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Mapping of Fresnel's interface reflection coefficients between
normal and oblique incidence: results for the parallel and
perpendicular polarizations at several angles
of incidence

R. M. A. Azzam

The functions, w = f(z), that describe the transformation of Fresnel's reflection coefficients of parallel and
perpendicularly polarized light between normal and oblique incidence, as well as their inverses, z = g(w),
are studied in detail as conformal mappings between the complex z and w planes for angles of incidence of
15, 30, 45, 60, and 75°. New nomograms are obtained for the determination of optical properties of ab-
sorbing isotropic and anisotropic media from measurements of reflectances of s -or p-polarized light at nor-
mal and oblique incidence.

1. Introduction
In a recent paper1 we have shown that if w and z

represent a Fresnel interface reflection or transmission
coefficient for a s- (TE) or p - (TM) polarized plane wave
of light (or any other electromagnetic radiation) at an
oblique angle of incidence 0 and at normal incidence,
respectively, w is an analytic function of z, w = f(z), that
depends on 0 but not on the media on opposite sides of
the interface. We have illustrated in Ref. 1 the map-
ping between the complex z and w planes for the Fresnel
reflection coefficient of the s polarization at one angle
of incidence (0 = 450). In this paper we provide com-
prehensive documentation of the mapping properties
of the reflection coefficients of the s and p polarizations
between normal incidence and several angles of oblique
incidence (15, 30, 45, 60, 75°). Useful nomograms are
obtained for determining optical properties of absorbing
media from reflectance measurements.

In the following we assume the exp(jowt) time de-
pendence and p and s directions in accordance with the
Nebraska (Muller) conventions. 2
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II. Reflection Coefficient of the Perpendicular
Polarization

A. Forward Transformation
The reflection coefficient of s -polarized radiation at

oblique incidence w is related to that at normal inci-
dence z byl

(1 - z) - (1 - az + Z
2

)1/
2

(1 - z) + (1 - az + z2
)
1
/2

(1)

where

a = 4 tan2 + 2. (2)

In the Nebraska (Muller) conventions, z and w are
limited to the interior and boundaries of the upper half
of the unit circle in the complex plane. Figure 1 shows
the mapping by Eq. (1) of semicircles centered on the
origin of the z plane (representing lines of equal nor-
mal-incidence amplitude reflectance I z = 0.1, 0.2,....
1) onto the w plane when 0 = 300 (a = 10/3). Here, and
in all figures, curves and points that are images of one
another are denoted by the same numbers and letters,
respectively. Points at the beginning (start) and end
(finish) of a curve are denoted by S and F, and arrows
indicate the direction in which curves are traced.
Semicircles in the z plane with radii I z < (1 - sino)/(1
+ sink) (I z I < 1/3 for 0 = 300) are imaged onto contours
in the w plane that begin and end on the real axis
(contours, 1, 2, 3, in Fig. 1). For a semicircle with I z I
> (1 - sink)/(1 + sinp), the image contour in the w
plane begins on the unit circle and ends on the real axis.
The unit semicircle z = 1 in the z plane is mapped
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Fig. 1. Mapping of Fresnel's interface reflection coefficient for s-
polarized light between normal incidence [z plane (top)] and oblique
incidence at 300 (w plane (bottom)]. Semicircles 1, 2, 3,.. .,10in the
z plane are lines of equal normal-incidence amplitude reflectance, z 
= 0.1, 0.2, 0.3,.. ., 1. Images in the w plane carry the same numbers.
Start and finish of one semicircle and its image are marked by S and

F.

onto the arc of the unit semicircle w I = 1 in the w plane
between w = exp(j20) (z = 1) and w = exp(jir) (z = -1).
Points on the unit semicircle Iz I = 1 (other than z = 1)
represent normal-incidence reflection at interfaces
between a transparent medium and a medium with a
real negative dielectric function (i.e., a plasma).

