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Abstract

The stability properties of ideal ballooning modes on toroidal flux surfaces near a

quasistatic magnetic island is examined. On these surfaces, magnetic field-line trajectories

tend to bunch on that part of the magnetic surface closest to the X-point of the magnetic

island. Because of this preferential bunching, the stabilizing effect of field-line bending

due to magnetic shear can be reduced. Eigenfunctions localized in helical angle near the X-

point and in poloidal angle on the bad curvature side of the tokamak a.remore susceptible to

" ballooning instability than are modes in corresponding equilibria without the magnetic

'_ island. For a slowly growing island, a growing number of flux surfaces located near the
II

separatrix become ballooning unstable. Secondary ballooning instabilities may play a part

in the crash phase of sawteeth or macroscopic island dynamics.

PACS numbers: 52.35.Py, 52.55.Dy, 52.30.Bt !:'_:__(,_.,,_.:,_, _,



I. Introduction

Understanding the stability properties of three-dimensional magnetostatic equilibria

is a problem of considerable interest and difficulty. Equilibria of magnetic confinement

systems are usually described by a set of nested, toroidal flux surfaces. 1 However, these

surfaces are only guaranteed to.exist for magnetic geometries that contain a continuous

symmetry 2 (i. e., axisymmetry in a tokamak). More generally, the magnetic topology may

change through the formation of magnetic islands and regions of magnetic stochasticity.

These magnetic field modifications can occur because of the presence of field errors 3 or

inherent three-dimensionality, or appear as a quasistatic succession of equilibria resulting

from slowly growing resistive instabilities (e. g., nonlinear growth of constant-_t tearing

modes4). The loss of nested, toroidal flux surfaces seriously complicates the issue of ideal

stability analysis since one needs to consider three-dimensional instabilities growing in a

three-dimensional equilibrium. Most present day stability codes are incapable of analyzing

this problem since the assumption of well-defined toroidal surfaces as found from the

equilibrium Grad-Shafarnov equation is usually made.

In this work, we examine the stability properties of an equilibrium that contains a

quasistatic magnetic island (the island growth time is long compared to the ideal growth

time). In particular, ideal ballooning modes are examined on the toroidal flux surfaces just

outside the separatrix of the magnetic island. Since the pressure profile is flat inside a

magnetic island (assuming that there are no pressure sources inside the island separatrix), it

is sufficient to examine the toroidal surfaces nearest the island where the effect of the island

is most dramatically felt on the pressure-driven modes. We also note that three-

dimensional effects can cause the flux surfaces very close to the separatrix to be destroyed

and cause the pressure profile to flattened in the stochastic region. However, this effect is
11

small for low mode number magnetic islands, 5 so we will not consider this effect on the

surfaces near the island and assume that pressure gradients exist on every toroidal flux

surface on either side of the island.
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lt has been suggested that secondary pressure-driven instabilities play a role in the

crash phase of sawteeth. 6'7 In ref. (6), a two step process for internal disruptions is put

. forth. First, an m = 1 internal kink is excited and evolves nonlinearly until a helical, kinked

neighboring equilibriura that is accessible from the initial equilibriu m is found. 8 This
_,,

helical neighboring equilibrium also occurs for ideal m = 1, n = 1 modes in tokamaks with

nonmonotonic q profiles 9 and for m = 1 kink-tearing modes, l0 This new equilibrium is

then unstable to ballooning modes due to an enhancement in the pressure gradient. In ref.

7, it is suggested that a steep pressure gradient buiids up in a boundary layer near the

surface of reconnection. This enhanced pressure gradient causes a magnetohydrodynamic

(MHD) instability. More recently, simulations of three-dimensional MHD indicate that

toroidal effects are important for understanding the m = 1 resistive mode.11

In this work, we hypothesize that the presence of a magnetic island changes the

MHD stability properties and introduce a general formalism to treat the effects of a magnetic

island on large-n ballooning instabilities in tokamak plasmas. The effect of the island

enters in the metric elements that are needed in the ballooning mode _SW. These metric

elements basically descr;be the fact that magnetic field-lines tend to "spend more time" on

that part of the magnetic surface that is nearest to the X-point of the magnetic island where

the "effective shear" is small. Because of this bunching of the field-lines, the stabilizing

effect of field-line bending due to magnetic shear can be reduced. As discussed above, the

compression of the magnetic surfaces caused by the island formation can enhance the

pressure gradient near the island. The inherent three-dimensionality of the equilibrium

affords the ideal mode greater freedom in finding an unstable perturbation. The most

