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ABSTRACT

Component degradation modeling is the analysis of component

degradations for the purpose of developing models of the degradation

process and its implications. Degradation modeling can encompass many
different areas, from the microscopic modeling of material degradation

processes to macroscopic modeling of times of occurrences of

degradations. In this paper, we present basic concepts, approaches,

and applications of degradation modeling using times of occurrences

of component degradations and failures. Specific applications of the

modeling approaches, performed for "active" components, are presented.

We discuss degradation modeling from the viewpoint of understanding

the effects of aging and the role of maintenance in mitigating aging

effects. We argue that degradation modeling is a key to understanding

the effects of aging and maintenance and should be the principal focus

of aging analysis. Since degradations generally occur before

failures, detecting aging trends in degradations allows the aging
effects to be corrected before they impact failures. Furthermore,

degradations generally occur more frequently than failures, providing

a larger data base for analyzing aging effects.

Degradation modeling approaches can have broader applications in

aging-risk studies, in defining the effective maintenance practices,

and in analyzing component reliability performance. Extensions of

degradation modeling approaches to study the reliability effects of
different maintenance intervals, different maintenance durations, and

different maintenance efficiencies also are discussed. These

extensions will help define maintenance activities that mitigate aging

effects, and complement the evaluation of the effectiveness of

existing maintenance practices. We present sensitivity analyses

showing the effects of maintenance on component reliability.

"Work performed under the auspices of the U.S. Nuclear Regulatory Commission.
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i. INTRODUCTION

Analyses of data on plant experience shows that components experience

various forms of degradation that are detected and corrected through testing,

maintenance, anM repair. In fact, records on component reliability contain much

more data on degradations as compared to failures. Importantly, aging is a

degradation process and by analyzing component degradations we can obtain an

understanding of the aging p_ocess and activities necessary to mitigate the age-

related degradation.

In this paper, we discuss component degradation modeling, which is an

analysis of component degradations for the purpose of developing models of the

degradation process and its ;implications. Degradation modeling can encompass

many different areas, from the microscopic modeling of material degradation

processes to macroscopic modeling of times of occurrences of degradations. Here,

our focus is on modeling the degradation process using the times of occurrences

of component degradations and failures.

In this approach to degradation modeling, our objectives are to understand

the effects of aging and the role of maintenance in mitigating the aging effects.

We argue that degradation modeling is a key in obtaining this understanding and

should be the principal focus of aging analysis. Since degradations generally

occur before failures, detecting aging trends in degradations allows the aging

effects to be corrected before they impact failures.

We discuss two types of applications of degradation modeling in

understanding aging and maintenance effects. In the first, trends in occurrences

of degradation are analyzed for aging effects and are compared to the failure

occurrences to obtain an understanding of the effectiveness of maintenance (in

preventing age-related degradations from transforming to failures). The second

application shows how degradation modeling can be used to define effective

maintenance practices.

2. DEFINITION OF DEGRADATIONS

To analyze degradations, the degraded state of the component must first be

defined so it can be identified and analyzed. Definitions of the degraded state

can be at a gross level or at a detailed level. At a gross level a component is

described as degraded whenever any deterioration occurs which does not cause loss

of function. For this gross definition, the operational performance of the

component is divided into three states; the normal operating state_ the degraded

state, and the failure state. An example of a gross definition of degradation

is to say that a component degradation occurs whenever corrective maintenance is

required, but the component has not failed.

More detailed modeling of degradations involves dividing the degradation

space into multiple degraded states. A given degraded state is then associated

with a given range of characteristics of the component or performances of the

component. For example, detailed degraded states for circuit breakers can be



defined based on defined ranges for the pick*up/drop-out voltage, inrush/holding

current, and other measurable degradation characteristics.

For initial work, the gross definition of degradation can be used, which

b.asi'cally equates the occurrence of the degradation state to any occasion when

corrective maintenance is required. Figure i illustrates the basic alternative

for defining the degradation state.

