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Known source detection predictions for higher order correlators
Lisa A. Pflug
Naval Research Laboratory, Code 7173, Stennis Space Center, Mississippi 39529-5004

George E. Ioup and Juliette W. Ioup
Department of Physics, University of New Orleans, New Orleans, Louisiana 70148

~Received 15 January 1996; accepted for publication 21 January 1998!

The problem addressed in this paper is whether higher order correlation detectors can perform better
in white noise than the cross correlation detector for the detection of a known transient source
signal, if additional receiver information is included in the higher order correlations. While the cross
correlation is the optimal linear detector for white noise, additional receiver information in the
higher order correlations makes them nonlinear. In this paper, formulas that predict the performance
of higher order correlation detectors of energy signals are derived for a known source signal. Given
the first through fourth order signal moments and the noise variance, the formulas predict the SNR
for which the detectors achieve a probability of detection of 0.5 for any level of false alarm, when
noise at each receiver is independent and identically distributed. Results show that the performance
of the cross correlation, bicorrelation, and tricorrelation detectors are proportional to the second,
fourth, and sixth roots of the sampling interval, respectively, but do not depend on the observation
time. Also, the SNR gains of the higher order correlation detectors relative to the cross correlation
detector improve with decreasing probability of false alarm. The source signal may be repeated in
higher order correlations, and gain formulas are derived for these cases as well. Computer
simulations with several test signals are compared to the performance predictions of the formulas.
The breakdown of the assumptions for signals with too few sample points is discussed, as are
limitations on the design of signals for improved higher order gain. Results indicate that in white
noise it is difficult for the higher order correlation detectors in a straightforward application to
achieve better performance than the cross correlation.@S0001-4966~98!01805-0#

PACS numbers: 43.60.Gk, 43.60.Cg@JLK#

INTRODUCTION

The potential advantages over conventional detection
methods that may be obtained using higher order moment
and related spectral techniques have received much attention
in recent years. Higher order techniques show promise in
applications for stationary signals and also for short-time
transients where only a single occurrence of a signal may be
available for detection~Dwyer, 1984; Hinich, 1990; Hinich
and Wilson, 1990; Kletter and Messer, 1990; Sangfelt and
Persson, 1993; Delaney, 1994; Tagueet al., 1994; Baugh
and Hardwicke, 1994; Nuttall, 1994!. The latter case, for
correlation detectors, has been investigated in previous pa-
pers by the authors using both computer simulations~Pflug
et al., 1992b, 1994b! and more recently for unknown source
detection, using theoretical performance predictions for the
case of uncorrelated noise~Pfluget al., 1995b!. The theoret-
ical performance predictions are extended in this paper to
include predictions for known source detection, of which ac-
tive detection is the most common application. The formulas
can be used to determine under what conditions higher order
correlations perform better than the cross correlation detector
in uncorrelated noise, if the higher order correlations include
more than one hydrophone, or channel, of data. Although the
cross correlation is the optimal linear detector in white noise,
the inclusion of additional channels of data in the higher
order correlations makes them nonlinear detectors, which
makes possible improvement over the cross correlation. Pre-

liminary results using these formulas have been included in
two abstracts~Pflug et al., 1994a; Ioupet al., 1995! and a
proceedings article~Pflug et al., 1995a!.

After a background discussion given in Sec. I, the for-
mulas for known source detection are derived in Sec. II.
Comparison of the formula predictions with simulations us-
ing a set of various test signals is given in Sec. III. Section
IV presents a discussion of signal design limitations for
higher order gain and the applicability of the prediction for-
mulas. Repeating the source signal in higher order correla-
tion detectors is addressed in Sec. V. Finally, a summary of
the findings appears in Sec. VI.

I. DEFINITIONS AND ASSUMPTIONS

The detection criteria used in this paper are based on the
second through fourth order moments of a deterministic tran-
sient signals(t), defined by

mp
s5Dt (

k50

Ns21

sp~ t !, ~1!

in which p is the moment order,t5kDt, andNs is the num-
ber of points in the source signal. The second through fourth
order moments correspond to central ordinate, or zero time
lag, values for the cross correlation, bicorrelation, and tricor-
relation, respectively. Although the definition ofmp

s includes
the factorDt, changing the sampling rate of a signal results
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in a corresponding change in the summation of Eq.~1!, leav-
ing the value ofmp

s the same, if the signal is adequately
sampled.

The underlying noise process is assumed to be zero-
mean stationary, independent, and identically distributed
~i.i.d.!, and therefore higher order white and uncorrelated.
Less restrictive assumptions concerning the noise can be
found in Appendices A and B of Pfluget al. ~1995b!. These
assumptions can be modified in a straightforward manner to
substitute the known source signal for one of the noise se-
quences. No averaging is used in the detection process, since
the transients are nonstationary over their domains. Thus the
noise is treated as an energy signal in the process of detect-
ing an energy transient and has moments defined as in Eq.
~1!.

