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Known source detection predictions for higher order correlators

Lisa A. Pflug
Naval Research Laboratory, Code 7173, Stennis Space Center, Mississippi 39529-5004

George E. loup and Juliette W. loup
Department of Physics, University of New Orleans, New Orleans, Louisiana 70148

(Received 15 January 1996; accepted for publication 21 January 1998

The problem addressed in this paper is whether higher order correlation detectors can perform better
in white noise than the cross correlation detector for the detection of a known transient source
signal, if additional receiver information is included in the higher order correlations. While the cross
correlation is the optimal linear detector for white noise, additional receiver information in the
higher order correlations makes them nonlinear. In this paper, formulas that predict the performance
of higher order correlation detectors of energy signals are derived for a known source signal. Given
the first through fourth order signal moments and the noise variance, the formulas predict the SNR
for which the detectors achieve a probability of detection of 0.5 for any level of false alarm, when
noise at each receiver is independent and identically distributed. Results show that the performance
of the cross correlation, bicorrelation, and tricorrelation detectors are proportional to the second,
fourth, and sixth roots of the sampling interval, respectively, but do not depend on the observation
time. Also, the SNR gains of the higher order correlation detectors relative to the cross correlation
detector improve with decreasing probability of false alarm. The source signal may be repeated in
higher order correlations, and gain formulas are derived for these cases as well. Computer
simulations with several test signals are compared to the performance predictions of the formulas.
The breakdown of the assumptions for signals with too few sample points is discussed, as are
limitations on the design of signals for improved higher order gain. Results indicate that in white
noise it is difficult for the higher order correlation detectors in a straightforward application to
achieve better performance than the cross correlat®®001-49668)01805-0

PACS numbers: 43.60.Gk, 43.60.CH K]

INTRODUCTION liminary results using these formulas have been included in

two abstractqPflug et al, 1994a; loupet al,, 1995 and a
The potential advantages over conventional detectioproceedings articléPflug et al,, 1995a.

methods that may be obtained using higher order moment After a background discussion given in Sec. I, the for-

and related spectral techniques have received much attentionulas for known source detection are derived in Sec. Il.

in recent years. Higher order techniques show promise il€Comparison of the formula predictions with simulations us-

applications for stationary signals and also for short-timeng a set of various test signals is given in Sec. Ill. Section

transients where only a single occurrence of a signal may b/ presents a discussion of signal design limitations for

available for detectioriDwyer, 1984; Hinich, 1990; Hinich higher order gain and the applicability of the prediction for-

and Wilson, 1990; Kletter and Messer, 1990; Sangfelt andnulas. Repeating the source signal in higher order correla-

Persson, 1993; Delaney, 1994; Tageteal, 1994; Baugh tion detectors is addressed in Sec. V. Finally, a summary of

and Hardwicke, 1994; Nuttall, 1994The latter case, for the findings appears in Sec. VI.

correlation detectors, has been investigated in previous pa-

pers by the authors using both computer simulatig?ftug

et al,, 1992b, 1994pand more recently for unknown source |, DEFINITIONS AND ASSUMPTIONS

detection, using theoretical performance predictions for the

case of uncorrelated noigBflug et al, 1995h. The theoret- The detection criteria used in this paper are based on the

ical performance predictions are extended in this paper t§econd through fourth order moments of a deterministic tran-

include predictions for known source detection, of which ac-Sient signais(t), defined by

tive detection is the most common application. The formulas Ns—1

can be used to determine under what conditions higher order m,SJ:At > sP(t), (h)

correlations perform better than the cross correlation detector k=0

in uncorrelated noise, if the higher order correlations includén which p is the moment ordet=KkAt, andNj is the num-

more than one hydrophone, or channel, of data. Although thier of points in the source signal. The second through fourth

cross correlation is the optimal linear detector in white noiseprder moments correspond to central ordinate, or zero time

the inclusion of additional channels of data in the higherlag, values for the cross correlation, bicorrelation, and tricor-

order correlations makes them nonlinear detectors, whichelation, respectively. Although the definitionmﬁ includes

makes possible improvement over the cross correlation. Prehe factorAt, changing the sampling rate of a signal results
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in a corresponding change in the summation of @g.leav- !
ing the value ofmf) the same, if the signal is adequately
sampled.

