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Abstract Introduction. Thermal injury activates an inflammatory response. Melatonin possesses anti-

oxidant and anti-inflammatory properties. The objective of the present work was to study 

melatonin effects on the inflammatory response under conditions of oxidative stress during the 

early stage of thermal injury.  

Materials and methods. We used 24 white male rats of Wistar breed, randomly divided into 

three experimental groups. Group one was the control, group two was inflicted with burn trauma, 

and group three was inflicted with burn trauma, with melatonin application following the thermal 

injury. Melatonin was applied twice in doses of 10 g/kg b.m. immediately after the burn trauma 

and again at 12 hours. Plasma levels of tumor necrosis-factor-α (TNF-α), a pro-inflammatory 

mediator, and of interleukin-10 (Il-10), an anti-inflammatory mediator, were examined and their 

ratio was calculated. The levels of malondialdehyde (MDA), an oxidative stress marker, were also 

estimated.  

Results. Thermal trauma significantly increased plasma TNF-α levels (ð<0.01) and TNF-α /IL-

10 ratio but did not change IL-10 ones. Plasma MDA concentrations were significantly elevated as 

well (ð<0.0001). Melatonin application significantly reduced TNF-α (ð<0.05), increased IL-10 

(ð<0.05), down-regulated TNF-α/IL-10 ratio and changed MDA concentrations (ð<0.01).  

In conclusion, our results show that local alteration induces oxidative stress and inflammatory 

response with TNF-α /IL-10 disbalance. Melatonin modulates this response and attenuates 

oxidative stress in experimental burn injury.          
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Highlights 
 

✓ Thermal trauma significantly increased plasma TNF-α levels and TNF-α /IL-10 ratio but 

did not change IL-10. 

✓ Melatonin attenuates oxidative stress and changes the disbalance between the pro- and anti-

inflammatory mediators in favor of the anti-inflammatory ones.          

 

Acne conglobata is a rare, severe form of acne vulgaris characterized by the presence of comedones, 

papules, pustules, nodules and sometimes hematic or meliceric crusts, located on the face, trunk, neck, arms 

and buttocks.  
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Introduction 

Severe thermal trauma can lead to the development of 

systemic inflammatory response syndrome (SIRS) and 

sepsis. Generalization of the pathophysiological 

manifestations causes increased morbidity, poly-organ 

insufficiency, and mortality among burned patients (1). 

Locally, in a burn-induced wound, numerous cells such as 

neutrophils and macrophages are activated (2, 3). Their 

count in systemic circulation also increases. (4). These are 

the source of cytokines with pro-inflammatory action, 

activate the inflammatory cascade and, as along with them, 

they synthesize and liberate cytokines with anti-

inflammatory action. The cellular response also underlies 

the generation of free radicals (5) which induce lipid 

peroxidation, cell membrane damage, and apoptosis (6, 7). 

The induced postburn oxidative and nitrosative remote 

organ damage disturbs immune system balance (8), 

contributes to immunosuppression development, and 

enhances the risk for the development of systemic 

inflammatory response syndrome (SIRS) and sepsis (9, 10). 

Tumor necrosis factor-α (TNF-α) is a cytokine 

presenting with a variety of biological effects (11) and 

acting as a central inflammation mediator in sepsis, trauma, 

and burn (12-14). TNF-α induces gene expression of a series 

of pro-inflammatory cytokines and is capable of self-

induction (11, 15). 

Interleukin-10 (IL-10) has initially been described as an 

inhibitory factor for the synthesis of cytokines (TNF-α, IL-1, 

IL-6), chemokine, and adhesion molecules in the 

monocytes/macrophages and neutrophils (16-18). TNF-α 

reduction is considered the most important suppressive role 

of IL-10 (19). Data regarding how the elevated 

concentration of the pro-inflammatory mediators of thermal 

trauma prevail are presented in the recent literature, but 

there are relatively few investigations of the anti-

inflammatory mediators. 