" unstable (or least stable) eigenfunction is found to be localized in poloidal angle on the bad

curvature side of the tokamak, and in helical angle (the angle associated with the resonant
t.

magnetic perturbation) on that part of the flux surface nearest the X-point of the magnetic

island. For a slowly growing magnetic island, a growing region of flux surfaces located



near the separatrix are more susceptible to ballooning instabilities than the associated two-

dimensional equilibrium without the magnetic island.

We would also like to point out that a similar set of calculations was performed by

Bishop and co-workers to examine the effect of an axisymmetric magnetic separatrix due to

a magnetic divertor on ideal ballooning modes. 12'13 It was found that the poloidal location

of the X-point was crucial to the stability analysis, with the greatest stability occuring when

the X-point was located on the good curvature side of the tokamak so that the bunching of

the field-lines near the X-poiat amplifies the stabilizing effect of the local curvature. The

major difference between the work of Bishop and our work is that the divertor geometry

considered retains the axisymmetry property of the equilibrium, so that the eigenfunction is

only localized in' the poloidal angle. In the present work, the equilibrium is inherently

three-dimensional and this allows the mode tofind a more unstable perturbation.

In the following section, the equilibrium with a magnetic island is described. The

stability analysis of this equilibrium is studied in Sec. III. A discussion of this model and

its ramifications for tokamak phenomenolgy is presented in Sec. IV.

II. Equilibrium with a magnetic island

First, let's consider an equilibrium with nested, toroidal flux surfaces, which are
m

labeled by the flux function _. The toroidal and poloidal angles are given by _ and O,

respectively. We write an equilibrium magnetic field with toroidal flux surfaces

B0 = qVCbxV0 + V_xV_ , (1)

where q = q(_) is the inverse rotational transform. A magnetic island forms when a

resonant, symlnetry-breaking magnetic field perturbation is present at rational values of q.

Consider an island forming at the surface q = qo = mo/no caused by the presence of a

magnetic perturbation of the form

B 1 = V0 × VA(@,u) , (2)
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where u = _ -%0 is the resonant angle. It is assumed that A depends on the resonant

angle u and the radial variable • alone in the neighborhood of the rational surface and is

. given by

Ap(o)
= cos (PnoU+ Op) . (3), A(O,u) _1 noP

Changing to the coordinates u = _ - %0, and 0 = 0, the total magnetic field is given by

B = B0 + B 1 = V_xV0 + VuxVO , (4)

where

qox2
V =fdO[q(O)-%] - A___-T- A , (5)

t

where x = • - • o, q(Oo)= qo, and qo = dq/dO evaluated at • = • o. The second form for

is valid in the vicinity of the rational surface and we will use this form of _ to describe

the magnetic surfaces near the island. If we assume that the radial variation of A is weak

(the constant-_ approximation of tearing mode theory14) and assume that the p = 1 helicity

dominates in Eq. (3), A = _sxCOS(noU),where _tsx is the value of _ on the separatrix. This

form of A describes a magnetic island with half-width w = 2 _/JNtsx/q_l.

Since we demanded that A = A(O,u), the magnetic field in the vicinity of the

rational surface satisfies B.V_ = 0. Therefore, it is convenient to transform from the

magnetic c_Jordinates • and u to a new set of coordinates given by

dO* = _ d/lt , (6)
f_(V)

• _ du* = _ nodu f2(V) , (7)
8o_'(O*,u)

where O* = O*0g) serves as a label of the magnetic surfaces modified by the magnetic

island formation and u* is an angle-like variable on the modified surfaces. The function

f_(O*) serves as the rotational transform for the magnetic surfaces near the magnetic island.



