Journal of Mind and Medical Sciences

Volume 5 | Issue 2 Article 22

2018

Determination of pyrrolizidine alkaloids in dietary sources using a spectrophotometric method

Oana C. Şeremet

Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacology and Clinical Pharmacy, Bucharest, Romania

Octavian T. Olaru

Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Botany and Cellular Biology, Bucharest, Romania

Mihaela Ilie

Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Toxicology, Bucharest, Romania

Claudia M. Gutu

Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Toxicology, Bucharest, Romania

Mihai G. Niţulescu

Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bucharest, Romania

Follow this and additional works at: https://scholar.valpo.edu/jmms

Part of the <u>Chemicals and Drugs Commons</u>, and the <u>Natural Products Chemistry and Pharmacognosy Commons</u>

Recommended Citation

Şeremet, Oana C.; Olaru, Octavian T.; Ilie, Mihaela; Guţu, Claudia M.; Niţulescu, Mihai G.; Diaconu, Camelia; Motofei, Catalina; Margină, Denisa; Negreş, Simona; Zbârcea, Cristina E.; and Ştefănescu, Emil (2018) "Determination of pyrrolizidine alkaloids in dietary sources using a spectrophotometric method," *Journal of Mind and Medical Sciences*: Vol. 5: Iss. 2, Article 22. DOI: 10.22543/7674.52.P294299

Available at: https://scholar.valpo.edu/jmms/vol5/iss2/22

This Research Article is brought to you for free and open access by ValpoScholar. It has been accepted for inclusion in Journal of Mind and Medical Sciences by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at scholar@valpo.edu.

Determination of pyrrolizidine alkaloids in dietary sources using a spectrophotometric method

Authors

Oana C. Şeremet, Octavian T. Olaru, Mihaela Ilie, Claudia M. Guţu, Mihai G. Niţulescu, Camelia Diaconu, Catalina Motofei, Denisa Margină, Simona Negreș, Cristina E. Zbârcea, and Emil Ștefănescu

Research article

Determination of pyrrolizidine alkaloids in dietary sources using a spectrophotometric method

Oana C. Şeremet^{1,2}, Octavian T. Olaru^{1,3}, Mihaela Ilie^{1,4}, Claudia M. Guţu^{1,4}, Mihai G. Niţulescu^{1,5}, Camelia Diaconu^{1,6}, Catalina Motofei⁷, Denisa Margină^{1,8}, Simona Negres^{1,2}, Cristina E. Zbârcea^{1,2}, Emil Stefănescu^{1,2}

¹Carol Davila University of Medicine and Pharmacy, Bucharest, Romania: ²Faculty of Pharmacy, Department of Pharmacology and Clinical Pharmacy; ³Faculty of Pharmacy, Department of Botany and Cellular Biology; ⁴Faculty of Pharmacy, Department of Toxicology, ⁵Faculty of Pharmacy, Department of Pharmaceutical Chemistry, ⁶Internal Medicine Clinic of Emergency Hospital of Bucharest, Romania, ⁷ASE Bucharest, Department of analysis and economic-financial evaluation, Statistics, Bucharest, Romania, ⁸Faculty of Pharmacy, Department of Biochemistry, Bucharest, Romania

Abstract

Pyrrolizidine alkaloids (PAs) are a class of toxic compounds found in the composition of more than 6000 plants. People can be exposed to PAs by consuming phytotherapeutic products, food from crops contaminated with seeds of some species with high content of PAs, and/ or contaminated animal products like bee products. For this reason we developed and validated a method for quantitative determination of PAs, from the most frequently contaminated food sources, honey and flour. Colorimetric Ehrlich reagent method was used with standard addition (1mg/kg senecionine). The extraction solvent was methanol 50% acidified with citric acid to pH 2-3, as this solvent can be used for alkaloids and N-oxides. We found that, in extracting the alkaloid only once from the dietary sources, the percent of recovery is low (52.5% for honey, and 45.75% for flour). Using successive extractions, three times with the same solvent, the senecionine retrieval percentage increased to 86.0% for honey and 76.0% for flour. The method was validated using the following parameters: selectivity, linearity (0,25- 20 mg/ mL senecionine), accuracy (average recovery 93.5 - 107.93%) and precision (RSD 3,26-4.55%.). The calculated limit of quantification (0.174 mg/ mL) makes this method applicable for determining Pas occurring at toxic levels for consumers.

