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ONE-DIMENSIONAL TRAC CALCULATIONS OF MAIN STEAM LINE BREAK EVENTS FOR THE
UPDATED PIUS 600 ADVANCED REACTOR DESIGN

S. C. Harmony, J. L. Steiner, H. J. Stvmpt, J. F. iime, and B. E. Boyack
Technology and Safety Assessment Division
Los Alamos National Laboratory
Los Alamos, New Mexico 87545
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ABSTRACT

The PIUS advanced reactor is a 640-MWe pressurized
water reactor developed by Asea Brown Boveri (ABB). A
unique feature of the PIUS concept is the absence of
mechanical control and shutdown rods. Reactivity is
controlled by coolant boron concentration and the
temperature of the moderator coolant. As part of the
preapplication and eventual design certification process,
advanced reactor applicants are required to submit
neutronic and thermal-hydraulic safety analyses over a
sufficient range of normal operation, transient conditions,
and specified accident sequences. Los Alamos is
supporting the US Nuclear Regulatory Commission’s
preapplication review of the PIUS reactor. A fully one-
dimensional model of the PIUS reactor has been developed
for the Transient Reactor Analysis Code, TRAC-
PF1/MOD2. Early in 1992, ABB submitted a
Supplemental Information Package describing recent
design modifications. An important feature of the PIUS
Supplement design was the addition of an active scram
system that will function for most transient and accident
conditions. A one-dimensional Transient Reactor Analysis
Code baseline calculation of the PIUS Supplement design
were performed for a break in the main steam line at the
outlet nozzle of the loop 3 steam generator. Sensitivity
studies were performed to explore the robustness of the
PIUS concept to severe off-normal conditions following a
main steam line break. The sensitivity study results
provide insights into the robustness of the design.

I INTRODUCTION

The PIUS advanced reactor is a four-loop, Asea
Brown Boveri (ABB) designed pressurized water reactor
with a nominal core rating of 2000 MWt and 640 MWe.1
A primary design objective was to eliminate any
possibility of a core degradation accident. A schematic of
the basic PIUS reactor arrangement is shown in Fig. 1.
Reactivity is controlled by coolant boron concentration
and temperature, and there are no mechanical control or
shutdown rods. The core is submerged in a large pool of
highly borated water, and the core is in continuous
communication with the pool water through pipe

openings called density locks. The density locks provide a
continuously open flow path between the primary system
and the reactor pool. The reactor coolant pumps (RCPs)
are operated so that there is a hydraulic balance in the
density locks between the primary coolant loop and the
pool, keeping the pool water and primary coolant
separated during normal operation. Hot primary-system
water is stably stratified over cold pool water in the
density locks. PIUS contains an active scram system. The
active scram system consists of four valved lines, one for
each primary coolant loop, connecting the reactor pool to
the inlets of the reactor coolant pumps. Althcugh the
active scram piping and valves are safety class equipment,
operation of the nonsafety-class reactor coolant pumps is
required for effective delivery of pool water to the primary
system. PIUS also has a passive scram system that
functions should one or more of the RCPs lose their
motive power, thereby eliminating the balance between
the primary coolant loop and the pool, and activating flow
through the lower and upper density locks. Highly borated
water from the pool enters the primary coolant via natural
circulation, and this process produces a reactor shutdown.
The reactor pool can be cooled by either an active,
nonsafety-class system or a fully passive, safety-class
system.

ABB submitted a Preliminary Safety Information
Document (PSID)2 to the US Nuclear Regulatory
Commission (NRC) for preapplication safety review in
1990. Early in 1992, ABB submitted a Supplemental
Information Package to the NRC to reflect recent design
modifications.3 An important feature of the PIUS
Supplement design was the addition of the previously
described active scram system that will function for most
transient and accident conditions. In the original PSID
submittal, all reactor trips were accomplished with the
passive scram system; the active scram system did not
exist in that design. ABB submitted analyses of two
baseline reactor trip transients in the Supplemental
Information Package, a reactor trip with the active scram
system, and a reactor trip using the passive scram system
(trip of one reactor coolant pump). The ABB analyses are
based on results from the RIGEL code,4 a one-



dimensional (1D) thermal-hydraulic system analysis code
developed at ABB Atom for PIUS reactor analysis.

As part of the preapplication and eventual design
certification process, advanced reactor applicants are
required to submit neutronic and thermal-hydraulic safety
analyses over a sufficient range of normal operation,
transient conditions, & d specified accident sequences. ABB
submitted a Preliminary Safety Information Document
(PSID)2 to the NRC for preapplication safety review in
1990. Early in 1992, ABB submitted a Supplemental
Information Package to the NRC to reflect recent design
modifications.3 The ABB safety analyses are based on
results from the RIGEL code, a 1D thermal-hydraulic
system analysis code developed at ABB Atom for PIUS
reactor analysis. An important feature of the PIUS
Supplement design was the addition of the previously
described active scram system that will function for most
transient and accident conditions. However, this system
cannot meet all scram requirements because the
performance of the active scram system depends on the
operation of the RCPs. Thus, the passive scram system of
the original PSID design was retained. Because the PIUS
reactor does not have the usual rod-based shutdown
systems of existing and planned light water reactors, the
behavior of the PIUS and shutdown phenomena following
active and passive system scrams must be understood.
Review and confirmation of the ABB safety analyses for
the PIUS design constitute an important activity in the
NRC's preapplication review. Los Alamos is supporting
the NRC's preapplication review of the PIUS reactor.
This paper summarizes the results of a Transient Reactor
Analysis Code (TRAC)? baseline calculation of the PIUS
Supplement design for a break in the main steam line at
the outlet nozzle of the loop 3 steam generator.
Sensitivity studies were performed to explore the
robustness of the PIUS concept to severe off-normal
conditions following active-system trips. The TRAC
calculations were performed with a fully 1D, four-loop
model. Core neutronic performance was modeled with the
TRAC point kinetics model.