In order that u and u* have the same periodicity properties (i. e., as noU goes from 0 to 2r_

on a surfaces outside the separatrix, u* goes from 0 to 2g), the island rotational transform

is given by

1
I'_(_)

= al_ 1 ' (8) ,
2_no DOV(O*,u)

It is assumed that the magnetic island width is small compared to macroscopic length

scales, so qow is a small quantity. Therefore, the value of l) is small since it goes as fl ~

O(qoW); however, dD,/d¢* ~ O(qo) since O* ~ O(w). In addition, the value of fl goes to

zero as the separatrix is approached. This describes the fact that field-lines on the

separatrix stagnate near the X-point. Explicit forms for 0', u* and f_ appear in the

Appendix where the assumption that A = _sxCOS(nou) is made.

Using these coordinates, the equilibrium magnetic field in the presence of the

magnetic island, Eq. (4), is given by

B = Vu* x V_* + f_(_*) VO* x V0 . (9)

The Jacobian constructed from the magnetic coordinates is preserved in this transformation

1 1
_1 = = , (10)

Vu* x V_*.VO Vu x VO.VO

and the magnetic differential equation B.VM = N is given by

1 DM DM
- £_u,) = N (11)

Finally, we note that since this is the equilibrium magnetic field, the condition J x B = Vp

holds. This condition is also approximately true for slowly growing (as compared to

Alfvenic and sound wave propagation times) magnetic islands. From magnetostatic

equilibrium, we get the restriction that the pressure must be constant on a magnetic surface,

so p = p(_*).



III. Linear Stability of Ballooning Modes

The stability against large-n ballooning-type perturbations is addressed in this

section. The mode number of the magnetic island is not connected to the mode number oflt

the ideal mode. We use the equilibrium and magnetic coordinates introduced in the last

" section to describe the magnetic configuration.

The linearized ideal magnetohydrodynamic equations are

-- B.Vq_1 -_, = 0 , (12)

B × Vq_I
vI = c (13)

B 2

4_:
72 Ali - --c-- JI] ' (14)

J,, BxVp 1 13xe tVl
B.V t = - cV.B-------U- - cV. B2 , (15)

4

_)Pl
= - Vl.VP0 , (16)

where Ali- A 1.B/B, JII"- J1 'B/B, and POis the equilibrium pressure profile. Assuming B

is inhomogeneous, a linear equation for ¢01can be obtained

1 2___ 8n B'Vq_IXVp

V--a2VI_ _2t = VH72 VIIrpl - _ B.VB × V( • B2 -), (17)

where the 0 subscript has been dropped from the equilibrium pressure, va = Bl 4Q_9' is the

Alfven velocity and the parallel gradient in the vicinity of the island is given by

qRo1 _0VII -" + _ au_-) (18)

from Eq. (11) where the assumption _ = qRo/B o is made. By making the usual eikonal

representation, _Pl= } exp(inS), where n --+ ooand S = _ _2d0 - u*, the ballooning mode

8W is given by



4n dp VS.VO*
8W = j" dr {IVSI21VII_I 2 + (K_-_:_, B )l_12} (19)IVO*IdO*

where the curvature _:is decomposed into its normal and geodesic contributions

_:nVO + _%bxVO ' v,_VO* + _*bxVO*= - - - , (20)
IVOI IVO*I

and the pressure p = p(_*). To leading order in the Small quantity _w, _:n*= _:nand _ =

K:g.

For tokamak equilibria, the metric elements that enter into _SWwould be functions

of the poloidal angle alone, so that minimizing the potential energy results from finding an

appropriate eigenfunction that is a function of the poloidal angle alone. The problem of

incompatibility between periodicity (in the poloidal angle) and magnetic shear is resolved

by constructing the eigenfunction from a series of nonperiodic quasimodes. 15 In the

present study the metric elements in Eq. (19) are functions of both 0 and u*, so that it is

now necessary to construct eigenmodes in the following way

OO

= E qffO*,0+2rdl,U*+2nl2) , (21)
1112--.--oo

so that q_lis periodic in 0 and u*.

