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Causal implications of viscous damping in compressible fluid flows

P. M. Jordan,1 Martin R. Meyer,2 and Ashok Puri2,*
1Code 7181, Naval Research Laboratory, Stennis Space Center, Mississippi 39529

2Department of Physics, University of New Orleans, New Orleans, Louisiana 70148
~Received 20 December 1999; revised manuscript received April 25 2000!

Classically, a compressible, isothermal, viscous fluid is regarded as a mathematical continuum and its
motion is governed by the linearized continuity, Navier-Stokes, and state equations. Unfortunately, solutions of
this system are of a diffusive nature and hence do not satisfy causality. However, in the case of a half-space of
fluid set to motion by a harmonically vibrating plate the classical equation of motion can, under suitable
conditions, be approximated by the damped wave equation. Since this equation is hyperbolic, the resulting
solutions satisfy causal requirements. In this work the Laplace transform and other analytical and numerical
tools are used to investigate this apparent contradiction. To this end the exact solutions, as well as their special
and limiting cases, are found and compared for the two models. The effects of the physical parameters on the
solutions and associated quantities are also studied. It is shown that propagating wave fronts are only possible
under the hyperbolic model and that the concept of phase speed has different meanings in the two formulations.
In addition, discontinuities and shock waves are noted and a physical system is modeled under both formula-
tions. Overall, it is shown that the hyperbolic form gives a more realistic description of the physical problem
than does the classical theory. Lastly, a simple mechanical analog is given and connections to viscoelastic
fluids are noted. In particular, the research presented here supports the notion that linear compressible, iso-
thermal, viscous fluids can, at least in terms of causality, be better characterized as a type of viscoelastic fluid.

PACS number~s!: 47.40.2x, 02.30.Jr, 43.20.1g, 47.10.1g

I. INTRODUCTION

In the classical theory of fluids, the propagation of small-
amplitude longitudinal waves in a compressible, isothermal,
viscous fluid is governed by the linearized continuity,
Navier-Stokes, and state equations~see Kinsleret al. @1#!
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where v is the velocity vector,p is the pressure,r is the
density, the constantsm,hB ,r0 ,c.0 are the shear viscosity,
bulk viscosity, ambient density, and sound speed, respec-
tively, and of course the flow is irrotational~i.e., “3v50!.
Guided by Kinsleret al. @1#, and using the well-known tools
of vector calculus, the above system can be written as the
third-order partial differential equation~PDE!
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whereu is a component ofv and the Stokes assumption~i.e.,
hB50! has been made. Initial-boundary value problems
~IBVP’s! involving the one-dimensional form of this equa-

tion have been solved and analyzed by Blackstock@2# and
Norwood @3#. It is of interest to note that in its one-~two-!
dimensional form Eq.~1.4! is, with the appropriate coeffi-
cients, the equation of motion of a string~membrane! with
internal damping@4# and also describes the motion of a vis-
coelastic fluid under the Kelvin-Voit body model@5#.

Now, consider the case of an initially quiescent half-space
of fluid set to motion by an infinite, harmonically vibrating
bounding plate~i.e., the compressible fluid analogy of the
transient form of Stokes’s second problem@6#!. We ob-
serve that for sufficiently larget.0 @more precisely
t@4m/(3r0c2), see Sec. III D#, the time dependence ofu
will be ~approximately! solely of the formeivt, where v
.0 is the constant vibration frequency of the bounding plate.
Thus we have

¹2u'2
v2

c2 S u

114ivm/~3m0c2!
D . ~1.5a!

Moreover, for many fluids~e.g., air, water! the coefficient of
the mixed derivative damping term in Eq.~1.4! is a very
small quantity. Hence, following McLachlan@7#, we can re-
gard the mixed derivative term in Eq.~1.4! as a sink and, so
as to obtain a wave equation with an alternate form of damp-
ing while maintaining a well-posed IBVP, approximate only
its Laplacian part, whenv!3r0c2/(4m) ~a condition easily
satisfied in most, if not all, classical fluids over virtually the
entire frequency spectrum of acoustical applications!, by

¹2u'2
v2

c2
u. ~1.5b!