It is assumed for all but Sec. V that the source signal is
simultaneously recorded on each ofp-1 spatially separated
sensors for thepth order moment. When the source signal is
present, the second, third, and fourth order correlation detec-
tors, also called the cross correlation~CC!, bicorrelation
~BC!, and tricorrelation~TC! detectors, have detection statis-
tics

CC5 (
k50

Ns21

s~ t !@s~ t !1n1~ t !#Dt, ~2a!

BC5 (
k50

Ns21

s~ t !@s~ t !1n1~ t !#@s~ t !1n2~ t !#Dt, ~2b!

and

TC5 (
k50

Ns21

s~ t !@s~ t !1n1~ t !#@s~ t !1n2~ t !#

3@s~ t !1n3~ t !#Dt. ~2c!

In these equationsni(t) represents the noise at one of the
p-1 spatially separated sensors. The first terms in the ex-
tended sums of Eqs.~2a!, ~2b!, and~2c! are simply the mo-
ments of the signal, as given in Eq.~1!. When the source
signal is absent, the correlation detectors are given by

CC5 (
k50

Ns21

s~ t !n1~ t !Dt, ~3a!

BC5 (
k50

Ns21

s~ t !n1~ t !n2~ t !Dt, ~3b!

and

TC5 (
k50

Ns21

s~ t !n1~ t !n2~ t !n3~ t !Dt. ~3c!

The amplitude signal-to-noise ratio~SNR! for energy
signals is defined by

SNR5
ss

sn
. ~4!

Conversion of the amplitude SNR in Eq.~4! to power SNR
in decibels is accomplished using 20 log10(ss /sn). The vari-
ance of a deterministic signals(t) is

ss
25

Dt

T (
k50

Ns21

@s~ t !2 s̄ #25
1

T Fm2
s2

~m1
s!2

T G , ~5!

where the mean iss̄5m1
s/T. For known source detection, the

processing window duration,T5DtNs , is by definition
equal to the transient signal duration, denoted byTs . The
noise variance,sn

2, is defined in the same way asss
2 because

the correlations are defined for energy transients. The noise
ensemble is ergodic and differences between the sample and
population noise means and variances are assumed to be
small for comparison of theoretical and simulated results.

II. KNOWN SOURCE DETECTION PREDICTION
FORMULAS

Derivations of formulas that predict the SNR at which a
passive correlation detector achieves the minimum detect-
able level ~MDL ! are given by Pfluget al. ~1995b!. The
MDL is the SNR at which a detector achieves a probability
of detection (Pd) equal to 0.5 for a selected probability of
false alarm (Pfa). The derivations are based on the areas
beneath the signal-absent~s-a! and signal-present~s-p! prob-
ability density functions~PDFs! of the zero lag correlation
values that define a receiver operating characteristic~ROC!
curve~see Fig. 1!. For thepth order correlation, the mean of
the s-p PDF is atmp

s ~the pth order signal correlation!, and
the mean of the s-a PDF is atmp

n ~the pth order noise corre-
lation!, which is zero under the assumptions in this paper.
The s-a PDF moments are consistent with Gaussian mo-
ments, as shown in the Appendix.

Since the s-p PDF is symmetric, the mean is equal to the
median of the PDF and thePd50.5 threshold occurs at the
mean,mp

s ~see Fig. 1!. For a fixed SNR, this threshold also
defines thePfa . ThePfa , or area to the right of the threshold,
is related to a standardized score, calledzn , by

zn5
mp

s2mp
n

Aap
n

, ~6!

whereap
n represents the variance of the s-a PDF. The stan-

dardized score is the abscissa value which defines the tail
area for a normalized Gaussian distributed PDF having zero-
mean and unit variance. This makes it possible to use one
formula or table of areas to find thePfa for any Gaussian
distribution, regardless of its defining parameters. A table of
these areas can be found in most basic statistics books or

FIG. 1. The signal-absent~s-a! and signal-present~s-p! PDFs that determine
the Pd50.5 point of a ROC curve.
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computed numerically. Here,zn andPfa are inversely related.
Whenap

n in Eq. ~6! and the corresponding SNR are smaller,
zn is larger, and the two PDFs in Fig. 1 are narrower and
have less overlap, resulting in a smallerPfa . For more details
on the relationship betweenz scores and ROC curves, see
Egan~1975!.

For Pd50.5, Eq. ~6! is related to the remaining ROC
curve parameters throughap

n , SNR, andPfa . Sincemp
s and

mp
n are known, if ap

n can be expressed theoretically as a
function of signal and noise parameters, then Eq.~6! can
ultimately be used as a prediction formula for detection per-
formance. The derivations ofap

n for p52, 3, and 4 follow.
The PDF variance,a2

n , of cross correlation realizations
of a finite-length transient signal,s(t), and members of an
infinite ensemble of finite-length noise sequences,ni(t), is
given by

a2
n5EH F (

k50

Ns21

s~ t !ni 1
~ t !DtG2J

2E2H (
k50

Ns21

s~ t !ni 1
~ t !DtJ . ~7!