To simplify the calculation, assume that the flux surfaces in the limit that the island

width goes to zero are given by concentric circles; • = I dr rBo/q(r), V0 = O/r, B0.Vr = 0,

v_n = --cos0/R o, and _g = sin0/R o. With the island present, the term IVSI2 to lowest order

in the small parameter q_w is givenby

( _. 2
IVSI2 ---IVu*l 2 + {_dO _-_--_)IVO*I}

,<C2> d__ 8nrRoqcos0)]2}, (22)
-- IVul2{C2 + [Jd0 lT s - dO* Bo



where the equilibrium magnetic shear is given by s = rq-ldq/dr evaluated at the rational

surface, and the last term in the integral represents the pressure modulation of the local

shear that is responsible for the second stability regime. The function C given by

C = ta(O*) _ 0u*(O*,u)
. O0_l/(O,,u, ) - ' Ou (23)

describes the effect of the magnetic island. The bracket is defined as an average over the

modified magnetic surfaces.

<A> = _idu____*A(O*,u*) = _i d_.__U__UC(O*,u) A(O*,u) . (24)
2x 2n

For constant-_t islands C = [x<x-l>] -1, so that it peaks on that point of the magnetic

surface that is closest to the X-point of the island and the closer the magnetic surface is to

the separatrix the more peaked it gets (see Fig. 1). With no island, C = 1 and one recovers

the axisymmetric version of SW. Physically, what C describes is the fact that a field-line

trajectory on a particular surface tends to preferentially reside on that part of the magnetic

surface that is closest to the X-point of the island. In addition, the effect of the island

essentially changes the shear parameter s to the function s<C2>/C. The average of this

modified shear over a magnetic surface is enhanced by the factor <C2> which is always

greater than one. This effect was noted for the axisymmetric divertor separatrix in ref. 12.

However, if one instead looks at this local value of shear as a function of the helical angle

on a particular surface, it is smallest nem' the X-point. Since field-lines "spend a long time"

near the X-point of the island, the field-line does not experience the global average of the

shear on the magnetic surface.

• The restriction on the pressure profile is that the pressure equilibrates on the

modified surfaces. To construct the relation between the modified pressure gradient to the

• pressure gradient of the associated equilibrium without the magnetic island, equate the

magnitude of Vp for the two situations near the stagnation point of the magnetic surface (at

the minimum value of 0,_t). This results in the condition

9



d__ _ dpo _ - dP° qCM (25)
d_* d_ c)O_temtn dr rBo ' r

where dPo/dr is the pressure gradient at the rational surface in the limit that the island
q

disappears and CM = CM(_* ) is the maximum of C on a modified magnetic surface with

respect to the angle coordinate u*. Physically, this describes the compression of the

magnetic surfaces near the magnetic island separatrix and is qualitatively the same effect

described in Refs. (6) and (7), where a steep pressure profile is built up in the boundary

layer around the separatfix.

The ballooning mode SW, Eq. (19) can now be rewritten using the results of Eqs.

(20)-(25)

8W = _ dl {(C2 + A2)I(_0 + D,tgu,)q_l2 - CtCM(Ccoso + Asin0)ltpl2} , (26)

where

<C2>
A - C s(0-0 o) - ctCM(sin0- sin0 o) , (27)

and ct =-(dPo/dr) (q2Ro/B2). With no island, C -1 and one recovers the usual ballooning

mode 8W which can be solved to f'md the stability boundaries using s-ct diagrams. 15

To construct an analytic solution of the stability boundaries, a trial function for q_is

introduced. For the axisymmetric equilibria, consider the form 16

q_(0) = (1 + cosO) O(_- 101) , (28)

where O is the Heaviside step function. Substituting Eq. (28) into (26) results in the

expression for _SWin the limit C = 1,17

= 0.5 (y z 13 ,_ ___6__sct + ct2 _ct. (29)

This analytic solution is qualitatively similar to the numerical solution of the ballooning

mode equation except for small values of s and ct. Since we are interested in qualitative

effects introduced by an equilibrium magnetic island, using an analytic trial function will