Figure 2 shows the mapping by Eq. (1) of angularly
equispaced straight lines through the origin in the z
plane (representing lines of equal normal-incidence
reflection phase shift, argz = 0, 15, 30,. . ., 180°) onto
the w plane when 0 = 300 (a = 1/3). The origin 0 (z =
w = 0) represents reflection at a vanishing interface (the
limiting case when the two surrounding media become
the same). Points along the real axis (lines 0 and 12)
represent reflection at interfaces between transparent
media. When z = (1 - sink)/(1 + sink) (point C, Zc =
l/3, Fig. 2), we have w = 1.

The image point C in the w plane (w = 1) represents
reflection at the critical angle. Thus the segment 0 S
z < z of the real axis of the z plane is mapped onto the
segment 0 < w < 1 of the real axis of the w plane. Total
reflection at 0 (=30°) occurs when z > Z (=1/3) The
segment Zc < z < 1 of the real axis of the z plane is
mapped onto the arc of the unit circle w I = 1, 0 < argw
< 20. Notice that the maximum possible total-inter-
nal-reflection phase shift for the s polarization at a given
angle of incidence is equal to 20.

Supexposition of Figs. 1 and 2 produces orthogonal
sets of curves in the z and w planes, as is expected from
a conformal mapping.3 This is shown in Fig. 3 for five
angles of incidence including 300 (k = 15, 30,' 45, 60,
750)

B. Inverse Transformation
From Eq. (1), we can solve for z in terms of w; this

gives

(a + 2p) I [(a 2 - 4) + 4(a + 2)p]/ 2

2 (1-pp)

where

p = [(1 - w)/(1 + w)12,

(3)

-0.25 0.00
RE WI 0

Fig. 2. Same as Fig. 1 for a family of straight lines through the origin
0, 1, 2, ... , 12 in the z plane, representing lines of equal normal-in-

cidence phase shift, argz = 0, 15, 30,... ,1800.

(4)

and a is defined by Eq. (2).
The inverse mapping by Eq. (3) of semicircles cen-

tered on, and straight lines through, the origin in the w
plane onto the z plane is illustrated by Figs. 4 and 5,
respectively, for = 30° (a = 10/3).

The superposition of Figs. 4 and 5 gives orthogonal
sets of curves in the w and z planes. This is shown in
Fig. 6 for five angles of incidence, including 30 ( = 15,
30, 45, 60, 750).
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Ill. Reflection Coefficient of the Parallel Polarization

A. Forward Transformation
The reflection coefficients of p-polarized radiation

at oblique incidence w and at normal incidence z are
interrelated byl

(1 + Z)
2
- (1 - Z)(1 + az + Z

2
)1/

2

(1 + Z)
2

+ (1-Z)(l + az + Z
2

)1/
2

where a is defined by Eq. (2).
In the Nebraska (Muller) conventions,2 z is limited

to the inside and boundaries of the lower half of the unit
circle in the complex plane, and w is confined to the
interior and boundary of the full unit circle.

Figure 7 shows the mapping by Eq. (5) of semicircles
centered on the origin of the complex z plane (repre-
senting lines of equal normal-incidence amplitude re-
flectance I z I = 0.1, 0.2,.. ., 1.0) onto the w plane when
the angle of incidence 0 is 300 (a = 10/3). The notation
is the same as discussed Sec. II.

Two points on the real axis of the z plane have special
significance to the reflection of p-polarized light. Point
B with z = tan( - 450) (=-0.268 for 0 = 300) is
mapped onto the origin, w = 0, of the w plane, corre-
sponding to wave reflection at the Brewster angle.
Point M, z = (2 sink - )/(-2 sink + 1) (= -0.1715
for 0 = 300), is mapped onto w = -tan2 (k - 450) (=

.25 1 000 0.25 0.50 0.75 1 00 -i.00 -0.75 -0.50 -0 .25 0.00 0.25 0.50 0.75 1.00
RE IW) RE W

Fig. 3. Superposition of Figs. 1 and 2 gives orthogonal sets of curves in the z and w planes. Results shown are for five angles of incidence
including 30 ( = 15, 30, 45, 60, 750). To identify individual curves, use Figs. 1 and 2 ( = 300) as a guide. Dashed curves in the graph of