The expectation operator represents averaging the large num-
ber of realizations generated in performing Monte Carlo
simulations over the noise ensemble to evaluate detector per-
formance, and is not related to any averaging in the detector
itself. Since the signal and noise are approximately uncorre-
lated across the finite-time interval of interest and the noise
is assumed to be zero mean, the second term can be ne-
glected. Then,

a2
n5EH ~Dt !2 (

k150

Ns21

(
k250

Ns21

s~ t1!s~ t2!ni 1
~ t1!ni 1

~ t2!J ~8a!

5EH ~Dt !2 (
k150

Ns21

s2~ t1!ni 1
2 ~ t1!J ~8b!

5~Dt !m2
sE$ni 1

2 ~ t1!% ~8c!

5Dtm2
ssn

2. ~8d!

The summation overk2 in the derivation of Eq.~8b! from
Eq. ~8a! is a result of the assumption that the noise is i.i.d.
E$n2(t)% represents the infinite ensemble variance of the
noise, which is equivalent tosn

2 in Eq. ~8d! for an infinite
time sum due to the ergodicity of the noise. This derivation
also follows from the result given in the Appendix and is
based on the assumption that finite-time averages are equal
to infinite-time averages, which is approximately true for
large enoughNs ~see the discussion in Sec. IV for practical
restrictions on the signal!. For the bicorrelation, noise re-
ceived from two sensors is used in the s-a PDF variance.

a3
n5EH F (

k50

Ns21

s~ t !ni 1
~ t !ni 2

~ t !DtG2J
2E2H (

k50

Ns21

s~ t !ni 1
~ t !ni 2

~ t !DtJ ~9a!

5EH ~Dt !2 (
k150

Ns21

(
k250

Ns21

s~ t1!s~ t2!ni 1
~ t1!

3ni 1
~ t2!ni 2

~ t1!ni 2
~ t2!J ~9b!

5Dtm2
ssn

4. ~9c!

Again, Ns must be large. For the tricorrelation, noise re-
ceived from three sensors is used in the s-a PDF variance.

a4
n5EH F (

t50

Ns21

s~ t !ni 1
~ t !ni 2

~ t !ni 3
~ t !DtG2J

2E2H (
t50

Ns21

s~ t !ni 1
~ t !ni 2

~ t !ni 3
~ t !DtJ ~10a!

5Dtm2
ssn

6. ~10b!

These s-a PDF variances can be substituted in Eq.~6!.
As mentioned previously, the cross correlation s-p PDF has
mean equal tom2

s , and the expression forzn becomes

zn5
m2

s2m2
n

Aa2
n

5
Am2

s

snADt
. ~11!

Using Eq.~4! gives

SNRCC5
ssznADt

Am2
s

. ~12!

Here, SNRCC, the MDL for the cross correlation detector, is
interpreted as the SNR required to achieve the detection level
of Pd50.5 at thePfa corresponding tozn , the standardized
threshold value. Sincess is proportional toAm2

s, m2
s depen-

dence is canceled in the derivation, and SNRCC is constant
for all signals. This is not to be interpreted as saying that all
signals of equal duration and sampling are equally detectable
using the cross correlation. The correct interpretation is that
the cross correlation detector achievesPd50.5 for these sig-
nals at the same SNR, which requires varying levels of noise
for different signals.

The bicorrelation s-p PDF has mean equal tom3
s , which

for simplicity is assumed to be positive. Evaluating thezn

gives

zn5
m3

s2m3
n

Aa2
n

5
m3

s

sn
2ADtm2

s
. ~13!

Substituting to obtain the SNR yields the formula

SNRBC5ssAzn
BCADtm2

s

m3
s . ~14!

A similar analysis for the tricorrelation yields
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zn5
m4

s2m4
n

Aa2
n

5
m4

s

sn
3ADtm2

s
, ~15!

and

SNRTC5ss
3Azn

TCADtm2
s

m4
s . ~16!

For zero-mean energy signals, the SNR prediction formulas
reduce to

SNRCC5
znADt

ATs

, ~17!

SNRBC5A~m2
s!3/2znADt

m3
sTs

, ~18!

and

SNRTC5
3A~m2

s!2znADt

m4
s~Ts!

3/2
. ~19!

For zero-mean signals, SNRBC and SNRTC can also be writ-
ten as functions of signal skewness and kurtosis~Pfluget al.,
1995a!.

To compare the three detection methods, SNRCC,
SNRBC, and SNRTC should be evaluated at the samePfa .
The difference in dB levels is referred to as the SNR gain of
the bicorrelation or tricorrelation detector over the cross cor-
relation detector. Using one source signal andp-1 distinct
channels of received data, the bicorrelation SNR gain in dB
is

BCG520 log10F ~m3
s!2zn

2Dt

~m2
s!3 G1/4

, ~20!

and the tricorrelation SNR gain in dB is

TCG520 log10F ~m4
s!2zn

4~Dt !2

~m2
s!4 G1/6

. ~21!