10
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serve our purposes adequately. Equation (29) gives two solutions for the critical ¢x as a

function of s,

' a c = 0.5 + 1.08s 5:_-0.25 + 1.08s - 0.22s2 , (30)
p

where the minus (plus) sign denotes the first (second) stability boundary (see Fig. 2). The

existence of the second stable region occurs because of the pressure modulation of the local

shear [the last term in Eq. (22)]. 18 If we drop that term from Eq. (22) the resulting _SW

gives a single root for the critical O_17

2
0.5 + 1.39s

ac = 1 + 0.83s ' (31)

As shown in Fig. 2, this function reproduces the qualitative features of the first stability

boundary. The quadratic dependence of s in the numerator of Eq. (31) describes the

stabilizing effect of field-line bending, while the s-dependence in the denominator comes

from the geodesic curvature.

In the present study we will consider the effect on the magnetic island on the first

stability boundary. An appropriate choice of a trial function will reduce the stabilizing

effect of shear. Since the inclusion of the pressure modulation term gives an unrealistic

first stability boundary for the trial function we are considering for small values of s, we

will drop the pressure modulation term and we will consider the changes of the stability

boundary with respect to the critical _ as defined by Eq. (31). Therefore, we consider the

following _SW,

8W = _ di {lC2 +--<C2>2 s2(0-0o)2]1(_0 + f_u,)q_l 2
, C2

J

<C2>
- O_CM[Ccoso + _ s(0-0o)Sin0]lq_J2} . (32)

w

To demonstrate the qualitative effect of the island, let's consider the trial function

q_(0,u*) = C(u*) (1 + cosO) 0(7:- 101) , (33)

11



where C is defined by Eq. (23). The eigenfunction is now localized in helical angle as well

as poloidal angle. Inserting the trial function, Eq. (33) into Eq. (32), the following critical

ct is derived
o

1 0.5<C4> + 1.39s 2<C2> 2
- . (34)

ctc CM <C3> +.0.83s<C2><C> ,_

Assuming a constant-_t island, Eq. (34) is plotted for different magnetic surfaces in Fig.

(3). The surfaces are labeled by the function k2, which is given by k 2 2 2= W /(xk +W2),

wherew isthemagneticislandhalf-widthandxk isthedistancefromtheX-pointofthe

islandtotheclosestpointon themagneticsurface,x2 = (2qo/qo)(_ - _sx)' Figure(3)

shows thequalitativeeffectofthemagneticislandthroughthereductionoftheshear

stabilization.Inaddition,thosesurfacesclosesttotheislandseparatrixarethemost

a.fccted.

IV. Summary and Discussion

An analytic theory has been developed to study ideal ballooning instabilities for

quasistatic equilibria with a magnetic island. Because of the special feature the magnetic

field-line trajectories have on toroidal magnetic surfaces near the magnetic island,

ballooning instabilities are more likely to occur than in the equilibria without the magnetic

island. A trial function is used in the ballooning mode 5W that is localized near the X-point

region of the modified magnetic surface, which reduces the stabilizing effect of field-line

bending.

This work suggests that equilibria with magnetic islands are more susceptible to

ballooning instabilities than the corresponding equilibria without the island. For a slowly ,

evolving island, a growing region of magnetic surfaces near the magnetic separatrix

becomes ballooning unstable. For instance, consider a toroidal equilibrium with a rational

surface which is in the first stable region. Now allow an island to slowly grow at that



magnetic surface. As can be seen in Fig. 3, if the initial toroidal equilibrium is not too far

from the first stability boundary, there will a critical value of k which defines a first stability

boundary in the equilibrium with the magnetic island. Ali surfaces between the separatrix
I'

and the surface labeled by kcrit will be ballooning unstable. In real space this region is

" given by Xcrit= w kcrit- 1 which grows linearly with the magnetic island width.