Keywords

pyrrolizidine alkaloids, spectrophotometry, contaminated food, Ehrlich reagent

Highlights

- ✓ It is presented a simple and inexpensive method for the quantitative determination of PAs in honey and flour, with a quantification limit (0.174 μ g/mL).
- This method is applicable for the determination of PAs from food sources at toxic levels for consumers.

To cite this article: Şeremet OC, Olaru OT, Ilie M, Guţu CM, Niţulescu MG, Diaconu C, Motofei C, Margine D, Negres S, Zbârcea CE, Stefănescu E. Determination of pyrrolizidine alkaloids in dietary sources using a spectrophotometric method. J Mind Med Sci. 2018; 5(2): 294-299. DOI: 10.22543/7674.52.P294299

Introduction

Pyrolizidine alkaloids (PAs) are a class of natural compounds found in the composition of more than 6000 plants. More than 350 PAs are known to date, half of which are toxic (1). Toxicity of PAs in animal studies is characterised by hepatotoxicity, carcinogenicity, and genotoxicity (2, 3).

PAs are found in plants mainly as highly polar Noxides, soluble in water and insoluble in most non-polar solvents or as tertiary bases, soluble in non-polar organic solvents (dichloromethane, chloroform), but also in polar solvents (eg. methanol). At low pH values, PAs are protonated and become water soluble (4, 5). N-oxides are easily converted to the corresponding toxic alkaloid base by enzymatic reactions in plants or in the digestive tract of animals or humans (6).

Besides the use of phytotherapeutic products with PAs, contaminated food products such as milk, eggs, bee products (honey, pollen), cereals and derived products and packaged salads, represent important sources of exposure to PAs (6, 7). In the literature, the products reported to be the most commonly contaminated are bee products and flour (5).

Various methods for the determination of PAs from food sources are known. Most are HPTLC (8), GC-MS (9, 10) or LC-MS methods (11). The chromatographic methods have the advantage of having very low detection limits, but they are expensive.

The literature cites numerous examples of spectrophotometric methods used for dosing alkaloids in food (12), pharmaceutical products (13), or plant products (14). For PAs, the best known are those described by Birecka et al. (1981) and Mattocks (1967) (15, 16). The first is based on the formation of a chloroform-soluble complex between PAs methylorange, which in acid media releases the method, however, is not characteristic for PAs, and can also be used for dosing other types of alkaloids. The second, based on reaction with the Ehrlich reagent, has concentrations of alkaloids. This method is specific for alkaloids having an unsaturated pyrrole heterocycle at the 1-2 position, a double bond characteristic of PAs. It is also possible to determine the N-oxide content by this reagent (18, 19).

this study was to develop and validate a simple and inexpensive spectrophotometric method determine PA presence in the most commonly purified by liquid-liquid extraction 2 times with 30 mL

contaminated food sources, honey and flour. We used the standard addition method (senecionine) at a concentration of 1mg/kg flour or honey.

Materials and Methods

Principle

PAs with a double bond in the 1,2-position of the heterocycle, in the presence of hydrogen peroxide, are converted to the corresponding N -oxides and acylated with acetic anhydride. By heating, acetic acid is removed and a pyrrole derivative is formed, which further reacts with 4-dimethylaminobenzaldehyde (Ehrlich's reagent) to form a violet-colored complex that can be spectrophotometrically measured. By omitting the first step (conversion of PAs to their N-oxides by hydrogen peroxide), only the N-oxides will be determined (Figure 1) (16, 20).

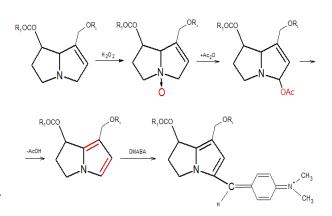


Figure 1. The coupling reaction of the double bond PAs with 4-dimethylaminobenzaldehyde (21)

Materials

Standard solution

Standard solutions in methanol were prepared from indicator that can be measured at 525 nm (15, 17). This a stock solution of senecionine (200 mg/mL, Carl Roth, Germany).

