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Intrinsic chaos in a dc field biased quantum heterostructure
A. Jason McNarya) and Ashok Puri
Department of Physics, University of New Orleans, New Orleans, Louisiana 70148

~Received 17 July 1996; accepted for publication 23 May 1997!

A closed, quantum, double barrier, GaAs/AlGaAs heterostructure is made chaotic by adding a
nonlinear potential term,a^Q(t)&, to the time-dependent Schro¨dinger equation, and the dynamical
behavior of an electron cloud moving in the heterostructure biased by a dc electric field is examined
numerically. Using phase-space diagrams, power spectrums, and Lyapunov exponents, both
qualitative and quantitative measures of the chaos in the system were taken. In general, for all values
of a, the nonlinearity parameter, the Lyapunov exponent,l, increases as the applied dc field,b,
increases. However, for values ofa<1.376, we notice a sharp drop inl for the value ofb
529.23107 V/m corresponding to an average dc voltage of2.085 eV in the central well. This
first order type transition to high values ofl for a.1.376 corresponds to a similar increase in the
mean charge trapped in the heterostructure and in the average nonlinear potential in the central well
for that dc field. This behavior is attributed to the fact that fora<1.376 and b529.2
3107 V/m, the field effects dominate, but fora.1.376, the nonlinearity term dominates. ©1997
American Institute of Physics.@S0021-8979~97!07616-0#

I. INTRODUCTION

Multiple barrier heterostructures are rapidly gaining
popularity in device applications today. Among the many
uses are frequency multipliers, multistable memory, diode
lasers, and high speed analog to digital converters.1 One of
the most useful heterostructures is the GaAs/Ga12xAl xAs
heterostructure where the GaAs layer has a narrower band
gap than the Ga12xAl xAs. Currently, it is possible to fabri-
cate structures with thicknesses of 7.5 Å for layers of GaAs.2

With such minute widths, quantum devices are becoming
commonplace. For example, Fowler and Dattaet al. have
both independently proposed a quantum interference
transistor.3

In resonant tunneling structures, such as transistors and
diodes, it is necessary to apply an external electric field to
bias the structure properly. One of the major reasons for this
is that the application of a strong electric field reduces the
characteristic timet5\/]E of the structure with]E being
the width of the transmission probability for the linear case.
With the appropriate choice of the external electric field, one
can cut the characteristic time of the system in half.4 The
increase in the operating frequency of the heterostructure
makes it more desirable for devices. Thus the electric field is
a very important parameter in quantum devices.

In previous work, it has been noted that an unbiased
double barrier potential well in a closed system exhibits
chaos as an intrinsic property of the well.5,6 Charge accumu-
lates in the well created by the two barriers and creates a
self-consistent potential that leads to the nonlinearity in the
system. The transient behavior of the charge trapped in the
well has been shown to be chaotic with the chaos increasing
as the nonlinearity increases.5 Because heterostructures must
have an electric field applied to be used in device applica-
tions, it is even more important to study the behavior of the

trapped charge in biased structures. This article will examine
the chaotic characteristics of GaAs/AlGaAs structures for
several applied dc fields for different strengths of the nonlin-
earity in the well. The phase-space diagram and power spec-
trum will be examined as qualitative indicators along with
the Lyapunov exponent for a quantitative analysis of the
system.

II. MODEL SYSTEM

Figure 1~a! depicts our model system’s potential profile
which is a traditional double-barrier heterostructure con-
tained by infinite barriers at both ends. Upon applying a dc
bias to only the inner well, the barrier shifts down, allowing
for easier tunneling in one direction as shown in Fig. 1~b!. In
our model, a cloud of electrons propagates in the biased het-
erostructure potential profile, and the motion of the cloud is
approximated as a mean field using a Hartree-like equation.
The incoming electrons to the central well region are sub-
jected to a repulsive mean field potential arising from the
charge build-up in the well,w2 . Thus the complete potential,
as shown in Fig. 1, consists of a self-consistent, time depen-
dent, nonlinear term in the central well. The nonlinearity
creates a nondissipative system that mixes in some regions of
its phase space. This causes the system to exhibit chaotic
behavior during its evolution as has been shown in the unbi-
ased case.5

A packet of electrons is created in the wide well,w1 ,
and it is launched towards the central well. The charge
trapped by resonance in the central well generates a reaction
field which modifies the time evolution of the system. We
assume a decoupling of longitudinal and transverse degrees
of freedom of the system. This is a common assumption
made in tunneling phenomena, and it allows us to treat the
problem as one dimensional, easing the calculations in the
problem.4–6

a!Present address: Department of Physics, University of California, River-
side, CA 92507.
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We used the same model system as Rosaet al.,4 and the
mathematical description of the unbiased structure is given
by

i\
]C~x,t !