Operating State Operating State

_._DDeg.radedState 1

Measure Degraded State 2

of Degraded State "
Performance

Degraded State n

• Failure State Fallur,e State

Single Degraded Multiple Degraded
State Definition State Definition

Figure I. Alternatives for degraded state definitions

Table I presents an example of component data analyses identifying degraded

states, along with failure states of the component. In this example, derived

from the analyses of data for air compressors, failure states and degraded states

of air compressors are distinguished based on engineering knowledge using the

failure effect information and the identified affected subcomponent. In some

i situations, judgement was required to determine whether the degradation was ofsufficient magnitude to be defined as a failure. For example, in general, an oil

leak at the piston rod seal is a degraded state for an air compressor, but in the

example in the table, the leak was of sufficient magnitude to be called a failure

of the air compressor.

i 3. DEGRADATION MODELING APPROACHES

i In this section, we discuss the general aspects of degradation modeling,as related to applications presented in this paper. Detailed mathematical

formulations of degradation modeling are presented in References i and 3.

I To understand degradation modeling, we study a repairable component, i.e.,a component that is being repaired and maintained. The "active" components'

• pumps, valves, circuit breakers, compressors, etc., are repairable components and

are the focus of this study.



Table i. Examples of Air Compressor Degradation and Failure Occurrences
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We define the operating characteristics of a component in terms of four

states; an operating state (o-state), a degraded state (d-state), a maintenance

I state (m-state), and a failure state (f-state). In one of the simplest models
(used for the applications presented in Section 4), we make the following

assumptions '

I i. Degradation always precedes failure.|
I 2. When a component is repaired after a failure, the operational state of the

component reflects more restoration than when on-line maintenance isI: performed.

|

I 3. When maintenance is performed following detection of a degraded condition,
the component is restored to a maintained state, which reflects less

restoration than when repair is performed after a failure.

4- We call the state after repair of a failure the "o" state, the state after

failure the "f" state, and the one after maintenance the "m" state.

4
In this application, we focus on the frequency of occurrences of

degradations and failures. Based on our assumptions, the component can be in a

degraded state (d-state) through three processes'

m
• the component reaches _ts first degraded .qt_te from _ restored state (o-

_- state) ,

I



• the component undergoes recurring degradation with no intermediate failure

(it is assumed that the component is in a maintained state (m-state)

following a degradation), and

• the component undergoes degradation following restoration resulting from

a failure (f-state).

The component can fail only from a degraded state (d-state). However, it is

assumed that maintenance is performed every time a degraded state is detected.

Thus, a maintained state (m-state) is reached following a degraded state (d-

state). For modeling considerations, these two states are equivalent in this

analysis.

i The degradation rate is defined as the rate of degradation occurring after
maintenance given that no previous degradation has occurred. Similarly, the

failure rate is the rate of failure occurring after a degradation given that no

previous failure has occurred, lt is assumed that the effect of aging on a

- component can be manifested through either increased degradation occurrence or

increased failure occurrence or both. Generally, earlier studies have focussed
on increased failures due to aging. Here, the focus is on degradations, along

with analysis of failures toseek relation between the two. The effectiveness

of maintenance is measured in terms of its ability to prevent degradations from

transforming to failures, i.e., it is the complement of the transition

i probability from degradation state to failure state.
In the second type of application (presented in Section 5), the basic

(frequency-based) degradation model is extended to include test and maintenance

related information whereby the effects of test and maintenance strategies, in

terms of test and maintenance frequencies, duration, and efficiencies, can be

determined (Reference 3). For this type of model, several characteristics of

interest can be estimated: availability, probability of failure, and the

expected time to failure, lt is also possible to obtain an estimate of the

effect of maintenance on the component.

The effect of maintenance on the component failure probability is estimated

by comparing two cases of the model; one which includes a maintenance state,

referred to simply as the "maintenance model" and the other without a maintenance

state, called the "no maintenance" model. In this evaluation, the probability

of failure is estimated as a function of different component operating

characteristics" time to degradation, time from degradation to failure, and

maintenance efficiency. By maintenance efficiency we mean the ability of

maintenance to restore the component to an operational state. Maintenance

efficiency is considered perfect, i.e., equal to i, if every time maintenance is

performed the component is restored to an operational state. Conversely, if

every time maintenance is performed, the component is restored to a degraded

state, the maintenance is considered totally inefficient, i.e., maintenance

efficiency is zero.

