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Abstract

A prescription for constructing tie plasma pressure profile in the vicinity of an
equilibrium magnetic island is derived by solving a sourced pressure diffusion equation
near the island region. For pressure sources and sinks that are relatively constant in
space, it is found that the plasma pressure profile is insensitive to pressure sources; thus
the pressure profile can be constructed by assuming that the net pressure flux across any
topologically toroidal magnetic surface is constant. This construction of the pressure
profile is also valid for magnetic islands that are slowly evolving in time. By coupling
the pressure evolution equation with the magnetostatic equilibrium equations, the th=ory
is applied to the case of self-consistent construction of pressure-gradient-driven magnetic
islands, '— In particular, we address the question of resonant Pfirsch-Schliiter current

induced magnetic islands and the role of thermal effects on nonlinear magnetic islands.
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I. INTRODUCTION

Magnetic island formation is important in a variety of plasma physics phenomena
in toroidal confinement devices. In particular, field errors and inherent three-
| ‘dimensionality cause the destruction of magnetic surfaces in stellarator and tokamak .
cquilibria.1 Plasma pressure can have a dramatic effect on magnetostatic equilibria by
causing the formation of magnetic islands in stellarators even when the vacuum fields
have well-defined magnetic surfaces.”> In addition, resistive magnetohydrodynamic
(MHD)G'7 and neoclassical MHD3? pressure driven instabilities can produce slowly
growing magnetic islands in the nonlinear " atherford regimew of tearing mode theory.
More recently, it has been sugges«ed that pressure driven micro-magnetic iéland.
formation may play a role in understanding transport processis in tokamak plasmas.“'13
Cleariy, it is desirable to understand how the island formation affects the plasma pressure
profile so that a self-consistent construction of the plasma equilibrium including the
effects on the plasma current and magnetic fields can be understood.

A standard prescription for modeling the effect of a magnetic island on the plasma
pressure profile is to flatten the profile inside the island separatrix.z'g'm'14 This describes
the fact that the. plasma inside the island separatrix is thermally insulated from the plasma
outside the separatrix. This solution can be derived from a diffusion equation for the
pressure by assuming that the sources for the plasma pressure are located far from the
island reg1\on.3’4’6’8‘13 This is tantamount to demanding that the thermal flux across a
topologically toroidal magnetic surface is constant, so that while pressure gradients are
zero inside the separatrix they are non-zero on all magnetic surfaces outside the
separatrix. More generally, pressure sources and sinks are present at all points in the
plasma volume. By introducing a plasma pressure source inside a magnetic island
separatrix, plasma gradients can arise on magnetic surfaces inside the island separatrix.

Once this interior gradient appears, the question of how this additional gradient self-




consistently affects the island formation through the varipus mechanisms of pressure
induced islands described above must be addressed.

In this paper, we solve a sourced pressure diffusion equation in the vicinity of an
equilibrium magnetic island. A general prescription is developed that can be used in both
analytic and computational models>'! for general three-dimensioiral MHD equilibria.
These studies are also useful for developing micro-magnetic island models for plasma
transport. In particular, thermal effects can produce magnetic islands when radiation
losses dominate over plasma heating in the vicinity of a magnetic istand.'1'1217 More
recently, a model was introduced that describes the state of the magnetic topology as an
evolving collection of islands, stochastic regions and toroidal flux surfaces (“magnetic
bdbbling ").13 Important in this description of the plasma was the seif-consistent
interaction of the magnetic topology with the plasma profiles.

In the next section, a theory is developed to treat the effects of plasma pressure
sources and sinks in the vicinity of a magnetic island on the pressure profile. Although
the calculation proceeds for an island in magnetostatic equilibrium, the construction is
also shown to be valid for slowly growing magnetic islands. In Sec. IlI, a self-consistent
calculation is presented to construct the effect of the pressure profile on the equilibria by
using Ampere's Law. In particular the effects of resonant Pfirsch-Schliiter currents and

thermal effects are discussed.