The SNR gain formulas for zero-mean and nonzero-mean
signals are the same, since the only dependence on the signal
mean in the nonzero mean formulas is through the standard
deviation, and the dependence of SNRCC, SNRBC, and
SNRTC on the standard deviation cancels in the gain ratios.

The gain formulas show no functional dependence on
Ts . Known source detection, in contrast to unknown source
detection~see Pfluget al., 1995a, b! is independent of obser-

vation time,T, provided the entire signal is in the processing
window. This is because the multiplication of the noise by
the signal sets the noise to zero outside the signal window.
Known source detection performance does, however, depend
on Dt. In particular, for known source detection, SNRCC,
SNRBC, and SNRTC are proportional to the second, fourth,
and sixth root of the sampling interval, respectively. Perfor-
mance improves for all the correlation detectors with de-
creasing sampling interval. However, as sampling intervals
increase, the bicorrelation and tricorrelation detectors de-
grade less quickly than the cross correlation detector. For a
given signal, noise level, andPfa , each of the three detectors
is associated with a range of sampling intervals for which it
will perform best. For example, if a zero-mean signal has
momentsm2

s50.0025 s,m3
s50.0022 s, andm4

s50.0015 s,
then the bicorrelation and tricorrelation SNR gains versus
sampling interval will be as shown in Fig. 2 forPfa50.001
(zn53.09). For a positive bicorrelation gain, the sampling
interval must be 0.000 34 s or larger, and for a positive tri-
correlation gain, the sampling interval must be 0.000 44 s or
larger.

Detection performance improves~lower SNR! for the
three detectors aszn decreases, or the tolerance for false
alarm increases. However, if the tolerance for false alarm is
small, as it often is in practice, the bicorrelation and tricor-
relation SNR formulas, which give increasing gain with de-
creasingPfa , indicate that higher order detectors could out-
perform the cross correlation.

FIG. 2. Bicorrelation and tricorrelation SNR gain versus sampling interval
for a zero-mean signal with momentsm2

s50.0025, m3
s50.0022, m4

s

50.0015, andPfa50.001.

TABLE I. Momentsmp
s in amplitude units to thepth power times seconds for the eight test signals.

Signal Ts ~s! m1
s m2

s m3
s m4

s

Whale transient 1.00 29.1331025 2.7831021 1.0731023 1.7531021

Low frequency whale 1.00 21.4231022 2.8031021 2.3131022 1.7831021

5 Hz sinusoid 0.75 7.5131023 7.3131022 2.9331022 4.0531022

Narrow pulse 0.03 3.1231023 2.6831023 2.2031023 1.9331023

50 Hz sinusoid 1.72 25.7831026 1.7731021 7.2531028 9.3831022

49–51 Hz sinusoid 1.21 3.2531023 4.1931022 2.2531023 1.8331022

FM linear sweep 1.72 7.4231026 1.7731021 23.0531028 9.3831022

Nonlinear FM sweep 1.72 1.1131024 1.7731021 2.6731028 9.3931022
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III. COMPARISONS BETWEEN PREDICTIONS AND
COMPUTER SIMULATIONS

Pflug et al. ~1994b! present detection results using hy-
pothesis testing and Monte Carlo simulations with 10 000
Gaussian noise realizations for eight energy signals. Note
that the formulas do not require the noise to be Gaussian
distributed, but they require the noise ensemble to be i.i.d.
The signals are varied in nature, generally of low frequency,
and they are described in detail in the above reference.
Known source detection simulations are performed with the
resultingPd vs SNR curves interpolated atPd50.5. These
simulations involve only one replica of the source signal in
the bicorrelation and tricorrelation. While the focus of the
paper by Pfluget al. ~1994b! is on the advantage of prefil-
tering in higher order correlations, results for detection simu-
lations with no prefiltering are also given. These results are
used to corroborate the known source prediction formulas
derived in this paper, which assume there is no signal-
specific or situation-specific passband filtering.

Table I lists the signal duration and first through fourth
order signal moments used in detection performance predic-
tion for the eight test signals. The test signals include a
model 20 Hz finback whale transient, the whale transient
shifted to 12 Hz and called the low frequency whale, an
amplitude modulated 5 Hz sinusoid, a narrow-time pulse
which has a flat magnitude spectrum to approximately 80 Hz
and a smooth rolloff to 256 Hz, an amplitude modulated 50
Hz sinusoid, a 49–51 Hz beating sinusoid, an FM linear
sweep from 49 to 51 Hz, and a nonlinear FM sweep from
120 to 0 Hz. For the computer simulations, the first four

signals are sampled with interval~1/1024! s, the last four
with ~1/500! s. The low frequency whale transient, 41–59 Hz
FM linear sweep, and 120–0 Hz nonlinear FM sweep do not
have bicorrelation maximum magnitudes at zero time lag.
Also, the whale transient and 50 Hz sinusoid have approxi-
mately zero bispectra since the lowest frequency present in
the signal is essentially half the highest frequency. This
makes the bicorrelation value at zero time-lag inappropriate
as a detection criterion~Ioup et al., 1989; Pflug, 1990; Pflug
et al., 1992a!.