The underlying noise process is assumed to be zero-
mean stationary, independent, and identically distributed
(i.i.d.), and therefore higher order white and uncorrelated.
Less restrictive assumptions concerning the noise can be
found in Appendices A and B of Pflugt al. (1995h. These
assumptions can be modified in a straightforward manner to !
substitute the known source signal for one of the noise se- : P. P,
guences. No averaging is used in the detection process, since
the transients are nonstationary over their domains. Thus thgg. 1. The signal-absefs-a and signal-preseris-p PDFs that determine
noise is treated as an energy signal in the process of deteake P,=0.5 point of a ROC curve.
ing an energy transient and has moments defined as in Eq.

(D). AtNS? 1 (m3)?
Itis assumed for all but Sec. V that the source signal is  g2=— > [s(t)—s]?== [mg_ A (5)
simultaneously recorded on each@fl spatially separated T &o T T

sensors for theth order moment. When the source signal isyhere the mean is=mS/T. For known source detection, the
present, the second, third, and fourth order correlation detegsrocessing window durationT=AtNg, is by definition

tors, also called the cross correlatig@C), bicorrelation equal to the transient signal duration, denotedTQy The
(BC), and tricorrelation(TC) detectors, have detection statis- gise varianceg?, is defined in the same way a$ because

tics the correlations are defined for energy transients. The noise
Ng—1 ensemble is ergodic and differences between the sample and
CC= 2 s(t)[s(t) +ny(t)]At, (2a) population noise means and variances are assumed to be
k=0 small for comparison of theoretical and simulated results.
Ng—1
BC= >, s(t)[s(t)+ny(t)][s(t)+n,(t)]At, (2b) . KNOWN SOURCE DETECTION PREDICTION
k=0 FORMULAS
and Derivations of formulas that predict the SNR at which a
Ng—1 passive correlation detector achieves the minimum detect-
TC= E S(t)[s(t)+n1(t)][s(t)+nz(t)] able IeveI(MDL) are glven by PﬂU@t a!. (1995b The
k=0 MDL is the SNR at which a detector achieves a probability
X [S(t)+ny(D)]AL, 20 of detection Pgy) equal to 0.5 for a selected probability of

false alarm P;;). The derivations are based on the areas
In these equations;(t) represents the noise at one of the beneath the signal-abseista and signal-preseris-p) prob-
p-1 spatially separated sensors. The first terms in the exability density functionsSPDF9 of the zero lag correlation
tended sums of Eq$2a), (2b), and(2¢c) are simply the mo- values that define a receiver operating character{&{C)
ments of the signal, as given in EfL). When the source curve(see Fig. 1 For thepth order correlation, the mean of
signal is absent, the correlation detectors are given by the s-p PDF is amfJ (the pth order signal correlationand

Ne-1 the mean of the s-a PDF is ﬂf; (the pth order noise corre-
lation), which is zero under the assumptions in this paper.
CC= s(t)ny(t)At, 3 . . .
kgo ()ny(t) (33 The s-a PDF moments are consistent with Gaussian mo-

ments, as shown in the Appendix.

Ng—1
N Since the s-p PDF is symmetric, the mean is equal to the
BC= ,Z‘O s(Hny(Hnx(DAL, (3D) median of the PDF and they=0.5 threshold occurs at the
mean,mf, (see Fig. 1 For a fixed SNR, this threshold also
and defines theP;,. ThePy,, or area to the right of the threshold,
Ng—1 is related to a standardized score, caltgd by
TC= X s(tiny(t)na(t)ng(t)At. (30 s_ o
k=0 my,—my
] ) ] ) Zy= S (6)
The amplitude signal-to-noise rati®&NR) for energy \/a—p

signals is defined by whereay, represents the variance of the s-a PDF. The stan-

o dardized score is the abscissa value which defines the tail
SNR= o 4 area for a normalized Gaussian distributed PDF having zero-
n mean and unit variance. This makes it possible to use one
Conversion of the amplitude SNR in E@) to power SNR  formula or table of areas to find the;, for any Gaussian
in decibels is accomplished using 20 Jg@rs/o,,). The vari-  distribution, regardless of its defining parameters. A table of
ance of a deterministic signa(t) is these areas can be found in most basic statistics books or
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computed numerically. Here, andPy, are inversely related. ] Ns—1 2
Whene; in Eq. (6) and the corresponding SNR are smaller, %3~ E kZo s(tn, (Hn;, (DAL
z, is larger, and the two PDFs in Fig. 1 are narrower and

have less overlap, resulting in a smalg. For more details , Ns 1
on the relationship between scores and ROC curves, see —E2 > s(tn; (Hn; (1At (93
Egan(1975. -
For P4=0.5, Eq.(6) is related to the remaining ROC Ns—1 Ng—1
curve parameters througtf), SNR, andPy,. Sincem; and =Ei (At)zkzo kZO s(ty)s(tz)n; (t1)
my are known, ifa; can be expressed theoretically as a 7
function of signal and noise parameters, then Ej.can
ultimately be used as a prediction formula for detection per- Xnil(tz)niz(tl)niz(tz)] (9b)
formance. The derivations of',} for p=2, 3, and 4 follow.
The PDF varianceg}, of cross correlation realizations :Atmggﬁ. (90

of a finite-length transient signa(t), and members of an

infinite ensemble of finite-length noise sequenaegt), is Again, Ng must be large. For the tricorrelation, noise re-

ceived from three sensors is used in the s-a PDF variance.