II. PRESSURE PROFILE NEAR A MAGNETIC ISLAND
A. Magnetic Configuration

As a simple model for the equilibrium near an island, assume that in the limit that
the island width disappeafs the flux surfaces are labeled by a radial-like variable @,
which has the physical interpretation as the toroidal flux through a magnetic surface. The
island width is assumed to be small corhpare,d to equilibrium length scales. The

equilibrium magnetic field with the island present is given by




B=VdxVa + V{xVy , ¢))
where { is the toroidal angle, o = 6 - 1§ is the helical, resonant angle, 6 is the poloidal
angle, and V& x Vo (= 1V{) is the toroidal magnetic field at the rational surface () =
1, = ny/m,, where 1 = (®) is the rotational transform. The helical flux function v is

given by

v = [d® (1) - vy, cos(myo) )
where x = @ — @, The coordinate system defined by ®, o and § will be used to describe
the magnetic configuration throughout this paper. The symmetry-breaking magnetic field
responsible for the magnetic island is given by y,cos(m 0.) where we assume W, vﬁries
weakly with & near the rational surface (the constant-y approximation of tearing mode
theory‘s) and a single harmonic approximation. is used. Since y is independent of the
toroidal angle { in this coordinate system, B-Vy = 0; y labels the magnetic surfaces. By
Taylor expanding the expression in the integral, an approximate analytic form for the
magnetic surfaces near the rational surface is given by

1‘x2

5~ Wgcos(my) 3

1]

L4

where 1] is d/d® evaluated at @ = @ . This representation of the magnetic flux function
describes a magnetic island at @ = & whose half-width in the flux coordinate @ is given
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by w = 2(Iy, /) " “. We will take y,, to have the same sign as \, so that the O-point of

the island is located at o = 0, and the X-point of the island is located at m o = *x.

B. Pressure Diffusion Equation
The requirement that the plasma pressure p be in MHD equilibrium B-Vp =0,
demands that the pressure equilibrates on magnetic surfaces, p = p(y). To determine the

form of the pressure profile, an equilibrium pressure diffusion equation is introduced

V-D,Vp = -§ , )




where 8 is the sum of the pressure sources (Ohmic or auxiliary heating and particle
sources), pressure sinks (radiation) and any other non-diffusive transport process. The
diffusive part of the pressure flux is written q = -Dpr, where all that we require of the
diffusion coefficient Dy, is that it be a function of the flux surface and not vary greatly in
magnitude in the vicinity of the magnetic island. Since, we would expect the plasma
density, temperatures and current to be flux functions near an equilibrium magnetic
island, this requirement is met even if D, is a nonlinear functional of the plasma profiles.

Integrating Eq. (4) over a volume bounded by magnetic surfaces results in the condition

[D,p" (W) § ds-Vylyy = - [, S&x) dx ©)
where
Py = ]d\vcfadz; = i%g dy do d ’ ©) '
LoX | 0 \j 2y + yecos(m o))
ds = Vv dozdé_zil_;Q Vv do df ’ N
LoX O\ 217y + v, cos(m )]

and) = (Vd x VB-VZ;)‘1 = (Vx X V(x-VC)’l = Ry/B, is the Jacobian and is assumed to
vary weakly. The plus-minus sign refers to the sign of x (plus sign for x > 0).

Equation (5) is solved in three different regions: I) on toroidal flux surfaces

. located radially inside the island (y > v, | and x < 0); II) on flux surfaces located inside
the separatrix (lyl < hy,l); and III) on toroidal flux surfaces located radially outside the
magnetic island (ly! > hy,, | and x > 0). For each region a boundary condition on the
pressure profile is introduced.

In region I, on a flux surface very far from the island region we prescribe the
value of the pressure gradient. For surfaces located far from the island région (x >> w),
the flux surfaces are basically described by the radial variable ®. Therefore, we prescribe

Vp/IV®| — dp/ddl_ = n_.. This can be viewed as the exterior solution of the pressure



profile in a boundary layer theory for a small isla.nd.3 A Equation (5) now gives an

equation for p“(y) in region I,
> da . do _S(¥',0)
D 0 -l = - 8
8 [ JZRO(W) p.) I (,[vax(wa) )
where gm = V®-V® at the rational surface and y__ is the location of the flux surface of
the boundary condition in the coordinate y. The source term S is assumed to be in
independent of toroidal angle {. We define the coordinate k which also labels the helical
flux surfaces near the island by
2
k2 __le_ _Q_ 9)
VY, Y
where k = 1 is the separatrix of the island and k -» O as the island width goes to zero.