Using Eq.~1.5b!, Eq. ~1.4! becomes approximately
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wherec is now identified as the phase speed. Equation~1.6!,
a hyperbolic PDE, is a special case of the telegraph equation
known as the damped wave equation. As is well known, this
equation describes a vast array of physical systems. For ex-
ample, the damped wave equation governs the propagation
of ‘‘second sound’’~i.e., thermal waves! in a thermally con-
ducting medium where the heat flux vector is given by the
Maxwell-Cattaneo equation@8#, the propagation of electro-
magnetic waves in an electrically conducting medium~see,
e.g., Born and Wolf@9#!, the migration dynamics of fish
schools@10#, the random walk problem@11#, the motion of a
string or membrane with external damping~see, e.g., Morse
and Feshbach@12#!, and it is the equation of motion of a
viscoelastic fluid under the Maxwell body theory@5#.

In this work we demonstrate, as was noted earlier by
Blackstok@2#, that solutions of the classical equation of mo-
tion for this problem do not satisfy causality@13#. We also
consider solutions of the approximate hyperbolic formulation
of the problem as alternatives that do satisfy casualty. In an
effort to resolve this contradiction and to provide a deeper
physical insight into this problem we present the following:
A comparative study of the one-dimensional form of these
two models@i.e., the classical model corresponding to Eq.
~1.4! and the approximate hyperbolic formulation described
by Eq. ~1.6!#, an examination of their special and/or limiting
cases, and a study of the roles of the various quantities of
interest~e.g., the constantc has different physical interpreta-
tions in the two formulations!. In effect, we show that the
approximate hyperbolic form gives an overall more realistic
description of the physical problem than does the classical
theory. Moreover, we also point out that the hyperbolic for-
mulation of the problem actually suggests that classical flu-
ids described in this work are, at least in terms of causality,
better modeled as viscoelastic fluids of the Maxwell type.

To this end, we present in Sec. II the exact solutions for
both the classical and hyperbolic formulations found using
the temporal Laplace transform. In Sec. III we present a va-
riety of analytical results: a number of special and/or limiting
cases are considered, several associated physical quantities
are given, and a~possible! new definite integral, found ser-
endipitously in the course of this investigation, is presented.
Section IV contains numerical results for various values of
the time and solution parameters, as well as for some of the
associated physical quantities, and a physical system is con-
sidered. Finally, in Sec. V conclusions are given followed by
a brief discussion which, in addition to presenting a simple
mechanical analog, highlights the connection between clas-
sical and the viscoelastic fluids.

II. MATHEMATICAL ANALYSIS

Taking the positivez axis of a Cartesian coordinate sys-
tem in the upward direction, let a compressible fluid occupy
the half-spacex.0 adjacent to a flat plate in theyz plane.
Initially, both the plate and fluid are at rest. At timet501 a
flow is induced by the vibration of the plate along thex axis

with velocity U0 cos(vt) or U0 sin(vt), whereU0 is a con-
stant. Under these conditions, no flow occurs in they andz
directions and the flow velocity at a given point in the fluid
depends only on thex coordinate of the point and the timet.
We model the above physical system with the following one-
dimensional IBVP:
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u~0,t !5g~ t !, u~`,t !50, t.0, ~2.2!

u~x,0!5ut~x,0!50, x.0, ~2.3!

where the velocity vector is given byv5„u(x,t),0,0…,
g(t) ~[0 for t,0! takes on the value ofU0 cos(vt) or
U0 sin(vt), and to simplify the notation we have seta2

[4m/(3r0) and r[4mv2/(3r0c2). Applying the temporal
Laplace transformL@•# and solving the resulting ordinary
differential equation yields the transform domain solution

ū~x,s!5L@g~ t !#35 expS 2
x

c
A s2

11s/ l 2D , a.0

expS 2
x

c
As~s1r ! D , r .0,

~2.4!

where

L@g~ t !#5U035
s

s21v2
, g~ t !5U0 cos~vt !,

v

s21v2
, g~ t !5U0 sin~vt !,

~2.5!