given by
Ng—1 2
Ng—1 2 QQZEH Z s(t)ni, (Hn(Hn; (1) At }
aZZEH Z s(t)nil(t)At} ] -
Ny—1 —EZ{ 2 s(t)nil(t>ni2<t>ni3<t>m] (109
—EZ[ > s(t)nil(t)AtJ. 7)
k=0 =Atm§0'E. (10b)

) ) These s-a PDF variances can be substituted in(&q.
The expectation operator represents averaging the large NURg mentioned previously, the cross correlation s-p PDF has

bgr of .reallzatlons ger_1erated in performing Monte Carlomean equal tan3, and the expression fa, becomes
simulations over the noise ensemble to evaluate detector per-

formance, and is not related to any averaging in the detector ms—m;  ymj 11
) : . . . 7= = ) 11
itself. Since the signal and noise are approximately uncorre n /_ag o At

lated across the finite-time interval of interest and the noise
is assumed to be zero mean, the second term can be ngsing Eq.(4) gives

glected. Then,
oZaAt
yms
a3=E| (AD? 2 2 s(ty)s(t)n; (t)n; (o) (88) i i
2 Ko K=o Y A P A P Here, SNR, the MDL for the cross correlation detector, is
interpreted as the SNR required to achieve the detection level

of P4=0.5 at thePy, corresponding ta,, the standardized
Ns 1 } threshold value. Since is proportional to\/ﬁ, m3 depen-

SNRcc= (12

Ng—1 Ng—1

2 s%(ty)n? (ty) (80 dence is canceled in the derivation, and SNRS constant
v for all signals. This is not to be interpreted as saying that all
signals of equal duration and sampling are equally detectable

:(At)m;E{nizl(tl)} (80 using the cross correlation. The correct interpretation is that
the cross correlation detector achiewes=0.5 for these sig-
nals at the same SNR, which requires varying levels of noise

=Atmo?. (8d) for different signals.

The bicorrelation s-p PDF has mean equat®, which
for simplicity is assumed to be positive. Evaluating the

=E[(At)2

The summation ovek, in the derivation of Eq(8b) from

ives
Eq. (89 is a result of the assumption that the noise is i.i.d.g
E{n?(t)} represents the infinite ensemble variance of the m3—mj m3
noise, which is equivalent to2 in Eq. (8d) for an infinite Zn= N 2 S (13
, | \/a_z Un\/Ath

time sum due to the ergodicity of the noise. This derivation
also follows from the result given in the Appendix and is Substituting to obtain the SNR yields the formula
based on the assumption that finite-time averages are equal

to infinite-time averages, which is approximately true for 2CJAtms
large enougH\ (see the discussion in Sec. IV for practical ~ SNRsc=07 I (14
3

restrictions on the signal For the bicorrelation, noise re-
ceived from two sensors is used in the s-a PDF variance. A similar analysis for the tricorrelation yields
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S n S
omg-mp o omg

" Vaj o2\ JAtmS
and i%
C
3] ZRCVAtMS 3
SNRic=0s\| — (16 v
my b=a
n
For zero-mean energy signals, the SNR prediction formulas
reduce to I 1
Z VAt 0.0000 0.0005 0.0010 0.0015 0.0020
SNR:c= , 7 Sampling Interval (sec)
VTe
FIG. 2. Bicorrelation and tricorrelation SNR gain versus sampling interval
(m§)3/22n*/At for a zero-mean signal with moments5=0.0025, m$=0.0022, mj
SNRge= \/ ———— (18  =0.0015, ancP(,=0.001.
S 1
m3Ts
and — : o :
vation time, T, provided the entire signal is in the processing
2/ (M3)%z, At window. This is because the multiplication of the noise by
SNRyc= (19 the signal sets the noise to zero outside the signal window.

