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Aberration-free negative-refractive-index lens
Jiajun Chen,a� Cosmin Radu,a� and Ashok Purib�

Department of Physics, University of New Orleans, New Orleans, Louisiana 70148

�Received 10 August 2005; accepted 15 January 2006; published online 16 February 2006�

The aberrations of a spherical lens composed of left-handed materials are studied in this letter. Five
Seidel aberrations �spherical, coma, astigmatism, field curvature, and distortion� as a function of the
refractive index n and shape factor q of the lens are considered. Our numerical calculations show
that the negative refractive index gives much larger windows of small values of aberrations than the
positive index, which will significantly enhance the flexibility for the design of an optical lens. Two
possible regions with optimized aberrations are proposed: n=−1, q=−2.2 and n=−0.81 and
q=0.83. © 2006 American Institute of Physics. �DOI: 10.1063/1.2174087�

Materials with simultaneously negative dielectric per-
mittivity and magnetic permeability are called left-handed
materials �LHM�, in which the phase velocity of the light
wave propagating is pointed in the opposite direction of the
energy flow, namely, the Poynting vector is antiparallel to the
wave vector. Thus, these materials possess a negative refrac-
tive index �NRI�. The possibility of the existence of such
materials was first point out by Veselago.1 The successful
fabrication of LHM by using photonic crystals or composite
metamaterials has triggered intensive investigation on de-
signing microwave and optical elements.2–9 These engi-
neered composites enable a refractive index less than one
and even somewhat close to zero. Most of the engineered
composites are for the microwave frequencies. In recent
publications,8,9 researchers show that nanofabricated materi-
als can provide negative refractive index for visible frequen-
cies. The simulation results also show that the refractive in-
dex can be −1 for porous alumina with infiltrated silver.9 In
comparison to traditional lenses, it is much easier to con-
struct a nonspherical surface by using photonic crystals or
composite materials. Among all these optical elements, the
perfect lens,2,10,11 actually a flat lens with a refractive index
equal to −1, has been studied intensively due to its excep-
tional focusing ability by which a resolution exceeding dif-
fraction limit is possible. However, it can operate only when
the source is close to the lens. But for the practical applica-
tions, such as telescopes and microwave communications,
focusing distant radiation is needed. In order to focus a
farfield radiation, the NRI lens with a concave surface is
generally used. Because the asymmetry of the refractive in-
dex with respect to the positive and negative value of n, the
NRI lenses have very different focusing properties from the
positive one. Schurig et al. recently investigated the five
Seidel aberrations of the NRI lens.12 They noted that the
elimination of more aberrations is possible by using NRI
lenses. They set the value of q to eliminate one of the five
aberrations first, and evaluated the remaining aberrations as a
function of the index of refraction. This strategy does not
balance all the aberrations. In order to minimize all the ab-
errations simultaneously, in this paper we use a numerical
method to screen all the possible values of the shape factor q
and the refractive index n. We present contour maps of vari-

ous aberrations as a function of q and n and obtain values
that optimize lens aberrations.

Gaussian optics is generally used for the paraxial rays
from a spherical lens. However, the paraxial approximation,
sin ���, is unsatisfactory if the rays from the periphery of a
lens are considered. In order to obtain an accurate approxi-
mation, the third order of the approximation is considered,
sin ���−� /3!. Figure 1 shows a basic configuration used
for the aberration calculation. As the radius of the spherical
surface approach to infinite n1 is a vacuum and n2=−1, a lens
with perfect focusing ability is constructed. A real perfect
lens has two flat surfaces, thus the thickness of the lens re-
stricts the focus distance.10 A flat slab lens with NRI other
than −1 will possess spherical aberrations. By calculating the
conjugate points for a single refracting interface, in which
the third-order expression
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was used, a deviation proportional to h2 is measured from the
first-order theory,13 where so and si are the source position
and the image position, respectively. The relation between
the spherical aberrations and the refractive index is shown in
Fig. 2, in which the object distance so is assumed to be 1 and
the maximum distance above the axis, h, is 0.1, 0.4, and 0.8,
respectively. The spherical aberration is observed when the
refractive index deviates from −1. It is important to note that
the spherical aberration maintains a value of 1 when the re-
fractive index is in the range of values near 0. This is be-
cause total reflection occurs for a large value of h due to the
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FIG. 1. Basic configuration for spherical aberration calculation. As the di-
ameter of the spherical surface approaches infinity, n1=1 and n2=−1, a
“perfect lens” is constructed.
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strong refraction effect for small values of n2, which prevents
the ray with large h to transmit the interface.

