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Non-Decreasing Sequences
Alexander Bruno and Amy Klass

Advisor: Dr. Jon Beagley

Abstract
Non-decreasing sequences are a generalization of binary covering arrays, which
has made research on non-decreasing sequences important in both math and
computer science. The goal of this research is to find properties of these non-
decreasing sequences as the variables d, s, and t change. The goal is also
to explore methods for creating a maximum length non-decreasing sequence
for a given strength and size set. Through our research, we discovered and
proved basic properties of these non-decreasing sequences. In addition to this,
we can describe a method we used while trying to find the maximum length
of a sequence.

Definitions and Notation
•Let S be a set of s elements

•The strength of non-decreasing sequence is the

amount of subsets whose union we consider, and is

represented using d

•A non-decreasing sequence of strength d is a

sequence of non-empty subsets, {S1, S2, . . . , St},
where the union of any d previous subsets does not

contain any subsequent subset

•The number of subsets in a non-decreasing sequence

is called the length, t

•NDS(d,s,t) is the set of non-decreasing sequences

with strength d, s elements and length t

•NDST(d,s) is the maximum t such that

NDS(d, s, t) is non-empty

•Let rj be the number of elements in the subset Sj

Binary Arrays

•Represent a non-decreasing sequence using an s× t

binary array

•Rows represent elements of S

•Columns represent subsets of non-decreasing sequence

Si
1 0
... ...

k 1
... ...

s 0

S1 S2 S3 S4 S5

1 1 0 0 0 1

2 0 1 0 0 1

3 0 0 1 0 1

4 0 0 0 1 0

Basic Results
Theorem 1-Permuting rows in a binary array gives another NDS(d, s, t).

Theorem 2-If the union of any d subsets contain all elements in S, no

subsets can be added to the sequence.

Theorem 3-Every subset in NDS(d, s, t) must be distinct for d ≥ 1.

Theorem 4-NDS(d, s, t) ⊆ NDS(d, s + 1, t)

Corollary 5-NDST (d, ks) ≥ kNDST (d, s), where k ∈ Z.

S1 S2 S3 S4 S5

1 1 0 0 0 1

2 0 1 0 0 1

3 0 0 1 0 1

4 0 0 0 1 0

A 0 0

0 A 0

0 0 A

A Block array

Standard Sequence
Theorem 6-There exists an NDS(d, s, t) where the first s subsets are of

size 1. We call this a standard non-decreasing sequence.

1 2 3 4 5 6

1 1 0 0 0 0 . . .

2 0 1 0 0 0 . . .

3 0 0 1 0 0 . . .

4 0 0 0 1 0 . . .

5 0 0 0 0 1 . . .
... ... ... ... ... ... . . .

Theorem 7-A standard non-decreasing sequence of strength d does not

have any subsets of size 1 < r ≤ d.

Theorem 8- In a standard non-decreasing sequence, any subset Sj of size

rj = d + 1, may contain at most 1 element from any previous subset Si.

Theorem 9-In a standard non-decreasing sequence, any subset Sj of size
rj ≥ d + 1 must contain at least d elements that differ from any previous
subset Si.

Bounds

•Gives range for NDST (d, s)

•Lower bound is the length of sequence constructed

for a given d, s

•Upper bound initially 2s − 1, number of nonempty

subsets possible for any set S with s elements

•Upper bound decreased using Theorems 7, 8, and 9

s Lower Bound Found Upper Bound 2s − 1

1 1 1 1

2 2 2 3

3 4 4 7

4 5 5 15

5 7 7 31

6 11 13 63

7 15 20 127

Table 1: Bounds for d = 2

Future Work

•Find exact formula for NDST (d, s)

•Find different computational methods

•Find relation to binary covering arrays

•Effect of permuting columns

•Find bounds for larger d and s values
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