Melatonin (N-acetyl-5-methoxytryptamine) is mainly a 

secretory product of the pineal gland. Its functions in the 

organism relate to numerous physiological and pathological 

processes. Melatonin exerts direct antioxidant effects via 

free radical scavenging and indirectly stimulates the 

activities of antioxidant enzymes, superoxide dismutase 

(SOD), glutathione peroxidase (GPx), glutathione reductase 

(GRd), and catalase (20). Melatonin may exert an anti-

inflammatory effect as well, by restricting the action of the 

free radicals and inhibiting the nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-kB) and related 

target genes, which participate in immunity and 

inflammation (21). Melatonin application has been found to 

reduce the manifestation of the systemic inflammatory 

response in experimental and clinical investigations (22-24). 

However, there are few studies regarding the melatonin 

effect on IL-10 levels under the conditions of experimental 

thermal trauma (25, 26).  

Herewith we hypothesize that melatonin modifies 

cytokine secretion and modulates the systemic inflammatory 

response after burn trauma. To test this hypothesis, we 

examined melatonin effects on plasma levels of TNF-α, a 

pro-inflammatory mediator, and of Il-10, an anti-

inflammatory mediator, during the early stage of thermal 

trauma. 
 

Materials and Methods 

Experimental design  

The experimental procedure was approved by the Home 

Office for Care and Use of Laboratory Animals, and 

experiments were performed in accordance with the 

European Communities Council Directives 86/609/EEC. 

Age-matched male rats weighing between 220 and 250g 

fasting for 12 h were allowed free access to water before 

injury.  

Animals were housed in individual wire-bottomed 

cages at 20º C and offered rat chow and water ad libitum. 

They were kept in dark/light cycles (12:12 h; lights on at 

8:00 am) to ensure a satisfactory photoperiod. After light 

ether inhalation, general anesthesia was intraperitoneally 

performed using thiopental (30 mg/kg). In order to 

accomplish 30% of a third-degree burn, boiling water (98º 

C) was applied on the back of the animals for 10 sec. For 

those rats subjected to burn injury, 4 mL of physiological 

saline was intraperitoneally applied for immediate 

resuscitation after the trauma. No animals died within the 

first 24 h of the post-burn period. Twenty-four male rats 

were randomly assigned to three groups of 8 animals each: 

control, non-burned and non-treated (C), vehicle-treated 

burned group (B), and melatonin treated burned group 

(B+M). 

Melatonin treatment 

Melatonin (N-acetyl-5-methoxytryptamine, Merck, 

Germany) in a dose of 10 mg/kg body weight (b.w.) 

dissolved in vehicle, or vehicle alone (2% ethyl alcohol 

diluted in physiological saline in a dose 5 ml/kg) was 

administered to the appropriate group. Melatonin and 

vehicle were applied i.p. twice, immediately after burns in 

the morning between 8:00 a.m. and 9:00 a.m. and 12 hours 

after burn injury. All animals were given buprenorphine (0.3 

mg /kg i.p. b.w.) twice daily for pain control post burn. 
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Animals from the all groups were anesthetized with 

thiopental and euthanized 24 h after burns. 

Biochemical analysis 

Blood was taken from the jugular vein and heparinized. 

Plasma was separated by centrifugation at 800 x g rpm for 

10 min and aliquots were stored at -80oC until analysis. 

Plasma lipid peroxidation was assayed by MDA levels 

detected by thiobarbituric acid (TBA) reactivity as described 

by Porter et al. (27). Results were expressed as nmol 

MDA/mL plasma, using the extinction coefficient of MDA-

TBA complex at 532 nm = 1.56 x 10–5 cm–1 M–1 solution. 

Determination of plasma cytokine levels  

Plasma levels of TNFα and IL-10 were determined by 

enzyme-linked immunosorbent assay (ELISA) using Gen-

Probe Diaclone SAS kits (Besancon Cedex, France). Results 

were reported as рg/mL. 

Statistical analysis 

Statistical analyses utilized Graphpad Prism version 6.0. 

The results are shown as mean ± SEM and box plots. 

Significance was determined by unpaired Student's t test or 

the nonparametric Mann-Whitney-U-test. A P-value less 

than 0.05 two-tailed was considered significant. 
 

Results 
Examination of MDA in thermal trauma and melatonin 

effect 

Plasma MDA levels were significantly increased by 

39% (p<0.0001) in the burned rats compared to the control 

group (Fig. 1). Melatonin treatment significantly inhibited 

the elevation in plasma MDA level (р<0.01) and restored 

control values. 