The factor 15/l gl is added so that k% 0. Using this coordinate, Eq. (8) is rewritten

K 2
‘ .1 fda S
ok = 3 2% i ey
dp; p. 1(')w2 g k7 4% 1x(k’,00)
dy - ngdxb 2(’; ’
g‘. 1x(k’,00) J—z-% 1x(k’,0)
. ' k
oo l 2K
ey far 2K ED gy (10)

1w 2E(k)/nk D plod 2E(k)/1tk £ nk 2
where ek 'Z‘I’sx/(‘lfm + Y, ), g ®= V®-V at the rational surface, K(k) and E(k) are
elliptic integrals of the first and second kind, respectively, and the second form of Eq.
(10) is valid if S is independent of o. If we make a further assumption that S varies
slowly in space [S >> y(dS/dy)] so that wi can take it as some constant S, Eq. (10) can
be integrated to give

doy _ P _ S

T ., O
dy 1w 2E(k)/rk Dptog

(11)

where



. , . wS ZE(ek)

P = P2 - Glimy —g K )
Dpg

is dp/d® at the rational surface if no island were present. If we further assurne that S is

 constant throughout the plasma cross-section and that the flux surfaces in the limit that.

the island disappears are concentric circles, ® = Bor2/2, so that p =-S/2B Dy, we can

write Eq. (11) as
dp; . -1 1
— = + . - (13
dy T {t(',w 2E(k)/nk 10, } =

Since w << @ by assumption, the second term in Eq. (13) and the corresponding second
term in Eq. (11) is much smaller than the first term. The first term is a generalization of

carlier calculations of pressure profiles near magnetic islands>46:8:13

where the pressure
profiles near the island were essentially given as the exterior pressure profile averaged
over the modified surfaces. Since, the second term in Eq. (13) due to localized pressure
sources and sinks is smaller than the first, the modified pressure profiles to leadipg order
in w/® can be constructed in region I by assuming a constant thermal flux through each
magnetic surface. Thus, near the island the distoxﬁon of the profile is dominated by the
rearrangement of the field-lines by the insertion of the island and negligibly affected by
the corresponding changes in the source profile in the helical coordinates. |

In region II, the pressure gradient must go to zero on the magnetic axis of the
magreetic island. Using this condition, the pressure profile inside the island separatrix is

given by

lox(\ll»(l) J’ V da S(y'o)

. 14
_st 2 L x (g0 (14

ngm Pu_ 9

Recalling the definition of the flux curface label k from Eq. (9) where k = 1 represents the
island separatrix and 1/k = 0 is the magnetic axis of the island and if we further assume

that S = S(y), Eq. (14) can be rewritten as



Jdk,..l K(l/k )S(k )

dog 1 (15)
dy ng o E(/K)-(1-k~ )K(l/k)

For S = S, the pressure gradient in region II is given by
deI - SO (16)

dy ngml(,
which is the same gradient as the second part of Eq. (11), the pressure gradient in region
I. Thus, if sources dominate over sinks inside ﬁe island separatrix (S, > 0), the pressure
profile peaks (slightly) on the axis of the magnetic island.
In region III, the boundary condition used is the requirement that the flux across

the island separatrix is continuous. !

piil(\v)lsx = - pl’(‘lmsx + zpli(w)'sx ’ ‘ an
where the change in sign going from region I to [II is because x changes sign across the
separatrix and the factor of 2 in the last term comes from the fact that the pressure flux
flows out from the inside through the separatrix o both sides of the island. The pressure
profile in region III is given by

k
‘ ’ jdk'zK g)_ &)

dpoy _ _ Pl _ mk

dy  w2E®Ar  Dog®Piiw 2E(k)/kn

Pex So
= . ~ ’ - ’ (18)
1ow 2E(K)/mk Dptc’,gm

where the second form of Eq. (18) is evaluated with S =S, With the exception of a sign
on the first term (due to x changing signs) this is exactly the same as the pressure profile
in region I, given by Eq. (11).