Samples

Two samples of 30 g of polyfloral honey (SC the advantage of being able to quantify very small Proapis SRL, Calarasi, Romania) and white wheat flour (Goldmaya, Satu Mare, Romania) were mixed with 150 ml of methanol 50% (Merck, Germany), acidified with citric acid to pH 2-3. Standard solution of senecionine (100 µg/mL, 0.3 ml) was added to each sample, mixed, method because the PAs react directly with the Ehrlich and filtered. For one honey and one flour sample, the residue was again mixed with 150 mL of acidified 50% Taking into account all these aspects, the purpose of methanol and filtered. The operation was repeated twice and the filtrates combined.

All solutions were reduced to about 30 mL each and

chloroform and 2 times with 30 mL ethyl ether. The samples were filtered, alkalinized with 25% ammonia solution to pH 9-10, and extracted 3 times with 30 mL chloroform. The chloroform solutions were reduced to about 5 mL using a rotary evaporator (Buchi, Switzerland) and brought to dryness under nitrogen with TechneDry-Block DB-3D (BibbyScientific Inc., Great Britain). The residue is dissolved in 3 mL of methanol and passed through 0.2 μ m adaptive syringe filters (Pall Life Science, USA). In parallel, two control samples (honey and flour) were processed in the same way, but no standard solution was added.

The samples were noted as H1 (honey extracted once), H2 (honey extracted 3 times) and HC (honey control), respectively, and F1 (flour extracted once), F2 (flour extracted 3 times) and FC (flour control).

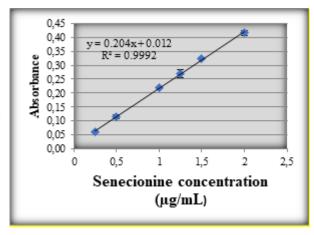
- Reagents

Oxidation reagent: 20 mL methanol (Merck, Germany) was mixed with 0.20 mL hydrogen peroxide 30% (Merck, Germany) containing sodium pyrophosphate (Merck, Germany) 5 mg/mL as a stabilizer, 0.20 mL ethylene glycol (Merck, Germany) and 20 mg butylated hydroxytoluene (Sigma-Aldrich, USA)

Diglyme: Diethylene glycol dimethyl ether (Merck, Germany) containing 5 mg/mL butylated hydroxytoluene (Sigma-Aldrich, USA). Acetic anhydride (Sigma Aldrich, USA) was redistilled and the fraction boiling between 136–139 °C was collected.

Modified Ehrlich's reagent: 4 mL boron trifluoride in methanol 14% (Acros Organics, Belgium) is diluted with 36 mL absolute ethanol (Scharlau Chemicals, Spain) and 0.8 g 4-dimethylaminobenzaldehyde (Sigma Aldrich, USA) are added.

Method


For the preparation of the calibration curve, the working standard volumes solutions, to 2.5–20 µg senecionine, corresponding evaporated under nitrogen jet; 0.5 mL oxidizing reagent was added and the test tubes were left in the boiling water bath WNB 10 (Memmert, Germany) for 20-30 min. 1 mL diglyme and 0.1 mL acetic anhydride were added, and the tubes were heated again in the water bath for 1 minute. After cooling the tubes at room temperature, 1 mL of modified Ehrlich reagent was added, and the tubes were heated in a water bath at 55-60 °C for 4-5 minutes. The samples were transferred in volumetric flasks and acetone (Chimopar, Romania) was added up to 10 mL.

For assessing the alkaloid content, 0.4 ml of each sample was evaporated under nitrogen stream and the same procedure was followed as described in the preparation of the calibration curve.

All measurements were performed on a Halo DB-20 (Dynamica, Great Britain) spectrophotometer, at 565 nm versus a blank (prepared in the same way but without standard addition). All assays were performed in triplicate and the results were expressed as mean±standard deviation (M±SD). Statistical analysis was performed using Microsoft Excel 2010 software (Microsoft Corp., USA) and GraphPad Prism v. 5.0. (GraphPad Software, USA).

