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Abstract

Nonlinear filtering is certainly very important in estimation since most real-world prob-
lems are nonlinear. Recently a considerable progress in the nonlinear filtering theory has
been made in the area of the sampling-based methods, including both random (Monte Carlo)
and deterministic (quasi-Monte Carlo) sampling, and their combination.

This work considers the problem of tracking a maneuvering target in a multisensor envi-
ronment. A novel scheme for distributed tracking is employed that utilizes a nonlinear target
model and estimates from local (sensor-based) estimators. The resulting estimation prob-
lem is highly nonlinear and thus quite challenging. In order to evaluate the performance
capabilities of the architecture considered, advanced sampling-based nonlinear filters are
implemented: particle filter (PF), unscented Kalman filter (UKF), and unscented particle
filter (UPF). Results from extensive Monte Carlo simulations using different configurations
of these algorithms are obtained to compare their effectiveness for solving the distributed
target tracking problem.

v
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Chapter 1

Introduction

1.1 Motivation for Using Simulation Based Methods

Estimation problem concerns with estimating unknown quantities based on obtained mea-
surements. If the unknown quantities are modeled as nonrandom parameter, the measure-
ments provide the likelihood function of the sought-after parameters; this is static estima-
tion. On the other hand if the unknown quantities are modeled as random parameters, e.g.
dynamic systems, there has to be some prior knowledge about the paramters available for
estimation. This is referred to as state estimation. Bayesian estimation is a framework that
solves estimation problems by utilizing both the likelihood function and the prior knowledge
(in the form of a distribution). In this framework all inference about the parameters can be
drawn from the posterior density function (PDF) conditioned on the observed data.

Many estimation problems obtain data sequentially in, e.g., time such as in tracking
a target. Thus it is necessary to update the posterior PDF as new measurements arrive.
Sequential Bayesian estimation does this in two steps: measuement update and time update.
Under linear Gaussian assumption, Kalman filter is used to compute the sequence of the
posterior distributions by calculating the mean and covariance of the posterior. This is
perhaps the only perfect case (in the sense of mathematical tractability) that gives analytical
solution to recursive Bayesian estimation. Kalman filter can only deal with a limited class
of problems. In other words, Kalman filter is not a general method for estimation. Many
problems encountered are nonlinear and typically the distributions of the model are known
to be far from Gaussian, and we need a filter to handle these cases also.

An algorithm that is widely used to deal with nonlinear problem is the Extended Kalman
filter (EKF). It basically linearizes the nonlinear function(s) at each time step and employs
the Kalman filter (KF) to do filtering. The linearization and Gaussian assumption are the
main sources of error in the EKF method. And if the error is large, the EKF could diverge.

Numerous approximate methods have been developed for nonlinear nonGaussian prob-
lems, and among them are the Gaussian sum filter and a method based on a piecewise linear
approximation of the distribution. A more direct numerical method represents each distri-
bution as a set of values on a grid. This is a general approach but it is impractical for high
dimensional problem due to its suffering from the “curse of dimensionality”.
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Another approach to nonlinear nonGaussian problems is by keeping track of the posterior
density evolution using finite samples from that density, not by direct approximation. This
makes sense since the posterior PDF is hard or there is no way to compute and since in most
problems what one is interested in is just some features (usually the mean and covariance)
of the PDF which can be deduced from the samples (or particles). Extracting these features
in theory needs to evaluate integrals. Since we do not have access to the PDF, features
can be approximated by integration with Monte Carlo method. Hence simualtion methods
are also called Monte Carlo simulation methods. Simulation based technique is general and
virtually can be applied to any Bayesian estimation problem. Though this implementation
is machine intensive, in general the computation cost does not increase proportionally on
the dimention of the problem at hand.

1.2 Simulation Monte Carlo Methods

Though Monte Carlo method has been in the literature for a long time, only recent years
does it gain moments and made considerable progress following the advances in computer
technolygy. Progress have been in both general methodolygies as well as specific applica-
tions. A survey of the progress can be found in [4]. The first functional Monte Carlo method
for sequential estimation was only recently developed in [3]. Following this development
were a number of proposals for improvements on the generic particle filter. Three promi-
nent methods are random (Monte Carlo)[3], [4], [5] and deterministic sampling (quasi-Monte
Carlo) [6], [7], [8] and their combinations [9].

In random sampling (Particle filter (PF)) the probability densisty functions (PDFs) of
the state are represented by a finite sets of sample points (i.e., particles) which are propa-
gated and updated by the filter to approximate the posterior density of the target state at
every time step. Provided the number of particles is large enough, the accuracy of this ap-
proximation is high. In the deterministic sampling (e.g., unscented transform (UT)) based
filtering the PDFs are represented by a small number of deterministic points (referred to as
sigma points), specially designed to approximate the moments of states after nonlinear trans-
formations by the sample moments of the transformed sigma points. This is based on the
principle that it is easier to approximate a Gaussian density than to approximate nonlinear
function (as in the extended Kalman filter (EKF)). The unscented particle filter (UKF) is a
PF technique which employs unscented Kalman filters to obtain better proposal distributions
and thus dramatically reduces the number of particles in the PF implementation.

1.3 Distributed Target Tracking

Nonlinear filtering is very important in estimation since most of real-world problems are
nonlinear. A typical nonlinear problem in target tracking is that of a maneuvering target in
which the target, e.g., an airplane, climbs up/down or makes a turn. It is common to track
a target using measurements from several sources e.g., radars or sensors that may be located
on the same platform or may be in geographicaly different locations like in case of radars. In
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either case state estimation of the target motion calls for data fusion. Data fusion concerns
with how to best utilize the useful information contained in multiple sets of data for the
purpose of estimating an unknown quantity–a parameter or process. There are two basic
architectures for processing data from different sensors: centralized and decentralized (also
called distributed) fusion depending on what form of data the fusion center receives: raw
or processed data. Centralized fusion is the case in which data received from local sensors
are raw or unprocessed observations; this is the traditional estimation in the literature. In
the other architecture, distributed fusion, what the fusion center receives are local state
estimates output by those local sensors.

Distributed data fusion poses its own challenges. Among those is especially the formu-
lation of the crosscovariances between the local estimates. This is the case because local
sensors measure the same motion, like in the case of tracking a single target, that is, present
in the local observations is the same process noise. Models for data fusion and fusion rules
are discussed in [11].

1.4 Thesis Outline

Sampling based methods are general algorithms. Successful applying of the methods to a
specific problem requires solving other subproblems specific to the problem at hand. This
work formulates a scheme for state estimation in nonlinear distributed target tracking using
sampling based algorithms (PF, UKF, and UPF). Specifically, it uses nonlinear equations
to model dynamic state and observation, employs these sampling based methods to filter
at both local sensors and fusion center. Also the crosscovariance of the local estimates are
computed using the sigma points sent from the local UKFs to the fusion center. This work
also compares these algorithms using the root mean square error.