7 = 750 are images of semicircles IzI = 0.01m, where m = 1, 2_ .. , 9.
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Fig. 4. Inverse mapping of Fresnel's interface reflection coefficient
for s-polarized light between oblique incidence at 300 [w plane (top)]
and normal incidence [z plane (bottom)]. Semicircles 1, 2, 3,... ,10
in the w plane are lines of constant oblique-incidence (300) amplitude
reflectance lw l = 0.1, 0.2, 0.3,... ., 1. Their images in the z plane are

marked by the same numbers.
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-0.0718 for 1 = 300), corresponding to wave refraction
at 4504 Point C, z = (sink - 1)/(sink + 1) (= -0.333
for 0 = 300) is mapped onto w = 1, representing wave
reflection at the critical angle (90° refraction). Semi-
circles with radii I z I < I OMI (semicircle 1 in Fig. 7) are
mapped onto contours that lie entirely in the lower half
of the w plane. Semicircles with radii in the range
OMI < I z I < I OC (2 and 3 in Fig. 7) are mapped onto
one-full-revolution spirals in the w plane beginning and
ending on the real axis. The spiraling is around the
point M when I z is only slightly greater than I OMI.
Images of semicircles with radii I z I > I OC l (4-10 in Fig.
7) resemble spirals of less than one full revolution, each
of which begins on the upper half of the unit circle in the
w plane and ends on the real axis.

Figure 8 shows the mapping by Eq. (5) of angularly
equispaced straight lines through the origin in the z
plane (representing lines of equal normal-incidence
reflection phase shift, argz = 180, 195, 210,. . ., 3600)
onto the w plane for 0 = 300 (a = 1). Of particular
interest is the mapping of line 0 (argz = 1800). As z
moves along the negative real axis from 0 to M to B, w
moves along the negative real axis of the w plane first
leftward from the origin to M, then reverses direction
at M and moves rightward from M back to the origin
(O,B). Subsequent motion of z from B to C is mirrored
into motion of w from the origin 0 to C (w = 1). Fi-
nally, the image of the remaining segment of line 0 be-
tween C and z = -1 in the z plane is the upper half of
the unit circle in the w plane. The reversal of the di-
rection of motion of w at M is an expression of the sta-
tionary property of w at that point,4 namely, w/Oz =
0.

Superposition of Figs. 7 and 8 produces orthogonal
sets of curves in the z and w planes, as is expected from
a conformal mapping. This is shown in Fig. 9 for five
angles of incidence including 300 ( = 15, 30, 45, 60,
750).

B. Inverse Transformation
In Ref. 1 we showed that to determine the complex

p-reflection coefficient at normal incidence z from the
value that this coefficient assumes at some angle of
oblique incidence w, Eq. (5) is solved for z in the terms
of w. This gave rise to a quartic (fourth-degree) alge-
braic equation in z with coefficients that are functions
of w and the angle of incidence. Instead of solving such
a quartic equation, and deciding on the proper root, we
have found two other alternative methods that are
simple, direct, and explicit.

The first makes use of the recently obtained direct
relation between Fresnel's reflection coefficients for the
p and s polarizations at the same angle of incidence 0.
If wp and ws denote these coefficients, 5

Wp = ws(ws - cos2o)/(1 - w cos2o), (6a)

Fig. 5. Same as in Fig. 4 for a family of straight lines through the
origin 0, 1, 2, ... , 12 in the w plane representing lines of constant

oblique-incidence (300) phase shift, argw = 0,15, 30,... ,180°.

w = 12 cos20(1 - wp) I [wp + 1/4 cos2
20(1 - Wp)

2
]1

/
2. (6b)

For a given wp at a given , we compute ws from Eq.
(6b), selecting the root with Imw, > 0. Next we com-
pute z, from ws using Eqs. (3) and (4) and select the root
with Imz, > 0. Finally, z is obtained as -zi.
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In the second method, we start with the basic equa-
tion for the Fresnel coefficient of the p polarizations:

e cost - ( - sin
2,)1/2

WJ = E coso + ( - sin2o)1/2'

where E is the ratio of the complex dielectric constants
of the media of refraction and incidence. We solve Eq.
(7) for c:

= [1 + (1 - Qp sin22k)1/2]/2Qp cos2
0, (8)

where

.75 -0.50 -0.25 0.00 0.25
RE Z)

Q = [(1 - wp)/(1 + wp)]2.