Combir ing the results of sourced diffusion equation calculations of each region,

the pressure profile can be succinctly written



dp _ . sign(x) Oyl -y, So
= Psx ’ - L P
dy oW 2E(k)/mk Dpiog

(19)

where © is the Heaviside step function. The pressure profile in the vicinity of a magnetic
island is given by two pieces. The first piece describes the continuity of thermal flux .
across magnetic surfaces. This corresponds to the standard picture of the effect of an
island on the pressure profile since this portion of the pressure profile is flattened inside
the island separtrix. Furthermore, this part of the pressure profile is odd in x across the
island separatrix. (Recall, however, that v is double valued around the island, so that
dp/dy changing sign across the separatrix corrésponds to Vp having the same sign on
either side of the separatrix.) The second term in Eq. (19) describes the effeété of a‘
localized set of sources and sinks near the island. If sources dominate the sinks (plasma
heating dominating radiation losses), this term describes a peaking of the pressure profile
on the magnetic axis of the island. However, this teﬁn is order w/®  smaller than the

first term.

C. Time-Dependent Islands

Up to this point, islands in magnetostatic equilibrium have been discussed. There
are many instances in toroidal discharges where the islands are not static; rather they are
growing or decaying in time. The question to then address is how much of the previous
analysis presented is valid when the island width is changing with time. Now there is a
competition between the diffusion process discussed in the last section and convection of
the pressure By a growing island. To make a quantitative comparison, we construct the
ratio R = C/D, where C is the change in the flux of normalized pressure in a volume V
due to a growing island and D is the flux of normalized pressure through the volume

enclosing area by a diffusion process:

d 1
c=ly &’ %f’-‘ = Iy d3x’~9;—%¥ cos(my) , (20)
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D = D,y dsVy , 21)
where we use a constant-y and single harmonic approximation for the island. The
volume is picked to be bounded by a surface at fixed k [see Eq. (9)] and at infinity where

there is no contribution to D (no perturbed diffusive flux at infinity). The quantity R is

given by
ow? B2 (B @(145372) - (1KOK K]
R = 3rk 22)
D g”®yw 2EK)/kn '

We can examine this expression asymptotically. Very far from the island (k -» 0) R
becomes approximately

w
W
dt w2
Rz —Fz (), (23)
ng«b&b X . '

so that very far from the island (x >> w), diffusion dominates. This just means that very
far from the island the island producing magnetic field doesn't distort the magnetic

surfaces appreciably. Closer to the vicinity of the island, R becomes

dw dor

Wi or—-
dt St
R = = : - (29)
D™ Dy 5

where 8r = w/IV®I is the radial extent of the magnetic island. The reguirement that
diffusion processes dominate the pressure evolution is given by R << 1. For constant—\y
magnetic islands that grow at the Rutherford rate,10 R= (A'w)n/uon where A‘is the
tearing mode matching parameter, and 1/u,, is the magnetic diffusion coefficient. The
constant-y assumption demands that A"w be smaller than unity. Thus, so long as n/uon
is not too large (Tl/llon is generally smaller than unity in present day tokamak plasmas),
R << 1 for tearing modes in the Rutherford regime. For islands produced by the

8.9,13

fluctuating bootstrap current ,R= Bpn/uon where ﬁp is the poloidal beta. As long

as the pressure diffusion is anomalous (larger than the neoclassical prediction for

10




electron-ion particle diffusion in the banana regime), R < | énd pressure diffusion
dominates over convection due to a growing island.

For islands that grow at the Sweet-Parker timescale (dw/dt = rOSh"?"/tR. where Sy
is the magnetic Reynolds number and 1 is the resistive diffusion time), R =
Slhfiz(w/ro)(n/uon). For fast growing islands with R >>1, the procedure used in the
previous section is invalid. Instead of diffusing, the pressure is fixed to a magnetic
surface and moves with the surface as the island grows, In this case, the gradient of the
pressure on that part of the surface that is closest to the X-point of the island is fixed.
Using the notation previously used, the pressure gradient in the vicinity of the island is
then given b&'

