 0.25676
2 0.085964 0.14697 0.14749 0.13535 0.18453 0.14104 0.24462
3 0.30859 0.15344 0.14703 0.14191 0.26302 0.14288 0.15172
4 0.13384 0.13147 0.14705 0.14868 0.28485 0.12378 0.16417
5 0.10007 0.19653 0.13449 0.1335 0.12317 0.2729 0.13941
6 0.90556 0.15415 0.14913 0.14835 0.15682 0.15031 0.24124
7 0.016221 0.142 0.14692 0.27997 0.15394 0.14288 0.1343
8 0.085808 0.33066 0.11491 0.12164 0.12164 0.18682 0.12432
9 0.34793 0.11553 0.3955 0.12344 0.12788 0.11586 0.12178

10 0.095446 0.14143 0.14137 0.29146 0.13734 0.14095 0.14744
11 0.081965 0.19152 0.12367 0.14041 0.13265 0.26627 0.14548

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
Average Cost 
of Cluster 0.004983 0.32571 0.001346 0.001003 0.01761 0.31717

0.90783 0.19099 0.12698 0.3446 0.383 0.17733
0.90811 0.24144 0.12733 0.22943 0.082282 0.10931
0.43609 0.003759 0.54182 0.85902 0.18703 0.59273

1 0.043478 0.63043 0.086957 0.93478 0.17391
0.125 1 0.25 0.0625 0.4375 0.29167

0 0 0.83333 0.83333 0 0
0.004983 0.32571 0.001346 0.001003 0.01761 0.31717

0.10478 0.11892 0.000626 0.045182 0.054315 0.31299
0.045306 0.90889 0.067083 0.44648 0.04886 0.030288

0.02921 0.32781 0.002163 0.003326 0.015806 0.31357
0.17507 0.90834 0.034525 0.04253 0.077299 0.036562

1 0 1 0 1 0.66667
0 0 0.5 0.5 0 1
0 0 0 0 0
0 0 1 0 0 0
0 1 1 0 0 0

0.4 0 0.3 0.2 0.4 0.6
0 0.5 0.25 0 0 0.5

2.1051 2.4511 2.1051 1.9903 1.865 1.9923
Variance

RBFN: k = 6, p = 4

Center

0.5
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Actual Costs Cluster 1 Cluster 2 Cluster 3
1 0.00431 0.48523 0.27206 0.24272
2 0.085964 0.44197 0.2451 0.31293
3 0.30859 0.24892 0.27964 0.47144
4 0.13384 0.26562 0.2308 0.50358
5 0.10007 0.29516 0.45465 0.25019
6 0.90556 0.45267 0.28009 0.26723
7 0.016221 0.24188 0.47962 0.2785
8 0.085808 0.30066 0.41204 0.2873
9 0.34793 0.31521 0.35841 0.32637

10 0.095446 0.30613 0.41839 0.27548
11 0.081965 0.30267 0.43059 0.26673

Cluster 1 Cluster 2 Cluster 3
Average Cost of 
Cluster 0.31717 0.016461 0.001003

0.17733 0.3318 0.3446
0.10931 0.10631 0.22943
0.59273 0.51598 0.85902
0.17391 0.63043 0.086957
0.29167 0.5625 0.0625

0 0.41667 0.83333
0.31717 0.016461 0.001003
0.31299 0.052992 0.045182

0.030288 0.070636 0.44648
0.31357 0.015766 0.003326

0.036562 0.065078 0.04253
0.66667 1 0

1 0
0.5 0 0

0 0.5
0 0.5

0.6 0.4 0.2
0.5 0 0

1.6986 1.6986 1.6686

RBFN: k = 3, p = 2

Center

Variance

For RBFN (7 for training) 

0.5

0
0
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