s 3/2 °
My (Ts) Known source detection performance does, however, depend
For zero-mean signals, SNRand SNR can also be writ-  on At. In particular, for known source detection, SNR
ten as functions of signal skewness and kurt@8fauget al, SNRsc, and SNR. are proportional to the second, fourth,
19953. _ and sixth root of the sampling interval, respectively. Perfor-
To compare the three detection methods, S8R mance improves for all the correlation detectors with de-

SNRB?’ and SNRC should _be evaluated at the salﬁ%._ tcreasing sampling interval. However, as sampling intervals
The difference in dB levels is referred to as the SNR gain o . . . .
increase, the bicorrelation and tricorrelation detectors de-

the bicorrelation or tricorrelation detector over the cross cor- . )
relation detector. Using one source signal and distinct grade less quickly than the cross correlation detector. For a

channels of received data, the bicorrelation SNR gain in dé!"’e” S'Q”a" no_lse level, arfék,, each of Fhe three detect_ors_
; is associated with a range of sampling intervals for which it

is
o211 will perform best. For example, if a zero-mean signal has
_ (m3)°zzAt momentsm$=0.0025 s,m3=0.0022 s, andni=0.0015 s,
BCG=20 |0g10 — 53 | (20) : . . . .
| (my) then the bicorrelation and tricorrelation SNR gains versus
and the tricorrelation SNR gain in dB is sampling interval will be as _shown |r_1 Fig. 2 f@rfa=0.001.
e 1106 (z,=3.09). For a positive bicorrelation gain, the sampling
TCG=20] (my)“z,(At) interval must be 0.000 34 s or larger, and for a positive tri-
- 0G0 S\4 (21) . . . .
L (my) correlation gain, the sampling interval must be 0.000 44 s or

The SNR gain formulas for zero-mean and nonzero—mea}?rger' i )
signals are the same, since the only dependence on the signal Detection performance improvetower SNR for the
mean in the nonzero mean formulas is through the standaijrée detectors as, decreases, or the tolerance for false
deviation, and the dependence of SNR SNRsc, and alarm increases. However, if the tolerance for false alarm is
SNR¢ on the standard deviation cancels in the gain ratios.small, as it often is in practice, the bicorrelation and tricor-
The gain formulas show no functional dependence orfelation SNR formulas, which give increasing gain with de-
T.. Known source detection, in contrast to unknown sourcesreasingPs,, indicate that higher order detectors could out-
detection(see Pfluget al, 1995a, bis independent of obser- perform the cross correlation.

TABLE I. MomentsmfJ in amplitude units to theth power times seconds for the eight test signals.

Signal Ts (9 m3; m3 m3 mg
Whale transient 1.00 -9.13x10° 2.78x10! 1.07x10°%  1.75x10°!
Low frequency whale 1.00 -—1.42x10%2  2.80x10°? 2.31x1072  1.78x10°1!
5 Hz sinusoid 0.75 7.5210%  7.31x10°? 2.93x10°2  4.05x10°2
Narrow pulse 0.03 3.1210°°%  2.68x10°3 2.20<10°%  1.93x10°°
50 Hz sinusoid 1.72 -57810%  1.77x10°! 7.25x10°%  9.38x10°2
49-51 Hz sinusoid 1.21 3.280° 419102 2.25x10°%  1.83x10°2
FM linear sweep 1.72 7.4210°° 1.77x10°* —3.05x10°%  9.38x10°?
Nonlinear FM sweep 1.72 1L.¥K104 1.77x10°1! 2.67x10°8  9.39x10°2
2472 J. Acoust. Soc. Am., Vol. 103, No. 5, Pt. 1, May 1998 Pflug et al.: Known source detection predictions 2472
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TABLE Il. Known source detection SNR in dB for P;;=0.001 calculated  TABLE IV. Known source detection SNR in dB for P;,=0.001 calcu-
from computer simulations and the prediction formulas, and the absolute dBated from computer simulations and the prediction formulas, and the abso-