- Fsx - ’

dy to¥min 2(¥-Vsy)
where x,,;, is the smallest distance in magnritude on a particular flux surface from a point
on that surface to the X-point of the island, and the sign is associated with the sign of x.
This process predicts a dramatic steepening of the pressure prdﬁle in the vicinity of the
magnetic island. Curcequently, fast growing magnetic islands may be susceptible to

secondary ideally growin;j pressure driven instabilities. 20

L. APPLICATIONS

Up to this point the magnetic islands used to derive the pressure profile have not
been derived self-consis ently. In this section we couple the pressure evolution equation
to the MHD equilibri.m equations to derive an island Grad-Shafarnov equation near the
magnetic island. In particular, we extend earlier work on Pfirsch-Schliiter current
induced magnetic islands™? by accounting for parallel currents resulting from a pressure
gradient inside the island separatrix. It is assumed that the vacuum magnetic surfaces are

fairly well defined so that the surface breaking is solely due to the plasma pressure. We

11
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also examine thermal effects which have been suggested as a mechanism for producing

magnetic islands in the edge of tokamaks.' 12

A. Pfirsch-Schliiter Current Driven Magnetic Islands

Variations in the magnitude of the magnetic field strength on a magnetic surface
cause parallel currents to flow within that flux surface to guarantee quasineutrality. It is
important in stellarator designs to try to minimize these currents since unfavorable
neoclassical transport scalings and guiding center orbit losses accompany large field

21

strength variations. Additionally, resonant Pfirsch-Schliiter currents can destroy

magnetic surfaces through magnetic island formation even when the vacuum m-gnetic

configuration has reasonably well-defined magnetic surfaces.* >

The field strength variation is quantified by the Jacobian for the magnetic
coordinates J = (V(bea»VZ;)'l = yp23422 Assuming a three-dimensional equilibrium

magnetic configuration, the Jacobian is written

) = u%‘ ) mn €Xp(im8 - inl) . (26)
The Jacobian describes the structure of the equilibrium magnetic field. In particular, the
specific volume dV/d® = V" is given by

2n 2n

V= G[g%d!g—g] = )o@ . @7

The derivative of the specific volume describes the normal curvature of the configuration,
where V°* > 0 (< 0) indicates a magnetic hill (well) and determines the low-p stability of

plasma in toruses against resistive interchanges. The specific volume of a closed flux

tube at the rational surface 1 =1, = n /m, is given by

¢%! _ ¢8:9%/aC

52 =7 = Z Y imotn, €XP(IM,0) (28)
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where the qin\aniity inside the integral is expressed as a function of ®, o0 =0 -1 { and {.
For general three-dimensional equilibria the$ dI/B criterion® is not satisfied since the
quantity in Eq. (28) is not a surface function at the rational surface. For simplicity, in this
work we will assume that the resonant value of the Jacobian ] is given by the first two

terms in the Fourier expansion

J = Joo(®) + Jmn, cOS(M+ ) , (29)
- where we have imposed the reality condition and ¢ is a constant phase angle.

We follow the caiculation of refs. (3) and {4) to determine the currents and
magnetic fields near the island. Whﬁt is different about this calculation is the addition of
a pressure gradiént inside the island separatrix due to localized sourced and sinks which
produces its own Pfirsch-Schliiter current. We will determine to what extent these
additional currents change the results of earlier work.

A boundary layer theory is used to determine the self-consistent width of the
magnetic island. It was shown in refs. (3) and (4) that in the limit of the island width
going to zero, the parallel current profile is singular at the rational surface for a general
three-dimensional equilibrium. This si;lgdlar solution constitutes the exterior solution of
the boundary layer theory. The singularity is resolved in the interior solution by allowing
the magnetic island width to have finite amplitude. The two solutions are matched by
equating the integrated parallel current in the interior region to the amplitude of the
current  singularity in the exterior region. This calculation is similar to the boundary
layer theory used extensively in tearing mode amalysis.18 Using the standard definition of

the tearing mode matching parameter A’, the matching condition is

, a =
Ay, = - %0 »_fxé%% cos(m ) Q , (30)

13



where Q = J .B/B? is the parallel current profile in the vicinity of the island, and A"y, =
axwlf is the radial mismatch of the derivative of the magnetic potential across the rational
surface, the magnitude of the current singularity.