l 2[(c2/a2)53r0c2/(4m), s is the complex transform pa-
rameter, andū[L@u#. Since ther .0 solution can be easily
extracted from thek,0 case of Eq.~2.7! of Ref. @14# @on
setting b50 and F(t)5g(t)#, we simply give it below.
Here, we derive only thext-domain solution for thea.0
case of Eq.~2.4!. To this end we note that Eq.~2.4! possesses
simple poles ats56 iv and has a branch point ats52 l 2.
Having found the singularities, we can now employ the
Laplace inversion formula~see, e.g., Churchill@15#!. Thus,
on integrating along the Bromwich contourG ~see Fig. 1! in
the counterclockwise direction, taking the limitse→01 and
R→`, and employing the residue theorem@15# we obtain
the complete, exact,xt-domain solution
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u~x,t !5u~ t !35 35 e2a1xg~ t2a2x/v!2
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t

g~ t2z!K~x,z!dz D , r .0,
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whereu~•! is the Heaviside unit step function,

h~h!5
h

cAn/ l 221
, a1,25

v

c
A711A11v2/ l 4

2~11v2/ l 4!
,
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K~x,z!5
e2r z/2

2c S I 1@~r /2!A~z22x2/c2!#

Az22x2/c2 D , ~2.8!

and whereI n@ # denotes the modified Bessel function of the
first kind of ordern.

III. ANALYTICAL RESULTS

In this section we examine the behavior of Eq.~2.6! using
analytical techniques. Both small and large time solutions are

given. In addition, we derive the relevant wave parameters
that characterize the behavior of the solution for large values
of time. We also examine the curve structure and determine
the amplitudes of the jump discontinuities occurring inu and
its first derivatives for the case ofr .0. Moreover, we note
several important aspects of solution~2.6! and we call atten-
tion to several of its special and/or limiting cases. Lastly, we
present a possible new definite integral found during the
course of this research.

A. Small-time behavior

Expanding the transform domain solution@Eq. ~2.4!# for
larges and then inverting gives us small-time expressions for
Eq. ~2.6!. Thus, fora.0 the small-time solutions are given
by ~see also Refs.@2,3#!

FIG. 1. Bromwich contourG used in the inversion of thea.0 case of Eq.~2.4!.
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u~x,t !'U0u~ t !3H Pc~x!erfc@x/2aAt#1Qc~x!At/pe2x2/~4a2t !, g~ t !5U0 cos~vt !

Ps~x,t !erfc@x/2aAt#2Qs~x,t !At/pe2x2/~4a2t !, g~ t !5U0 sin~vt !,
~3.1!

where erfc@•# is the complementary error function@15#,
x2a22!t!Min@v21,l 22#, and

Pc~x!512
l 2x2

2a2
, ~3.1a!

Ps~x,t !5vS t2
l 2x2t

4a2
1

x2

2a2D , ~3.1b!

Qc~x!5
l 2x

a
, ~3.1c!

Qs~x,t !5vS x

a
2

2l 2xt

3a D . ~3.1d!

For r .0 the small-time solutions are@14#

u~x,t !'U0e2rx/~2c!u~ t2x/c!

3H 11r 2x~ t2x/c!/~8c!, g~ t !5U0 cos~vt !

v~ t2x/c!, g~ t !5U0 sin~vt !,

~3.2!

where forxc21,t!Min@v21,r 21#. The advantage of Eqs.
~3.1! and ~3.2! over Eq. ~2.6! is that they can be obtained
without the need of contour integration and they are much
easier to implement numerically. In addition, they give us
insight into the behavior of the transient terms. From Eq.
~3.1! we see that the small-time behavior will always be of a
diffusive character fora.0. In addition we see that for every
t.0, the Heaviside function on the right-hand side of Eq.
~3.1! is always unity, indicating that the vibrations occurring
at the x50 boundary are felt instantly, but not equally,
throughout the entire half space. In contrast, Eq.~3.2! shows
that for r .0 we have an exponentially damped disturbance
propagating in the positivex direction ~i.e., away from the
plate! with speedc. Finally, we see from Eqs.~3.1! and~3.2!
that for g(t)5U0 cos(vt), u is independent ofv under
small-t conditions.