!
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4. DEGRADATION MODELING IN INTERPRETING AGE-RELATED DEGRADATION AND FAILURE

DATA

In this section, we present an analysis of age-related degradation and

failure data for selected components, namely Residual Heat Removal (RHR) pumps

and air compressors (References I and 2). The primary focus of the analysis is

to use the concept of degradation modeling, which provides us with an

understanding of the aging of the active components. Based on the data analyses,

we discuss the following'

• the age related behavior of the degradation rate and the aging failure

rate of a standby safety system component and a continuously operating

component (i.e., the RHR pump and air compressors),

• interpretation of the aging process through the behavior of the

degradation and failure rate, i.e., how meaningful fnformation can be

obtained by studying these parameters, and

• derivation of the effectiveness of maintenance in preventing age-related
failures.

Aging Effect on Degradation

The degradation data for the RHR pumps and air compressors were analyzed

with the following objectives'

• to identify age groups where statistically significant time trends exist,
and

• to determine the time trends and degradation rates, using regression

analysis.

The details of the statistical analyses are presented in Reference i. Here, we

discuss the results and the characteristics of degradation rate.

Figure 2 shows the logarithm of the degradation rate that characterized the

RHR pumps over i0 years (presented as 40 quarters). Statistical tests showed

that the degradation behavior across these components are similar, and

accordingly, a generic degradation characteristic was studied. Data combining

and data pooling were studied" both showed similar results. The results ob-

<:ained by data combining are discussed.

The following observations can be made from the age-dependent degradation

r_te for the RHR pumps:

I. The degradation rate shows significant age-dependence' the early life of

the component (i.e., first 5 years of the I0 year period) shows a de-

creasing trend, and the last 5 years show an increasing trend, with the

age of the component.
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Figure 2. Age dependent degradation rate

(Component: RHR pumps; 3 plant data)

2. The increase in degradation rate, which is of interest in aging studies,

is significant: the degradation rate increased by almost an order of

magnitude in the last 5 years.

3. The 95% confidence bounds for the degradation _ate show that the uncer-

tainty in the estimation is not large. The increased number of deg-
radations observed in a component (compared to failure data) and the

i for data across similar components exhib-
statistical approach taken using

- iting similar degradation behavior contribute to lower the range of

uncertainty.
Figure 3 shows the logarithm of the degradation rate for the air

compressors over I0 years (presented as 40 quarters). The method of data

combining was used for this analysis. As stated, this generic degradation

characteristic was obtained by combining data from 4 air compressors in a BWR

unit.

The observations from the age-dependent degradation rate for air

compressors are as follows'

I. The degradation rate shows significant age-dependence' the early life of

the component (i.e., first 5 years) shows a decreasing trend and the last

5 years show an increasing trend. The age-dependent behavior is similar
to that observed for RHR pumps.

o
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Figure 3. Age dependent degradation rate

(4 air compressors data)

2. The increase in degradation rate was smaller (about a factor 2) compared

to the increase observed for the RHR pumps (about a factor of i0) in the

last 5 years of life.

Aging Effect on Failures

The aging-failure data for the RHR pumps and air compressors were also

analyzed with the following objectives:

• to identify age groups where statistically significant time trends exist,
and

• to determine aging-failure rates where time trends exist, and to estimate

a time-independent failure rate where time trends cannot be established.,

Figure 4 gives the logarithm of the age-dependent failure rate for RHR

pumps. The data base used covered the same components as for the degradation

rate. The statistical tests justifying the use of data across 12 RHR pumps were

the same, but the sparsity of data on aging failure required a slightly different

analysis.
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Figure 4. Age dependent failure rate

(Component' RHR pumps; 3 plant data)

The aging-failure data for the RHR pumps show only 3 failures during the

last 5 years of the components s life (age 5-I0) and, in general, the number of

failures was small (18). The statistical trend testing, based on both data

combining and pooling, showed a decreasing trend in the early life (first 5

years), but no trend in aging-failure could be established in the last 5 years.

Because of the sparsity of,the data, isotonic regression analysis was used to

estimate failure rate for the first 5 years of RHR pumps where a decreasing trend

was observed. For the last 5 years, due to a lack of any trends, a constnnt,

time-independent, failure rate was estimated.

The following observations can be made from the aging-failure rate obtained

for the RHR pumps'

i. The aging-failure rate shows a decreasing trend in the first. 5 years, but

only a constant failure rate can be estimated for the last 5 years of the

overall I0 years. In other words, there was no trend of increasing

failure with age for the ten-year operating period of the RHR pumps.