This thesis is a detailed version of [12]. The rest of this thesis is organized as follows.
Chapter 2 briefly reviews Bayesian estimation in the literature. Chapter 3 contains a
brief survey of approaches to recursive Bayesian filtering. General numerical integration,
derivation and detailed implementations of the three prominent sampling based filters: PF,
UKF, and UPF, are given in chapter 4. Chapter 5 consists of methodology of using sampling
based method to distributed state estimation, simulation scenarior and results.
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Chapter 2

Bayesian Estimation

Statistical estimation concerns with inferring knowledge about unknown parameters of a
process indirectly through measurements. The parameters may be states of the process
or system, and the system affects these parameters in a known manner described by a sys-
tem model. Observations are measurements of these states at some point in time and are
described by the measurement equation. In many practical problems the sought parame-
ters have dynamic properties that make them change with, for example, time. Thus, the
inferred knowledge need to be updated as new observatons arrive. This is referred to as
recursive estimation. Recursive Bayesian estimation calls for the update of the statistical
characteristics of the system, namely the posterior pdf, recursively.

As opposed to Bayesian point of view, unkown parameters are assumed to be unkown con-
stants in nonBayesian approach, and these two phylosophies results in different estimators.
Note that commonly nonBayesian approach is also referred to as parametric estimation.
Since Monte Carlo method is used mainly to solve recursive Bayesian estimation problems,
this chapter reviews only Bayesian estimation and serves as a theorectial basis for the discus-
sion in the sequel. As a result, it does not provide a complete coverage of estimation which
can be found in any text book on estimation such as [19] and [2] upon which this review is
based.

2.1 Notation Convention and Terminology

In literature the term parameter is usually used to denote unknown deterministic entities,
while the term state is used to denote random entities. In this thesis paramerter is used to
refer any sought-after entities when it is unambiguous. When needed to distinguish random
from nonrandom entities, parameter and state are used as in the literature.

Unless stated differently, x denote a generic n-dimentional state vector, the estimatee–the
sought-after entity, and z a p-dimentional observation vector.

Zk = {z1, z2, ..., zk}
denotes the sequence of observations, and index k may be dropped when the context is
unambiguous. Random variables are sometimes typed in bold face, x, when it serves to
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clarify the underlying meaning. Generally p(x) denotes the probability density function of
the random variable, x. p(z|x) is a likelihood function of x or probabilty density funciton
of z given x. x̂ is estimate and the expression that produces x̂ is an estimator.

2.2 Bayesian Estimation

In Bayesian approach the parameters are treated as random variables; that is, x is a random
vector. It also assumes that the prior probability density function of the parameter is
known. This consists of all known and unkown information about the parameter prior to the
experiment–the evolving of the system dynamics. The observation vector z is also assumed
random. It is so to account for random noise that the sensor themselves have introduced
in the measurement process and to account for the unmodeled effects in modeling. The
statistical characteristics are described by the probability density function of the observation
vector conditioned on the parameter vector x, p(z|x), also called the likelihood function of
the parameter vector x. Thus when the state vector is known the pdf of the z is completely
known. After receiving measurement z the knowledge about the vector x is updated so that

p(x|Z) =
p(Z|x)p(x)

p(Z)
(2.1)

where

p(Z) =

∫

Rn

p(Z|x)p(x)dx

Equation (2.1) gives a solution to the Bayesian estimation problem which is definded by

p (x, Z) = p (Z|x) p (x) (2.2)

where p (x|Z) is the posterior pdf of x. Given the data Z any characteristics of x can be
deduced from this posterior pdf. Therefore the posterior pdf is regarded as the general
solution because we may want to know certain features of this pdf.

2.2.1 Bayesian Estimators

The posterior pdf is general and complex solution. Each value of x gives a value of p (x|y)
reflecting the posterior probability of that parameter value. Fortunately it is often desired
to obtain an estimate of x rather than the whole posterior pdf. An expression mapping
Rp → Rn is called an estimator which gives estimate x̂ optimal in some sense. In Bayesian
framework an estimator is chosen as the function of observations that minimizes the con-
ditional Bayes risk, that is, the expected value E [C (x̃) |z] of a positive (semi)definite cost
function C(x̃) of the estimaton error x̃. In general, C (x̃) is defined in such a way that for
the larger the difference x − x̂, the greater the cost. The optimal choice of x̂, using a cost
defined by C (x̃) , is the one that minimizes the conditional Bayesian risk,

x̂ = arg minbx E [C (x̃) |z] (2.3)
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Since
E [C (x̃)] = E {E [C (x̃) |z]} (2.4)

the estimator (2.3) also minimizes the Bayes risk E [C (x̃)] . In general each cost function
gives a different estimator. Many important estimation methods using the Bayesian frame-
work are special cases of the above Bayesian estimator.

Minimum Mean Square Error Estimator

Let the cost function be C (x̃) = x̃′x̃, where x̃ is vector-value estimation error. Note that
this cost function is in a quadratic form. E [C (x̃) |z] is the mean square error. Thus using
the Bayesian formula (2.3)

x̂MMSE , arg minbx
∫ ∞

−∞
(x̃′x̃) p (x̃|z) dx̃

Taking derivative, using Leibuiz’ rule of differentiation of the integral, and setting it to
zero yields

2

∫ ∞

−∞
x̃p (x̃|z) dx̃ = 2

∫ ∞

−∞
(x− x̂) p (x|z) dx = 0

x̂MMSE = E [x|z] =

∫ ∞

−∞
xp (x|z) dx (2.5)

Thus x̂MMSE is the conditional mean of the posterior pdf p (x|z).

Maximum a Posteriori Estimator

Now if the cost function is chosen to be the one that penallizes all errors equally (also called
“hit-or-miss” cost function)

C (x̃) =

{
0 |x̃| < ∆

2

1 |x̃| > ∆
2

}
= 1

(
|x̃| − ∆

2

)
1 (·) : unit step function

given some small ∆ > 0, then the Bayesian estimator is the maximum a posteriori (MAP)
estimator as below (scalar case). Let ε = ∆

2

E [C (x̃) |z] =

∫ ∞

−∞
C (x̃) f (x̃|z) dx̃

=

∫ −ε

−∞
1 · f (x̃|z) dx̃ +

∫ ∞

ε

1 · f (x̃|z) dx̃

=

(∫ −ε

−∞
+

∫ ∞

ε

+

∫ ε

−ε

)
f (x̃|z) dx̃−

∫ ε

−ε

f (x̃|z) dx̃

= 1−
∫ ε

−ε

f (x̃|z) dx̃

= 1−
∫ bx+ε

bx−ε

f (x|z) dx
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This is minimized if
∫ bx+εbx−ε

f (x|z) dx is maximized, and this is the case when x̂ is chosen to
be the maximum point (mode) of f (x|z). Thus

x̂MAP = lim
ε→0

x̂Bayes|C(ex)=1(|ex|−ε)

Conditional Median Estimator

Yet another common choice of cost function is the absolute (for scalar) value of the estimation
error C (x̃) = |x̃| .

E [C (x̃) |z] = E [|x− x̂| |z]

=

∫ ∞

−∞
|x− x̂| f (x|z) dx

=

∫ bx
−∞

(x̂− x) f (x|z) dx +

∫ ∞

bx (x− x̂) f (x|z) dx

Taking derivative and setting it to zero yields

∫ bx
−∞

f (x|z) dx−
∫ ∞

bx f (x|z) dx = 0

→ P {x ≤ x̂|z} = P {x ≥ x̂|z}
Or x̂ is the conditional median of the conditional PDF f (x|z) .