In terms of E, zP is given by

ZP = (e1/2 - 1)/(EE/2
+ 1).

(9)

(10)

The procedure then is to get E from wp and 0 using Eqs.
(8) and (9) and subsequently to obtain zp from using
Eq. (10). According to the Nebraska (Muller) con-
ventions,2 the correct root of Eq. (8) is the one with ImE
< 0, and that of Eq. (10) is the one with Imzp < 0.

We have used the first of the two methods described

.25 0.00
RE (Z)

Fig. 6. Superposition of Figs. 4 and 5 produces orthogonal families of curves in the w and z planes. Results shown are for five angles of incidence
including 300 (4 = 15, 30, 45, 60, 75°). To identify individual curves use Figs. 4 and 5 (for o = 300) as a guide.
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Fig. 7. Mapping of Fresnel's interface reflection coefficient for p-
polarized light between normal incidence [z plane (top)] and oblique
incidence at 300 [w plane (bottom)]. Semicircles 1, 2, 3,... ,10in the
z plane are lines of equal normal-incidence amplitude reflectance, Iz z
= 0.1,0.2, 0.3,.. ., 1. Their images in the w plane are marked by the
same numbers. Significance of points B, C, and M is discussed in the

text.

above to study the inverse w - z mapping of the re-
flection coefficient for the parallel polarization. Figure
10 shows the mapping of concentric circles centered on
the origin of the w plane (representing lines of equal
amplitude p reflectance at 0 = 30°, w l, = 0.1, 0.2, 0.3,
... ,1.0) onto the z plane. All image contours in the z
plane start on the short segment of the real axis between
B[z = tan ( - 450) = -0.2681 and C[z = (sing - 1)/
(sink + 1) = -0.333] and end on the segment of the real
axis between 0 and z = +1. The letter and arrow
notations are the same as explained in Sec. II.

Figure 11 shows the mapping of angularly equispaced
straight lines through the origin of the w plane (lines of
equal p-reflection phase shift, argw = 0, 15,30,.. ., 360°
at 0 = 30°) onto the z plane. The origin of the w plane
has separate double images 0 and B in the z plane.
Lines 1-11 in the upper half of the w plane are imaged
onto a group of curves that all emanate from B (z =
-0.268) and end on the segment of the real axis between

Fig. 8. Same as in Fig. 7 for a family of straight lines through the
origin 0, 1, 2,... ,12 in the z plane, representing lines of equal nor-

mal-incidence phase shift, argz = 180, 195, 210,... , 360°.

C(z = -0.333) and z = -1. Lines 13-23 in the lower
half of the w plane are imaged onto a separate family of
curves that all eminate from the origin 0 and terminate
on the circumference of the lower half of the unit circle
in the z plane. The inverse transformation is double-
vafued for real values of w represented by points on the
segment of the real axis of the w plane between M[w =
-tan 2 (o - 45°) = -0.0718] and C(w = 1). The segment
from the origin to M in the w plane is imaged onto two
separate segments of the real axis of the z plane from 0
to M and from B and M. The segment from w = 0 to
w = 1 also has double images from B to C and from 0
toz = 1.

The superposition of Figs. 10 and 11 generates or-
thogonal families of curves in the w and z planes, as is
expected from a conformal mapping. This is shown in
Fig. 12 for five angles of incidence including 30° (1 = 15,
30, 45, 60, 75°).