B. Discontinuities

In Table I we have listed the amplitudes of the propagat-
ing jump discontinuities inu and its first derivatives, as de-
termined using the methods employed by Jordan and Puri
@14#. Here S@ #, the saltus operator, denotes the jump in a
quantity across the planex5ct ~see Ref.@14#!. From Table I
we see that within the solution domain~i.e., x,t.0!, u and
its first derivatives are continuous for the casea.0. Further-
more, it can be easily shown thatu is infinitely differentiable
with respect to bothx and t @i.e., uPC`(x,t.0)# for all
admissibleg anda.0 ~see Ref.@14#!.

For r .0 andg(t)5U0 sin(vt), u is again a continuous
function within its solution domain. However, bothux and
ut , the first spatial and temporal derivatives ofu, respec-
tively, each suffer a finite jump discontinuity across the
planex5ct. Henceu is only of classC0 and thus it follows
that u has a corner onx5ct. In contrast, takingg(t)
5U0 cos(vt), again forr .0, results inu itself experiencing
a jump discontinuity acrossx5ct. Physically, of course, this
plane represents the wave front. Technically, in the hyper-
bolic case, the planex5ct is known as a shock wave, or a
singular surface of order zero, forg(t)5U0 cos(vt) while for
g(t)5U0 sin(vt) it is referred to as an acceleration wave, or
a singular surface order one~see, e.g., Truesdell and Toupin
@16#!. Moreover, we see that the amplitude of every finite,
nonzero jump given in Table I decays exponentially over
time ~sincex5ct at the wave front!.

In Fig. 2 we have plotted ther .0 case of Eq.~2.6! for
g(t)5U0 cos(vt) ~solid line! and g(t)5U0 sin(vt) ~bold
line!. The values of the physical parameters used correspond
to air at 0 °C and were taken from Ref.@1# @Table ~b!, p.
462#. Observe that ahead of the wave front~i.e., the half-
spacex.ct!, u[0 ~since the fluid was initially in an undis-
turbed state!, behind it ~i.e., the slab 0,x,ct! lies the re-
gion of the solution domain where the effects of the inputg
have already been felt. In addition, the jump associated with
the shock wave resulting from theU0 cos(vt) boundary data

FIG. 2. u vs x for air at 0 °C with v5100.0 Hz ~giving r
51.5931026 sec21! and t50.06 sec. Bold line:g(t)5sin(vt);
solid line: g(t)5cos(vt).

TABLE I. Propagating discontinuities inu, ut , andux .

Case a.0 r .0
Wave front x5ct x5ct

g(t) U0 cos(vt) U0 sin(vt) U0 cos(vt) U0 sin(vt)
S@u# 0 0 U0e2rx/2 0
S@ut# 0 0 ` vU0e2rx/2

S@ux# 0 0 ` 2cvU0e2rx/2
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is clearly visible as well as the corner associated with the
U0 sin(vt) input.

C. Displacement thickness

In classical incompressible fluid theory the displacement
thicknessd* refers to the distance from a flat plate that a

streamline in the outer flow is displaced by the presence of
viscosity and is defined as

d* ~ t !5U0
21E

0

`

u~x,t !dx. ~3.3!

In this work, however, the phrase displacement thickness
simply refers to the area under theu vs x for some fixed
t.0. Hence, from Eqs.~2.6! and ~3.3! we find

d* ~ t !5U0
21u~ t !35 aFM ~ t !1~ l 2/2!E

0

t

e2 l 2z/2M ~ t2z!$I 0~ l 2z/2!1I 1~ l 2z/2!%dzG , a.0

cF E
0

t

e2r z/2g~ t2z!I 0~r z/2!dzG , r .0,

~3.4!

where

M ~ t !5U0A2

v
3H C~A2vt/p!cos~vt !1S~A2vt/p!sin~vt !, g5U0 cos~vt !

C~A2vt/p!sin~vt !2S~A2vt/p!cos~vt !, g5U0 sin~vt !,
~3.5!

and whereC( ) andS( ) are the Fresnel integrals of the co-
sine and sine types, respectively. Observe that fora.0, d*
is proportional toa for any fixed positivet while for r .0,
d* is proportional toc, again for any fixed positivet.