difference between the two methods. lute dB difference between the two methods.
Simulated Predicted Absolute Simulated Predicted Absolute
Signal SNR-c SNR-c difference Signal SNRy¢ SNRy¢ difference
Whale transient —19.49dB  —-20.30dB 0.81 dB Whale transient —8.64 dB —-9.14dB 0.50 dB
Low frequency whale —19.47 —20.30 0.83 Low frequency whale —8.81 -9.14 0.33
5 Hz sinusoid —16.77 —17.29 0.52 5 Hz sinusoid —9.36 -9.62 0.26
Narrow pulse -5.64 -5.67 0.03 Narrow pulse —6.20 -8.31 211
50 Hz sinusoid —17.96 —18.64 0.68 50 Hz sinusoid —9.98 —10.36 0.38
49-51 Hz sinusoid —17.89 —17.99 0.10 49-51 Hz sinusoid —12.80 -13.31 0.51
FM linear sweep —18.39 —18.64 0.25 FM linear sweep —10.10 —10.36 0.26
Nonlinear FM sweep —18.27 —18.63 0.36 Nonlinear FM sweep —10.01 —10.35 0.34
. COMPARISONS BETWEEN PREDICTIONS AND signals are sampled with intervél/1024 s, the last four
COMPUTER SIMULATIONS with (1/500 s. The low frequency whale transient, 41-59 Hz

Pflug et al. (19940 present detection results using hy- FI\/\I/Imsiar frwleilp ’narr]r? )157(1) _r?1 '}'ﬁ ncr)1ri1tlnzjear FtI\/IZS\:ve?i[:r)ndolnot
pothesis testing and Monte Carlo simulations with 10 OOd1a € bicorrelatio aximu agnituces at zero ime fag.
Also, the whale transient and 50 Hz sinusoid have approxi-

Gaussian noise realizations for eight energy signals. Note . . .
d oy sig ately zero bispectra since the lowest frequency present in

that the formulas do not require the noise to be Gaussia . . . . .
distributed, but they require the noise ensemble to be i.i.d!j:e signal is essentially half the highest frequency. This

The signals are varied in nature, generally of low frequency,makes the bicorrelation value at zero time-lag inappropriate

and they are described in detail in the above referenceé®> a detection criteriofioup et al, 1989; Pflug, 1990; Pflug
3t al, 1992a.

Known source detection simulations are performed with the® . .
Tables II-IV contain the results of the computer simu-

resulting P4 vs SNR curves interpolated &3;=0.5. These . . o
simulations involve only one replica of the source signal in![at'?ns a’?F? tf% g1oelorgtlcal ?’redlt(r:]tlons for knolwn ;ourci‘etge-
the bicorrelation and tricorrelation. While the focus of the coion alFp=U.0UL. EXCEPUNG the narrow pulse signal, the
paper by Pfluget al. (1994 is on the advantage of prefil- predlctlons. and simulations agree reasonablyiwell, ywth the
tering in higher order correlations, results for detection simu-abSOILIJte dn:_ertgnces fbselt\lvvReen the iompgtel:)igl{llag%résda;d
lations with no prefiltering are also given. These results ar ormuta predictions o ranging from ©.19 db 1o ©.

or the three detectors. For these seven test signals, the cross

used to corroborate the known source prediction formula lation detect ¢ better than the high q
derived in this paper, which assume there is no signalf:Orrealon etector performs better than the higher order

specific or situation-specific passband filtering. correlation detectors, as shown by the predicted BCG and

Table | lists the signal duration and first through fourth TCG values in Table V. For the narrow pulse, both the bi-

order signal moments used in detection performance predi orrelation and tricorrelation detectors perform better than

tion for the eight test signals. The test signals include ahe cross correlation. However, the gain achieved in the

model 20 Hz finback whale transient. the whale transien?immaﬁons is significantly lower than predicted with the for-
shifted to 12 Hz and called the low ,frequency whale anmulas. The reasons are discussed in detail in the following
'~ section.

amplitude modulated 5 Hz sinusoid, a narrow-time pulse The diff betw th ¢ imulati d
which has a flat magnitude spectrum to approximately 80 Hz € driierence between the computer simulations an

and a smooth rolloff to 256 Hz, an amplitude modulated 50the predictions, which generally fluctuates between 0 and 0.5

Hz sinusoid, a 49-51 Hz beating sinusoid, an FM IineardB for the test signals except the narrow pulse, is not re-

sweep from 49 to 51 Hz, and a nonlinear FM sweep frommoved by finer sampling, which implies that for those sig-

120 to 0 Hz. For the computer simulations, the first fourr?a.IS there is a sufficient ngmber of S.'gr.‘?' samples for the
finite summation to approximate the infinite summation in

the formula derivations. For example, in Fig. 3, the computer

TABLE Ill. Known source detection SNR in dB for P;,=0.001 calculated

from computer simulations and the prediction formulas, and the absolute dB

difference between the two methods. TABLE V. Predicted bicorrelation and tricorrelation SNR gains over the

cross correlation detector.