2.2.2 Estimation Error Covariance

Though the estimator x̂ (Z) is random, the estimate is fixed. The estimate does not reveal
its relative goodness, but its associated estimmation error covariance does, used to quantify
the variation about the estimatee. The estimation error conrresponding to an estimate x̂ (Z)
is defined by

x̃ , x− x̂

The unconditional mean-square error (MSE) matrix of estimator x̂ (Z) is defined by

P = MSE [x̂ (Z)] , E
[
(x− x̂) (x− x̂)T

]
, (2.6)

If E [(x− x̂)] = 0 this quantity also coincides with the estimation error covariance. After
observing the event {z = z} and computing a suitable estimate x̂ (Z) the (conditional) MSE
matrix can be computed from the posterior pdf as

MSE [x̂ (Z) |Z] ,
∫ ∞

−∞
(x− x̂) (x− x̂)T p (x|Z) dx. (2.7)
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Since the conditional mean squared estimate (2.5) satisfies E
[(

x− x̂MMSE
) |Z]

= 0, it has
an error covariance matrix

PMMSE = Cov (x− x̂|Z) = Cov (x|Z) (2.8)

Hence, the first and second central moments of the posterior density function p (x|Z) are
the MMSE estimate and the estimation error covariance, repectively. Note that 2.8 gives
the error covariance of the MMSE estimate based on the observation Z and it quantifies
the estimation error of this estimate. The error covariance of the estimator can be found
by computing expectation over z as well, and will quantify the overall performance of the
estimator, prior to collecting any observations.

2.3 Recursive Bayesian Estimation

In estimation many applications deal with problems that requires determining state of the
system on-line or in other words estimating as the data come in time. An example of sush
a system is tracking a target in real time. It is so either because the systems have dynamics
that make the state change with time or because the estimate of nonrandom parameters are
needed on-line demanding the information about the parameter or state to be updated with
each new measurement. Like in target tracking the position and velocity of the motion
need to be updated frequently. Other examples of recursive estimation are all types of
navigation applications ranging from global aircraft and ship navigation to autonomous
robot navigation. Recursive estimation can also be applied to adaptive control in which the
parameters of a dynamical system working in a closed loop are tracked using measurements
of system input and output. One of the main reason for using recursive estimation is
the advantage in data storage, thus one may also resort to recursive estimation in off-line
application with large amount of data. In cases when the density p (x|z) is very complicated
due to the size of the measurement vector z, treating the problem recursively can yield a
reasonable tradeoff between computational complexity and performance.

Let xk denote the state at time k, where we always let the time index k ∈ N independently
of the acutal time evolved. T will be used for the fixed sampling interval.

Recursive estimation usually assumes the system is Markov process by which given the
measurement observed at time k is conditionally independent of the previously observed
measurements given the current state value. Hence, conditioned on the present state no
additional information about the future states should be available in past observations.

A recursive estimation problem is an estimation problem where the state evolves in time
according to a Markov process with an initial state x0 ∼ p (x0) and transition kernel,

p (xk+1|xk) k = 0, 1, ...

This transition kernel may explicitly depend on the time index.
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The likelihood
p (zk|xk) k = 0, 1, ...

may explicitly depend on the time index k.
A recursive estimation problem is uniquely specified when the prior p (x0) , the transition

kernel p (xk+1|xk) and the likelihood p (zk|xk) are given. Note that this coincides with the
problem described above since these entities define the joint density of all measurements and
all states from time zero to time k.

2.3.1 Conceptual Solution

All recursive estimation problems that can be expressed in the form formulated above have a
common conceptual solution consisting of a recursive propagation of the conditional density.
The stacked vector of the complete measurement history at time k has length (k + 1)p and
is denoted by

Zk = [z0, z1, ..., zk]
T

Zs:k = [zs, zs+1, ..., zk]
T

for any s < k. This notation will be adopted generally for stacked vectors of random process.
Applying Bayes’ rule (2.1) to the last element of the measurement vector Zk yields

p
(
xk|Zk

)
=

p
(
zk|xk, Z

k−1
)
p
(
xk|Zk−1

)

p (zk|Zk−1)
(2.9)

=
p (zk|xk) p

(
xk|Zk−1

)

p (zk|Zk−1)
(2.10)

since, by p (zk|xk) , we assume that the observation zk is conditionally independent of previous
measurements given the state xk. The expression (2.9) is referred to as the measurement
update in the Bayesian recursion. As in (2.1) the denominator can be expressed through
the law of total probability, i.e., by marginalization.

The effect of a time step is obtained by observing that

p
(
xk+1, xk|Zk

)
= p

(
xk+1|xk, Z

k
)
p
(
xk|Zk

)

= p (xk+1|xk) p
(
xk|Zk

)

which follows from the assumption that the process {xk} is Markov, and that xk+1 is inde-
pendent of Zk when xk is given. Intergrating both sides with respect to xk yields the time
update equation

p
(
xk+1|Zk

)
=

∫

Rn

p (xk+1|xk) p
(
xk|Zk

)
dxk (2.11)

After (2.11) has been evaluated, the time index can be increased and the effect of a new mea-
surement incorporated as in (2.9). To summarize, a recursive propagation of the posterior
filter density of the states given the measurements is obtained. (2.9) and (2.11) provides a
mechanism to do recursion that is initialized by p (x0) .
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2.4 Conclusion

Bayesian framework (2.1) provides a mechanism for estimation problem that is assumed
to have a prior density of the unknown and the likelihood function through observation.
the posterior can be viewed as a general solution to estimation problem, but it is a rather
complex and inconvenient solution since most problems encountered need to deduce only
certain features of the posterior. Bayes risk or cost function is introduced to provide users
with a way to specify optimality criterion for estimation. Recursive solution consists of
2 steps: time update and measurement update that facilitates updating the posterior and
prior PDFs.
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Chapter 3

Recursive Bayesian Filtering

This chapter gives a brief review of the approaches to recursive Bayesian filtering in the
literature. First, consider the general system and observation models below

xk+1 = f(xk, vk) k = 1, 2, ... (3.1)

zk = h (xk, wk) (3.2)

where xk is the state vector and vk and wk are system and measurement noise, respectively.

When both f and h are linear functions, the problem at hand is a linear problem otherwise it
is a nonlinear one. For a linear problem that has prior, process noise, and measurement noise
being Gaussian, the problem is classified as a linear Gaussian problem. This kind of problem
presents a very important classs that can be tractable in recursive Bayesian estimation
framework and is also easily implementable by Kalman filter. For non-linear problem
several classes of estimators have been developed. Exended Kalman filter (EKF) and its
variants linearize the system function and/or observation funciton at each time step and
use the Kalman filter to do the filtering. Another class deals with nonlinear non-Gaussian
problems by approximating the posterior density of the state by mixture distributions. Yet
another class deals with nonlinearity and non-Gaussianity by discrete approximation of the
posterior density. These filter are called grid-based filters. They associate with each grid
point a probability value. The last class is Monte Carlo methods. They do not approximate
the posterior density directly, but sample it.

The chapter is organized as follows. Section 3.1 discusses linear recursive filtering, the
Kalman filter, and gives the algorithm. Sections 3.2, 3.3, and 3.4 reviews the EKF, Gaussian-
mixture filter, and grid-based filter, respectively. Monte Carlo Methods which are the main
focus of this thesis are discussed in details in the next chapter.