I TRAC ADEQUACY FOR THE PIUS
APPLICATION

The TRAC-PF1/MOD2 code> was used for each
calculation. The TRAC code series was developed at Los
Alamos to provide advanced, best-estimate predictions for
postulated accidents in pressurized water reactors. The code
incorporates four-component (liquid water, water vapor,
liquid solute, and noncondensable gas), two-fluid (liquid
and gas), and nonequilibrium modeling of thermal-
hydraulic behavior. TRAC features flow-regime dependent
constitutive equations, component modularity, multi-
dimensional fluid dynamics, generalized heat-structure

modeling, and a complete control systems modeling
capability. The code also features a three-dimensional
stability-enhancing two-step method, which removes the
Courant time-step limit within the vessel solution. Many
of the features just identified have proven useful in
modeling the PIUS reactor.

It is important that the issue of code adequacy for
the PIUS application be addressed. If the TRAC analyses
were supporting a design certification activity, a formal
and structured code-adequacy demonstration would be
desirable. One such approach would be to identify (1)
representative PIUS transient and accident sequences, (2)
identify the key systems, components, processes, and
phenomena associated with the sequences, and (3) conduct
a bottom-up review of the individual TRAC models and
correlations, and (4) conduct a top-down review of the
total or integrated code performance relative to the needs
assessed in steps 1 and 2. The bottom-up review
determines the technical adequacy of each model by
considering its pedigree, applicability, and fidelity to
experimental separate effect or component data. The top-
down review determines the technical adequacy of the
integrated code by considering code applicability and
fidelity to data taken in integral test facilities.

Because the NRC conducted a preapplication
rather than a certification review, the NRC and Los
Alamos concluded that a less extensive demonstration of
code adequacy would suffice. Steps 1 and 2 were performed
and documented in Ref. 6. A bottom-up review spzcific to
the PIUS reactor was not conducted. However, the
bottom-up review of TRAC conducted for another reactor
type’ provided some confidence that many of the basic
TRAC models and correlations are adequate, although
some needed code modifications were also identified. A
complete top-down review was not conducted. However,
the ability of TRAC to model key PIUS systems,
components, processes and phenomena was demonstrated
in an assessment activity® using integral data from the
ATLE facility.# ATLE 1s a Yss volume scale integral test
facility that simulates the PIUS reactor. Key safety
features and components were simulated in ATLE,
including the upper and lower density locks, the reactor
pool, pressurizer, core, riser, downcorner, reactor coolant
pumps, and steam generators. Key processes were
simulated in ATLE including natural circulation through
the upper and lower density locks, boron transport into the
core (simulated with sodium sulfate), and control of the
density lock interface. Core kinetics were indirectly
simulated through a point kinetics computer model that
calculated and controlled the core power based upon the
core solute concentration, coolant temperature, and heater
rod temperature. The TRAC-calculated results were in
reasonable agreement with the experimental data.



Reasonable agreement means the code provided an
acceptable prediction. All major trends and phenomena
were correctly predicted. However, the calculated results
were frzquently outside the data uncertainty.

Benchmarking against another validated code is a
second approach to demonstrating adequacy. Direct code-
to-code comparisons have been prepared for other
transients for which ABB calculations of the PSID
Supplement design are available.9-10

TRAC includes the capability for
multidimensional modeling of the PIUS reactor. Indeed,
multidimensional analyses of the passive scram via trip of
one reactor coulant pump were completed for the original
PSID design.!! That study concluded that well-designed
orificing of the pool water inlet pipes would minimize
multidimensional effects. As a result of these earlier
studies, we have concluded that 1D modeling has the
potential for adequately representing many PIUS transients
and accidents. We believe that the LOSP event is
adequately characterized with 1D modeling. We do note a
reservation. The most important ptysical processes in
PIUS are related to reactor shutde~-... because the PIUS
reactor does not contain control and shutdown rods.
Coupled core neutronic and thermal-hydraulic effects are
possible, including multidimensional interactions arising
from nonuniform introduction of boron across the core.
ATLE does not simulate multidimensional effects. The
RIGEL thermal-hydraulic model is 1D and a point kinetics
model is used. Although both 1D and multidimensional
TRAC thermal-hydraulic models have been applied for
selected accident analyses, core neutronics are simulated
with a point kinetics model. At the present time, it is nct
known whether coupled core neutronic and thermal-
hvdraulic effects and multidimensional effects are
important. We offer this important reservation along with
the results that follow.

m. TRAC MODEL OF THE PIUS REACTOR

Figures 2 and 3 display the reactor vessel and
coolant loop components of the TRAC 1D model. The
four-loop TRAC model consists of 74 hydrodynamic
components (727 computational fluid cells) and one heat-
structure component representing the fuel rods. The reactor
power is calculated with a space-independent point-kinetics
model. The hydrodynamic model has 8 components in
each coolant loop and 16 components for the reactor
vessel, with the remaining 26 components representing
the pool, steam dome, density locks, and pressurizer line.
The TRAC 1D muodel is more finely noded than the
RIGEL model because of Los Alamos’ modeling
preferences, but no particular merit is attributed to the
finer noding.