Simulated Predicted Absolute

Signal SNRs¢ SNRg¢ difference Signal BCG(dB) TCG (dB)
Whale transient Whale transient —11.16
Low frequency whale B e e Low frequency whale - —11.16
5 Hz sinusoid —8.41dB —8.84dB 0.43 dB 5 Hz sinusoid —8.45 —7.67
Narrow pulse —6.08 —-7.51 1.43 Narrow pulse 1.84 2.64
50 Hz sinusoid 50 Hz sinusoid —8.28
49-51 Hz sinusoid -3.34 —3.59 0.25 49-51 Hz sinusoid —14.40 —4.68
FM linear sweep FM linear sweep —-8.28
Nonlinear FM sweep Nonlinear FM sweep —8.28
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-5f ' ) ‘ ' ' ' ] P, value of 1X 108, at least one million realizations would

—1of 3 be required.
-15F .
. ] IV. LIMITATIONS ON THE DESIGN OF SIGNALS FOR
%? 20} > POSITIVE HIGHER ORDER GAIN
_osf. 3 The physically motivated definition of the signal mo-
t ] ments, which includes the time dimensiakt, in the sum-
-3or ] mation given in Eq(1), has the intrinsic advantage that the
_ssk , . , . , ) ] signal moments do not change if the signal is interpolated or
0 1000 2000 3000 4000 5000 6000 7000 decimated in time. Of course, this will only be true if there is

Number of Sample Points

sufficient samplingPflug et al,, 1993, and the interpolation
is bandlimited(Bracewell, 1985 The above holds whether
or not the moment is normalized by dividing By, and also

for the variance, skewness, and kurtosis.

Since the moments do not change with interpolation or
decimation, subject to the given restrictions, the entire effect
of either of these two operations on the higher order detec-
tion gain is contained in thAt factor of Eqgs.(20) and(21).

-sf S Larger At increases the higher order advantage, while
) smallerAt does the opposite, favoring the cross correlation
detector (matched filter. In fact, in the Ilimit of the
_12f , . . . . . continuous-time signalAt goes to zerp the gain tends to
0 1000 2000 3000 4000 5000 6000 7000 negative infinity, and the cross correlation is best for any
Number of Sample Points A ) ) . N
signal if the signal and noise satisfy the necessary assump-
tions. For a given signal, it is straightforward to determine
: E whether there is anyt large enough, within the sampling
-13F E limitations, to give positive higher order gain. It should be
: E noted that experimental conditions may also put limitations
3 E on At, and these are not considered here.
%? -1 3 Another design question which may be asked of the gain
@ formulas is how varying the width of a signal affects the
16 i < E gain. That is, if the signal samples are moved closer together
: E or further aparfAt is decreased or increagesithout chang-
ing the signal ordinate valug®ut changing the moments
. : : : ; : how does the gain change? The functions are related by simi-
0 1000 2000 3000 4000 5000 6000 7000 . . . ..
Number of Sample Points larity (Bracewell, 1985 As At is varied, an upper limit on
o _ At is determined by the sampling requireméRflug et al,
FIG. 3. Tr_le minimum detectabl_e Ievgl as a fupcnon of the number 0f1993. The Similarity Theoren(Bracewell, 1985 describes
sample points for the 49-51 Hz sinusoid. The solid curves give the formula . .
predictions and the symbols give the computer calculations. the effect of varyingAt on the Fourier transform. To analyze
the effect of a width change, consider the tricorrelation gain
formula

simulated and predicted SNRs are shown versus number of (m3)2z4(At)2] Ve
sample points for the 49-51 Hz sinusoid. The differences TCG=20 Ioglo[—s4}
fluctuate randomly with increased sampling, but remain less (my)

than 0.5 dB for each detector. aole O[zﬁ’?’(Ele“(t))l’g

PO IS

-2}

:

SNRge

<

-7 3

Another possible source of error in the computer simu- NI_(TOZ 3 (22
lations is that Gaussian noise generators may not perform (Zk=0S™(V)
well when very low levels of noise, corresponding to the tailsAll the At dependence cancels, leading to the conclusion,
of the noise distribution, are needed. A potential limitation atwhich agrees with intuition, that as long as the ordinate val-
low Py, occurs due to the finite number of realizations usedues ofs(t) are unchanged, the gain does not change with a
in a computer simulation. If 10 000 realizations are used, asimilarity transformation. The sam&t cancellation occurs
in this paper, the minimum nonzemy, value possible is 1  for the bicorrelation gain.
X104, or one false alarm out of 10 000 on average. Thus  For many signals, there is a restriction on the use of
interpolation of theP4 vs Py, curve for a fixed SNR aP;,  these formulas for largAt. First, Ng=Tg/At must be large
values lower than ¥ 102 is generally not statistically reli- enough to ensure that the summation over the product of
able. The number of realizations required to obtain a discretsignal and noise is uncorrelated and that the finite sums ap-
point on the ROC curve at the desir@y, increases with proximate the infinite sums. Second, and more specifically,
decreasind?;,. For example, to obtain By vs P, pointata  there must be a sufficient number of significant nonzero sig-
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—4f With 128 points within the signal duration, fewer than nec-
-6 Pk 1 essary for the prediction formulas to apply, both the predic-
_ak ] tions and simulations show that the cross correlation detector