The parallel current is determined by solving the MHD equations near the island.
The quasineutrality condition B-VQ = - V-J | and force balance J| =B x Vp/B2 give the

equation to leading order in w/®,

VLVyxVQ= -V Vpx V] | 31)
after averaging over the angle £. Since p = p(y), Eq. (31) has the solution Q = -—p’(\y)']' +
f(y), where f(y) is an undetermined function of y. The projection of the equilibrium

-resistive Ohm's Law along the magnetic field gives the condition

-B-Vo =nJB, (32)
where @ is the electrostatic potential and m is the plasma resistivity. By averaging Eq.
(32) over a flux surface, the left hand side is annihilated and a constraint on the parallel

current is derived (<Q> = 0), where the flux surface average is defined by
*

¢ do
0, y(V,00)

§ dow ——
2, y(y,0)

<*s = (33)

Flux surface averaged quantities satisfy B-V<*> = 0. Using the constraint derived from

Eq. (32), the parallel current profile is given by

Q = p’(WI<J>-]]

= P WH{V(<x> = X) + )y [<cOS(m 00+ §)> - cos(my + ]} (34)
where we have used Eq. (29) and expanded.J g5 = V* + V”7'x using Eq. (27). The term
proportional to V** in Eq. (34) describes the parallel current arising due to a low-beta

resistive interchange perturbation. Note that to this point we have neglected the effects of

14



geodesic curvature which are important in determining the stability of resistive
. interchange modes.* In the guise of magnetic island formation, these effects have been
accounted for previously,? and although this effect is not derived here, we will include its
effect in our final answer. As a practical concern, the E + F criteria of Glasser, et al.,24
(which includes both the effects of normal and geodesic .curvature) should be used to
determine the width of the magnetic island‘.25 The term proportional to Jmgn, Was not
included in previous analysis of this problem.- However, because of the radial parity of
the pressure profiles used in refs. (3) and (4), this term did not affect the matching
procedure. This term will contribute if a pressure gradient is present inside the magnetic
island separatrix.
The part of the interior ﬁarallel current that contributes to the matching condi't.ion
| of Eq. (30) has even radial parity near the island. Using Egs. (19) and (34), the current .

with even radial parity is given by

., sign(x) Oyl -y 1)

. =n"V <X> - X
Qeven = Pox 1w 2E(k)/mk $ ‘
S ] [<cos(m,0. + §)> - cos(m, 0. + §)] (35)
-— m 0+ §)> — X))
Dpl(’)g(m moh, 0 0

where the term proportional to V** comes from that part of the pressure profile that is odd
_ in x, while the term proportional to Jmgn, Tesults from that part of the pressure profile
with even rédial parity. Recall fmm the discussion following Eq. (19) that the part of the
pressure that has even radial parity comes from the localized scurces and sinks and is
w/® , smaller than the pressure profile due to thermal convection across the flux surfaces.

The first term in Eq. (35) is the perturbation resulting from a saturated resistive
interchange instability. The reason that such a term appears is that a mfee~dimensional
equilibrium can be‘vievwed as a two-dimensional equilibrium with saturated three-
dimznsional instabilities. The restriction from the $ dUB criteria is not applicable at
rational surfaces for a general stellarator equilibrium where the assumption of well-

15



defined rational surfaces does not hold. Consequently the distinction between symmetry
breaking magnetic perturbations from instabilities and equilibrium magnetic fields is lost.
As mentioned above, a more general description of the resistive interchange criteria must
take into account the effects of geodesic curvature in addition to the normal curvature
described by v~ 2 Following the derivation of ref. (4), this can be accounted for and the
V** criteria is replaéed by the E + F criteria of ref. (24), where E + F > 0 indicates
instability to the resistive interchange. To the order of the calculation presented here,
o g

.2
+ Bus ﬁﬁs ["g'%ﬁ Gat2nT?Ug®®) - GaanJre®™™h,  (6)
0

where i =7 — 7 are the nonrescnant variations of the Jacobian at the rational surface, I =
B-9x/0( is the toroidal projection of the magnetic field in the covariant basis and the
terms I/gm appearing outside the integrals are averages of I/g‘m’ over §.