3.1 Kalman Filter

Under linear Gaussian assumption, the initial state, process noise, and observation noise
are Gaussian and mutually independent, and, as a result of this and Markov assumption of
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the state, the prior and the posterior desities are Gaussian themselves at each time step.
The Kalman filter is an algorithm to track the evolution of these two densities by their first
two moments: the conditional mean and the conditional covariance. Thus it is an optimal
MMSE estimator. The following is the Kalman filter algorithm based on ([2], chapter 5)
from which the derivation can be found.

With linearity assumption the state space model can be rewritten as

xk+1 = Fkxk + Gkuk + Γkvk k = 0, 1, ...

zk = Hkxk + wk

where x is n × 1 state vector, F nx × nx system matrix, Gk nx × nu input gain matrix, uk

nu×1 input vector, Γ nx×nv gain matrix, zk nz×1 observation vector, H nz×nx observation
matrix. the initial state is Gaussian with known mean and covariance. The process noise
vk is Gaussian with zero mean and covarince Q, and vk and vl are uncorrelated for k 6= l.
Observation noise nz × 1 vector wk is Gaussian with zero mean and covariance R, and wk

and wk are uncorrelated for k 6= l.

x̂k+1|k = Fkx̂k|k + Gkuk (3.3)

ẑk+1|k = Hk+1x̂k+1|k (3.4)

x̂k+1|k+1 = x̂k+1|k + Wk+1

(
zk+1 − ẑk+1|k

)
(3.5)

The covariance computation is as

Pk+1|k = FkPk|kF
′
k + ΓkQkΓ

′
k (3.6)

Sk+1 = Rk+1 + Hk+1Pk+1|kH
′
k+1 (3.7)

Wk+1 = Pk+1|kH
′
k+1S

−1
k+1 (3.8)

Pk+1|k+1 = Pk+1|k −Wk+1Sk+1W
′
k+1 (3.9)

Since the covariance calculation is independent of the state and measurements, it can be per-
formed offline. If the noises are not Gaussian, Kalman filter is a best linear state estimator.

3.2 Extended Kalman filter

Extended Kalman filter is the most widely used filter to deal with nonlinear recursive filteing.
Its assumptions about the state model are the same as that of the Kalman filter. EKF deals
with nonlinearity by linearizing the nonlinear system and/or observation functions using
Taylor’s series expansion about the prediction state and about the observation prediction at
every time step; that is, it calculates the jacobian matrix and sets

Fk =
∂fk

∂x

∣∣∣∣
x=bxk|k

(3.10)

Hk+1 =
∂hk+1

∂x

∣∣∣∣
x=bxk+1|k
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These evaluations are inserted into the algorithm of the Kalman filter just before the cal-
culation of the state prediction covariance. As can be seen in the expression above these
evaluations of the Jacobians call for the predicted state and observation and thus they, and
the covariance computation, must be computed on-line.

Two limitations of the EKF are the error from the linearization and the approximation
of the pdfs by their mean and covariance. If the linearity is severe, the linearization error
is significant and EKF could diverge. It is clearly a suboptimal state estimator. Despite of
these drawbacks it is widely used.

3.3 Approximation by Mixture Density

As computing power has increased, there has been a trend to solve nonlinear recursive state
estimation by approximating the prior and posterior distribution by mixture distributions,
as opposed to estimating just first two moments as in the case of the EKF. Most filters of
this class use Gaussian mixtures to approximate the densities. These would use either the
Kalman filter or EKF as the main tool in updating the mixture distributions. The mostly
used of these is the interacting multiple model (IMM) which is briefly reviewed below. A
thorough discusion, derivation, and complete algorithm of IMM filter can be found in [16]
upon which the review below is based.

3.3.1 Mixture Density

A mixture density is a weighted sum of, say, M distributions

p (x) =
M∑
i=1

µipi (x) with
M∑
i=1

µi = 1 (3.11)

where µi is the probability of the event that model i being the true one. (3.11) can be
rewritten as

p(x) =
M∑
i=1

p (x|Ai) p(Ai)

The mean of the mixture, by the total expectation theorm, is

x =
M∑
i=1

µixi

And the covariance of the mixture is

E
[
(x− x) (x− x)′

]
=

M∑
i=1

Piµi + P̃



14

P̃ ,
M∑
i=1

(xi − x) (xi − x)′ µi =
M∑
i=1

xixjµi − xx′

A mixture density, for example Gaussian mixture, can be approximated by, i.e., a single
Gaussian distribution.

3.3.2 Interacting Multiple Model Filter

Different from those filters described previously which are intended for systems that can be
modeled by one mathematical model, interacting multiple model filter (IMM) is usually used
for hybrid system which has both discrete state and continuous state. An example of this
kind is a maneuveing target whose motion can be modeled not by a single model but by a
group of models. In the IMM framework a number of elemental filters, usually KF or EKF,
run in parallel each corresponding to a mode of the motion. Since the optimal multiple
model estimator is not implementable due to the large number of model-path combinations
to keep track, IMM is designed to limit the number of model-path histories finite and thus
is a suboptimal estimator.

IMM has a soft decision mechanism by which the estimate is a joint estimate by all filters.
The feature of IMM that makes it efficient is the model-conditional reinitialization which is
done by mixing all latest model-conditional estimates whose weights are the mixing weights:

µj
k|k−1 , P

{
mi

k−1|mj
k, z

k−1
}

=
πij

µ̂j
k|k−1

µi
k−1

where πij is the transition probability and µ̂j
k|k−1 is the predicted mode j probability:

µ̂j
k|k−1 , P

{
mj

k|zk−1
}

=
M∑
i=1

πijµ
i
k−1

The mode probabilities for estimate combination are, for j = 1, 2, ..., M

µj
k , P

{
mj

k|zk
}

=
Lj

kµ̂
j
k|k−1∑M

j=1 Lj
kµ̂

j
k|k−1

where Lj is the likelihood function of model j.

3.4 Grid Based Filters

Grid based approach is a numerical method that represents the distributions as numbers on
a fixed grid. The grid is simply a large series of points and to each grid-point is associated
a number which is the density of the distribution in the grid-point. Suppose that we want
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to represent the distribution p(x) of the (p × 1) vector x in this way. Then p(x) is lying
in some p-dimetional space and if we use n points in each direction of the space we need np

grid-points. Even for a modest value of n the number of grid-points becomes enormous if
the dimention p is just less then 10. Typically p is much greater than this, so the method
becomes useless in many practical applications, even when one is equipped with the fastest
computers. If we use a fixed grid it must cover the whole area where the distribution may
be. The number of points in each direction of the p-directional space must then be so large
that the method is limited to problems where p is even smaller than 5. Progress in the field
of nonlinear state estimation has up to now been stucked by this drawback, known as the
“curse of dimentionality”. It is obvious that using of a fixed grid we keep calculating the
density in a large number of points where the density is zero for all practical purposes. In
fact, the set of points of interest where the density is nonzero is often very small compared
to the set of points where the density is zero. So, much work is spent on calcualtions of no
interest.