_

2, The aging failure rate shows a behavior similar to the degradation rate in

the first 5 years, but differs after that. The aging-failure rate was

significantly lower than the degradation rate and the difference increas_,,i

with increasing age. The degradation rate was about a factor of 30 higheL

than the aging failure rate at the end of I0 years,

q

4
q
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3. The 95% confidence bounds associated with aging-failure rate show higher

uncertainty compared to the degradation rate, due to the few observations
of failures.

Figure 5 gives the logarithm of the failure rate for the air compressors,

Statistical analyses were performed to determine trends in the failure rate using

25 age-related failures observed for the air compressors.
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Figure 5. Age dependent failure rate

(Component' 4 air compressors)

The following observations can be made from the aging-failure rate obtained

for the air compressors:

I. The aging-failure rate of the air compress£rs shows a strong age-depen-

dence with a decreasing trend in the first two and a half years and an

increasing trend for the last 5 years of the overall I0 years.

2. The aging-failure rate shows a behavior similar to the degradation rate in

the first 3 years, but differs after that. The aging-failure rate was

significantly lower than the degradation rate in the first 5 years, but

the difference decreased with increasing age. The aging-failure rate

reached about the same level as the degradation rate at the end of ten

years of operation.



Aging Evaluation Using Degradation and Aging-Failure Rate

The analysis of the degradation rate and the aging-failure rate provides

a comprehensive picture of the aging process in the RHR pumps and air compressors

and provides interesting insights on aging of components.

li The use of information on degradation and failure not only significantly

increases the information base for adequate analysis, but provides in-

terpretations of the aging process that cannot be obtained by analyses of

failure data alone, For both the RHR pumps and air compressors, analyses

of degradation showed effects of aging.

2. The aging trend in the degradation during the last 5 years of the compo-

nents' i0 years of operation shows a significant effect on component deg-

radition as the RHR pump ages, but a simultaneous lack of aging trend in

the failure rate signifies that degradation has not been manifested in an

increasing failure rate. For the air compressors, the growth in degrada-

tion rate is accompanied by growth in the failure rate. In the

degradation modeling approach, this finding signifies that maintenance

does not prevent age-related degradation from resulting in faster growth
in the failure rate.

3. The relation between degradation and aging-failure rate in the first 5

years of the RHR pumps remained the same, i.e., both curves were similar

and the degradation rate was steadily higher than the aging-failure rate.

For air compressors, the degradation rate was steadily higher than the

failure rate, but the failure rate showed increasing trends slightly

before the increasing trend is observed in the degradation rate.
=

4. Because there is more information on degradations, degradation rates are

probably better indicators of aging than failure rates. Also, uncertain-

ties in estimates of degradation rates are lower than those for aginB-

failure rates. Therefore, degradation rates can be effectively used to

understand aging effects.

Evaluation of Maintenance

As discussed in Section 3, the degradation modeling approach provides an

estimate of the effectiveness of maintenance in preventing age-related failures.

J The transition probability from a maintenance state to failure state signifies

the ineffectiveness of maintenance. The complement of maintenance ineffec-
tiveness is maintenance effectiveness.

For the RHR pumps, the maintenance effectiveness is obtained (Figure 6) for

each I0 quarters of age. Effectiveness varies between. O.6 to 0.7 for the first

30 quarters, but significantly increases in the last i0 quarters, lt is possible

that effect of degradation on failures is delayed and data beyond 40 quarters

might provide better estimates of maintenance effectiveness in the last i0

quarters. The maintenance effectiveness for the air compressors (Figure 7) shows

slightly different behavior, Effectiveness declines with the age of the

component, a manifestation of the increased failure rate observed in the last 5



years. As discussed, the relationship among degradations, failures, and

maintenance is complex, but extremely useful for studying aging in repairable

components. A better understanding of maintenance effectiveness will allow us

to estimate the aging-failure rate based on estimates of the degradation rate.

Maint. Effectiveness
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0 10 20 30 40 50
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Figure 6. Maintenance effectiveness

(Component: RHR pumps; 3 plant data)
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Figure 7. Maintenance effectiveness

(Component' air compressors)



5. SENSITIVITY ANALYSES TO STUDY EFFECTS OF MAINTENANCE CHARACTERISTICS

In this section, we present sensitivity analyses to study component

reliability as a function of component operational and maintenance

characteristics• The component reliability effect is studied in terms of the

probability of failure. The component operational and maintenance

characteristics are _efined in terms of the parameters listed in Tables 2 and 3.