]t
5

2\2

2m

] 2C~x,t !

]x2 1@V~x!

1aQ~ t !xwz
#C~x,t !. ~1!

V(x) is the potential profile of the heterostructure.x is a
theta function withxw2

51 inside the well,w2 , and xw2

50 elsewhere. The nonlinear termQ(t) is defined by

Q~ t !5E
w2

uC~x,t !u2dx ~2!

and it is weighted by a nonlinear coefficient,a. This allows
us to adjust the strength of the nonlinearity without adjusting
the shape of our potential profile. The nonlinear coefficient,
a, is inversely proportional to capacitance per unit area and
directly proportional to the areal number density of the inci-
dent electrons, i.e., the nonlinear coupling will be greater if a
greater number of electrons are incident. Thus

a}
e~ns!

C
, ~3!

wheree is the electron charge,ns is the areal number density
of the incident electrons, andC is the capacitance per unit
area of the heterostructure. The nonlinearity parameter,a,
can be varied to reproduce phenomenologically the response
of the medium to the charge trapped in the well and to the
characteristics of the incident group of electrons~the areal
density!. ns can be varied by changing the doping levels in
the heterostructure. By this method,a can be controlled ex-
perimentally.

The potential profileV(x) is considered for two different
cases. In the first, there is no external field applied@Fig.
1~a!#,

V~x!5V0@xb1
~x!1xb2

~x!#1V1@xB1
~x!1xB2

~x!#, ~4!

whereV0 and V1 are positive constants~i.e., the height of
barriersb1 , b2 , and B1 , B2!. This is the structure that is
investigated in Ref. 5. When the electric field is applied, the
profile takes on the shape given by@Fig. 1~b!#

V~x!5V0@xb1
~x!1xb2

~x!#1V1@xB1
~x!1xB2

~x!#

1V2xb1 ,w2 ,b2
~x!1V3xw3

~x!, ~5!

with

V25eb~x2xk! ~6!

and

V35ebx1 . ~7!

xk is the first point andx1 is the last point of the double
barrier heterostructure.e is the electron charge,b gives the
slope of the external field, and againx is the characteristic
theta function. The external field varies from zero to218.4
3107 V/m, but all applied fields are between the orders of
2107–2108 V/m. For an average value of applied field,
such asb529.23107 V/m, the beginning of the second
barrier,b2 , is approximately 0.170 eV lower than the begin-
ning of the first barrier,b1 . For the same field,V3

520.268 eV. For the applied field ofb5218.4
3107 V/m, the beginning ofb2 has shifted down 0.340 eV
andV3 is 20.535 eV.

The barriersb1 andb2 are made of AlGaAs and have a
height .3 eV and width 20a0 with a050.529 Å. The outer
wells, w1 and w3 , are fabricated of GaAs and are 1100a0

wide. The external barriers are constructed of doped GaAs
and have a width ofB15B25440a0 with a height V
50.9 eV. This is sufficient to completely confine the elec-
tron cloud, creating a closed system.

The initial wave packet is a Gaussian with a widths
5110a0 and momentumk0 that corresponds to the resonant
energy of the unbiased double barrier,ER5.15 eV. Thus our
initial wave function has the profile

C~x,0!5
1

~sAp!1/2 expb2 1

2 S x2x0

s D 2

1 ik0xc. ~8!

x0 is placed in the middle of the wellw1 to insure that there
is zero charge density initially inside the double barrier. It is
worth elaborating here that Eq.~8! suggests that the wave
function is normalized to unity, thus the problem is treated as
a one electron problem. Our problem consists of a group of

FIG. 1. Model potential structure of a three-well, double-barrier heterostruc-
ture for ~a! the unbiased case and~b! the dc biased case.
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electrons that are created in the large well and are launched
towards the embedded layers of the heterostructure. An exact
treatment of the problem is complicated due to the fact that
this is a many body problem. Therefore the following as-
sumptions are made:

~1! We assume a decoupling between the longitudinal and
transverse degrees of freedom. This common assumption
in tunneling problems reduces the equation to one di-
mension and allows the factorization of the wave func-
tion. Thus the experimental setup we have in mind
places all the electrons in longitudinal symmetry.