3.5 Conclusion

Kalman filter is nothing but a linear MMSE estimator. It calculates first two moments of
the prior and posterior PDFs. If the problem at hand is linear Gassian, KF gives a optimal
solution (MMSE) otherwise the solution is best in the linear class. EKF uses linearization of
the nonlinear function(s) and then utilizes Kalman filter to do filtering; it could diverge if the
linearity is severe. Density mixture approach use a group of filter to approxiamte nonlinear
and nonGaussian PDFs. Grid based method is infeasible for most practical problems due
to its “curse of dimensionality”.
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Chapter 4

Sampling Based Methods

Sampling based (or Monte Carlo) methods are based on numerical intergration. They sample
(particles) from the posterior. This comes from the fact that since the whole posterior
approximation is hard or infeasible such as suffering from the “curse of dimentionality” in
the case of grid based methods, in estimation one needs only some features, usually mean
and covariance, of the posterior that can be deduced form random variables. Simulation
based techniques were introduced early in the literature, but only recently have they been
practically applied to problems of statistical inference. Particle filter (or bootstrap filter)
was the first functional filter of this class and was introduced in the early 1990 [3].

This chapter provides a review of general numerical intergration in section 5.1, two sam-
pling techniques in section 5.2, the derivation of particle filter (PF) and improvements on
particle filter are considered in section 5.3. In section 5.4, unscented transform (UT) fol-
lowed by the algorithm of unscented Kalman filter (UKF) are presented. Finally unscented
particle filter (UPF) algorithm is in section 5.5. PF, UKF, and UPF are those that will be
compared in the next chapter. The algorithms of this chapter are gathered largely from [3]
and [9], and the section on numerical integration and importance sampling methods is based
on chapter 6 of [18].

4.1 Numerical Integration

Numerical integration deals with the problem of numerically evaluating general integrals,

I =

∫

Rn

g (x) dx. (4.1)

Monte Carlo methods for numerical integration regard problems of the form

I =

∫

Rn

f (x) π (x) dx, (4.2)

where

π (x) > 0,

∫

Rn

π (x) dx = 1.
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Conceptually (4.1) , which may be difficult, if not impossible, to evaluate, can be decomposed
or transformed into an integral for Monte Carlo evaluation through a suitable factorization
of the integrand g (x) = f (x) π (x). The assumptions on the factor π (x) impose a natural
interpretation of π (x) as a probability density function. To interprete (4.2) in Bayesian
estimation context, this density can be the filtering PDF (posterior density) of the parameters
given the observed data, i.e., π (x) = p (x|z), and considering, e.g., the MMSE estimator, we
identify f (x) = x, and I = x̂MMSE.

The Monte Carlo methods rely on the assumption that it is possible to draw N À
1 samples {xi}N

i=1 distributed according to the probability density π (x). Two sampling
techniques are presented in section 4.2. The Monte Carlo estimate of the integral (4.2) is
formed by taking the average over the set of samples

fN =
1

N

N∑
i=1

f
(
xi

)
(4.3)

where N is assumed to be large. In essence Monte Carlo simulation uses a set of weighted
particles to map integrals to sums. the law of large numbers guarantees convergence

lim
N→∞

fN = I. (4.4)

The convergence result above is asymptotic. This means that as N → ∞ the error of
the approximation will tend to zero. With support from this asymptotic result we usually
assume that a large but finite N will lead to a small error. In practical applications the
number of samples might have to be very large for a given error bound. Advantages of
Monte Carlo sumulation methods is that while grid based methods suffer from the “curse of
dimentionality” the expression (4.4) yields [18] that the error ε = fN − I of the Monte Carlo
estimate is of the order

ε = O
(
N−1/2

)
, (4.5)

and in general does not increase proportionaly with x. Moreover, while the numerical
intergration methods require the user to define a grid over the integration area that naturally
is dependent of the integrand, the estimate (4.3) is obtained using the same technique for
any function f (x).

4.2 Sampling Techniques

The Monte Carlo integration in the previous section is quite general. In fact what recursive
Bayesian estimation faces is difficulties in sampling posterior density directly. Therefore
to apply Monte Carlo simulation to recursive Bayesian estimation, there must be sampling
schemes; that is, it boils down to how actually the sampling can be implemented. in this
section two general sampling techniques are presented: rejection sampling and importance
sampling.
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4.2.1 Rejection Sampling

This sampling assumes that an upper bound on the range of the generic density π (x) exist
and is known and that it is possible to evaluate π (x) everywhere up to a normalizing constant.
Assume that the upper bound is M < ∞ such that π (x) < Mq(x) where q (x) is a proposal
ditribution, rejection sampling is as follows.

Rejection Sampling Algorithm (algorithm 6.1 of ??)

1. Draw x∗ ∼ q (x) and u ∼ U (0, 1) .

2. If u < π(x∗)
Mq(x∗) accept x = x∗ otherwise goto step 1.

x drawn from π (x) since

Pr (x∗ ≤ t, x∗ is accepted) =

∫ t

−∞

π (x)

Mq (x)
q (x) dx

=
1

M

∫ t

−∞
π (x) dx

The acceptance probability of a generic x∗ is

Pr (x∗ is accepted) =
1

M

∫ ∞

−∞
π (x) dx

=
1

M

Therefore,

Pr(x∗ ≤ t|x∗ is accepted) =

∫ t

−∞
π (x) dx

which shows that the accepted x∗ is sampled from π (x) .
The drawback with this technique is efficiency: there is no way to determine how long

this process takes, in fact it could be infinite.

4.2.2 Importance Sampling

Importance sampling assumes that there exists a proposal distribution q (x) which is easy
to draw a samples from, and it also assumes that the support set of q(x) covers the support
of π (x), i.e., that π (x) > 0 → q (x) > 0 for all x ∈ Rn. Under this assumption, any integral
of the form (4.2) can be rewritten

I =

∫

Rn

f (x) π (x) dx =

∫

Rn

f (x)
π (x)

q (x)
q (x) dx
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A Monte Carlo estimate of I is computed by generating N À 1 independent samples from
q (x), and forming the weighted sum

fN =
1

N

N∑
i=1

f (xi) w (xi) , where w (xi) =
π (xi)

q (xi)
(4.6)

are the importance weights. It is straightforward to verify that (4.4) is satisfied for the
importance sampling Monte Carlo estimate (4.6) .

If the normalizing factor of the target density π (x) is unknown, the importance weights
in (4.6) can only be evaluated up to a normalizing factor. Then, the weights can be formed
using a function propotional to the target density and then normalized afterward, forming
the estimate

fN =

∑N
i=1 f (xi) w (xi)∑N

j=1 w (xj)
where w (xi) ∝ π (xi)

q (xi)
(4.7)

The estimate fN is biased for finite N, but asymptotically both a law of large numbers and
a central limit theorem hold.