Tables II–IV contain the results of the computer simu-
lations and the theoretical predictions for known source de-
tection atPfa50.001. Excepting the narrow pulse signal, the
predictions and simulations agree reasonably well, with the
absolute differences between the computer simulations and
formula predictions of SNR ranging from 0.10 dB to 0.83 dB
for the three detectors. For these seven test signals, the cross
correlation detector performs better than the higher order
correlation detectors, as shown by the predicted BCG and
TCG values in Table V. For the narrow pulse, both the bi-
correlation and tricorrelation detectors perform better than
the cross correlation. However, the gain achieved in the
simulations is significantly lower than predicted with the for-
mulas. The reasons are discussed in detail in the following
section.

The difference between the computer simulations and
the predictions, which generally fluctuates between 0 and 0.5
dB for the test signals except the narrow pulse, is not re-
moved by finer sampling, which implies that for those sig-
nals there is a sufficient number of signal samples for the
finite summation to approximate the infinite summation in
the formula derivations. For example, in Fig. 3, the computer

TABLE II. Known source detection SNRCC in dB for Pfa50.001 calculated
from computer simulations and the prediction formulas, and the absolute dB
difference between the two methods.

Signal
Simulated

SNRCC

Predicted
SNRCC

Absolute
difference

Whale transient 219.49 dB 220.30 dB 0.81 dB
Low frequency whale 219.47 220.30 0.83
5 Hz sinusoid 216.77 217.29 0.52
Narrow pulse 25.64 25.67 0.03
50 Hz sinusoid 217.96 218.64 0.68
49–51 Hz sinusoid 217.89 217.99 0.10
FM linear sweep 218.39 218.64 0.25
Nonlinear FM sweep 218.27 218.63 0.36

TABLE III. Known source detection SNRBC in dB for Pfa50.001 calculated
from computer simulations and the prediction formulas, and the absolute dB
difference between the two methods.

Signal
Simulated

SNRBC

Predicted
SNRBC

Absolute
difference

Whale transient ¯ ¯ ¯

Low frequency whale ¯ ¯ ¯

5 Hz sinusoid 28.41 dB 28.84 dB 0.43 dB
Narrow pulse 26.08 27.51 1.43
50 Hz sinusoid ¯ ¯ ¯

49–51 Hz sinusoid 23.34 23.59 0.25
FM linear sweep ¯ ¯ ¯

Nonlinear FM sweep ¯ ¯ ¯

TABLE IV. Known source detection SNRTC in dB for Pfa50.001 calcu-
lated from computer simulations and the prediction formulas, and the abso-
lute dB difference between the two methods.

Signal
Simulated

SNRTC

Predicted
SNRTC

Absolute
difference

Whale transient 28.64 dB 29.14 dB 0.50 dB
Low frequency whale 28.81 29.14 0.33
5 Hz sinusoid 29.36 29.62 0.26
Narrow pulse 26.20 28.31 2.11
50 Hz sinusoid 29.98 210.36 0.38
49–51 Hz sinusoid 212.80 213.31 0.51
FM linear sweep 210.10 210.36 0.26
Nonlinear FM sweep 210.01 210.35 0.34

TABLE V. Predicted bicorrelation and tricorrelation SNR gains over the
cross correlation detector.

Signal BCG~dB! TCG ~dB!

Whale transient ¯ 211.16
Low frequency whale ¯ 211.16
5 Hz sinusoid 28.45 27.67
Narrow pulse 1.84 2.64
50 Hz sinusoid ¯ 28.28
49–51 Hz sinusoid 214.40 24.68
FM linear sweep ¯ 28.28
Nonlinear FM sweep ¯ 28.28
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simulated and predicted SNRs are shown versus number of
sample points for the 49–51 Hz sinusoid. The differences
fluctuate randomly with increased sampling, but remain less
than 0.5 dB for each detector.

Another possible source of error in the computer simu-
lations is that Gaussian noise generators may not perform
well when very low levels of noise, corresponding to the tails
of the noise distribution, are needed. A potential limitation at
low Pfa occurs due to the finite number of realizations used
in a computer simulation. If 10 000 realizations are used, as
in this paper, the minimum nonzeroPfa value possible is 1
31024, or one false alarm out of 10 000 on average. Thus
interpolation of thePd vs Pfa curve for a fixed SNR atPfa

values lower than 131023 is generally not statistically reli-
able. The number of realizations required to obtain a discrete
point on the ROC curve at the desiredPfa increases with
decreasingPfa . For example, to obtain aPd vs Pfa point at a

Pfa value of 131026, at least one million realizations would
be required.