3366 APPLIED OPTICS / Vol. 19, No. 19 / 1 October 1980
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normal and 450 incidence and provided one nomogram
10 appropriate to this case. The extension of this two-

reflectance method (TRM) to the determination of the
optical properties of uniaxial and biaxial absorbing
crystals was also discussed. The results of this paper,
in particular Fig. 6, make available additional nomo-
grams that permit the use of the TRM at other angles
of incidence of 15,30,60, and 75°. The nomograms are
simply realized by superimposing on Fig. 6 a transpar-

acc S - - - - C ency with concentric circles of equispaced radii that
represent lines of I z = constant. Contours of argw =

constant can be either ignored or deleted. Because we
adhere to the Nebraska (Muller) conventions,2 the
present nomograms are one-half of the size used in Ref.

\\\\ ,//// ~~~~~~~~~~~1.
Figure 12, and a transparency of concentric circles,

provide useful nomograms for applying the TRM with
p-polarized light, thus complementing the results of

1.00 ..75 0 o RE 0lO 0 . s 0 oso oos 1oo Ref. 1. This is of particular importance in view of the
acknowledged higher sensitivity of TRM using the p
polarization, as compared to the s polarization,7 for

06 M F determining the optical properties of materials.
No I However, extension of our TRM using p-polarized light

to anisotropic media is not as straightforward as pos-
\ V ,2 E S X //// sible with s-polarized light.

\'^\< ~~~~~~~//// _ ~~~~~~7 6 5
10\ ^ / 8 4

9\ 3
.o -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

10 2
Fig. 10. Inverse mapping of Fresnel's interface reflection coefficient
for p-polarized light between oblique incidence at 30° [w plane (top)] I1
and normal incidence [z plane (bottom)]. Full circles centered on
the origin 1, 2, 3,. .. ,10 in the w plane are lines of constant oblique- 12 A X E _______
incidence (30°) amplitude reflectance, Iw 0.1, 0.2,0.3,..., 1. Their 0 24
images in the z plane are marked by the same numbers. Significance 

of points B, C, and M is discussed in the text. j 23

14 22

IV. Determination of Optical Properties from 15 21
Measured Reflectances at Normal and Oblique 16 17 18 19 20
Incidence -0.3 0. - 25 - 50 - 0.-7 5 .00

Let s- or p-polarized light be incident from a trans- RW

parent isotropic ambient of known refractive index (e.g.,
air) onto the planar surface of an isotropic absorbing B
medium of unknown complex refractive index. Mea- 24

surements of the intensity reflectances at normal inci- r 1 J// \3

dence Ro and at oblique incidence Rx determine z = 1
Ro1 2 and w| = R ,12 The intersection in the complex / 22

z plane of the circle I z = R'12 with the image of Iw! = 13

R1/2 specifies the complex normal-incidence reflection 21
coefficient z. Hence ° 14 0

N= 4-n(1 -z)( +z), (11) 1$ 1 1 19
-. 1 5 -.50 -0.25 00 0.25 0.50 0.75 1.00

where + is for the s polarization, and - is for the p po- RE ZI

larization. Fig. 11. Same as in Fig. 10 for a family of straight lines through the
In Ref. 1, we have illustrated how this technique origin 0,1, 2,... ,24 in the w plane (top) representing lines of constant

works for s-polarized light and assuming reflection at oblique-incidence (300) phase shift, argw = 0,15, 30,.. .,360°.
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Fig. 12. Superposition of Figs. 10 and 11 gives orthogonal sets of
curves in the w and z planes. Results shown are for five angles of
incidence including 30° (P = 15, 30, 45, 60, 75°). To identify indi-

vidual curves use Figs. 10 and 11 as a guide.

V. Conclusion
The present paper complements our earlier work1 and

gives detailed documentation of how the basic Fresnel
reflection coefficients are transformed between normal
and oblique incidence. Only the case of s-polarized
radiation and reflection at the special angle of 450 was
illustrated before. Here we have removed this limita-
tion by considering both the s and p polarizations and
reflection at several (15, 30, 45, 60, 700) angles of inci-
dence. Families of curves thus obtained provide useful
nomograms for applying the TRM to the determination
of optical properties of isotropic and anisotropic ab-
sorbing media. The case of the p polarization, con-
sidered here for the first time, is especially important
in this application because of the higher sensitivity that
the TRM attains with its use.
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