Some results of these studies discussed below provide an understanding of the
effect of maintenanc.e and how maintenance activities can be defined to obtain the

desired component reliability. We first discuss the "no maintenance" model,

i.e., the effect on component failure probability when no maintenances are

performed. Analysis of the same component (as defined by the parameter values)

when maintenance is i_,clu_.ed are presented next. As stated before, a comparison

of these two evaluations provides a quantitative measure of the effect of

maintenance on the component.

Table 2' Parameter Values Fixed in the No Maintemance Model

Parameter Average Time (Days)

Time from Operation to Failure (Tor) 1095.0
i

Time from Failure to Operation (Tot) 1.5

Time from Failure to Degradation (Tld) 15.0

Table 3" Parameter Values Fixed in the Maintenance Model

Parameter Average Time (Days)

Time from Operation to Maintenance (Tom) 365.0

Time from Operation to Failure (Tot) 1095.0

Time from Degradation to Maintenance (Ta) 15.0

Time from Failure to Operation (Tor) 1.5

Time from Failure to Degradation (Tld) 15.0

Figure 8 illustrates the no maintenance model. In this model the only
corrective action that can be taken on the device is to perform repairs after

total failure. The figure shows the probability of failure as a function of the

average time from operation to degradation (rod) and the average time from

degradation to the failure state (T_f). Ali the other transition times used in
the model were fixed at the values shown in Table 2.
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Figure 8. Sensitivity to the degradation rate with no maintenance

In Figure 8 it can be seen that the probability of failure decreases asr

either rod or Tdf is increased. Devices that take a longer time to pass from

i operation to a degraded state or take a longer time to pass from the degraded
state to failure run a lower risk of failing, lt can also be seen that Tdf

moderates the e_fect of Tod. If Td£ is short then the probability of failure

i rapidly increases as rod declines. If, on the other hand, Td£ is long then

a decline in Tod has little effect on the failure probability. A device that

passes quickly to a degraded state, but then stays in the degraded state for an
extended period of time has a low risk of failure.

In this case it can be seen that the greatest danger to the plant occurs when

i devices in such a manner that both their transition time from operation
are aging

to degradation, and their transition time from degradation to failure are

increasing. As can be seen from the sudden upturn in Figure 8 there is a point

where the failure probability starts to increase very rapidly. Preventative
- action must be take when a device reaches the steep part of this curve.
i

The no maintenance model only allows repair when a failure is detected. We
now consider where maintenance is performed in the degraded state. Figure 9

illustrates the maintenance model. The probability of failure is shown as a

function of the maintenance efficiency and Tod. In this figure rdf is fixed at 60

days, the average time in maintenance is fixed at three days, and the other

parameters are fixed at the values which appear in Table 3.

=

=
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Figure 9. Sensitivity to maintenance

First, it can be seen by comparing Figure i to Figure 8 that the addition
of a maintenance state reduces the probability of failure, thus confirming the
obvious value of maintenance. The figure also shows that poor maintenance

efficiency always produces a higher probability of failure than good values of
maintenance efficiency. However, as Toa becomes smaller than say 200 days the

probability of failure increases rapid].y, and the differencebetween maintenance

policies starts to diminish. As Tod approaches zero the difference between
maintenance policies disappears.

As in the no maintenance model, there is also a point in the maintenance

model where the probability of failure starts to increase rapidly. When a device

has aged to the point where it starts to slip rapidly from the operational state
to the degradedstate action must be taken in order ameliorate the situation.

6. SUMMARY

In this paper, we have presented the concept of analyzing occurrences of

! component degradation, called degradation modeling, to obtain an understanding

of the effects of aging and the role of maintenance in mitigating that effect.The applications presented show a number of benefits in modeling degradation

I occurrences as a part of component reliability studies. These can be summarized
• as follows"

!
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i. Component degradation occurrences are identifiable in the available data

bases and provide a larger data base, compared to failures, in the

analysis of aging effects,

2. Aging trends are detectable in degradation occurrences and can provide

early indications of aging,

3. The effectiveness of maintenance can be evaluated, which in turn can be

used to alter maintenance practices, as necessary, to control age-related
failures, and

4. The effect of maintenance on a component can be evaluated using

degradation modeling approaches, which will help define maintenance

activities necessary to mitigate aging effects.
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