The second term in Eq. (35) describes the resonant Pfirsch-Schliiter current
flowing because of the localized source. This current flows both inside and outside the
island separatrix. Inserting Eq. (35) into Eq. (30), we get

Ay = 05 WIE + F) + ljmo,,os(,;-t-;%l—m] : an

p'o
where the absolute value sign indicates that the island will pick the phase of the magnetic
island (relative to ¢) so as to find the most destabilizing perturbation. The ratio of the
amplitudes of these two terms is given by 4) mo“oN “'®,, assuming ISolcb(,/ngqw Z Ip gl
For most realistic stellarator designs this is a small number so that the second term makes -
a small contribution.

To find the self-consistent island width, an asymptotic evaluation of Ampere's

LLaw is used. This results in the relation2'4

16



IV®ir A°
Vex(l +~7a§é—) = 15C . (38)

where C = Bg®®1;2m2R2 (0 Jo0): B = 2p,/B is the plasma beta, and R, is the

major radius of the torus. The term C on the right hand side of Eq. (38) is the

contribution to the island width from the interaction of the equilibrium pressure profile
and resonant Jacobian that does not contribute to the matching procedure.2 The width of
the magnetic island is derived by using Eqs. (37) and (38). This yields the equation

Y on o+ \ (2?4, | (39)

Ve,

where

2 002
_ (E+F) + 5, Soi4U/Dp15"g )" “0)

Mg

Equation (39) is similar to Eq. (72) in ref. (4). The difference between this work and that
of ref. (4) is the inclusion of the additional resonant Pfirsch-Schliiter current dlfe to the
local sources near the island. One may interpret this additional term in Eq. (40) as a
three-dimensional modification to the resistive interéhange stability criteria. Since the
original work of Glasser, et al.>* assumed the existence of well-defined flux surfaces a
priori, this additional piece was not found in the linear stability analysis. As a practical
matter, since this term makes a small contribution to Eq. (40), the local sourcing of the
plasma pressure profile has little impact on the self-consistent construction of the
equilibrium magnetic island. Thus, under normal conditions'r:esonant Pfirsch-Schliiter
currents on flux surfaces interior to the island separatrix do not dramatically affect the

island itself.
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B. Thermal Effects
In Ohmically driven tokamak plasmas, self-consistent temperature variations near
a magnetic island cause variations in the parallel current profile through the resistive

Ohm's Law;

dj 39T
=50 41
Jilo 2 To 1 “h

where jy, = Ey/n, is created from zii externally applied toroidal loop voltage where ) is

the resistivity evaluated at T,. Assuming the analysis used in Sec. II for the pressure

profile can also be used for the temperaturé profile, the perturbed temperature is given by

St
- 5 (W - V) » (42)
EGomk  ngigd® | !¢

Ysx

| v
5T = T~ .SIgn(x) Oyl -y, Jz dy

5X .
LW

“where 8T = T - T, T, is the temperature at the island separatrix, the diffusive heat flux
is written qp = —ng, VT, where V-qp = Sp and WaS/oy << S is assumed. To see the
effect of this current perturbation on the magnetic island, we use the same matching

procedure used for the Pfirsch-Schliiter current-driven magnetic islands:

2R, = ,
Ay = -g-a'% _ifb&‘fgf cos(m,a) Ojy , (43)

where R is the major radius of the tokamak. From the radial parity constraint, the only

~ ‘part of 8j, that contributes to Eq. (43) comes from the second part of Eq. (42). Therefore,

6ilcRe St ' dg €0S(m 1)
MYy =~ - fay (- yg) $9% =0 44)
sx "sszxg(M)2 XTlo Vi L I, W(y,00)

where . is some cutoff for the integral. Assuming that & = Bor2/2 50 that the flux
surfaces are concentric circles in the limit of the island width going to zero, and j,, =

2Bg/r,, Eq. (44) is rewritten
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\ll

S [«
AWy = o —L ey, fov(1-¥) §8
sx “sx X8 -1 \[ [Y+cos(m,0)]/2

cos(m,,01)

y o (45)

where § = —r (dvdr)hr, A is the logarithmic derivative of the ext rior vector potential
with respect to the variable r, 8r = w/IV®lI is the radial extent of the magnetic island, and
¥ = yiy,. |

In the transport models of refs. (11), ( 12), and (17), the underlying as‘sumption
concerning the thermally driven magnetic islands is that these islands are imbedded in a
stochastic sea. Consequently, it is reasoned that the magnetic surfaces are destroyed
outside the magnetic island separatrix. If we use this assumption, ¥ = 1, and Eq, &45).