The TRAC steady-state and transient calculations
were performed with TRAC-PF1/MOD?2, version 5.3.05.
The TRAC-calculated and PSID Supplement steady-state
values are tabulated as follows for comparison.

IRAC PSID Supplement
Core mass flow (kg/s) 12800 12889

Core bypass flow (kg/s) 1022 322.8 (RIGEL)
Loop flow (kg/s) 3523 3266
Cold-leg temperature (K) 531.0 527.1
Hot-leg temperature (K) 558.6 557.3

Pressurizer pressure (MPa) 9.5 9.5
Steam exit pressure (MPa) 4.0 4.0
Steam exit temperature (K) 538 543
Steam flow superheat (°C) 15 20
Steam and feedwater mass

flow (kg/s) 253 243

Additional initial conditions for the calculated
transient are as follows, except where otherwise noted for
the sensitivity studies. The reactor is operating at end of
cycle (EOC) with a primary loop boron concentration of
30 parts per million (ppm) and 100% power. The boron
concentration in the reactor pool is initially 2200 ppm. If
the active scram system is activated, the scram valves
open over a period of 2 s following event initiation,
remain open for 180 s, and close over a period of 30 s.
The feedwater pumps are tripped as the scram is initiated
and the feedwater flow rate decreases linearly to zero in
20 s.

v. BASELINE TRANSIENT

Essentially all important phenomena in this
transient result from operation of the active scram system
and termination of feedwater flow to the steam generators.
Because these active steps are takei both in this
calculation and the active scram calculation of Ref. 9,
there are many similarities between this calculation and
the Ref. 9 calculation. The major differences between the
two calculations occur during the time period when the
steamn generators are drying out. Where these differences
are significant, they will be pointed out in the discussion
below. After the steam generators dry out, the two
calculations follow exactly the same path.

Following break of the main steam line, a scram
signal is generated at time zero and the active scram
system is activated by simultaneously opening valves in
each of the four scram lines over an interval of 2 s. The
scram valves are kept fully open for 180 s and then closed
linearly in 30 s. Thus, there is no further injection of
highly borated pool water into the primary through the
scram lines after 212 s. Feedwater flow to all four loops is
decreased linearly to zero over a 20 s interval following



receipt of the scram signal at time zero. The steam
generators no longer serve as heat sinks after 120 s and
core-generated power can no longer be rejected by them.
The reactor coolant pumps continue to operate throughout
the transient.

A shutdown in reactor power is achieved, as
shown in Fig. 4. The total flow of highly borated pool
water (2200 ppm) passing through the scram lines, shown
in Fig. 5, rapidly peaks at 800 kg/s and then declines to
shightly under 700 kg/s at 182 s when the scram valves
begin to close. The water entering the primary through the
scram lines displaces water from the primary through the
upper and lower density locks as shown in Fig. 6. Most
of the displaced primary inventory flows to the reactor
pool through the upper density lock. A much smaller
amount flows into the reactor pool through the lower
density lock. The flows through the density locks cease
when the scram valves are closed. The primary loop boron
concentration increases rapidly while the scram valves are
open, as shown in Fig. 7. After the valves shut, the flow
of highly borated pool water is terminated, and the
primary boron concentration stabilizes at about 600 ppm.
The period of the rapidly decaying oscillations in “he
boron concentration after 212 s is characteristic of the
primary circuit transport time. Figure 8 shows the
reactivity changes resulting from fuel temperature. coolant
temperature, voiding, boron concentration, and the net
total of these components. Positive reactivity insertions
arise from the fuel and coolant temperatures, which are
decreasing during the period the scram valves are open, as
shown in Fig. 9. The decrease in the coolant temperature
is due in part to the injection of cooler pool water through
the scram lines, and in part to the increased cooling
associated with the increased rate of steam generation
(shown in Fig. 10) as the pressure rapidly drops in the
steam generators (Fig. 11). The moderator temperature
dropoff in this calculation was twice that of the active
scram transient calculated in Ref 9, where the steam
generation rate decreases throughout the scram injection
period. The negative reactivity inserted by the boron is
larger than the positive fuel and moderator temperature
contributions, causing a total negative reactivity insertion
and reduction in core power to hot-shutdown conditions,
as shown in Fig. 4 (Frame 3). Following closure of the
scram valves at 212 s, neither pool water nor boron are
entering the primary system. Forced flows through the
upper and lower density locks are also terminated. Control
of the thermal interface in the lower density lock is
recovered and no subsequent flows through the density
lock occur. The steam generators do not function as heat
sinks after 120 s. Thus, the core decay heat is deposited in
the primary coolant. and fuel and coolant temperatures
begin a linear increase, as shown in Fig. 9 (Frame 12).
ABB has not indicated how it intends to terminate this

event. Should no action be taken, the primary would
continue to heat, the primary coolant pumps would
increase speed until their overspeed limit of 115% was
reached, and the density locks would activate to initiate
natural circulation between the primary system and the
reactor pool. The pool contains both active (non-safety
grade) and passive (fully safety grade) pool cooling
systems that reject core decay hect to the ultimate heat
sink.

Sensitivity studies were performed to explore the
robustness of the PIUS concept to severe off-normal
conditions following active-system trips. The most severe
of these conditions are very low probability events.
Calculations were performed to examine the effect of a
partially blocked lower density lock. As might be
expected, given the minimal flows through the lower
density lock shown in Fig. 6, the assumed 75% blockage
of the lower density lock produces only a minor impact on
the course of the transient.