Examination of TNF-α in thermal trauma and 

melatonin effect 

TNF-α levels increased significantly by 115% (р<0.01) 

in plasma of burned rats compared with controls (Fig. 2). 

Plasma TNF-α concentration decreased following melatonin 

treatment by 41% (p<0.05) in the burned rats but was 74% 

higher (р<0.01) relative to control rats. 

Examination of IL-10 in thermal trauma and melatonin 

effect 

Plasma IL-10 level did not change significantly in 

burned rats when compared to controls (Figure 3). 

Melatonin significantly elevated this level by 50% (р<0.05) 

in burned rats and was higher than that of the control rats. 

Examination of TNF-α/IL-10 ratio in thermal trauma 

and melatonin effect 

This ratio was higher by 114% (p<0.05) in the 

experimental group than the control group (Fig. 4). 

Melatonin treatment reduced this ratio by 37% (p<0.05), 

tending to restore values comparable to those of the control 

group. 

 

Figure 1. Effect of melatonin on MDA levels in plasma 

after burns. (C) control group; (B) burned, non - treated 

group; (B+M) burned, treated with melatonin group. 
Results are given as the mean ± SEM. ****р<0.0001 vs. 

control group; ††р<0.01 vs. burned, non - treated group. 

 

Figure 2. Effect of melatonin on TNF-α levels in 

plasma after burns. (C) control group; (B) burned, non - 

treated group; (B+M) burned, treated with melatonin 

group. Results are given as box plot, with median, 25th- 

and 75th-percentile values, min and max values. 

**р<0.01 vs. control group; †р<0.05 vs. burned, non - 

treated group; ••р <0.01 vs. control group. 

 

Figure 3. Effect of melatonin on IL-10 levels in plasma 

after burns. (C) control group; (B) burned, non - treated 

group; (B+M) burned, treated with melatonin group. 

Results are given as box plot, with median, 25th- and 

75th-percentile values, min and max values. †p<0.05 vs. 

burned, non - treated group. 
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Figure 4. Effect of melatonin on TNF-α/IL-10 ratio in 

plasma after burns. (C) control group; (B) burned, non - 

treated group; (B+M) burned, treated with melatonin 

group. Results are given as the mean ± SEM. *р<0.05 

vs. control group; †p<0.05 vs. burned, non - treated 

group. 

Discussions 
Thermal injury induces local tissue damage. The 

activated pro-inflammatory cells such as neutrophils and 

macrophages synthesize and liberate large amounts of 

chemokines, cytokines, adhesion molecules, and alarmines 

which when entering the circulation can cause a systemic 

inflammatory response (28). The enhanced production of 

pro-inflammatory cytokines, lipid peroxides, and acute-

phase proteins, along with activation of the 

polymorphonuclear cells plays an important role in the 

systemic inflammatory response induced by thermal trauma 

(29, 30). Results from the present study demonstrate 

elevated plasma TNF-α concentrations after burn injury, 

providing evidence for the role of this mediator in the early 

local and systemic inflammatory response. 

TNF-α represents not only an inflammation-inducing 

mediator but also an important factor in the course of the 

inflammation (31). It induces the expression of other 

inflammatory mediators such as IL-1α, IL-1β, IL-6 and IL-

8, which form a cytokine network, adhesion molecules, 

acute phase proteins (32) and Il-10 as well (33). TNF-α 

augments ROS production by the pro-inflammatory cells. 

ROS (reactive oxygen species) activate lipid peroxidation 

and cause cell membrane damage in thermal trauma (6, 34). 

Both TNF-α and ROS enhance the expression of NF-kB, a 

transcription factor responsible for the production of other 

pro-inflammatory mediators with cytotoxic action. A 

correlation exists between MDA and TNF-α in liver during 

burns (35) as well as between plasma TNF-α concentration 

and the degree of thermal damage (36). Similar data have 

been obtained in clinical and experimental investigations of 

thermal injury (37, 38). But there are contradictory data 

about the changes of tissue and plasma TNF-α levels. Some 

investigators have failed to establish alterations in burned 

animals compared with not-burned ones, most probably due 

to the experimental design and the duration of the 

examination period (39).  