Results

A six points linear calibration curve of senecionine in the $0.25-2~\mu g/mL$ range, with good linearity (R = 0.9996) was obtained (Figure 2)

Figure 2. The standard calibration curve and equation for senecionine

Validation of the newly established method was performed according to analytical guidelines (22), with results summarized in Table I.

Table I. Characteristics of regression line, detection and quantification limit

Validation criterion	Parameter	Results
Linearity	Slope	0.2045 ± 0.002839
	Y-intercept when X=0.0	0.01278 ± 0.003502
	Correlation coefficient	0.9996
Precision*		RDS=3.84%
Range		$0.25-2~\mu g/mL.$
Detection limit (LD)**		0. 058 μg/mL
Quantification limit (LQ)**		0.174 μg/mL

* from 3 replicate for 3 different concentrations corresponding to 0.6 μ g/mL; 0.8 μ g/mL and 1 μ g/mL senecionine; **based on the standard deviation of the response and slope

The results of the quantitative determinations are presented in Table II. By twice washing the residue obtained after filtration with acidified methanol 50%, the recovery percentage of senecionine increased from 52.5% to 86.00% in honey and from 45.75% to 76.00% in flour.

Table II. Recovery of senecionine from food sources.

Sample	Added senecionine (mg/kg)	Recovery (mg/kg)	Recovery (%)	
H_1		0.525	52.50 %	
H_2	1.00	0.860	86.00 %	
F ₁	1.00	0.468	45.75 %	
F_2		0.760	76.00 %	

Discussions

Contamination of food with PAs is a serious health issue. Kakar et al. (2010) reported 67 cases of veno-ocular disease in Afghanistan due to the consumption of bakery products made from flour obtained from wheat crops contaminated with Heliotropium species. Flour samples were taken from households where these cases were recorded and an average concentration of 5.6 mg PAs/ kg flour was found (11). Azadbakh and Talavaki (2002) determined the PA concentration from 40 samples of flour obtained from wheat contaminated with Senecio vulgaris in the province of Mazandaran, Iran. The total PA concentration was between 40-100 mg/kg flour (22, 23).

Also, numerous cases of honey contaminated with PAs have been reported. Deinzer et al. (1977) detected a concentration of up to 3900 μ g PAs/kg in honey from Senecio jacobaea (24, 25). Other reports found concentrations of PAs up to 1480 μ g/kg or 2850 μ g/kg in honey (26-28). If honey contains about 2500 μ g PAs/kg, an adult who consumes a daily average portion of 40 g of honey would be exposed to 100 μ g PAs per day, a quantity higher than the acceptable European doses (6).

Taking into account these premises, we developed a method for the quantitative determination of PAs from food sources (honey and flour). Acidified 50% methanol was used as the extraction solvent because both the alkaloid bases (which at this pH is converted to soluble salts) and N-oxides are soluble in this solvent. We have established that by using only one solvent extraction of

alkaloids from food sources, the recovery percentage of senecionine is low (52.5% for honey and 45.75% for flour). By successive extractions, three times, with the same solvent, the seneccione retrieval percentage increases to 63.81% in honey and 66.12% in flour.

The method was validated by the following parameters: selectivity, linearity (on the 0.25-20 μ g/ mL range), accuracy (average recovery yield between 93.5 and 107.93%) and precision (RSD between 3.26 - 4.55%).

Conclusions

Because of the health hazards raised by the consumption of food contaminated with PAs, we developed a simple and inexpensive method for the quantitative determination of PAs in honey and flour, with a quantification limit $(0.174 \, \mu g/mL)$ that makes the method applicable for the determination of PAs from food sources at toxic levels for consumers.

Acronyms and abbreviations

- GC-MS gas chromatography coupled with mass spectrometry
- HPTLC high performance thin layer chromatography
- LC-MS liquid chromatography coupled with mass spectrometry
- PAs pyrrolizidine alkaloids
- RDS relative standard deviation

† In Memoriam: The authors would like to respectfully dedicate this article to Ms. Mihaela Ilie, who passed away on 1 January 2018.