~2! We assume the electrons in the group are uncorrelated.
This corresponds to a wave function as the product of
single particle states.

~3! Finally, we assume a single particle moving in the mean
field of the rest of the electrons, resulting in a Hartree-
like equation for our model. According to Theorem 5.7
of Ref. 7 by Spohn, this approximation is justified be-
cause we have a large number of electrons in our system.

The numerical technique used to solve the nonlinear,
time dependent Schro¨dinger equation is given in detail in
Ref. 4. This is solved independently for each electron which
is treated as moving in a mean field dependent on the posi-
tion of the rest of the electrons.

III. NUMERICAL RESULTS

The numerical integration over the central well,w2 ,
gives the amount of trapped chargeQ(t) vs time t.4,5 The
time step used in computation is the atomic unit of time
(1 a.u.54.83310217 s), and the output is every tenth time
step.

Because the output is a single time series that is the
composition of several factors, it is important to reduce the
system to as small a state space as possible while still keep-
ing the features of the system. Because the wavefunction,
C(x,t), depends on the continuous space coordinatex, the
variables span an infinite dimensional phase space. However,
it has been shown that an infinite dimensional system might
have a finite dimensional attractor.8 For our system, several
parameters affect the behavior of the trapped charge. Among
them are nonlinearity parameter,a, mean incident energy,
potential barrier height, well width, and applied dc electric
field. In the interest of simplifying the dynamics of the sys-
tem, we have fixed everything excepta and the applied dc
field, b. The reason for this is thata depends on the doping
of the well and is not easily known upon the manufacturing
of the heterostructure. It should, however, be measurable by
matching the response of the electron build-up in the central
well with the theoretical values. The applied dc field is also
varied to study the effects of biasing on the motion of the
electrons in the heterostructure.

A. Phase space plot

Because the output is a single time series, the phase
space for the attractor was constructed byQ(t) vs Q(t2t)
wheret, the reconstruction time, is 100 a.u. This time was
chosen both for continuity with the previous work,5 and be-
cause it is large enough to be measured experimentally using
subpicosecond optical techniques described by Leoet al.9

Figures 2 and 3 show plots of the phase space in two
dimensions. Figure 2 illustrates the interesting phenomena
that occurs for low values ofa; in this case,a51.2. The
applied fields are~a! zero, ~b! 24.63107 V/m, ~c! 29.2
3107 V/m, and ~d! 218.43107 V/m. As the applied field

FIG. 2. Phase space plots fora51.2 and the dc fields of~a! b50, ~b! b524.63107, ~c! b529.23107, ~d! b5218.43107 V/m.

1689J. Appl. Phys., Vol. 82, No. 4, 15 August 1997 A. J. McNary and A. Puri

Downloaded 08 Jul 2011 to 137.30.164.182. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



increases, the phase space plot becomes spread out and
mixes over a greater region. However, atb529.2
3107 V/m, the phase space plot actually contracts and be-
comes thinner. Yet as we keep increasing the field, the plot
once again broadens until it becomes much more diffused
than before as evident in Fig. 2~d!. In contrast, Fig. 3 shows
the phase space plot fora53. In this plot, the data continues
to broaden, showing no signs of ever contracting back to the
original form. Thus we already see an implied transition of
behavior for the system between low and high values ofa.
This aspect is further discussed in the last section of the
article.

B. Power spectrum

The power spectrum of a periodic signal consists just of
a series of peaks at the frequencies that make up the signal.
Yet chaotic data, lacking any periodic behavior, should ex-
hibit a continuum spectrum without any well defined peaks.
This means the power spectrum can be used to distinguish
between a signal that is just a composite of many frequen-
cies, and one that may be chaotic. Although not a quantita-
tive indicator of chaos, it can be used as an easy method of
determining trends in data over a range of parameters.