D. Special and limiting cases

Returning to Eq.~2.6! we note that asc→01, the ~fixed!
a.0 case of Eq.~2.6! approaches the solution of the heat
equation for the corresponding IBVP and, asr→01, the
r .0 case of Eq.~2.6! approachesu(t2x/c)g(t2x/c), the
solution of the undamped~or classic! wave equation for the
present IBVP. Moreover, we see that for fixedc, l→` as
a→01. Consequently, the transient~i.e., integral! terms
found in thea.0 cases of Eq.~2.6! approach zero~since
both limits of integration are approaching infinity!, a1,2
→$0, v/c%, andu(t)→u(t2x/c) @since the branch point at
s52 l 2 is tending to2` and ū(x,s) is analytic in the half-
plane Re(s).g#. Thus, as one would expect,u→u(t
2x/c)g(t2x/c) asa→01.

Clearly ast→`,u(x,t)→u`(x,t), where

u`~x,t !5e2a1xg~ t2a2x/v!, a.0. ~3.6!

In a strict sense,u`(x,t) is not the steady-state solution since
it containst explicitly. It is, however, known as the sustained
or quasi-steady-state solution. In Table II we list the relevant
propagation parameters associated withu` ~see also Refs.
@2,3#!. Here penetration depth refers to the value ofx for
which the amplitude ofu` has decreased toU0e21 and
wavelength denotes the distance between two successive lay-
ers of fluid which vibrate in phase@17#.

Expandinga1,2 for large frequency we find

a1,2;
1

a
Av

2
, v@ l 2. ~3.7!

Expandinga1,2 for small frequency we find

a1'
a2v2

2c3
, a2'

v

c
, v! l 2. ~3.8!

Thus whenv is very much larger thanl 2, u` ~approxi-
mately! satisfies the classic diffusion equation. Forv! l 2,
we find that u`'e2rx/(2c)g(t2x/c), where again
r 54mv2/(3r0c2) ~i.e., for v sufficiently small,u` is ap-
proximately equal to the nonintegral part of ther .0 solu-
tion!. Thus we see, as illustrated here in the one-dimensional
case, that solutions of Eq.~1.4! for the present IBVP are
approximately equal to those of Eq.~1.6! when v! l 2 and
(xc21),t@ l 22. Furthermore, whenv is so small thatv2

can be neglected in comparison tov, u` approximates the
solution to the well-known wave equation.@Clearly so does
the r .0 case of Eq.~2.6!.# Moreover, in terms of the phase
velocity vp we have

vp;aA2v ~v@ l 2!, vp'c ~v! l 2!. ~3.9!

From the first of Eqs.~3.9! we find that the propagation
medium exhibits anomalous dispersion@18# whenv is large
compared tol 2 ~i.e., vp is an increasing function of fre-
quency!. However, from the second of Eqs.~3.9! we find that

TABLE II. Propagation parameters.

Name Parameter

Attenuation coefficient a1

Penetration depth 1/a1

Wave number a2

Phase velocityvp v/a2

Wavelength 2p/a2

Phase lag a2x
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the propagation medium tends to be nondispersive whenv is
much smaller thanl 2 ~i.e., vp is a constant, independent of
frequency; the medium behaves as does free space with re-
spect to electromagnetic waves@9#!. Furthermore, it should
be clear that whenr !2c/x, then the propagation medium is
essentially of a nondispersive nature~implying that far away
from the plate, ther .0 solution behaves very much like that
of the classic wave equation!.

Taking g(t)5U0eivt makes u a complex quantity.
McLachlan@7# has given the complex-valued solution for the
caser .0. For a.0, the complex-valued quasi-steady-state
solution is

U`~x,t !5U0e2a1x exp@ i ~vt2a2x!#. ~3.10!

The modulus of Eq.~3.10! is easily found to be

uU`~x,t !u5U0e2a1x. ~3.11!

Using the large and small frequency expressions given
above, we find that

uU`~x,t !u;U0 exp@2~x/a!Av/2#, v@ l 2, ~3.12!

uU`~x,t !u'U0 exp@2x~av!2/~2c3!#, v! l 2, ~3.13!

Thus, it is clear thatuU`u is a decreasing function of fre-
quency and that for a fixed value ofx and small values ofv,
it is of a Gaussian nature with respect to frequency.