IV. LIMITATIONS ON THE DESIGN OF SIGNALS FOR
POSITIVE HIGHER ORDER GAIN

The physically motivated definition of the signal mo-
ments, which includes the time dimension,Dt, in the sum-
mation given in Eq.~1!, has the intrinsic advantage that the
signal moments do not change if the signal is interpolated or
decimated in time. Of course, this will only be true if there is
sufficient sampling~Pfluget al., 1993!, and the interpolation
is bandlimited~Bracewell, 1986!. The above holds whether
or not the moment is normalized by dividing byTs , and also
for the variance, skewness, and kurtosis.

Since the moments do not change with interpolation or
decimation, subject to the given restrictions, the entire effect
of either of these two operations on the higher order detec-
tion gain is contained in theDt factor of Eqs.~20! and~21!.
Larger Dt increases the higher order advantage, while
smallerDt does the opposite, favoring the cross correlation
detector ~matched filter!. In fact, in the limit of the
continuous-time signal~Dt goes to zero!, the gain tends to
negative infinity, and the cross correlation is best for any
signal if the signal and noise satisfy the necessary assump-
tions. For a given signal, it is straightforward to determine
whether there is anyDt large enough, within the sampling
limitations, to give positive higher order gain. It should be
noted that experimental conditions may also put limitations
on Dt, and these are not considered here.

Another design question which may be asked of the gain
formulas is how varying the width of a signal affects the
gain. That is, if the signal samples are moved closer together
or further apart~Dt is decreased or increased! without chang-
ing the signal ordinate values~but changing the moments!,
how does the gain change? The functions are related by simi-
larity ~Bracewell, 1986!. As Dt is varied, an upper limit on
Dt is determined by the sampling requirement~Pflug et al.,
1993!. The Similarity Theorem~Bracewell, 1986! describes
the effect of varyingDt on the Fourier transform. To analyze
the effect of a width change, consider the tricorrelation gain
formula

TCG520 log10F ~m4
s!2zn

4~Dt !2

~m2
s!4 G1/6

520 log10Fzn
2/3~(k50

N21s4~ t !!1/3

~(k50
N21s2~ t !!2/3 G . ~22!

All the Dt dependence cancels, leading to the conclusion,
which agrees with intuition, that as long as the ordinate val-
ues ofs(t) are unchanged, the gain does not change with a
similarity transformation. The sameDt cancellation occurs
for the bicorrelation gain.

For many signals, there is a restriction on the use of
these formulas for largeDt. First,NS5TS /Dt must be large
enough to ensure that the summation over the product of
signal and noise is uncorrelated and that the finite sums ap-
proximate the infinite sums. Second, and more specifically,
there must be a sufficient number of significant nonzero sig-

FIG. 3. The minimum detectable level as a function of the number of
sample points for the 49–51 Hz sinusoid. The solid curves give the formula
predictions and the symbols give the computer calculations.
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nal values, since these determine how many terms contribute
significantly to the sums of Eqs.~7!, ~9a!, and ~10a!. The
gain prediction formulas may therefore fail to apply even for
a Dt which is small enough to satisfy the sampling require-
ments.

Consider the case of the narrow pulse. The differences
between the predicted SNR and the computer simulated SNR
for SNRCC, SNRBC, and SNRTC are 0.03, 1.43, and 2.11 dB,
respectively. Differences between the formula predictions
and computer simulations grow larger with increasing detec-
tor order, and the differences for SNRBC and SNRTC are
larger than the differences for the other seven signals in
Tables II–IV. Investigation into the source of the difference
for the narrow pulse reveals that the bicorrelation and tricor-
relation s-a PDFs are noticeably nonGaussian, which violates
the assumptions required for the prediction formula deriva-
tion. At its original sampling, there are only 32 nonzero sig-
nal points in the narrow pulse, causing the breakdown of the
assumption that finite-time averages should approximate
infinite-time averages, and resulting in a non-Gaussian s-a
PDF. Additional computer simulations support this hypoth-
esis. The original 32-point signal is interpolated to contain
128, 256, 512, and 1024 points within in the original 0.03-s
signal duration, and the computer simulated values for
SNRBC and SNRTC are calculated. The predicted and simu-
lated values become closer as the number of signal samples
increases~Fig. 4! and the s-a PDFs become increasingly
Gaussian. With 1024 points, the difference between the pre-
dicted and simulated SNR values decreases to 0.32 dB for
both the bicorrelation and tricorrelation detectors.

For a realisticPfa , the narrow pulse signal does not
show a positive SNR gain for the bicorrelation or tricorrela-
tion detectors over the ordinary correlation detector, ifDt is
chosen small enough for the prediction formulas to apply.

With 128 points within the signal duration, fewer than nec-
essary for the prediction formulas to apply, both the predic-
tions and simulations show that the cross correlation detector
performs best. While it is possible to select a large enough
Dt to get a positive gain for this signal in simulations, it is
simply not possible to predict that gain well with the gain
formulas.