As the third-order term is included, several aberrations
arise for the monochromatic optics. The monochromatic im-
aging quality of a lens can be characterized by the five ab-
errations: spherical, coma, astigmatism, field curvature, and
distortion, which are known as five Seidel aberrations. These
corrections to the simple Gaussian optical formulas are cal-
culated from a third-order expansion of the deviation of a
wave front from spherical. Normally, a spherical wave front
converges to an ideal point focus in ray optics. For an object
point on the optical axis, the deviation from ideal spherical
case is proportional to h4,13

Aberration�Q� = −
h4
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The construction used for an off-axis object point is shown in
Fig. 3.14 P is the source point and P� is the image point. A
general case of Q is considered in this calculation, in which
Q is not collinear with the point B. The aberration of PQP�
should be equal to the optical path difference between the ray
paths PQP� and POP�, and it can be calculated by subtract-
ing the two optical path differences:

�PQP� − PBP��optical = c�BQ�4 = c����4,

and

�POP� − PBP��optical = c�BO�4 = c�b�4,

where c is proportional constant and �� and b are given in
Fig. 3�b�. Therefore,

Aberration�Q� = c��4 − cb4. �3�

By using the trigonometric relationship �cosine law�,
��2=r2+b2+2rb cos � and the proportionality between b and
h�, b=kh� �k is a constant�, the Seidel aberration equation is
written as

Aberration�Q� = C040r
4 + C131rh� cos �

+ C222r
2h�2 cos2 � + C220r

2b2

+ C311rh�3 cos � . �4�

The coefficients quantify the nonideal focusing properties of
an optical element for a given object and image position.
These coefficients are the five Seidel aberrations: spherical,
coma, astigmatism, field curvature, and distortion. They can
be written by the refractive index �n�, the position factor �p�,
the shape factor �q�, and the focal length �f��, the definitions
of which were given by Mahajan.15 For most applications in
reality, such as telescopes and microwave communications,
we would like to focus the radiation from the object at infi-
nite position. In this case, p=−1 and f�=1, and the five
coefficients are the function of refractive index n and the
shape factor q:
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n3 + �n − 1�2�3n + 2� − 4�n + 1��n − 1�q + �n + 2�q2

32n�n − 1�2 ,
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1
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C311 = 0. �5e�

The astigmatism and distortion are independent of the refrac-
tive index and the shape factor and maintain values of −0.5
and 0, respectively. Field curvature C220 is independent of
the shape factor of the lens, and only when n=−1, the field
curvature is zero. It is impossible to eliminate field curvature
when n is positive. Furthermore, the field curvature goes to
infinity when n=0. Schurig et al.12 bent the lens �change
shape factor� to eliminate one aberration and evaluate the
others. If coma C131 is zero, the shape factor is given by
q= �2n+1��n−1� / �n+1�. And this will cause the spherical
aberration goes to infinity for n=−1. For a lens with zero
spherical aberration, the shape factor can be written by

q =
4n2 − 4 ± 2
n2 − 4n3

2�n + 2�
, �6�

which requires n�1/4. This means it is impossible to elimi-
nate spherical aberration when n�1/4. Thus, the spherical
aberration and curvature can be eliminated simultaneously
with a relatively small coma �C131=0.25� when n=−1, and
q= ±
5. However, these analyses do not examine all the
situations with respect to different shape factors q and refrac-
tive indexes n, respectively. In order to evaluate all the pos-
sible situations and balance these aberrations, we numeri-

FIG. 2. The spherical aberration as a function of refractive index n. The
object distance so is assumed to be 1 and the maximum distance above the
axis, h, is 0.8.