4.3 Particle Filter

Particle filter (PF) is an algorithm that applies Monte Carlo numerical integration to re-
cursive Bayesian estimation. It uses importance sampling technique to obtain particles’
importance weights. Equation (4.6) can be rewritten as

fN =
1

N

N∑
i=1

f (xi) w (xi) , where w (xi) =
π (xi)

q (xi)

=
1

N

N∑
i=1

f (xi)
π (xi)

q (xi)

=
1

N

N∑
i=1

f (xi)
p (z|xi) p (xi)

p (z)

1

q (xi)
, π (x) = p (x|z)

=
1

N

N∑
i=1

f (xi)
p (z|xi) p (xi)

1
N

∑N
j=i p (z|xj)

1

q (xi)

If the prior density is the proposal density p (x) = p (x) , then we have

fN =
1

N

N∑
i=1

f (xi)
p (z|xi)

1
N

∑N
j=i p (z|xj)

=
N∑

i=1

f (xi) wi
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where wi = p(z|xi)PN
j=i p(z|xj)

. In recursive Bayesian estimation, f (xi) is the sample xi drawn from

the pdf of the state x, andthe mean of the posterior pdf is

x̂ =
N∑

i=1

wixi

Particle filter incorporates resampling step for generating approximately independent sam-
ples drawn from π (x) after calculating the weights, as in the algorithm below.

SIS/R Algorithm
Initialization (k = 0)

For i = 1, ..., N
set w

(i)
0 = 1/N and draw x

(i)
0 ∼ q (x0) .

For k = 1, 2, ...
* Importance Sampling step

Fori = 1, ..., N

- Draw a sample xi
k ∼ q

(
xk|x(i)

k−1, z
k
)

- Evaluate (unnormalized) importance weights

w̃i
k = wi

k−1

p
(
zk|x(i)

k

)
p
(
x

(i)
k |x(i)

k−1

)

q
(
x

(i)
k |x(i)

k−1, z
k−1

)

For i = 1, ..., N
- Normalize the importance weights

wi
k =

w̃i
k∑N

j=1 w̃j
k

* Resampling step
Effective sample size estimation

N̂eff =
1

∑N
j=1

(
wj

k

)2

If N̂eff < Nth

- Obtain new samples
{

x
(ji)
k

}N

i=1
by resampling N times with replacement

from
{

x
(ji)
k

}N

i=1
such that Pr

{
x

(ji)
k = x

(j)
k

}
= wj

k

- Reset wi
k = 1/N

* Output (optional)

x̂k|k =
N∑

i=1

wi
kx

(i)
k
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The above SIS/R filtering scheme is quite general. The importance distribution q is a
“design parameter” and it permits quite a lot of choices to influence the performance of any
specific application. Another important feature of the above scheme is the on-line dectection
of degeneracy and the use of resampling for its mitigation. In the particular case of choosing
q to be the prior p

(
xk|xi

k−1

)
and with resampling at every k the above generic particle filter

reduces to the original SIR (Bayesian bootstrap) algorithm of [3].
One cycle of the algorithm is shown in Figure 4.3.

Figure 1: One cycle of the SIS/R algorithm

Resampling on the other hand usually leads to another problem, known as sample im-
poverishment, which, simply put, means replicating high-probability samples and thus losing
the low-probability samples. An optional technique to deversify the samples from the pos-
terior is to use the MCMC move (MH-step) after an eventual resampling in the above SIS/R
scheme [15].

4.3.1 Improvements on Particle Filter

The problem with particle filter is particle depletion [9] in which resampling causes high-
probability particles to be replicated thus losing the low-probability particles. This problem
can be so severe that only few recursions one particle dominates the particle cloud. Also it
is important to have a good proposal distribution from which to sample particles.

A number of algorithms have been proposed which can be lumped into two categories:
MCMC move and better proposal function design. Among these better proposal function
design by localization [9] gives improving results, and unscented particle filter is the result
of this effort which will be discussed in section 4.5.
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4.4 Unscented Kalman Filter

While the extended Kalman filter (EKF) linearizes nonlinear function(s) using Taylor’s series
expansion, the unscented Kalman filter (UKF) uses the nonlinear function(s) and approxi-
mates the state distribution by a Gaussian distribution. It is based on the principle [9] that
it is easier to approximate a Gaussian distribution than to approximate nonlinear function.

Unlike the PF which approximates the entire PDFs by a large number of randomly
sampled points, UKF is based on approximating the first and second moments of the
PDFs by (a small number of ) deterministic sample points1, referred to as sigma points.
These points are designed by using unscented transformation (UT). They are designed in
a way that the mean and covariance of a nonlinearly transformed random variable can be
approximated by the sample mean and sample covariance of the transformed sigma points
for any nonlinearity [6].

4.4.1 Unscented Transformation

Unscented transformation is a method for calculating the statistics (first two moments) of
a random variable which undergoes a nonlinear transformation. It computes (or determin-
istically samples) (2nx + 1) sigma points and their associated weights using the formulars
below, where nx is the dimention of state vector.

In the UKF algorithm the weights associated with sigma points are given by
x0 = x W0 = λ/ (nx + λ) + (1− α2 + β)

xi = x±
[√

(nx + λ) P
]

i
Wi = 1/ (2 (nx + λ)) i = 1, 2, ..., 2nx

with λ = α2 (nx + κ)− nx, where α, β, and κ are design parameters.
These sigma points then propagate through the nonlinear function ς i = g (χi) , and the

sample mean and covariance can be computed as

ς =
2nx∑
i=0

W iς i

Pς =
2nx∑
i=0

W i
(
ς i − ς

) (
ς i − ς

)′

4.4.2 Unscented Kalman Filter Algorithm

UKF basically applies unscented transformation to recursive Bayesian estimation.

Algorithm UKF

1In this regard UKF is considered as a sampling based (quasi-Monte Carlo) approximation approach.
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Initialization (k = 0)
x̂0 = E [x0] , P0 = E

[
(x0 − x̂0) (x0 − x̂0)

′]
For k = 1, 2, ...

1 Calculate 2nx + 1 sigma points2

For i = 0,±1,±2, ...,±nx

x0
k−1 = x̂k−1|k−1

χi
k−1 = x̂k−1|k−1 ±

[√
(nx + λ) Pk−1|k−1

]
i

2 Prediction

2.1 State
χi

k|k−1 = f
(
χi

k−1

)
, i = 0,±1,±2, ...,±nx

x̂k|k−1 =
∑nx

i=−nx
Wiχ

i
k|k−1

Pk|k−1 =
∑nx

i=−nx
Wi

[
χi

k|k−1 − x̂k|k−1

] [
χi

k|k−1 − x̂k|k−1

]′
+ ΓkQkΓ

′
k

2.2 Measurement
ς i
k|k−1 = h

(
χi

k|k−1

)
, i = 0,±1,±2, ...,±nx

ẑk|k−1 =
∑nx

i=−nx
Wiς

i
k|k−1

3 Update

Cezk,ezk
=

∑nx

i=−nx
Wi

[
ς i
k|k−1 − ẑk|k−1

] [
ς i
k|k−1 − ẑk|k−1

]′
+ Rk

Cexk,ezk
=

∑nx

i=−nx
Wi

[
χi

k|k−1 − x̂k|k−1

] [
ς i
k|k−1 − ẑk|k−1

]′

Kk = Cexk,ezk
C−1ezk,ezk

x̂k|k = x̂k|k−1 + Kk

(
zk − ẑk|k−1

)
Pk|k = Pk|k−1 −KkC

−1ezk,ezk
K ′

k

4.5 Unscented Particle Filter

Producing a good proposal distribution is critical for the performance of the PF. The UPF of

[9] utilizes UKFs to produce better proposal densities q
(
xk|x(i)

k−1, z
k
)

within the framework of

the PF. Specifically, each particle is updated by a UKF and the output mean and covariance
are used to sample new particles.