Last, from thea.0, g(t)5U0 sin(vt) case of Eq.~2.6!
we obtain, based on the initial conditionu(x,0)50, the inte-
gral relation

v

p E
0

` sin@x~h1 l 2!/Aha2#dh

~h1 l 2!21v2

5e2a1x sin~a2x! ~a,c.0;x,v>0!.

~3.14!

This definite integral does not appear in any reference that
we are aware of@19,20#. Thus, to the best of our knowledge,
the relation given in Eq.~3.14! is a new result.

IV. NUMERICAL RESULTS

Here we giveMathematica@20#-generated plots for vari-
ous values of time and the solution parameters. So as to
simplify their presentation and comparison, we have, in Figs.
3, 4, 5~b!, and 8, employed the following nondimensional
~ND! transformations:

x8→xl2U0
21, t8→t l 2, u8→uU0

21, v8→v l 22,

c8→cU0
21, a8→c8, r 8→rl 22, ~4.1!

where in referring to these quantities the primes will be un-
derstood. Moreover, with the exception of Fig. 5~a!, the val-

FIG. 3. u vs x in nondimensional~ND! units for t5c5r 51.0
andv510.0. Bold line: hyperbolic; solid line: classical.

FIG. 4. u vs x ~ND! for t5c51.0 andv510.0. Bold line:r
510.0; solid line:r 51.0; and broken line:r 50.1.

FIG. 5. ~a! uU`u vs x for dry air with m51.731025 Pa sec,r0

51.293 kg/m3, and v55.0 kHz. Bold line:c5361.0 m/sec; solid
line: c5331.0 m/sec; and broken line:c5301.0 m/sec. ~b! u vs x
~ND! for t50.1 andv510.0. Bold line: c510.0; solid line:c
55.0; and broken line:c50.05.
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ues employed for all physical parameters were obtained from
Ref. @1# @Table~b!, p. 462#. ~In particular, for air at 0 °C we
have m51.731025 Pa sec, r051.293 kg/m3, and c
5331.6 m/sec!. Lastly, in all dimensional figures we have
takenU051 m/sec and, with the exceptions of Figs. 5~a!, 6,
and 8, all graphs given in this section were plotted forg(t)
5sin(vt).

A. Effects of damping coefficients

In Fig. 3 we have plotted both the hyperbolic~bold line!
and classical~solid line! solution curves forc5r 51.0 using
ND units. Clearly, the damping effects of the mixed deriva-
tive term are more pronounced than those of the usual first-
order time derivative damping term occurring in the hyper-
bolic equation. In Fig. 4 we show the effects of varyingr
(.0) in Eq. ~2.6!, again using ND units. As would be ex-
pected, increasingr drives down the curve’s amplitude and
suppresses its oscillatory behavior.

B. Effects of the phase speed parameter and frequency

As is well known in the hyperbolic formulation the con-
stantc is the phase speed~i.e., the speed at which the wave
front propagates!. However, in the classical formulationc
takes on a totally different physical meaning.~Kinsler et al.
@1# also note this point and refer toc as the thermodynamic
speed of sound in the classical case.! From Figs. 5 we see
that in the classical case,c acts like an inverse decay param-
eter~i.e., increasingc beyond unity decreases the decay rate

of the diffusive curve!. This behavior is clearly seen in the
uU`u vs thex graph shown in Fig. 5~a! which was plotted for
dry air at 50.0 °C~bold line!, 0 °C ~solid line!, and250.0 °C
~broken line! „see Pierce@21# @Eq. ~1-9.4!#…, andt large; and
in the u vs x ~ND! graph of Fig. 5~b! which was plotted for
t50.1. Furthermore, we note that the broken curve shown in
Fig. 5~b!, plotted for c50.05, approximates the solution
curve of the ND heat equation@i.e., letting c→01 in Eq.
~1.4!# for the corresponding IBVP.

In Fig. 6 we have plotted, again for air at 0 °C,uU`u
5e2xa1 vs x for v520.0 kHz ~bold line!, 10.0 kHz ~solid
line!, and 5.0 kHz~broken line!. As supported by Eqs.~3.11!
and ~3.12!, uU`u is obviously a decreasing function of fre-
quency.