The general conclusions from the phase space plots are
reinforced by examining the power spectrums. For a low
value, such asa51.2, there is a clear decrease in whiteness
as shown in Fig. 4. Parts~a! and~b! for fields ofb5zero and
b524.63107 V/m, respectively, show a clear whitening of
the data that significantly decreases whenb529.2
3107 V/m as shown in Fig. 4~c!. This is seen in the large dc
spike and the large low frequency ac spikes, and the lack of
power in the higher frequencies. Further, as the field is in-

creased tob5218.43107 V/m, the system becomes more
chaotic and the frequencies are more evenly distributed in
the higher region along with a dc spike and a low frequency
spike. Also in agreement with the phase space plots is Fig. 5,
the power spectrum fora53. It shows a continual increase
in the broadening of the spectrum over the range of applied
dc fields. Asb increases, the spectrum begins to resemble
white noise, and forb529.23107 V/m, the only distin-
guishing feature is one large low frequency ac spike shown
in Fig. 5~c!. However, this feature quickly disappears, leav-
ing a totally white spectrum whenb is increased to218.4
3107 V/m @Fig. 5~d!#.

C. Lyapunov exponent

The measure of divergence or convergence of two
nearby points in phase space is given by the Lyapunov ex-
ponent. Negative or zero exponents are features of fixed
point and limit cycle systems. However, diverging trajecto-
ries exhibit positive Lyapunov exponents. In phase space,
nearly identical states correspond to points in close proxim-
ity. An exponential divergence of these points magnify initial
differences until the trajectories of the points behave quite
differently. The Lyapunov exponent is a quantitative mea-
sure of the rate of this divergence. For a system to be defined
as chaotic, it needs to have at least one positive exponent.

The equation for determining the Lyapunov exponent,l,
of a system is

l5 lim
t→`

1

t
log2

d~ t !

d~0!
. ~9!

FIG. 3. Phase space plots fora53 and the dc fields of~a! b50, ~b! b524.63107, ~c! b529.23107, ~d! b5218.43107 V/m.

1690 J. Appl. Phys., Vol. 82, No. 4, 15 August 1997 A. J. McNary and A. Puri

Downloaded 08 Jul 2011 to 137.30.164.182. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



In this equation,t is the evolution time,d(0) is the initial
distance between two points on the normalized phase space
diagram~Figs. 2 and 3!, andd(t) is the distance between the
two points after both have been evolved along their trajecto-
ries by the evolution timet.10 For our system, these distances
on the phase space are given by the formula

d~0!5$@Q~ t2!2Q~ t1!#21@Q~ t22t!2Q~ t12t!#2%1/2

~10!

d~ t !5$@Q~ t21t !2Q~ t11t !#21@Q~ t21t2t!

2Q~ t11t2t!#2%1/2. ~11!

FIG. 5. Power spectrums fora53 and the dc fields of~a! b50, ~b! b524.63107, ~c! b529.23107, and~d! b5218.43107 V/m.

FIG. 4. Power spectrums fora51.2 and the dc fields of~a! b50, ~b! b524.63107, ~c! b529.23107, ~d! b5218.43107 V/m.
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Here t is the reconstruction time of the attractor in phase
space, andt1 and t2 are initial points in the time series cho-
sen such thatd(0) is as small as possible without going
below the noise scale (;1024).

The distance between two close points,t1 and t2 , is
calculated. After the points are evolved by the time,t, the
distance is recalculated. The Lyapunov exponent is then de-
fined as the log of the ratio of the distances scaled by the
time evolved.11 Because numerically we are dealing with
discrete points instead of a continuum, it is necessary to cal-
culate this value as many times as possible to obtain an av-
erage value for the exponent. In doing this, the first point,
t1 , is kept and evolved through the entire data set. For every
step, the second point,t2 , is selected such thatd(0) is small.
The Lyapunov exponent is then calculated for a given evo-
lution time, t. To start the next step, the evolved pointt1

1t is renamed ast1 . The pointt21t is discarded and a new
t2 is chosen to satisfy the conditions ond(0). There is a
Lyapunov exponent for every dimension of the phase space,
but since only one positive exponent is necessary to show
chaos, only the largest exponent is calculated.10