R _1of 3 performs best. While it is possible to select a large enough

& At to get a positive gain for this signal in simulations, it is
—12¢ ] simply not possible to predict that gain well with the gain
—14t ] formulas.

-16t . . . , e
0 200 400 600 800 10001200
Number of Sample Points
V. REPEATED SOURCE REPLICAS IN HIGHER
ORDER CORRELATION DETECTION
_g:% 3 Repeating the source signal when using bicorrelation
_gl ] and tricorrelation detectors can have beneficial or detrimental

& T\ effects, depending on the source sig(Rflug et al, 19921.

z —10 X 1 Derivation of bicorrelation and tricorrelation detector predic-
-12Ff - tion formulas for repeated sources is analogous to the deri-
~14L 3 vations for a single source. If the source is repeated once in
_16t , , ) , , the tricorrelation so that signals from only two sensors are

0 200 400 600 800 10001200 used, then the s-p and s-a tricorrelations are

Number of Sample Points

Ng—1

FIG. 4. Formula predictionécontinuous curvésand computer simulations s-p: TC= Z S2(H)[s(t)+ny(t)][s(t) +ny(t)]At,

(asterisky of SNRy: and SNR for the narrow pulse versus number of k=0

sample points within the original signal duration. (23a
Ng—1

nal values, since these determine how many terms contribute s-30 TC= 2 s2(t)ny(t)n,(1)At, (23b)
k=0

significantly to the sums of Eqg7), (9a), and (103. The
gain prediction formulas may therefore fail to apply even foran
a At which is small enough to satisfy the sampling require-

n

d ), as given by Eq.(A5) in the Appendix, isa}
=Atmjay, and the predicted SNR is

ments.

Consider the case of the narrow pulse. The differences PACNIN
between the predicted SNR and the computer simulated SNR SNI%FZC'ZE O n—s (29
for SNR-¢, SNR;c, and SNRc are 0.03, 1.43, and 2.11 dB, Vmy

respectively. Differences between the formula prediction%vhere(z,z) denotes the power on the known source in the

and computer simulations grow larger with increasing detec
tor order, and the differences for SjRand SNR. are

larger than the differences for the other seven signals i
Tables II-1V. Investigation into the source of the difference

correlation and the number of channels used in the correla-

tion [see Eq.(23)]. With this notation, all previous formulas
ould have superscripts of {i;-1) for the moment of order

p. The corresponding SNR gain over the cross correlation

for the narrow pulse reveals that the bicorrelation and tricoryetector is
relation s-a PDFs are noticeably honGaussian, which violates

the assumptions required for the prediction formula deriva-
tion. At its original sampling, there are only 32 nonzero sig-

2 sA+]1/4
zmyAt

TCG?2=20log g ——=>
3 mp)?

(29

nal points in the narrow pulse, causing the breakdown of the

assumption that finite-time averages should approximatdhis formula shows that for fixedt and P,, the gain de-

infinite-time averages, and resulting in a non-Gaussian s-pends explicitly on only the signal moments and that the

PDF. Additional computer simulations support this hypoth-simple calculation of these moments predicts whether repeat-

esis. The original 32-point signal is interpolated to containing the source is advantageous or not.

128, 256, 512, and 1024 points within in the original 0.03-s  Improved detection may result from repeating the source

signal duration, and the computer simulated values fosignal in the bicorrelation detector. However, at zero lag this

SNR;c and SNR are calculated. The predicted and simu- higher order repeated source case, with noise from only one

lated values become closer as the number of signal samplésnsor, is equivalent to a correlation of a signal filter with

increases(Fig. 4 and the s-a PDFs become increasinglyone received signal. When only one received signal is used