Conflict of interest disclosure

The authors declare that there are no conflicts of interest to be disclosed for this article.

References

- Fu PP, Xia Q, Lin G, Chou MW. Pyrrolizidine alkaloids – genotoxicity, metabolism enzymes, metabolic activation and mechanisms. *Drug Metab Rev.* 2004; 36(1): 1-55. DOI: 10.1081/DMR-120028426
- WHO-IPCS (World Health Organisation-International Programme on Chemical Safety).
 Pyrrolizidine alkaloids. Environmental Health Criteria. 80. 1988.

- http://www.inchem.org/documents/ehc/ehc/ehc080 .htm.
- DM, Gutu CM, Olaru OT, Ilie M, Gonciar V, Negreș S, Chiriță C. Oral toxicity study of certain plant extracts containing pyrrolizidine alkaloids. Rom J Morphol Embryol. 2016; 57(3): 1017-23.
- 4. Mattocks AR. Chemistry and toxicology of pyrrolizidine alkaloids. London, New York, Academic Press, 1986.
- Opinion on Pyrrolizidine alkaloids in food and feed. The EFSA Journal. 2011; 9(11): 2406-40. DOI: DOI: 10.2903/j.efsa.2011.2406
- Committee on Herbal Medicinal Products. Public containing toxic, unsaturated pyrrolizidine alkaloids (EMA/HMPC/893108/2011), 2014. Available on-line: http://www.ema.europa.eu/docs/en_GB/document
 - _library/Public_statement/2014/12/WC500179559. pdf
- JA. Pyrrolizidine alkaloid toxicity in livestock: a paradigm for human poisoning? Food Addit Contam Part A Chem Anal Control Expo Risk 2011; 293-307. DOI: Assess. 28(3): 10.1080/19440049.2010.547519
- 8. Seremet OC, Olaru OT, Ilie M, Negres S, Balalau D. HPTLC Evaluation Of The Pyrollizidine Alkaloid Senecionine In Certain Phytochemical Products. Farmacia. 2013; 61(4): 756 – 63.
- Blacquière T, Raezke KP, Michel R, Schreier P, Beuerle T. Pyrrolizidine alkaloids in honey: comparison of analytical methods. Food Addit Contam Part A Chem Anal Control Expo Risk 332-47. Assess. 2011; 28(3): DOI: 10.1080/19440049.2010.521772
- 10. Seremet OC, Olaru OT, Gutu CM, Nitulescu GM, Spandidos DA, Tsatsakis AM, Coleman MD, Margina DM. Toxicity of plant extracts containing pyrrolizidine alkaloids using alternative 7757-63. DOI: 10.3892/mmr.2018.8795.
- 11. Kakar F, Akbarian Z, Leslie T, Mustafa ML, An outbreak of hepatic veno-occlusive disease in Western Afghanistan associated with exposure to wheat flour contaminated with pyrrolizidine