Figure 6 gives quantitative results backing up the trends
shown in the phase space plots and power spectrums. For
values ofa near to and less than 1.2, we see a large drop in
the chaos of the system atb529.23107 V/m. This trend
persists all the way down to extremely low values ofa,
where the Lyapunov exponent is also low for higher values
of b. However, ata51.376, there is a first-order type tran-
sition wherel jumps to high values, eliminating the dip as
seen in Fig. 7. Figure 8 clearly shows this transition for the
range ofa values between 1.2 and 1.5 for the applied field
value ofb529.23107 V/m. In addition, Fig. 8 shows the
progression of the average nonlinear potential,a^Q(t)&, as a
function of a. It shows a first-order type transition that cor-
responds exactly with the jump inl. This sudden increase in
potential is due to a large increase in the mean charge
trapped in the well caused by resonance effects in the het-
erostructure.

The behavior of the mean charge in the well is shown in
Fig. 9 for all the fields. The very low applied fields and zero
field cases exhibit only a drop in the mean charge as a func-
tion of a. For values ofb.24.63107 V/m, the mean

charge stays low for a range ofa values before a sharp
increase to a peak and a slow tapering off afterwards. This is
due to the resonance build-up in the heterostructure as a
function of a, and it is most prominent forb529.2
3107 V/m whose mean charge stays the lowest for the long-
est range ofa. This shows that chaos in the system stays
correlated to the mean charge for the value ofb529.2
3107 V/m. In both the mean charge and in the Lyapunov
exponent, the values stay fairly low untila51.376 when
both values go through their transition. Both values stay
large after that point~Figs. 8 and 9!. In addition, for large
values ofa and for all fields, the Lyapunov exponents con-
verge to similar values aroundl52.5 as shown in Fig. 7.
The correlation of the mean charge andl is demonstrated
again in Fig. 9 by the settling down to a similar value of
mean charge for all values ofb and large values ofa. In
addition fora510, a systematic increase in the mean charge
as a function ofb is noticed.

IV. DISCUSSION

There is a general trend in the biased heterostructure that
as b increases for a particular value ofa, the chaos in the

FIG. 6. Lyapunov exponent vs applied dc field for several values ofa
<1.2.

FIG. 7. Lyapunov exponent vs applied dc field for several values ofa
>1.5.

FIG. 8. Lyapunov exponentl vs a and average nonlinear potentialV vs a
for the applied dc field ofb529.23107 V/m.
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system increases. The mixing that occurs in the phase space
is shown fora53 in Fig. 3 and also in the near even distri-
bution of frequencies in the power spectrum~Fig. 5!. It is
also shown in three of the four fields in the phase space for
a51.2 ~Fig. 2! and in the same three out of four fields for
Fig. 4 which is the power spectrum. Asb increases, the well
becomes increasingly off resonant with the mean energy of
the initial electron packet. As far as the quantitative results
go, the biased heterostructure can be divided into three cases.
Low values ofa(<1.2) show an initial increase inl, fol-
lowed by a drop in value and subsequent regrowth of the
Lyapunov exponent as illustrated in Fig. 6. The intermediate
values of nonlinearity, 1.2,a,10 show a steady increase in
the Lyapunov exponent to a saturation point aroundl'2.5
~Fig. 7!. For large values ofa, the nonlinear effects dominate
the heterostructure, and chaos emerges independent of the
applied field as illustrated by Fig. 7.

Let us first examine the behavior of the heterostructure
as we go from low values ofa to high values for the applied
dc field of b529.23107 V/m. The applied field slants the
well down as shown in Fig. 1~b!, and this lowers the energy
levels inside the well. Atb529.23107 V/m, the lowered
energy levels provide for an off-resonant situation with re-
spect to the mean kinetic energy of the pulse. This results in
the low mean charge build-up for values ofa<1.2 ~Fig. 9!,
and it translates into weak chaos for those values~Fig. 6!.
The effect of the nonlinear terma is to broaden the energy
levels in the well up toward the mean kinetic energy of the
Gaussian packet. The values ofa that cause the peak in the
mean charge for a specificb correspond to the case when the
mean energy of the level is in resonance with the average
kinetic energy of the incident electron packet.4 For a suffi-
ciently strong nonlinearity, the energy levels get broadened
enough that there is sufficient charge trapped in the well to