C. Displacement thickness and dispersion relation

Figure 7 depictsd * vs t under the classical~solid line!
and hyperbolic~bold broken line! cases. Observe that both
curves appear to be in phase, non-negative, and nearly iden-
tical in amplitude.

The ND plot shown in Fig. 8 is a Brillioun diagram@18#.
The mapping of the wave number tov it depicts is known as
a dispersion relation. Geometrically, the slope of the vector
from the origin to a particular point on the curve represents
the phase velocityvp . From Fig. 8 we see that, sincevp
.0, U` is a disturbance that always propagates away from
the plate into the fluid medium. Furthermore, it is also clear
thatvp is an increasing function ofv. Hence the propagation
medium considered here is one of anomalous dispersion.

D. Physical scenario

Consider a very deep, initially queasiest, volume of ocean
filling the half-spacex.0 of a Cartesian coordinate system.
As a result of an undersea seismic event, a very large flat
section of the ocean floor~i.e., assumed to be of infinite
extent!, which occupies theyz plane, begins to suddenly ex-
ecute small-amplitude vibrations of the form sin(vt) in the
vertical direction ~i.e., along thex axis! at t501. These
vibrations of the ocean floor sets the water above into mo-
tion. We wish to describe, for anyt.0 and neglecting gravi-
tational effects, the resulting velocity field of the water given
that flow parallel to theyz plane~i.e., flow emanating from
the edges! will be negligibly small compared to that parallel
to thex axis, thus allowing us to takev5„u(x,t),0,0….

FIG. 6. uU`u vs x for air at 0 °C. Bold line:v520.0 kHz; solid
line: v510.0 kHz; and broken line:v55.0 kHz.

FIG. 7. d* vs t for air at 0 °C withv510.0 Hz. Bold broken
line: hyperbolic; solid line: classical.

FIG. 8. v vs a2 ~ND! for c51.0.
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Figures 9 were generated fora254m/(3r0) and
r 54mv2/(3r0c2), where the values ofr0 , c, andm corre-
sponding to seawater at 13 °C were used@1#. The sequence
shown compares the time evolution of the hyperbolic solu-
tion of the above scenario to that of the classical case for a
vibration frequency ofv510 Hz. Clearly, the wave front
associated with the hyperbolic formulation is propagating
with finite speed and is attempting to ‘‘catch up’’ to the
diffusive curve. For its part, the diffusive ‘‘wave front’’ has
instantly propagated over the entire positivex axis. It is
therefore apparent that the approximate hyperbolic formula-
tion suggested by McLachlan@7# is a more realistic model of
the above physical problem, in terms of causality, than is the
classical formulation.

V. CLOSURE

A. Conclusions

Based on the analysis given here and the values of the
parameters considered, we give the following conclusions.

~1! Under the classical form of the problem (a.0),u is
always of a diffusive nature. Hence, a boundary input will
instantly, but unequally, be felt throughout the entire half-
spacex.0.

~2! Under the hyperbolic approximation of the problem
(r .0), u is always of a wavelike nature; a boundary input
will propagate into the half-space at the finite speedc.0.

~3! The physical meaning of the constantc is different in
the two formulations. In the diffusive case it acts as an in-
verse decay parameter while for the hyperbolic case it is the
speed at which a boundary input is propagated into the solu-
tion domain~i.e., the phase speed!.

~4! Under the hyperbolic formulation, forg(t)
5U0 sin(vt), u is continuous, while possessing a corner, but
ux andut both suffer finite jumps across the planex5ct. In
contrast, takingg(t)5U0 cos(vt) results inu itself experi-
encing a finite jump acrossx5ct. ~See Table I and also Fig.
2.! Thus, for g(t)5U0 cos(vt) the planex5ct is a shock
wave while forg(t)5U0 sin(vt) it is an acceleration wave
@16#.

~5! For a given value of time, the displacement thickness
d * is proportional to the coefficienta for the a.0 case of
Eq. ~2.6! while for the r .0 case,d * is proportional to the
phase speedc.