- alkaloids. J Toxicol. 2010; 2010: 313280. DOI: 10.1155/2010/313280
- 3. Şeremet OC, Bărbuceanu F, Ionică FE, Margină 12. Shar Z, Chippa H, Hussain N, Arain M, Khan A, et al. Spectrophotometric Determination of Caffeine in Selected Pakistani Beverages. J Food Processing & Beverages. 2017; 5(1): 1-4.
 - 13. Begum J, Rao KS, Rambabu C. Assay of yohimbine chloride in bulk samples and pharmaceutical formulations by extractive spectrophotometry. Asian Journal of Chemistry. 2006; 18(2): 1417-22.
- 5. EFSA (European Food Safety Authority), Scientific 14. Vachnadze V, Dzhakeli EZ, Dadeshidze IA, Kintsurashvili LG. Quantitative spectrophotometric determination of alkaloids in roots of Vinca herbacea. Pharmaceutical Chemistry Journal. 2010; 44(4): 199-201.
 - statement on the use of herbal medicinal products 15. Birecka H, Catalfamo JL, Eisen N. A sensitive method for detection and quantitative determination of pyrrolizidine alkaloids. Phytochemistry. 1981; 20(2): 343-4.
 - 16. Mattocks AR. Spectrophotometric determination of unsaturated pyrrolizidine alkaloids. Anal Chem. 1967; 39(4): 443-7.
 - Molyneux RJ, Gardner DL, Colegate SM, Edgar 17. Şeremet OC, Olaru OT, Ilie M, Negreş S, Bălălău Phytotoxicity Assessment of Certain Phytochemical Products Containing Pyrrolizidine Alkaloids. Acta Medica Marisiensis. 2013; 59(5): 250-253. DOI: 10.2478/amma-2013-0057
 - 18. Roeder E, Liu K, Mütterlein R. Quantitative photometrische Bestimmung Pyrrolizidinalkaloide in Symphyti Radix. Fresenius J Anal Chem. 1992; 343(8): 621-624. DOI: 10.1007/BF00324124
- 9. Kempf M, Wittig M, Reinhard A, von der Ohe K, 19. Motofei IG, Rowland DL, Georgescu SR, Tampa M, Baconi D, Stefanescu E, Baleanu BC, Balalau C, Constantin V, Paunica S. Finasteride adverse effects in subjects with androgenic alopecia: A possible therapeutic approach according to the lateralization process of the brain. J Dermatolog 2016; 27(6): 495-497. DOI: Treat. 10.3109/09546634.2016.1161155
 - Ilie M, Negres S, Zbarcea CE, Purdel CN, 20. Şeremet OC, Olaru OT, Bălălău D, Negreș S. The effect of certain plant extracts containing pyrrolizidine alkaloids on Lactuca sativa radicle growth. Rom J Biopys. 2014; 24(1): 1-9.
 - invertebrate models. Mol Med Rep. 2018; 17(6): 21. Mattocks AR. Spectrophotometric determination of pyrrolizidine alkaloids - some improvements. Anal Chem. 1968; 40(11): 1749-50.
 - Watson J, van Egmond HP, Omar MH, Mofleh J. 22. Barko Bartkowski JP, Wiedenfeld H,Roeder E. Quantitative Photometric Determination Senkirkine in Farfarae Folium. Phytochemical 1997; 1-4. DOI: Analysis. 8(1):

- 10.1002/(SICI)1099-1565(199701)8:1<1::AID-PCA328>3.0.CO;2-H
- 23. ICH-Q2 (R1) Validation of Analytical Procedures: 26. Deinzer ML, Thomson PA, Burgett DM, Isaacson Text and Methodology, 1995 (CPMP/ICH/381/95). on-line: http://www.ema.europa.eu/ Available docs/en_GB/document_library/Scientific_guidelin e/2009/09/WC500002662.pdf
- 24. Azadbakht M, Talavaki M. Qualitative and determination quantitative of pyrrolizidine alkaloids of wheat and flour contaminated with Senecio in Mazandaran province farms. Iranian Journal of Pharmaceutical Research. 2003; 2(3): 28. Betteridge K, Cao Y, Colegate SM. Improved 179-183.
- 25. Diaconu CC, Dragoi CM, Bratu OG, Neagu TP, Pantea Stoian A, Cobelschi PC, Nicolae AC, Iancu MA, Hainarosie R, Stanescu AMA, Socea B. New approaches and perspectives for the

- pharmacological treatment of arterial hypertension. Farmacia 2018, 66(3):408-415.
- DL. Pyrrolizidine alkaloids: their occurrence in honey from tansy ragwort (Senecio jacobaea L.). Science. 1977; 195(4277): 497-9.
- 27. Crews C, Startin JR, Clarke PA. Determination of pyrrolizidine alkaloids in honey from selected sites by solid phase extraction and HPLC-MS. Food Additives and Contaminants. 1997; 14(5): 419-428. DOI: 10.1080/02652039709374547
- method for extraction and LCMS analysis of pyrrolizidine alkaloids and their N-oxides in honey: Application to Echium vulgare honeys. J Agric Food Chem. 2005, 53(6): 1894–902. DOI: 10.1021/jf0480952