FIG. 3. Configuration for the five Seidel aberrations calculation. �a� Light
trace diagram. �b� End-on view of the imaging situation along the axis. P
and P� are the object and image position, respectively. r is the aperture stop
coordinate vector and h� is the image plane coordinate vector.

071119-2 Chen, Radu, and Puri Appl. Phys. Lett. 88, 071119 �2006�

Downloaded 08 Jun 2011 to 137.30.164.191. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions



cally calculate the dependence of the aberration coefficients
on the shape factor and the refractive index, namely, we ex-
pand our evaluation of aberrations to the n−q plane. The
results for the spherical aberration, coma, and curvature are
shown in Figs. 4�a�–4�c� in a color-coded scheme. For all of
these aberrations, the negative index gives much larger win-
dows of small aberrations �navy blue areas� than those given
by the positive refractive index. A better method to minimize
the aberrations simultaneously is to evaluate the dependence
of the sum of the absolute values of aberrations, Ctotal

= �C040 � + �C131 � + �C220�, on the parameters �q and n�. The val-
ues of Ctotal with respect to q and n are plotted in Fig. 4�d�.
Not surprisingly, the negative refractive index has a much
larger window of small aberrations. This asymmetry implies
much more flexibility of the lens design by using the nega-
tive refractive index. The detailed contour map of the areas
with small aberrations is also plotted in Fig. 5. We should
concentrate on small absolute values of index, because a
large index will yield strong reflection due to the impedance

mismatch. The numerical results show that there are two
minimum values of Ctotal with a small absolute index: Ctotal
=0.25 �n=−1, q=−2.2� and Ctotal=0.22 �n=−0.81, q=0.83�.
As q=−2.2 and n=−1, the three aberrations are optimized:
C040=−0.0001, C131=0.25, C220=0, which is corresponding
to the analytical result shown before. The situation that
n=−0.81, q=0.83 is another possible selection for optimiz-
ing Ctotal, for which C040=0.0004, C131=0.1644, and
C220=0.0586. Thus, q=−2.2 implies curvature ratio R1 /R2
= �q−1� / �q+1��2.7 �concavo-convex�, and q=0.83 gives
R1 /R2�−0.093 �a biconcave or biconvex lens�.

In summary, the Seidel aberrations, including spherical,
coma, astigmatism, field curvature, and distortion, are inves-
tigated for the lens with a negative refractive index. The
numerical calculation results show that the negative refrac-
tive index gives much larger windows of small values of
aberrations, which will significantly enhance the design flex-
ibility of an optical lens. Two possible areas with minimized
aberrations are proposed: n=−1, q=−2.2 and n=−0.81 and
q=0.83.
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FIG. 5. �Color� Detailed contour map of the area with small values of the
sum of the three aberrations Ctotal= �C040 � + �C131 � + �C220�. There are two
minimums near the small refractive index area ��n � �2�: Ctotal=0.22 for n
=−0.81 and q=0.83; Ctotal=0.25 for n=−1 and q=−2.2. In order to give the
details, the range of the color bar is shrunk to the values from 0.2 to 0.6.

FIG. 4. �Color� Numerical calculated coefficients of the
spherical aberration C040 �a�, coma C131 �b�, curvature
C220 �c�, and the sum of the three aberrations �C040 �
+ �C131 � + �C220� �d� as a function of the shape factor q
and refractive index n. The values of the color bars for
the spherical aberration, coma, and field curvature
range from 0 �navy blue� to 1 �garnet�, and the value for
the sum spans from 0 to 3.
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