Valparaiso University ValpoScholar

Non-Decreasing Sequences

Amy E. Klass
Valparaiso University, amy.klass@valpo.edu
Alexander Bruno
Valparaiso University, alexander.bruno@valpo.edu

Follow this and additional works at: https://scholar.valpo.edu/sires

Recommended Citation

Klass, Amy E. and Bruno, Alexander, "Non-Decreasing Sequences" (2017). Summer Interdisciplinary Research Symposium. 3.
https://scholar.valpo.edu/sires/3

Abstract

Non-decreasing sequences are a generalization of binary covering arrays, which has made research on non-decreasing sequences important in both math and computer science. The goal of this research is to find properties of these nondecreasing sequences as the variables d, s, and t change. The goal is also to explore methods for creating a maximum length non-decreasing sequence for a given strenoth and size set. Through our research, we discovered and proved basic properties of these non-decreasing sequences. In addition to this, we describe a method we used while trying to find the maximum leng we can describe

Definitions and Notation

- Let \boldsymbol{S} be a set of \boldsymbol{s} elements
- The strength of non-decreasing sequence is the amount of subsets whose union we consider, and is represented using \boldsymbol{d}
- A non-decreasing sequence of strength d is a sequence of non-empty subsets, $\left\{S_{1}, S_{2}, \ldots, S_{t}\right\}$, where the union of any d previous subsets does not contain any subsequent subset
- The number of subsets in a non-decreasing sequence is called the length, \boldsymbol{t}
- $\boldsymbol{N D S}(\boldsymbol{d}, \boldsymbol{s}, \boldsymbol{t})$ is the set of non-decreasing sequences with strength d, s elements and length t
- $\boldsymbol{N D S T}(d, s)$ is the maximum t such that
$N D S(d, s, t)$ is non-empty
- Let r_{j} be the number of elements in the subset S_{j}

Binary Arrays

- Represent a non-decreasing sequence using an $s \times t$ binary array
- Rows represent elements of S
- Columns represent subsets of non-decreasing sequence

	S_{i}	$S_{1} S_{2} S_{3} S_{4} S_{5}$							
1	0								
		1	1		0	0	0		
k	:	2			1	0	0	1	
k	1	3	0		0	1	0		,
:	,	4			0	0	1	0	
s									

Non-Decreasing Sequences

Alexander Bruno and Amy Klass Advisor: Dr. Jon Beagley

Basic Results

Theorem 1-Permuting rows in a binary array gives another $N D S(d, s, t)$
Theorem 2-If the union of any d subsets contain all elements in S, no subsets can be added to the sequence.

Theorem 3-Every subset in $N D S(d, s, t)$ must be distinct for $d \geq 1$.
Theorem 4-NDS $(d, s, t) \subseteq N D S(d, s+1, t)$
Corollary 5-NDST($d, k s) \geq k N D S T(d, s)$, where $k \in \mathbb{Z}$.

$S_{1} S_{2} S_{3} S_{4} S_{5}$						A 00		
1	1	0	0	-	1			
2	0	1	0	0	1		0 A	
3	0	0	1	0	1		0	A
4		0	0	1	0	Block array		
	A							

Standard Sequence

Theorem 6-There exists an $N D S(d, s, t)$ where the first s subsets are of size 1 . We call this a standard non-decreasing sequence.

$$
\begin{array}{llllllll}
& \mathbf{1} & \mathbf{2} & \mathbf{3} \mathbf{4} & \mathbf{5} & \mathbf{6} \\
\mathbf{1} & 1 & 0 & 0 & 0 & 0 & \ldots \\
\mathbf{2} & 0 & 1 & 0 & 0 & 0 & \ldots \\
\hline \mathbf{3} & 0 & 0 & 1 & 0 & 0 & \ldots \\
\hline \mathbf{4} & 0 & 0 & 0 & 1 & 0 & \ldots \\
\hline \mathbf{5} & 0 & 0 & 0 & 0 & 1 & \ldots \\
\hline: & : & : & : & : & : & \cdots
\end{array}
$$

Theorem 7-A standard non-decreasing sequence of strength d does not have any subsets of size $1<r \leq d$.

Theorem 8- In a standard non-decreasing sequence, any subset S_{j} of size $r_{j}=d+1$, may contain at most 1 element from any previous subset S_{i}.

Theorem 9-In a standard non-decreasing sequence, any subset S_{j} of size $r_{j} \geq d+1$ must contain at least d elements that differ from any previous subset S_{i}.

Bounds

- Gives range for $N D S T(d, s)$
- Lower bound is the length of sequence constructed for a given d, s
- Upper bound initially $2^{S}-1$, number of nonempty subsets possible for any set S with s elements
- Upper bound decreased using Theorems 7, 8, and 9

s	Lower Bound Found Upper Bound $2^{s}-1$		
1	1	1	1
2	2	2	3
3	4	4	7
4	5	5	15
5	7	7	31
6	11	13	63
7	15	20	127

Table 1: Bounds for $d=2$

Future Work

- Find exact formula for $\operatorname{NDST}(d, s)$
- Find different computational methods
- Find relation to binary covering arrays
- Effect of permuting columns
- Find bounds for larger d and s values
References
[1] J. Beagley, W.Morris, Chromatic numbers of copoint graphs of convex ge-
ometries, Discrete Math. 331 (2014) 151-157
[2] J. Lawrence, R. Kacker, Y. Lei, D. Kuhn, M. Forbes, A survey of binary
covering arrays, Electron. J. Combin. 18 (2011).

Acknowledgements

MSEED Program sponsored by NSF (Grant No. 1068346)

Valparaiso University Mathematics and Statistics Department and Professor Jon Beagley