Calculations were also performed to examine the
effect of reducing pool boron concentrations below the
2200 ppm specified by ABB as the normal operating
condition. ABB has stated thar a reactor scram will occur
if the pool boron concentration decreases to 1800 ppm.3
A main steam line break calculation with pool boron
concentrations of 1800 ppm was analyzed. In this
calculation, reactor power decreases at a slightly slower
rate than for the baseline case but the power levels are
indistinguishable by 200 s. The primary loop boron
concentration stabilizes at about 505 ppm following
closure of the scram valves at 212 s. The primary-system
temperature response is nearly identical to the baseline
calculation, as the decreased negative reactivity insertion
of the boron is balanced by the smaller positive reactivity
insertion of the higher core-outlet temperature.

V. MAIN STEAM LINE BREAK TRANSIENT
WITHOUT ACTIVE SCRAM SYSTEM

The baseline calculation shows that the active
scram system effectively shuts down the reactor in the
event of a main steam line break. A sensitivity study was
performed in which the active scram system did not
operate to see if the passive safety features of the PIUS
design would be able to shut the reactor down. This is
believed to be a low probability combination event.

After the main steam line breaks, there is a
sudden pressure decrease in the steam header (Fig. 12), and
the steam generation rate increases (Fig. 13). This leads to
overcooling of the primary, and after a short delay, due to
the inventory in the cold-leg piping, the cooler liquid
travels from the steam generator to the core inlet (Fig.



14). The cooler primary temperature gives a positive
reactivity insertion (Fig. 15). which increases the reactor
power (Fig. 16), increasing the average rod temperature
(Fig. 17). This increase in the rod temperature gives a
negative reactivity insertion that slightly lags the positive
insertion resulting from the decreased coolant temperature
(Fig. 15), and partially compensates for the increased
reactivity.

When the steam line breaks, the feedwater flow is
tripped, ramping down to zero in 20 s (dashed line in Fig.
13). As the steam generation rate drops, the heat sink for
the reactor power begins to decrease. The core inlet
temperature rises beyond its steady-state value (Fig. 14,
again note the delay due to piping inventory), causing the
reactivity insertion resulting from coolant temperature to
drop, going negative at about 45 s. The drop in power
resulting from the warmer ccre inlet temperature allows
the rod temperatures to drop (Fig. 17), which increases the
reactivity insertion due to rod temperature. Because the
negative reactivity insertion, resulting from coolant
temperature, rises faster than the positive reactivity
insertion due to rod temperature, the total reactivity
change of the system goes negative at 32 s and continues
to drop throughout the remainder of the transient, and the
reactor power decreases continuously after the peak at 22 s
(Fig. 16).

As the primary fluid heats up, the primary
pressure rises until it reaches the safety relief valve set
point of 10.5 MFa (Fig. 18). There follows a series of
pressure oscillations as the safety relief valves are opened
and closed to maintain the design system pressure. The
effect of these openings and closings can be seen in many
of the following figures.

During the early stage of the transient
calculation, very little boron is introduced through the the
density locks (Fig. 19). Some borated pool water is drawn
into the primary every time the safety relief valves open
(compare Figs. 18 and 20), but this must circulate
through the loops before it can affect the core. When the
relief valves close, the flow through the upper density
locks reverses, dumping primary water into the pool.
Integration of the instantaneous density lock flows (Fig.
20) shows that the net flow through the upper density
lock is from the primary to the pool between about 42 and
850 s (Fig. 21). As the power peaks because of the cooler
core inlet temperature, some of the denser, cooler primary
fluid escapes to the pool through the lower density lock
(Fig. 20) before the reactor coolant pump controller can
reestablish the no flow condition in the lower density lock
by decreasing the cold-leg flow (Fig. 22). From about
40s to 70 s, as the core inlet temperature rises, pool
water enters the primary through the lower density lock.

The pump controller increases the pump speed to try to
reestablish the interface level in the lower density lock,
but is unable to keep up with the increasing primary
temperature until after 70 s. Figure 21 shows that the net
lower density lock flow is from pool to primary after
about 58 s.

Another effect of the heatup in the primary is the
swelling of the primary volume. At approximately 332 s,
the liquid level in the primary reaches the top of the
standpipes (Fig. 23), and 20 s later coolant begins to flow
to the pool through the standpipes (Fig. 24). This flow
accelerates as the liquid level continues to rise above th-
top of the standpipes.

As the primary temperature continues to rise, the
pump controllers must continually increase the speeds of
the primary coolant pumps to compensate for the
increasingly buoyant coolant and prevent flow through the
lower density lock. This process continues until the pump
speed reaches its limit of 115% of its steady-state value at
about 517 s. After that time the system dynamics and not
the pump speed control determine the remainder of the
transient phenomena. At that time a slug of pool water
enters the core through the lower density lock (Fig. 20),
giving a small negative reactivity insertion due to the
injected boron (Fig. 15). There is an equal flow out of the
primary into the pool through the upper density focks at
the same time. The safety relief valves close just as
density lock flow is being established (Fig. 18). As the
system repressurizes, the density lock flow momentarily
reverses, then is reestablishéd at a lower level.

About 30 s later, at about 575 s, the safety relief
valves open again (Fig. 18), and much larger flows surge
into the primary through the lower density lock and into
the pool through the upper density lock (Fig. 20). After
its initial surge to almost 200 kg/s, the lower density lock
flow drops below 150 kg/s, averaging about 120 kg/s for
about 120 s. The positive upper-density-lock flow (into
the pool) at 575 s reverses in about 23 s (Fig. 20), and
pool water enters the primary through that path. After that
time, the water displaced from the primary by the upper
and lower density lock flows leaves the primary through
the standpipes (Fig. 24). The influx of borated pool water
through the density locks increases the core inlet boron
concentration to about 100 ppm (Fig. 19), which causes a
large negative reactivity insertion (Fig. 15). The cooler
pool water entering through the lower density lock gives a
lower core inlet temperature (Fig. 14), which causes a
small positive reactivity insertion.