Algorithm UPF

Initialization (k = 0)

For i = 1, ..., N

2nx denotes the dimention of the state vector, and [A]i – the ith row (column) of A1/2
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set w
(i)
0 = 1/N and draw x

(i)
0 = p (x0) .

For k = 1, 2, ...

* IS step

For i = 1, ..., N
- On each xi

k−1 apply a UKF to obtain xi
k, P i

k

- Draw x̂ ∼ q
(
xk|x(i)

k−1

)
= N

(
xi

k, P
i
k

)

- Evaluate (unnormalized) importance weights

w̃i
k = wi

k−1p
(
zk|x(i)

k

)

For i = 1, ..., N
- Normalize the importance weights

wi
k =

ewi
kPN

j=1 ewj
k

* R step

- Obtain a new set of samples
{

x
(i)
k

}N

i=1
by resampling N times with

replacement from
{

x
(i)
k

}N

i=1
such that Pr

{
x

(i)
k = x̂

(j)
k

}
= wj

k

- reset wi
k = 1/N.

* Output (optional)

x̂k|k =
∑N

i=1 wi
kx

(i)
k

4.6 Conclusion

Particle filter is truely a Monte Carlo simulation method. It samples random variables
from, theoretically, posterior PDF. PF has its own weakness: particle depletion. On the
other hand, unscented Kalman filter uses sigma points to capture the first two moments of
the posterior, and computes these first two moments after nonlinear transformation using
the designed sigma points. The UPF is in essence a particle filter with better proposal
distribution: using one UKF for each particle.
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Chapter 5

Multisensor Distributed Target
Tracking

In estimation there are situations that need to use multiple sensors to gather (measure) data.
Those observations are then sent to a fusion center to fuse (estimate) unknown states. These
sensors may be located on the same platform, e.g., sensors on an airplane for navigation,
or they can be located remotely, such as tracking an airplane using several geographically
dispersed radars.

There are two basic architectures for fusion: centralized and distributed (also called
decentralized) fusion depending on what type of data are sent to the fusion center. If raw
data or measurements are collected and sent to the fusion center, it is the centralized fusion
architecture. In distributed fusion, local sensors collect observations, filter them locally, and
finally send the local estimates to the fusion center.

This chapter considers the scenario of tracking a target in a multisensor environment with
distributed fusion architecture. First the mathematical model of target motion is presented,
second the fusion scheme at the fusion center is formulated, third details how to calcualte
the cross covariances between local estimates at the fusion center is discussed, and finally
the performance of PF, UKF, and UPF is compared.

5.1 Multisensor Tracking Scenario

The scenario considered is a maneuvering target tracked by multiple distributed sensors.
Since sampling based methods are mainly used for nonlinear estimation, the target motion
is modeled by nonlinear function of nearly constant turn, and the measurements are measured
in polar coordinates thus the measurement function is also nonlinear.
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5.1.1 Target Model

The target motion is described by the nonlinear discrete-time nearly constant turn (CT)
model [10]

xk = f (xk−1) + Γkwk, k = 1, 2, ... (5.1)

where the target state vector xk =
[
x,

·
x, y,

·
y, ω

]′
consists of the position and velocity com-

ponents and the turn rate ω, wk ∼ N (0, Qk) is white process noise, and

f(xk−1) =




1 sin ω(k)T
ω(k)

0 −1−cos ω(k)T
ω(k)

0

0 cos ω(k)T 0 − sin ω(k)T 0

0 1−cos ω(k)T
ω(k)

1 sin ω(k)T
ω(k)

0

0 sin ω(k)T 0 cos ω(k)T 0
0 0 0 0 1




xk−1,

Γk =




1
2
T 2 0 0
T 0 0
0 1

2
T 2 0

0 T 0
0 0 T




Note that if ω = 0 the above model describes a nearly constant velocity motion.

5.1.2 Measurement Model

The measurement model is also a nonlinear function that measures the range and the bearing
of the motion. There are Ns sensors each taking its own mearsurement according to equation

zi
k = h(xk) + vi

k, i = 1, 2, ..., Ns

where

hi(xk) =

[
ri
i

bi
k

]
=

[ √
x2 + y2

tan−1
(

y
x

)
]

and

vk ∼ N(0,Ri
k), Ri

k =

[
σ2

rk
0

0 σ2
bk

]

The index i in hi(xk) signifies that each sensor takes measurement in its own coordinate
system.
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5.1.3 Scheme for Distributed Fusion

Estimation fustion has wide-spread applications since many practical problems involve data
from multiple sources. One of the most important applications is target tracking using
muliple sensors which is the scenario being simulated. Note that the measurements are
assumed available without data association issue.

Let superscript i denotes quantities pertaining to sensor i. It is assumed that at every
sensor a corresponding local tracker operates and provides to the central processor (fusion
center) estimates x̂i

k|k of the target state (with the corresponding mean square error matrix

P i
k|k) for i = 1, 2, ..., Ns, respectively. The fusion center treats these local estimates as of

target measuements according to the equation

z∗k =




x̂1
k|k
...

x̂Ns

k|k


 =




I
...
I


 x +




x̂1
k|k − x

...
x̂Ns

k|k − x




︸ ︷︷ ︸
v∗k

(5.2)

This model was introduced in [11] as a universal model for standard distributed fusion.
Then the target trackig problem at the fusion center is cast as an estimation problem

for the state xk subject to the model (5.1) based on the sequence of “measurements” z∗k =
{z∗1 , z∗2 , ..., z∗k} . This is a nonlinear estimation problem and its complete solution is given by
the posterior PDF p

(
xk|z∗k

)
.

5.2 Error Covariance of Pseudo-Measuement

In order to make the estimation problem well defined, the covariance of the ”measurement
error” v∗k at the fusion center needs to be determined.

Denote

Ri∗
k = cov(v∗k) =




Σ11
k · · · Σ1n

k
...

. . .
...

Σn1
k · · · Σnn

k




Then clearly Σii
k = P i

k, i = 1, 2, ..., Ns where P i
k are provided by the local estimators along

with the corresponding local state estimates x̂i
k|k.

The crosscovariance Σij
k for i 6= j can be derived (approximately in our nonlinear case)

following the methodology proposed in [20]:
Assume that the local filters are best linear unbiased estimators (BLUE). In this contest

Ki
k denotes the ith estimator’s gain, and F i

k, H i
k are the Jacobians evaluated by linearization

of the system and measurement equations, respectively. Then subsequently

z̃i
k|k−1 , zi

k − ẑi
k|k−1

= H i
kxk + vi

k −H i
kx̂

i
k|k−1 = H i

kx̃
i
k|k−1 + vi

k



28

Σij
k|k = cov

(
xk − x̂i

k|k, xk − x̂j
k|k

)

= cov
(
xk − x̂i

k|k, xk

)− cov
(
xk − x̂i

k|k, x̂
j
k|k

)

= Σii
k|k − cov

(
xk − x̂i

k|k−1 −K i
kz̃

i
k, x̂

j
k|k−1 + Kj

k z̃
j
k

)

= Σii
k|k − cov

(
xk − x̂i

k|k−1, x̂
j
k|k−1

)
− cov

(
xk − x̂i

k|k−1, K
j
k z̃

j
k

)
+

cov
(
Ki

kz̃
i
k, x̂

j
k|k−1

)
+ cov

(
Ki

kz̃
i
k, K

j
k z̃

j
k

)