Our results demonstrate that the level of the pro-

inflammatory mediator significantly increases while that of 

the anti-inflammatory mediator shows no change. There are 

contradictory data about IL-10 concentrations in burn injury. 

While some authors report results similar to ours (40), 

others report elevated concentrations of two anti-

inflammatory cytokines, IL-2 and IL-10, reaching their peak 

values during the initial hours after thermal trauma (41). The 

primary role of IL-10 is the suppression of the production of 

the pro-inflammatory mediators and the regulation of the 

inflammatory response (42). It seems possible that IL-10 

accomplished its effects though the inhibition of the nuclear 

factor NF-kB (43) and through pathways that do not depend 

on NF-kB, such as activation of nuclear factor (erythroid-

derived 2)-like 2 (Nrf2) and heme oxygenase (НО-1) (44). 

The examination of the balance between pro- and anti-

inflammatory cytokines serves as a predictive marker in 

clinical practice (45). The mortality of the patients with 

sepsis is related to elevated TNF-α and IL-10 concentrations 

(46, 47). The IL-10: TNF-α ratio is low in surviving patients 

(47), so it has been assumed that TNF-α/IL-10 disbalance 

represents one of the triggering factors for the development 

of SIRS and polyorgan failure in the initial stage after burn 

injury (48). Further research is needed to clarify these 

alterations during the various stages of the severe thermal 

trauma. It is known that antioxidant application inhibits the 

systemic inflammatory changes in thermal injury (49) and 

other diseases in which pathogenesis of systemic 

inflammation is involved (50). 

Our results demonstrate a disbalance between the pro- 

and anti-inflammatory cytokines under the conditions of 

oxidative stress induced by burn trauma. Melatonin 

application results in the establishment of a tendency 

towards restoration of balance more similar to baseline 

levels in control rats. The data also indicate that melatonin 

reduces plasma TNF-α level and enhances plasma IL-10, a 

finding consistent with other authors who have also 

established that anti-inflammatory melatonin action is 

related to reduced plasma TNF-α concentration and 

increased plasma IL-10 (51, 52). This effect is most 

probably due to melatonin’s inhibitory effect on NF-kB 

(53), also evident from thermal trauma (26). As such, 

melatonin improves the pro-/anti-inflammatory balance and 

restricts the manifestations of the systemic inflammation. 

In the present study, plasma MDA levels were 

significantly increased, thus demonstrating severe lipid 

peroxidation following considerable burn injury, a finding 

consistent with other studies (54, 55). The 

pathophysiological alterations are most likely a consequence 

of ischemia/reperfusion injury and polymorphonuclear cell 
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activation both locally and in the systemic circulation 

resulting in free-radical overgeneration (56, 4). On the other 

hand, the depletion of plasma glutathione and antioxidant 

enzymes has been shown as a cause for the manifestations 

of the systemic oxidative response and the aggravation of 

the pathological processes in thermal trauma (57). 

Melatonin administration significantly decreases plasma 

MDA levels, a consequence of the antioxidant and free-

radical-scavenging capacities of melatonin and its 

metabolites (20). 

 

Conclusions 
 

Melatonin attenuates oxidative stress and changes the 

disbalance between the pro- and anti-inflammatory 

mediators in favor of the anti-inflammatory ones. Therefore, 

melatonin, by restricting the lipid peroxidation and by 

modulating the inflammatory response, can counteract the 

systemic inflammation and the subsequent development of 

sepsis and polyorganic insufficiency. These results confirm 

the broad therapeutic potential of melatonin and substantiate 

its possible application for the treatment of critical 

pathological conditions of the organism.    

 

Acronyms and abbreviations 
TNF-α: Tumor necrosis-factor-α  

Il-10: Interleukin-10  

MDA: Malondialdehyde 

SIRS: Systemic inflammatory response syndrome 

SOD: Superoxide dismutase  

GPx: Glutathione peroxidase 

GRd: Glutathione reductase 

NF-kB: Nuclear factor kappa-light-chain-enhancer of 

activated B cells 

Nrf2: Nuclear factor (erythroid-derived 2)-like 2  

НО-1: Heme oxygenase 
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