V. REPEATED SOURCE REPLICAS IN HIGHER
ORDER CORRELATION DETECTION

Repeating the source signal when using bicorrelation
and tricorrelation detectors can have beneficial or detrimental
effects, depending on the source signal~Pflug et al., 1992b!.
Derivation of bicorrelation and tricorrelation detector predic-
tion formulas for repeated sources is analogous to the deri-
vations for a single source. If the source is repeated once in
the tricorrelation so that signals from only two sensors are
used, then the s-p and s-a tricorrelations are

s-p: TC5 (
k50

Ns21

s2~ t !@s~ t !1n1~ t !#@s~ t !1n2~ t !#Dt,

~23a!

s-a: TC5 (
k50

Ns21

s2~ t !n1~ t !n2~ t !Dt, ~23b!

and a4
n , as given by Eq.~A5! in the Appendix, isa4

n

5Dtm4
ssn

4, and the predicted SNR is

SNRTC
~2,2!5ssAzn

TCADt

Am4
s

, ~24!

where ~2,2! denotes the power on the known source in the
correlation and the number of channels used in the correla-
tion @see Eq.~23!#. With this notation, all previous formulas
would have superscripts of (1,p21) for the moment of order
p. The corresponding SNR gain over the cross correlation
detector is

TCG~2,2!520 log10Fzn
2m4

sDt

~m2
s!2 G1/4

. ~25!

This formula shows that for fixedDt and Pfa , the gain de-
pends explicitly on only the signal moments and that the
simple calculation of these moments predicts whether repeat-
ing the source is advantageous or not.

Improved detection may result from repeating the source
signal in the bicorrelation detector. However, at zero lag this
higher order repeated source case, with noise from only one
sensor, is equivalent to a correlation of a signal filter with
one received signal. When only one received signal is used
in the detection process, the cross correlation or matched
filter is expected to be optimal for detection in white noise
~Gardner, 1986!. For the bicorrelation with a repeated
source, the s-p and s-a bicorrelations are

s-p: BC5 (
k50

Ns21

s2~ t !@s~ t !1n1~ t !#Dt, ~26a!

FIG. 4. Formula predictions~continuous curves! and computer simulations
~asterisks! of SNRBC and SNRTC for the narrow pulse versus number of
sample points within the original signal duration.
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s-a: BC5 (
k50

Ns21

s2~ t !n1~ t !Dt, ~26b!

anda3
n5Dtm4

ssn
2. This leads to

SNRBC
~2,1!5

zn
BCssAm4

sDt

m3
s , ~27!

and the corresponding gain over the cross correlation detec-
tor which is

BCG~2,1!520 log10F ~m3
s!2

m2
sm4

sG1/2

. ~28!

If the source signal is repeated twice in the tricorrelation,
then the s-a and s-p tricorrelations are

s-p: TC5 (
k50

Ns21

s3~ t !@s~ t !1n1~ t !#Dt, ~29a!

s-a: TC5 (
k50

Ns21

s3~ t !n1~ t !Dt, ~29b!

anda4
n5Dtm6

ssn
2. The predicted SNR is

SNRTC
~3,1!5

zn
TCssAm6

sDt

m4
s , ~30!

and the SNR gain for this case is

TCG~3,1!520 log10F ~m4
s!2

m2
sm6

sG1/2

. ~31!

The SNR gains for the SNRBC
~2,1! and SNRTC

~3,1! are independent
of Pfa and sampling interval, while the SNR gain for SNRTC

~2,2!

is not. This means that SNRBC
~2,1! and SNRTC

~3,1! have the same
dependence on the sampling interval andPfa as SNRCC,
which is consistent with the fact that these higher order de-
tectors are ordinary filters.

For the seven test signals other than the narrow pulse,
the tricorrelation detector with the source repeated once
shows a higher SNR gain than the tricorrelation detector
without a repeated source forPfa50.001 . Repeating the
source twice improves the SNR gain even more. Repeating
the source in the bicorrelation detector for these signals re-
sults in improvement for some signals, but not others, but the
cross correlation still performs best. The predicted bicorrela-
tion gain for the narrow pulse is 1.83 dB without a repeated
source, but drops to20.29 dB with a repeated source. The
tricorrelation gain for the narrow pulse is 2.64 dB without a
repeated source, drops to 1.98 dB with the source is repeated
once, and is20.60 dB when the source is repeated twice.

VI. CONCLUSIONS

Formulas that predict cross correlation, bicorrelation,
and tricorrelation known source detector performance at the
minimum detectable level for any probability of false alarm
are derived and corroborated with computer simulations. The
prediction formulas indicate that there are circumstances un-
der which the higher order correlation detectors could out-
perform the cross correlation detector for the known source
case, and give the relationships to the variables upon which

the detection performance depends. They show that the cross
correlation, bicorrelation, and tricorrelation detectors are pro-
portional to the second, fourth, and sixth roots of the sam-
pling interval. The SNR gain formulas indicate that the
higher order detectors are more likely to exhibit better detec-
tion performance than the cross correlation detector when the
tolerance for false alarm is low. A simulation result is given
in which there is positive SNR gain for the higher order
correlations, but the prediction formula assumptions are not
satisfied for this case. While it is theoretically possible for
the higher order correlation detectors to perform better than
the cross correlation detector, only a limited class of signals
exists for which they do.