At this point, although the reactor is still at high
temperature and pressure, the main part of the transient is
over. As in the baseline calculation, some operator




intervention would be advisable to bring the system to a
safe shutdown condition. One such action would be to trip
one of the reactor coolant pumps, which would allow
natural circulation flow to be established through the core,
entering through the lower density lock and exiting
through the upper density locks. Another possible action
would be to reestablish cooling using the intact steam
generators.

In all our calculations of the PIUS MSLB
transient, TRAC calculated a transition to a stable
condition. Even in this unlikely combination event where
the active scram system failed to operate, the passive
safety features designed into PIUS were able to control the
MSLB transient, bringing the reactor to a stable state
without any operator intervention. These calculations have
demonstrated the robust nature of the PIUS design.

VI. SUMMARY OBSERVATIONS

1. The passive scram system successfully
accommodates the baseline MSLB transient. The
active scram system effectively reduces core
power to decay levels for the baseline MSLB
event. The passive scram system effectively
reduces core power to decay levels for the MSLB
transient in which the scram system is
moperable.

[ ]

The PIUS core, as presently designed, is
characterized by compensating shutdown
mechanisms. When highly borated pool water
enters the primary through either the scram lines
or the lower density locks under baseline
conditions, the negative reactivity associated with
the boron is the primary mechanism for
decreasing core power to decay heat levels.
However, moderator temperature increase is also
an effective mechanism for reducing core power
should conditions arise in the core that activate
this reactivity insertion mechanism.

3. Our confidence in the baseline simulations is
enhanced by the assessment activity performed
using ATLE data. The ATLE processes and
phenomena were correctly predicted by TRAC.
However, the phenomena in the ATLE tests
conducted to date are not fully representative of
MSLB conditions, as no test simulates a steam-
line-break accident. Moreover, there are
quantitative discrepancies between key TRAC-
calculated parameter values and the ATLE data.
We would like to better understand the reasons
for these differences should the PIUS design
cerufication effort resume. More effort is required

to identify whether the reasons for the
discrepancies lie in our knowledge of the facility.
modeling decisions made in preparing the TRAC
input model of ATLE, or deficiencies in the
TRAC models and correlations.

4. Our confidence in the baseline simulations is
enhanced by the code benchmark comparisons
that were performed for the active scram, pump
trip, and pressure relief line SBLOCA transients.
The RIGEL and TRAC-calculated results display
many areas of similarity and agreement.
However, there are also differences in the details
of the transients and accidents calculated by the
two codes, and we would like to better understand
the reasons for these differences. It is desirable
that the reasons for these differences be explored
if the PIUS reactor progresses to the design
certification stage. We do not feel that the
differences are of sufficient impon to alter the
summary observations presented herein.

5. Although the sensitivity calculations move
beyond both the assessment activity using ATLE
data and the code-to-code benchmark activity with
RIGEL, the PIUS design appears to
accommodate marked departures from the baseline
transient and accident conditions, including very
low probability combination events. The studies
of low pool boron concentrations and blockages
of the lower density lock are characteristic of low
probability events, yet these events appear to be
successfully accommodated. Even in the study
where the active scram system was not activated,
the passive scram system was able to
accommodate the MSLB transient and bring the
system to decay heat levels without any operator
intervention. No phenomenological “cliffs” were
encountered for the sensitivity studies conducted.

6. At the present time, it is not known whether
coupled multidimensional core neutronic and
thermal-hydraulic effects are important. We
believe that it will be important to investigate
such effects should the PIUS reactor progress to
the design certification stage.
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ADDENDUM 1

Transient: Baseline MSLB

The following plots are included in this Addendum

Frame
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Core flow

Individual reactivity changes

Density lock mass flows

Total scram line flow

Scram line flow
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Core inlet boron concentration

Core temperatures

Rod temperatures

Pump mass flow

Pump speed for all pumps

Steam generator feedwater and steam mass flows
Steam generator secondary pressures
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ADDENDUM 2

Transient: MSLB with 75% blockage of lower density lock

The following plots are included in this Addendum

Frame Title

1 Total CPU time

2 Primary system pressure (steam dome)

3 Reactor power

4 Core average void fraction

5 Core flow

6 Individual reactivity changes

7 Density lock mass flows

8 Total scram line flow

9 Scram line flow

10 Deleted

11 Core inlet boron concentration

12 Core temperatures

13 Rod temperatures

14 Pump mass flow

15 Pump speed for all pumps

16 Steam generator feedwater and steam mass flows
17 Steam generator secondary pressures

18 Steam generator secondary collapsed liquid level

19 Hot-leg inlet mass flows

20 Integrated upper and lower density lock mass flows
21 Integrated hot-leg mass flows

22 Integrated cold-leg mass flows

23 Siphon breaker mass flow to steam dome

24 Siphon breaker void fraction at top cell

25 Standpipe flow to steam dome

26 Standpipe void fraction at top cell

27 Riser mass flows

28 Hot-leg plenum to lower dome mass flow

29 Hot-leg plenum to upper density lock annuius mass flow
30 Pump inlet void fraction

31 Riser mass flows to upper density lock annulus and leakage to downcomer
32 Bottom of core to iop of steam dome collapsed liquid level
33 Break flow rates