raise the Lyapunov exponent drastically as shown in Figs. 7
and 8. This relation between nonlinear potential and mean
charge build-up in the well is shown explicitly as functions
of a in Fig. 10. This figure plots the average nonlinear po-
tential a^Q(t)& and the average charge trapped for four dif-
ferent values ofb. For sufficiently high values ofa, fluctua-
tions around the average value of charge trapped in the
double barrier eventually push the nonlinear potential into a
resonant situation with respect to the mean kinetic energy of
the electrons. Once on resonance, the increase in the amount
of charge trapped in the well keeps the energy level of the
well at resonance. With the increase in trapped charge, there
is a greater variance in the nonlinear potential due to its
higher average, and therefore there is an increase inl. Thus,
as shown in Fig. 6, for values ofa<1.2, field effects domi-
nate and there is a strong regular oscillation in the charge in
the well as shown in the large ac peaks in the low frequency
range in Fig. 4~c!. The tailing behavior of the mean charge in
Fig. 9 is due to the fact that for largea the energy levels
have become so broadened that the mean energy of the level
is once again off resonant with the initial kinetic energy of
the electron packet.4 However, by this point the nonlinear
effects dominate the system, and there is no decrease in
Lyapunov exponent corresponding to the slow drop in mean
charge.

The interesting phenomena in this system for the applied
dc field of b529.23107 V/m occurs fora values between
a51.2 anda51.5. As shown in Fig. 8, whena increases,
we have a first order type transition inl and in the average
nonlinear potential,V. To see how the resonance effects
cause this transition, we examine the amount of charge,
Q(t), in the central well as a function of time as shown in
Fig. 11. This clearly shows a transition in the raw data from

FIG. 9. Mean charge vsa for several applied dc fields of~a! b521.153107, ~b! b524.63107, ~c! b529.23107, ~d! b5213.63107, and ~e! b
5218.43107 V/m.
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a nonresonant to a resonant state for each of thea values:
1.25, 1.376, 1.377, and 1.475. Fora<1.2, this transition
does not occur, while for values ofa>1.5, this transition
occurs almost immediately. The transition to resonance oc-
curs whenQ(t)>.01, which corresponds to 1% of the total
charge in the three well heterostructure. It is noted that for

values ofa<1.376, this transition to resonance happens late,
for times t.350 000 a.u. But for higher values ofa, the
transition occurs fort,100 000 a.u. The sudden decrease in
the amount of time to resonance in the well causes the first
order type transition in the average nonlinear potential and in
the Lyapunov exponent. Despite the decrease in mean charge

FIG. 10. Average nonlinear potential vsa ~solid line! and mean charge vsa ~dashed line! for the applied dc fields of~a! b50, ~b! b524.63107, ~c! b
529.23107, and ~d! b5218.43107 V/m.

FIG. 11. Q(t) vs T for the applied dc field ofb529.23107 V/m and nonlinearity coefficients~a! a51.25, ~b! a51.376,~c! a51.377,~d! a51.475.
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for a>1.5 as shown in Fig. 10~c!, the level broadening
keepsQ(t) on resonance although the resonance is weaker
due to the increased repulsive potential ofa^Q(t)&.

As stated previously, quantum heterostructures are bi-
ased with strong electric fields to increase the operating fre-
quency of the device. Under an external field ofb529.2
3107 V/m, the characteristic time,t, of the heterostructure
is halved.4 This corresponds to the field under which the
Lyapunov exponent drops significantly for lowa. It is also
the field that has low charge build-up for the largest range of
a. This makes the system useful as an electronic device since
low charge build-up and weak chaos implies a strong regular
current through the device. This is backed up by the short
response time that leads to a high operating frequency. These
features can be seen in Fig. 4~c! where the power spectrum
indicates a strong periodic build-up and release of charge
through the heterostructure.

The model system described in this article can be con-
structed and tested by choosing materials for the barriers
b1 , b2 , and the thin well,w2 , to be AlGaAs and GaAs,
respectively. The wide wells,w1 and w3 , are to be con-
structed of doped GaAs. The electron wave packet in the
wide well,w1 , can be created using an ultrashort laser pulse.
Excitation with a spectrally broad pulse encompassing many
optical transitions of the system can create a wave packet.
The time evolution of the wave packet can be investigated by
using delayed probe pulses and by time resolved four-wave

mixing.8 In this manner, the oscillating charge trapped in the
biased heterostructure can be measured experimentally with
subpicosecond optical techniques.
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