ACKNOWLEDGMENTS

The authors wish to acknowledge funding from NRL
Grant No. N00014-89-J-6002 and ONR Grant No. N00014-
95-1-0648, and thank Dr. Ananthram Swami of the U.S.
Army Research Laboratory for helpful discussions.

APPENDIX: GAUSSIAN CHARACTER OF
CORRELATION CENTRAL ORDINATE PDFS

Following Isserlis~1918! and Gardner~1986!, the qth
ensemble moments of thepth order correlation central ordi-
nate PDFs are shown to be consistent with a zero-mean
Gaussian density where the correlation consists of (p-r )
zero-mean noise sequences correlated with a known signal
raised to ther th power. That is, all odd order ensemble mo-
ments are zero, and all even order ensemble moments greater
than two are appropriately proportional to powers of the sec-
ond moment, if the assumptions discussed in Sec. I are sat-
isfied.

The qth order ensemble moment of the source signal
andp2r sequences drawn from an infinite noise ensemble is

M p
q5EH F (

k50

Ns21

sr~ t !ni 1
~ t !ni 2

~ t !¯ni p2r
~ t !DtGqJ

5~Dt !qEH F (
k150

Ns21

sr~ t1!ni 1
~ t1!ni 2

~ t1!¯ni p2r
~ t1!G

3F (
k250

Ns21

sr~ t2!ni 1
~ t2!ni 2

~ t2!¯ni p2r
~ t2!G¯

3F (
kq50

Ns21

sr~ tq!ni 1
~ tq!ni 2

~ tq!¯ni p2r
~ tq!G J ~A1!

5~Dt !qEH (
k150

Ns21

(
k250

Ns21

¯ (
kq50

Ns21

sr~ t1!sr~ t2!¯sr~ tq!

3ni 1
~ t1!ni 1

~ t2!¯ni 1
~ tq!•ni 2

~ t1!

3ni 2
~ t2!¯ni 2

~ tq!•••ni p2r
~ t1!ni p2r

~ t2!¯ni p2r
~ tq!J ,

~A2!

with the number of signal pointsNs and t j5kjDt. This ex-
pression is zero whenq is odd, and whenever allt j are dis-
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tinct. It is only nonzero whenq is even and times are equal
in pairs. Using delta function notation, the moments are non-
zero when

M p
q5~Dt !qEH (

k150

Ns21

(
k250

Ns21

¯ (
kq50

Ns21

sr~ t1!sr~ t2!¯sr~ tq!

3ni 1
~ t1!ni 1

~ t2!¯ni 1
~ tq!ni 2

~ t1!ni 2
~ t2!¯ni 2

~ tq!•••

3ni p2r
~ t1!ni p2r

~ t2!¯ni p2r
~ tq!

3F( d~ t j 1
2t j 2

!¯d~ t j q21
2t j q

!G J ~A3!

is nonzero, where the summation over the product of delta
functions is taken over all possible ways of dividingq
integers into q/2 combinations of pairs. There are
(1)(3)(5)̄ (q23)(q21) terms in the summation. Apply-
ing the delta summation, exchanging summations and expec-
tations where appropriate, and using the uncorrelatedness as-
sumptions results in

M p
q5@~1!~3!~5!¯~q23!~q21!#

3~Dt !q/2~m2r
s !q/2E$ni 1

2 ~ t1!ni 1
2 ~ t2!¯ni 1

2 ~ tq/2!%

3E$ni 2
2 ~ t1!ni 2

2 ~ t2!¯ni 2
2 ~ tq/2!%¯

3E$ni p2r

2 ~ t1!ni p2r

2 ~ t2!¯ni p2r

2 ~ tq/2!%. ~A4!

Since the square of the noise is uncorrelated in time, this is
equal to

M p
q5@~1!~3!~5!¯~q23!~q21!#

3~Dt !q/2~m2r
s !q/2E$ni 1

2 ~ t1!%E$ni 1
2 ~ t2!%¯E$ni 1

2 ~ tq/2!%

3E$ni 2
2 ~ t1!%E$ni 2

2 ~ t2!%¯E$ni 2
2 ~ tq/2!%E$ni p2r

2 ~ t1!%

3E$ni p2r

2 ~ t2!%¯E$ni p2r

2 ~ tq/2!%

5@~1!~3!~5!¯~q23!~q21!#

3~Dt !q/2~m2r
s !q/2@E$n2~ t !%#~p2r !q/2, ~A5!

which is the evenqth order ensemble moment of the corre-
lation of p-r zero-mean noise sequences and the signal
raised to ther th power. These moments are consistent with
the moment relationships for a Gaussian distributed density.
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