= Σii
k|k − cov

(
x̃i

k|k−1, x̃
j
k|k−1

)
− cov

(
x̃i

k|k−1, z̃
j
k|k−1

) (
Kj

k

)′
+

Ki
kcov

(
z̃i

k|k−1, x̂
j
k|k−1

)
+ K i

kcov
(
z̃i

k|k−1, z̃
j
k|k−1

) (
Kj

k

)′

= Σii
k|k − Σij

k|k−1 − cov
(
x̃i

k|k−1, H
j
kx̃

j
k|k−1 + vj

k

) (
Kj

k

)′
+

Ki
kcov

(
H i

kx̃
i
k|k−1 + vi

k, x̂
j
k|k−1

)
+ Ki

kcov
(
H i

kx̃
i
k|k−1 + vi

k, H
j
kx̃

j
k|k−1 + vj

k

) (
Kj

k

)′

Then, under the assumption that x̃i
k|k−1 ⊥ wj

k, i± j and vi
k ⊥ vj

k, i 6= j finally

Σij
k|k = Σii

k|k − Σij
k|k−1 − Σij

k|k−1

(
Hj

k

)′ (
Kj

k

)′
+ Ki

kH
i
kΣ

ij
k|k−1 + K i

kH
i
kΣ

ij
k|k−1

(
Hj

k

)′ (
Kj

k

)′
(5.3)

Similarly

Σij
k|k−1 = cov

(
xk − x̂i

k|k−1, xk − x̂j
k|k−1

)
(5.4)

= cov
(
xk − x̂i

k|k−1, xk

)− cov
(
xk − x̂i

k|k−1, x̂
j
k|k−1

)

= Σii
k|k−1 − cov

(
F i

k−1xk−1 + wk−1 − F i
k−1x̂

i)
k−1|k−1, x̂

j
k|k−1

)

= Σii
k|k−1 − cov

(
F i

k−1xk−1 + wk−1 − F i
k−1x̂

i
k−1|k−1, F

j
k−1x̂

j
k−1|k−1

)

= Σii
k|k−1 − cov

(
F i

k−1x̃
i
k−1|k−1 + wk−1, F

j
k−1x̂

j
k−1|k−1

)

= Σii
k|k−1 − F i

k−1Σ
ij
k−1|k−1

(
F j

k−1

)
(5.5)

Equations (5.3) and (5.4) provide a recursive algorithm for computation of R∗
k necessary

for a state estimation at the fusion center.
An alternative method for evaluating R∗

k, tailored to the specific application of an UKF,
is presented in the next subsection.

5.2.1 Crosscovariance

The equations (5.3) and (5.4) for the determination of the local estimates’ crosscovariances
require evaluation of the matrices F j

k−1, H
j
k and filter gain Kj

k as well. These matrices could
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be evaluated via linearization of the equations. In this work only UKFs are used as local
filters. As such, a natural and more accuate alternative is to send to the fusion center
the local sigma points from which the crosscovariances are directly computed at the center.
This is implemented in the algorithm. The drawback of this approach is that it could in
general increases the communication from the sensors to the center. However, based on the
fact that the covariance does not change considerably (as in our simulations), we can reduce
the frequency of the communication on the sigma points without noticeable loss of accuracy.

5.3 Simulation and Results

We consider a tracking scenario in which the position of a maneuvering target is sampled
every T = 2s. The target was making a turn in a plane at nearly constant turn rate of
3◦/ sec, starting at k = 1 and ending at k = 100.

The initial condition of the target, with the units km for position and radian for bearing,
was

x =
[

7 0 45 −0.12 0
]′

Q =




0.6× 10−4 0 0
0 0.6× 10−4 0
0 0 0.13963× 10−4




Two local sensors were utilized, each with measurement noise covariance

R =

[
0.0802

0.00872

]

The filter configurations implemented include: UKF for the two local (radar) trackers;
PF, UKF, and UPF respectively for the fusion center with the local estimates treated as
measurements in the distributed estimation scheme. For the purpose of comparison central-
ized (uses raw measurements directly) fusion at the center using UKF is also implemented.
Figure 1 below shows a typical true state trajectory considered and measurements by one of
the sensors.
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Figure 2: Typical trajectory considered

RMS estimation error is used to evaluate the algorithms’ accuracy. In figure 2 (and
subsequent figures) the measurement errors in Cartesian coordinates were obtained by the
approximate polar-to-Cartesian conversion [16]

R = cov(w) ' σ2
r−r2σ2

θ

2

[
b + cos 2θ sin 2θ

sin 2θ b− cos 2θ

]
with

b =
σ2

r+r2σ2
θ

σ2
r−r2σ2

θ
.

The state estimation RMSEs by the fusion center running a PF are shown in Figure 3.
The number of particles was 3000. It can be seen that for this problem of a 5-dimensional
state vector the use of 3000 particles is not sufficient: the fusion results over 100 runs are
not better than the local estimates from each single sensor. The computational burden is
shown in Table 1.

Figure 4 shows the results over 100 runs by the center running a UKF. The fused
estimates are substantially improved in accuracy as compared to the local estimates, both
for position and speed. Similar results using a UPF center are given in Figure 5.

The UKF and the UPF (with 20 particles) centers are compared and the results are
shown in Figure 6. It is seen that UPF gives smaller position RMSEs than UKF but their
speed RMSEs are comparable.

Figure 7 shows performance of UPFs using different number of particles: 2, 10, 20, and
50. The RMSEs using 1 and 10 particles still have room for improvement, and 20 and
beyond are very close to the RMSE of the centralized UKF filter.

The same UPF center was run which received local estimates every sampling period but
sigma points at every 10 and 100 sampling periods, respectively. The RMSEs are shown in
Figures 8. Clearly, for this scenario the crosscovariance of the local estimates varies slowly
and its recomputation is not necessary at every time step of the central filter.
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The CPU time (in sec) required by each run for the three filters is given in table below .

PF (3000 particles) UKF UPF(20 particles)
573.922 2.344 13.031

5.4 Conclusion

The particle filter is expensive in computation, and thus it needs to improve the efficiency.
Though in this thesis we used Gaussian noise model, in principle PF can be used for any
problem: linear/nonlinear and Gaussian/nonGaussian where UKF finds its limitations. The
UPF is shown to be superior to UKF at the cost of more computation but it can provide
flexible accuracy by using more or less particles. As expected the covariance of the measure-
ment error of the fusion center changes slightly. The RMSE by skipping 9 sampling periods
is almost the same as by skipping 99 sampling periods. So the state estimates are degraded
little by reducing substantially the communication from local filters to the fusion center.

In general, the simulation results demonstrate that the proposed scheme for nonlinear
distributed estimation by using sampling based filters is effective for multisensor tracking
of maneuvering targets. Further research will elaborate this solution in a multiple model
estimation framework.
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Figure 3: UKF-UKF-PF (3000 particles) & Centralized UKF
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Figure 4: UKF-UKF-UKF & Centralized UKF
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Figure 5: UKF-UKF-UPF (20 particles) & Centralized UKF
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Figure 6: UKF vs. UPF (20 particles) (50 runs)
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Figure 7: UPF center with different number of particles
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