These island modification of ballooning instabilities may also be important in

understanding the nonlinear evolution of m = 1 modes and sawteeth crashes. A possible

scenario for tokamak discharges with q(0) < 1 is that a slowly growing magnetic island

forms due to m = 1 resistive instability. As suggested above, this causes a growing region

of space around the separatrix of the island that has "secondary,' ideal instabilities. Because

these are ideal instabilities plasma pressure can be released without a complete reconnection

of the magnetic surfaces and q(0) could remain below 1. This explanation is reminiscent of

earlier work by Bussac and co-workers which suggested that ballooning modes are

important in the nonlinear phase of ideal kinks6 or following a secondary kink instability in

a discharge with an m = 1 resistive mode.19 What is different here is the suggestion that

the presence of a magnetic island in the equilibrium makes ideal ballooning modes more

unstable and localizes them near the X-point region in helical angle and on the outside of

the toms. This work does not give a complete description of the sawtooth crash phase;

however, recent studies on JET20 and TFtR 21suggests that some of the elements of the

present theory (ballooning-like deformations, a fast instability preceded by a slow

precursor instability) are consistent with experimental observations of sawteeth.
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Appendix: Explicit Forms for Constant-V Islands

For constant-_g islands, we take A = VsxCOS(noU). This gives V = qox2/2 -

t _k/ t 'VsxCOS(noU),and O_V = qoX(V,u) = +_ 2qo[gt+VsxCOS(noU)],where the plus (minus) sign

refers to x > 0 (x < 0). In this calculation we are concerned with the magnetic surfaces

outside the separatrix. We introduce the surface label k given by

k 2 - 2Vsx , (Al)
gt + _gsx

where k -- 1 is the separatrix and k < 1 away from the separatrix. From Eq. (8), we get the

value of the island rotational transform

_qo w
_(k) = + 2kK(k) ' (A2)

where K(k) i:, the complete elliptic integral of the first kind and w = 2_ IVsx/_l is the

island half-width. Since K(1) = oo, _ goes to zero at the separatrix. The magnetic

coordinates are given by

_, = + 2wE(k) , (A3)
_.k

7g

u* K(k) F(noU/2'k) ' (A4)

where E(k) is the complete elliptic integral of the second kind and F(noU/2,k) is the elliptic

integral of the first kind. The island rotational transform has the same sign as _*; the plus

(minus) sign in Eqs. (A2) and (A3) refers to x > 0 (x < 0). Notice that as noU goes from 0

to _, u* goes from 0 to n as demanded from the definition of u*. The shear of the island

transform is given by

d_ qo_:2E(k)

d_* - 4K3(1-k 2) - qo <C2> • (AS)

The function C is given by

14
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1

C(k,u) - 2K(k) _/1 - k2sin2(nou/2) ' (A6)

1

C(k,u*) = 2K(k) dn(2u*K/n) '

where dn(2u*K/_) is the Jacobian elliptic function. The averages of integral multiples of C

are given by

<Cre> = fm(k)" (A7)
[2K(k)/_]m+l(l_k2) m/2 '

where frn < fn for m > n and n _ 0. The first couple fin's are given by

2 K(k) 2f0 = - , fl = 1, f2 = -E(k), f3 = 1-k2/2,
7t 7_

. _ 2k 2. 2 _3k2_)f4 2 ( _ -3--) E(k)-- (1 K(k) , f5 = 1 - k2 + 3k4/8 , (A8)

and C M = rc/2K(k)_ 1-k 2.

!
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Figure Captions

Fig. 1 - The function C versus the angle a for different magnetic surfaces given by k2 = 0,

0.5, and 0.9. The horizontal line is C = 1 corresponding to k = 0 (no equilibrium island).

The curve for k2 = 0.9 is the one that peaks the most prominently.

Fig. 2- The ballooning mode stability boundary in s-ct space as given by the analytic

expressions Eqs. (30) and (31). The curve with two values for a c as a function of s

represents Eq. (30), with the lower curve indicating the first stability boundary while the

upper curve indicates the second stability boundary. The single-valued curve represents

Eq. (31), the critical ct when the pressure modulation part of the local shear is ignored in

SW. This curve reproduces the correct qualitative features of the first stability boundary.

Fig. 3 - The first stability boundary for different the magnetic surfaces labeled by k 2 = 0

(no island), 0.5, 0.9, and 0.99. The larger the value of k, the smaller the critical ct for

instability.
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