34 Break upstream void fractions

35 Pool and standpipes collapsed liquid level

36 Upper density lock void fraction
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4—LOOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
PRIMARY SYSTEM PRESSURE (STEAM DOME)

75% BLOCKAGE OF LOWER DENSITY LOCK
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4—LOOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
REACTOR POWER

757% BLOCKAGE OF LOWER DENSITY LOCK
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4—LOO0OP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
CORE AVERAGE VOID FRACTION

75% BLOCKAGE OF LOWER DENSITY LOCK
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4—1O0OP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR

CORE FLOW
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Reactivity Change

FRAME 6
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4—10O0P 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR

INDIVIDUAL REACTIVITY CHANGES

75% BLOCKAGE OF LOWER DENSITY LOCK
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4—1LOOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
DENSITY LOCK MASS FLOWS
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4—10O0P 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
TOTAL SCRAM LINE FLOW
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4—| OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
SCRAM LINE FLOW

295 75% BLOCKAGE OF LOWER DENSITY LOCK
200
O LINE 1
- -\, - 400
A LINE 2
1507 + LINE 3
o - - 300 .
?» 1254 x LINE 4 %
g g
= 2
ELQ 100 LT?
0 - - 200 .
g 75 - G
= >
201 - 100
25
o+ L- - - - - - - - %0
-25 T ! T T T
0 200 400 600 800 1000 1200

FRAME 9 Time (s)




002l

(S) swiy
omop 008 009 (0]0)4 00¢
| | ] I

—- 001

- 002

- 00¢

- 00V

~- 008

[ 009

X307 ALISN3Q ¥3MOT 40 JOVHI018 4GL

NOILVHINIONOO NOJO8 LIINI 3400
HOIVH3INID WVY3LS 1V Mv3yg 3NN WV3LS T13Q0N AL JO0T—V

00L

1 INVYS

(Ludd) NOILVHINIONOD NOY0S




Fluid Temperature (K)

FRAME 12

4—1O0OP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
CORE TEMPERATURES
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4—| O0OP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
ROD TEMPERATURES
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4—| OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
PUMP MASS FLOW

75% BLOCKAGE OF LOWER DENSITY LOCK
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4—| OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
PUMP SPEED FOR ALL FOUR PUMPS
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4—LOOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
STEAM GENERATOR FEEDWATER AND STEAM MASS FLOWS
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4—LOOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
STEAM GENERATOR SECONDARY PRESSURES
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4—LOOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
STEAM GENERATOR SECONDARY COLLAPSED LIQUID LEVEL

Water Level (ft)
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4—LOO0OP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
HOT LEG INLET MASS FLOWS
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4—O0OP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
INTEGRATED UPPER AND LOWER DENSITY LOCK MASS FLOWS
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4—L OGP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
INTEGRATED HOT LEG MASS FLOWS
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4—LO0OP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
INTEGRATED COLD LEG MASS FLOWS

75% BLOCKAGE OF LOWER DENSITY LOCK

4000000
3500000 -
. . 7500000
3000000 -
= , . 6000000
<< 2500000
z
o
L
v 2000000+ L 4500000
/3]
O —~
= £e)
D 1500000 - © LOOP1
£ i . 3000000
o & LOOP2
-2 1000000 -
_ . + LOOPS | 1500000
500000 -
X LOOP4
0 L0
~500000 : - ' ' |
0 200 400 600 800 1000 1200

FRAME 22 Time (s)



Mass Flow (kg/s)

FRAME 23

4--OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
SIPHON BREAKER MASS FLOW TO STEAM DOME
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4—LOOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
SIPHON BREAKER VOID FRACTION AT TOP CELL
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4—.OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
STANDPIPE FLOW TO STEAM DOME
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4—1O0P 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
STANDPIPE VOID FRACTION AT TOP CELL
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Mass Flow (kg/s)
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4—LOOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
RISER MASS FLOWS

75% BLOCKAGE OF LOWER DENSITY LOCK
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4—1OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
HOT LEG PLENUM TO LOWER DOME MASS FLOW
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4—LOOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
PUMP INLET VOID FRACTION

757% BLOCKAGE OF LOWER DENSITY LOCK
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4—1O0OP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
RISER MASS FLOWS
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Water Level (m)

FRAME 32

4—O0P 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
BOTTOM OF CORE TO TOP OF STEAM DOME COLLAPSED LIQUID LEVEL
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4—O0P 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
BREAK FLOW RATE

1500 75% BLOCKAGE OF LOWER DENSITY LOCK
i L 3000
1250 -l‘
F'}, O STEAM GENERATOR SIDE | 2500
1000 ',‘ a STEAM LINE SIDE
- - 2000

’g 750 -

g E - 1500

3 |

2 500

o -, - 1000
) '

(2] \

o !
= 25041 | | 500

4. U e e o e o o e
"A'-A--A‘—A--A--ﬁ--ﬁ—-ﬂ--A--A—-&--ﬁ---ﬁ"A—-A--A--&-A--A--Aq
50t - -500
i - -1000
—500 | T 1 I I
0 200 400 600 800 1000 1200
FRAME 33

Time ()

Mass Flow (Ib/s)



1.005

4—LOOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
BREAK UPSTREAM VOID FRACTION
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Water Level (m)
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4—| OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
POOL AND STANDPIPES COLLAPSED LIQUID LEVEL

75% BLOCKAGE OF LOWER DENSITY LOCK
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4—O0OP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
UDL VOID FRACTION
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ADDENDUM 3