becomes

' A
2 Snng T %15, _ |
or® (Or +m, 32, S " 0, (46)

where we have used the large mode number assumption A’ = -2m,/r, for the tearing
mode matching parameter. In order for Eq. (46) to have a nontrivial root, Q/ST has to be
negative. For tokamak plasmas with § > 0, this requires that the plasma temperature
profile be hollow within the island separatrix because the temperature sinks dominate
sources (radiation losses are greater than plasma heating). If we assume that the
equilibrium temperature profile is given by ng, xy (dT,,/dr) = —r,Sy/2, where Sy >0 is
taken as the heating source and )y is the transport coefficient outside the island region,

the island width assuming St < 0 is given by

or = -m076—4;-l,rs , 47)

where Ly = -Tg,/(dT,/dr). Clearly, unless ¥1/xy << 1, (i. e., the thermal diffusivity is
much smaller inside the island than outside of it) this predicts a very large island which
causes a breakdown in the theory.

In tokamak plasmas, another potential mechanism for causing micro-magnetic

island formation is the fluctuating bootstrap current.3*13 Near a magnetic island the
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neoclassical pressure gradi¢nt driven current in the banana collisionality regime is given
by |

oo = ~ 146V Blﬂg\% D> | (48)
where recall that 9,y =1x(y,) and € is the invers= aspeci ratio. That part of the
pressure profile that produces a current that contributes to Eq. (43) is that part that is odd
in x, the first term in Eq. (19). Using only that piece of the pressure gradient, Eq. (48)

becomes

@ll sl
ch'—14 \/—J Psx - ) (49)

4E(k)K(k)/
Using 8j = jpe + 38Tjyo/2T, in Eq. (43), the island width equation is given by

. or Sn r S[/r x

where X = XSt/ X1Sy L= -u/(dvdr), Lp = — p/(dp/dr), and Bp = Zp/B% is the poloidal
beta. Assuming that A" = —2m_/r, and that y > 0 (thermal effects are stabilizing), Eq.

(50) predicts a steady-state island gi-'en by

or m‘»

P 128L {‘\/[1+175\/_Bqu/LpL1moX] : - 6D

In the limit of mox becoming large, &r= 1.1 ro‘\/? Bqu/meo which is the result of refs.
(8), (9), and (13) where no thermal effects were accounted for. If the transport properties
of the plasma within and outside the island separatrix are not too dissimilar so thaty = 1,

bootstrap current driven magnetic islands with m,> 4. 251’4[3”2

Lq/LT are not appreciably
affected by the thermal effect.

A number of potentially important effects have been omitted in the single-helicity
analysis of this section. In particular, island dynamics have been ignored. Also, since the
size of the magnetic islands derived in this section is larger than the average distance

between rational surfaces, island interactions must also be accounted for. As pointed out
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in ref. (13), island growth, interaction and decay may play an important role in the

transport properties of tokamak plasmas.

IV. CONCLUSIONS

The plasma pressure profile is insensitive to sources and sinks that are located
near magnetic islands. The pressure profile can be computed by ﬁattening the profiles
inside the island separatrices and assuming a conservation of thermal flux through each |
topologically toroidal magnetic surface. Because of this lack of sensitivity to the local
pressure gradients inside island Separatrices, flattening the profiles inside the island
separatrix is an excellent assumption for three-dimensional MHD code work. In
particular, the additional pressure gradient does not have much effect on plasmé pressuré
induced magnetic islands in stellarator equilibria or appreciably change the Glasser
criteria®* for resistive MHD modes.

Gradients of the electron temperature inside the island separatrix can affect the
formation of micro-magnetic islands in tokamak plasmas through a thermal effect. If the
temperature is hollow (temperature is higher at the X-point of the island than at the O-
point) due to radiation losses dominating plasma heating, then thermal instabilities can
cause the formation of magnetic islands in the absence of any other island producing
effect. For medium-m mode number magnetic islands produced by fluctuating bootstrap
currents, the thermal effect is small as long as there is not much difference between the

transport properties of the plasma within and outside the island separatrtix.
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