~6! For v@ l 2, the diffusive sustained solutionu` takes
on the character of the solution to the heat or equation.
For v! l 2, u` approximates the sustained part~i.e., non-
integral term! of the r .0 case of Eq. ~2.6! where
r 54mv2/(3r0c2), thus validating the derivation of Eq.
~1.6!. Whenv is so small so thatv2 can be neglected com-
pared tov, we find that bothu` and the sustained part of the
r .0 case of Eq.~2.6! behave likeg(t2x/c), a solution of
the classic wave equation.

~7! For g(t)5U0 cos(vt), both the diffusive and hyper-
bolic solutions are independent ofv under small-time con-
ditions. This is not the case forg(t)5U0 sin(vt).

~8! For a.0, the propagation medium considered here is
one of anomalous dispersion~see Fig. 8!. However, when
v! l 2 or 0,r !2c/x, the propagation medium behaves in
essentially a nondispersive manner~i.e., as if botha and r
were negligibly small!.

~9! The modulus of the complex diffusive sustained solu-
tion, uU`u, is a decreasing function ofv ~see Figs. 5!. For x
fixed andv! l 2, uU`u is of a Gaussian nature with respect to
v while for v@ l 2 it approximates the corresponding solution
of the classic diffusion equation.

B. Discussion

The analysis presented here clearly indicates that the ap-
proximate, hyperbolic formulation of this problem clearly
results in a more realistic model of this physical system than
does the classical formulation based on the linearized conti-
nuity, Navier-Stokes, and state equations. In particular, solu-
tions of the hyperbolic equation of motion clearly satisfy
causality; the smooth, diffusive solutions of the classical
theory do not. Also, the positive constantc is correctly asso-
ciated with the phase speed in the hyperbolic case whereas in
the classical case it acts as an inverse decay parameter.

FIG. 9. u vs x for r051026.0 kg/m3, c51500.0 m/sec,m50.001
Pa•sec, andv510.0 Hz. Bold, hyperbolic@r 54mv2/(3r0c2)#;
solid, classical@a254m/(3r0)#. ~a! t510216 sec, ~b! t510214

sec, and~c! t510212 sec.
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Moreover, the hyperbolic equation used here is also em-
ployed in place of the well-known heat equation, which also
suffers from an infinite propagation speed defect, in heat
transfer problems involving very low temperatures and/or
high heat flux conditions@8#. It is of interest to note that the
problem considered here has a simple mechanical analogy. It
consists of a semi-infinite, one-dimensional string, initially at
rest and laying on the positivex axis, with either internal
(a.0) or external (r .0) damping @4#. At t501 the
string’s end point atx50 begins to execute transverse oscil-
lations of the formg(t). From the analysis presented here,
we would be forced to conclude that the oscillations induced
at x50 would be felt instantly, but unequally, at all points of
an internally damped string. In contrast, for a string with
only external damping, the oscillations induced at the bound-
ary would propagate along the positivex axis, away from the
planex50, at the constant~finite! speedc.

Lastly, we call attention to the following. The classical
equation of motion studied here arises from the assumption
that the fluid medium~e.g., air, water! it is describing is,
mathematically, a continuum. In contrast, the hyperbolic
equation is, in its many applications, derivable from discrete
consideration~e.g., phonons in a thermally conducting me-
dium @8#, schools of fish@10#, and random walk problems
@11#!. Note, however, as pointed out in Sec. I, that with the
appropriate coefficients both Eqs.~1.4! and ~1.6! also de-
scribe the motion of certain types of linear viscoelastic flu-

ids, the former being associated with the Kelvin-Voigt body
theory while the latter results from the Maxwell body model
@5,22#. In particular, we call attention to the fact that a
damped wave equation is the exact equation of motion for a
linear Maxwellian fluid @5,22,23# ~implying that all causal
requirements are automatically satisfied in well-posed IB-
VP’s!. Therefore, based on the analysis presented here, one
can conclude that linear isothermal, compressible viscous
fluids @i.e., those described by Eq.~1.4! under the classic
theory#, may be better characterized, at least in terms of cau-
sality, as linear viscoelastic fluids of the Maxwell type
@5,22–25#. Furthermore, we call attention to both the theo-
retical and experimental results suggesting that air does in
fact possess the general characteristics of such a viscoelastic
fluid ~see Ref.@23#, Chap. 6 and the references therein!.
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