Transient: MSLB with 1800 ppm pool boron concentration
The following plots are included in this Addendum

Frame Title

1 Total CPU time

2 Primary system pressure (steam dome)

3 Reactor power

4 Core average void fraction

5 Core flow

6 Individual reactivity changes

7 Density lock mass flows

8 Total scram line flow

9 Scram line flow

10 Deleted

11 Core inlet boron concentration

12 Core temperatures

13 Rod temperatures

14 Pump mass flow

15 Pump speed for all pumps

16 Steam generator feedwater and steam mass flows
17 Steam generator secondary pressures

18 Steam generator secondary collapsed liquid level

19 Hot-leg inlet mass flows

20 Integrated upper and lower density lock mass flows
21 Integrated hot-leg mass flows

22 Integrated cold-leg mass flows

23 Siphon breaker mass flow to steam dome

24 Siphon breaker void fraction at top cell

25 Standpipe flow to steam dome

26 Standpipe void fraction at top cell

27 Riser mass flows

28 Hot-leg plenum to lower dome mass flow

29 Hot-leg plenum to upper density lock annulus mass flow
30 Pump inlet void fraction

31 Riser mass flows to upper density lock annulus and leakage to downcomer
32 Bottom of core to top of steam dome collapsed liquid level
33 Break flow rates

34 +reak upstream void fractions

35 Pool and standpipes collapsed liquid level

36 Upper density lock void fraction



4—| OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
) TOTAL CPU TIME
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4—| OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
PRIMARY SYSTEM PRESSURE (STEAM DOME)

1800 PPM POOL BORON CONCENTRATION
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4—OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR

REACTOR POWER
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4—LO0P 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
CORE AVERAGE VOID FRACTION
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Reactivity Change

FRAME 6
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4—LOOP 10 MODEL, STEAM LINE BREAK AT STEAM GENERATOR
INDIVIDUAL REACTIVITY CHANGES
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4—LOOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
DENSITY LOCK MASS FLOWS
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4—LOOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
SCRAM LINE FLOW
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4— OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
CORE INLET BORON CONCENTRATION
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4—LOOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR

ROD TEMPERATURES
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4—.OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
PUMP MASS FLOW
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PUMP SPEED FOR ALL FOUR PUMPS
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4—| OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
STEAM GENERATOR FEEDWATER AND STEAM MASS FLOWS
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STEAM GENERATOR SECONDARY PRESSURES
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4— OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
STEAM GENERATOR SECONDARY COLLAPSED LIQUID LEVEL
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4~ OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
HOT LEG INLET MASS FLOWS
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4— O0P 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
INTEGRATED UPPER AND LOWER DENSITY LOCK MASS FLOWS
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4—-LOOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
INTEGRATED HOT LEG MASS FLOWS
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4—O0P 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
INTEGRATED COLD LEG MASS FLOWS
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4—OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
SIPHON BREAKER MASS FLOW TO STEAM DOME
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4—LOOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
SIPHON BREAKER VOID FRACTION AT TOP CELL
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4—LOOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
STANDPIPE FLOW TO STEAM DOME
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4—O0OP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
STANDPIPE VOID FRACTION AT TOP CELL
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RISER MASS FLOWS
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4—1 O0OP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
HOT LEG PLENUM TO LOWER DOME MASS FLOW
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4—100P 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
HOT LEG PLENUM TO UDL ANNULUS MASS FLOW
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4—| OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
PUMP INLET VOID FRACTION
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4—| OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
RISER MASS FLOWS
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4—|.OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
BOTTOM OF CORE TO TOP OF STEAM DOME COLLAPSED LIQUID LEVEL
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4—| OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
BREAK FLOW RATE
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4—OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
BREAK UPSTREAM VOID FRACTION
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4—1.00P 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
POOL AND STANDPIPES COLLAPSED LIQUID LEVEL
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4—LO0P 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
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ADDENDUM 4

Transient: MSLB without active scram

The following plots are included in this Addendum

Frame  Tite

1 Total CPU time

2 Primary system: pressure (steam dome)

3 Reactor power

4 Core average void fraction

5 Core flow

6 Individual reactivity changes

7 Density lock mass flows

8 Total scram line flow

9 Scram line flow

10 Deleted

11 Core inlet boron concentration

12 Core temperatures

13 Rod temperatures

14 Pump mass flow

15 Pump speed for all pumps

16 Steam generator feedwater and steam mass flows
17 Steam generator secondary pressures

18 Steam generator secondary collapsed liquid level

19 Hot-leg inlet mass flows

20 Integrated upper and lower density lock mass flows,
21 In‘egrated hot-leg mass flows

22 Integrated cold-leg mass flows

23 Siphon breaker mass flow to steam dome

24 Siphon breaker void fraction at top cell

25 Standpipe flow to steam dome

26 Standpipe void fraction at top cell

27 Riser mass flows

28 Hot-leg plenum to lower dome mass flow

29 Hot-leg plenum to upper density lock annulus mass flow
30 Pump inlet void fraction

31 Riser mass flows to upper density lock annulus and leakage to downcomer
32 Bottom of core to top of steam dome collapsed liquid level
33 Break flow rates

34 Break upstream void fractions

35 Pool and standpipes collapsed liquid level

36 Upper density lock void fraction




4—LOOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
TOTAL CPU TIME
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4—LOO0P 1D MODEL, STEAM LINE. BREAK AT STEAM GENERATOR
PRIMARY SYSTEM PRESSURE (STEAM DOME)
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4—OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
REACTOR POWER
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4—O0P 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
CORE AVERAGE VOID FRACTION
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4—1O0P 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
INDIVIDUAL REACTIVITY CHANGES