Gaussian. With 1024 points, the difference between the prgn the detection process, the cross correlation or matched

dicted and simulated SNR values decreases to 0.32 dB fdilter is expected to be optimal for detection in white noise

both the bicorrelation and tricorrelation detectors. (Gardner, 1986 For the bicorrelation with a repeated
For a realisticP;,, the narrow pulse signal does not source, the s-p and s-a bicorrelations are

show a positive SNR gain for the bicorrelation or tricorrela- Ng-1

tion detectors over the ordinary cor_rel_atlon detecto tifis sp: BC= 2 S2(H)[s(t)+ny(1)]At, (269

chosen small enough for the prediction formulas to apply. k=0
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Ns—1 the detection performance depends. They show that the cross

s-a:. BC= E s?(t)ny(t)At, (26b) correlation, bicorrelation, and tricorrelation detectors are pro-
k=0 portional to the second, fourth, and sixth roots of the sam-
and aj=Atm§o2. This leads to pling interval. The SNR gain formulas indicate that the
JBC M higher order detectors are more likely tol exhibit better detec-
SNR2Y = n Is & 4 ’ 27 tion performance than the cross correlation detector when the
m3 tolerance for false alarm is low. A simulation result is given

'&r] which there is positive SNR gain for the higher order
correlations, but the prediction formula assumptions are not
satisfied for this case. While it is theoretically possible for

and the corresponding gain over the cross correlation dete
tor which is

2.0 (m§)2 12 the higher order correlation detectors to perform better than
BCG*7=20logo msmg (28) the cross correlation detector, only a limited class of signals

) ) o . _ exists for which they do.
If the source signal is repeated twice in the tricorrelation,

then the s-a and s-p tricorrelations are
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k=0
andaj=Atmio?2. The predicted SNR is APPENDIX: GAUSSIAN CHARACTER OF
CORRELATION CENTRAL ORDINATE PDFS
31) ZICO'S\/mZAt
SNR% S (30) Following Isserlis(1918 and Gardne(1986, the gth
4 ensemble moments of theth order correlation central ordi-
and the SNR gain for this case is nate PDFs are shown to be consistent with a zero-mean
(m3)2]1/2 Gaussian density where the correlation consists @
TCGRY=20 |0910[% (31 zero-mean noise sequences correlated with a known signal
m;Mg raised to the'th power. That is, all odd order ensemble mo-

The SNR gains for the SNRY and SNE are independent Ments are zero, and all even order ensemble moments greater
of Py, and sampling interval, while the SNR gain for SRR than two are appropriately proportional to powers of the sec-

is not. This means that SN2’ and SNE2 have the same ond moment, if the assumptions discussed in Sec. | are sat-

dependence on the sampling interval aRg as SNR.,  isfied. _

which is consistent with the fact that these higher order de-  The gth order ensemble moment of the source signal

tectors are ordinary filters. andp—r sequences drawn from an infinite noise ensemble is
For the seven test signals other than the narrow pulse, Ns—1 q

the tricorrelation detector with the source repeated onca/Ig:EH > sr(t)nil(t)niz(t)---nip_r(t)At J

shows a higher SNR gain than the tricorrelation detector =

without a repeated source fdét;;=0.001 . Repeating the Ng—1
source twice improves the SNR gain even more. Repeating :(At)QEH > STt (t)n; (ty) -, (tl)}
the source in the bicorrelation detector for these signals re- kp=0 ! 2 P
sults in improvement for some signals, but not others, but the
cross correlation still performs best. The predicted bicorrela- X
tion gain for the narrow pulse is 1.83 dB without a repeated

Ng-1
kE Sr(tz)nil(tz)niz(tz)'"nip_,(tz)]”

2=

source, but drops te-0.29 dB with a repeated source. The Ng—1
tricorrelation gain for the narrow pulse is 2.64 dB without a x| > S (tg)y (L) (tg) -1, r(tq)“ (A1)
repeated source, drops to 1.98 dB with the source is repeated kq=0 P
once, and is—0.60 dB when the source is repeated twice. Ne—1 Ng-1  Ng—1
=<At>QE[ > e 2 S (S () S (L)
VI. CONCLUSIONS k1=0 kp=0 k=0

Formulas that predict cross correlation, bicorrelation, ><nil(tl)nil(tz)---nil(tq)-niz(tl)

and tricorrelation known source detector performance at the

minimum detectable level for any probability of false alarm

are derived and corroborated with computer simulations. The My (t2) M, (L) i ()i _ (t) =i (tg)
prediction formulas indicate that there are circumstances un-
der which the higher order correlation detectors could out- (A2)
perform the cross correlation detector for the known sourcevith the number of signal pointsg andt;=k;At. This ex-
case, and give the relationships to the variables upon whichression is zero wheq is odd, and whenever d| are dis-
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