0.010 SCRAM VALVE CLOSED
...... L it - R c DR ¢ S et oS R TRy > o s e k.. |
st o FUEL TEMPERATURE
0.005
/ & COOLANT TEMPERATURE
P + BORON CONCENTRATION

" 0.000 ¢ —_— e e X e e N e ———  H— ——X
% “\ x VOID FRACTION
2
2 '\ o TOTAL
>
2 ~0.005- \._ﬁ
e 'W\r*- —
@)
O
(]
o

~0.0101

0054 0 e T S N — Al

-0.020 . ; 1 | 1
0 200 400 600 800 1000 1200
Time ()

FRAME 6



(S) awi| P E
0od 0001 008 009 0]0) % 00¢ 0
] | | | | _
o]0}
00Z— -

" e
e st

00L—

Z
2 s
n 0
s m
m e}
= s
o £
- 0Gl
(100d OINI +) Y207 ALISN3A ¥3ddN v
00 .
KASYNIND OLNI +) MO0 ALISN3A ¥3MO1 o
- 00¢
006 -
Q3S010 3IATVA AVYOS 0S¢

SMOT4 SSYN MO0 ALISN3d
HOLVHANID AVALS LV Mv3¥d 3NIMT Wv3LS T13A0W AL 00T




4— OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
TOTAL SCRAM LINE FLOW
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4—OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
SCRAM LINE FLOW
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4—LOO0P 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
CORE INLET BORON CONCENTRATION
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4— O0P 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR

CORE TEMPERATURES
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4— OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
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PUMP MASS FLOW
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4—10O0P 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
STEAM GENERATOR FEEDWATER AND STEAM MASS FLOWS
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4—OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
STEAM GENERATOR SECONDARY PRESSURES
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4—LO0P 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
STEAM GENERATOR SECONDARY COLLAPSED LIQUID LEVEL
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4—OO0P 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
HOT LEG INLET MASS FLOWS
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4—1.O0P 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
INTEGRATED UPPER AND LOWER DENSITY LOCK MASS FLOWS
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4—| OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
INTEGRATED HOT LEG MASS FLOWS

4500000 SCRAM VALVE CLOSED
4000000 - 3000000
35000004 0000
“O 3000000 -
=<
2 i - 6000000
O
=2 2500000 -
wn
wn
<2 20000004 - 4500000 T
B o LOOP1
O 1500000
S B a LOOP2 - 3000000
= 10000
%0 + LOOP3
- - 1500000
500000 - % LOOPA
0 Lo
-500000 , , : . .
0 200 400 600 800 1000 1200

FRAME 21 Time (s)



4—1LO0P 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR

INTEGRATED COLD LEG MASS FLOWS
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4—O0P 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR

SIPHON BREAKER MASS FLOW TO STEAM DOME
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Vapor Fraction
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4—O0P 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR

SIPHON BREAKER VOID FRACTION AT TOP CELL
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4— OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
STANDPIPE FLOW TO STEAM DOME
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4—OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
STANDPIPE VOID FRACTION AT TOP CELL
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4—| OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
RISER MASS FLOWS

SCRAM VALVE CLOSED

15500

S [ 34000
15250 -

b\/\ - 33500
150004 | 53000
14750 1 o TO HOT LEG PLENUM - 32500
14500+ s ABOVE DNCMR LEAKAGE L 32000

- L 31500
14250 -

SRl R By S

2 AT - 31000

14000 _" ' v - o= :| ‘OI'I'..P‘I‘A
e '. o

| \ 'nw;' h‘«"‘ o ! - 30500
13750

i - 30000
13500 T Y T T Y

0 200 400 600 800 1000 1200

Mass Flow (Ib/s)




(s/q)) moj4 ssop

(s) sy

82 3NVY4

0ozl 0001 008 009 (010} 4 00z 0
1 | | 1 | oonl
009- - -
%.ooml
00§~ -
~00L—
0- o 40
Ini_ﬁ A B
- 00)
00¢ - - M
wn
- 002 o
|
009 - - Q
- 00¢ 2
\Vﬂu
<
006 4-o0v w
- 00G
002! 4 -
- 009
0061 - 1 ooz
008

Q3S01J 3ATVA WVYDS

MOT4 SSYW INOQ ¥3MOT OL WNINI1d 537 1OH
HOLVHINIOD WY3LS 1V X348 INN WV3LS “T300N Ol dOOT-F



(s) awu) 62 3NV

0021 000! 008 009 (010 4 002 0
[ 1 | | | ooFr
- Gell
0062 -
oGl
1 - GLL
009¢ 1 g | Gl
<
n ., -002t (O
g -
2 2
\ln.u../ 00.2 +Gedl =
N o)
& >
S’
- 062l
0082+ Vo
- 00¢!
006 - -
TAY !

Q3S01I IATVA NVHOS

MO14 SSYW SNINNNY 10N OL WANT1d 931 1OH
HOLVYINTD WY3LS LV Mv3d8 3NN WVALS 300N Al 4001
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4—O0OP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
PUMP INLET VOID FRACTION
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4—LOOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
RISER MASS FLOWS
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4—| OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
BREAK FLOW RATE
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4—| OOP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
BREAK UPSTREAM VOID FRACTION
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4—O0OP 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
POOL AND STANDPIPES COLLAPSED LIQUID LEVEL
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4—1O0P 1D MODEL, STEAM LINE BREAK AT STEAM GENERATOR
UDL VOID FRACTION
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