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Abstract

A prescription for constructing the plasma pressure profile in the vicinity of an

equilibrium magnetic island is derived bysolving a sourced pressure diffusion equation

near the island region. For pressure sources and sinks that are relatively constant in

space, it is found that the plasma pressure profile is insensitive to pressure sources; thus

the pressure profile can be constructed by assuming that the net pressure flux across any

topologically toroidal magnetic surface is constant. This construction of the pressure

profile is also va!id for magnetic islands that are slowly evolving in time. By coupling

the pressure evolution equation with the magnetostatic equ,ilibrium equations, the theory

is applied to the case of self-consistent constn_ction of pressure-gradient-driven magnetic

islands. In particular, we address the question of resonant Pfirsch-Schltiter current
m

induced magnetic islands and the role of thermal effects on nonlinear magnetic islands.

PACS numbers: 52.55.Dy, 52.30.Bt, 32.30.Jb, 52.35.Py _A_T__
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I. INTRODUCTION

Magnetic island formation is important in a variety of plasma physics phenomena

in toroidal confinement devices. Iri particular, field errors and inherent three-

dimensionality cause the destruction of magnetic surfaces in stellarator and tokamak

equilibria. 1 Plasma pressure can have a dramatic effect on magnetostatic equilibria by

causing the formation of magnetic islands in stellarators even when the vacuum fields

have well-defined magnetic surfaces. 2"5 In addition, resistive magnetohydrodynamic

(MHD) 6'7 and neoclassical MHD 8'9 pressure driven instabilities can produce slowly

growing magnetic islands in the nonlinear '- atherford regime 10 of mating mode theory.

More recently, it has been suggested that pressure driven micro-magnetic island

formation may play a role in understanding transport processes in tokamak plasmas. 11-13

Clearly, it is desirable to understand how the island formation affects the plasma pressure

profile so that a self-consistent construction of the plasma equilibrium including the

effects on the plasma current and magnetic fields can be understood.

A standard prescription for modeling the effect of a magnetic island on the plasma

pressure profile is to flatten the profile inside the island separatrix. 2"9'13'14 This describes

the fact that the plasma inside the island separatrix is thermally insulated ft'ore the plasma

outside the separatfix. This solution can be derived from a diffusion equation for the

pressure by assuming that the sources for the plasma pressure are located far from the

island reg_lon.3'4'6'8'13 This is tan,tamount to dem'tnding that the thermal flux across a

topologica_lly toroidal magnetic surface is constant, so that while pressure gradients are

zero inside the separatrix they are non-zero on ali magnetic surfaces outside the

separatrix. More generally, pressure sources and sinks are present at all points in the

plasma volume. By introdt_cL,ag a plasma pressure source inside a magnetic island

separatrix, plasma gradients can arise on magnetic surfaces inside the island separatrix.

Once this interior gradient appears, the question of how this additional gradient self-



consistently affects the island formation through the various mechanisms of pressure

induced islands described above must be addressed.

In this paper, we solve a sourced pressure diffusion equation in the vicinity of an

equilibrium magnetic island. A general prescription is developed that can be used in both

analytic and computational models15'16 for general three-dimensio_ral MHD equilibria.

These studies are also useful for developing micro-magnetic island models for plasma

transport. In particular, thermal effects can produce magnetic islands when radiation

losses dominate over plasma heating in the vicinity of a magnetic island. 11,12,17 More

recently, a model was introduced that describes the state of the magnetic topology as an

evolving collection of islands, stochastic regions and toroidal flux surfaces ("magnetic

bubbling"). 13 Important in this description of the plasma was the self-consistent

interaction of the magnetic topology with the plasma profiles.

In the next section, a theory is developed to treat the effects of plasma pressure

sources and sinks in the vicinity of a magnetic island on the pressure profile. Although

the calculation proceeds for an island in magnetostatic equilibrium, the construction is

also shown to be valid for slowly growing magnetic islands. In See. II1, a self-consistent

calculation is presented to construct the effect of the pressure profile on the equilibria by

using Ampere's Law. In particular the effects of resonant Pfirsch-Schltiter currents and

thermal effects are discussed.

II. PRESSURE PROFILE NEAR A MAGNETIC ISLAND

A. Magnetic Configuration

. As a simple model for the equilibrium near an island, assume that in the limit that

the island width disappear s the flux surfaces are labeled by a radial-like variable _,

which has the physical interpretation as the toroidal flux through a magnetic surface. The

island width is assumed to be small compared to equilibrium length scales. The

equilibrium magnetic field with the island present is given by
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S = V4,xVo_+ V_xV_, (I)

where_ isthetoroidalangle,(x- 0 - to_isthehelical,resonantangle,0 isthepoloidal

angle, and V4;, x Vo_ (= IV_) is the toroidal magnetic field at the rational surface t(4)o) =

to = no/m o, where t = t(4_) is the rotational transform. The helical flux function _ is

given by

¥ = j' d_ (t- to) - Ysx c°S(moa) , (2)

where x = _ - _o" The coordinate system defined by el,, czand _ will be used to describe

the magnetic configuration throughout this paper. The symmetry-breaking magnetic field

responsible for the magnetic island is given by _sxCOS(moO0 where we assume _'sx varies

weakly with 4_ near the rational surface (the constant-_v approximation of tearing mode

theory18) and a single harmonic approximation is used. Since ¥ is independent of the

toroidal angle _ in this coordinate system, B.V_ = 0; _ labels the magnetic surfaces, By

Taylor expanding the expression in the integral, an approximate analytic form for the

magnetic surfaces near the rational surface is given by

-'= 2 -_sxCOS(moO0 , (3)

where to is dt/d_ evaluated at 4) = _o" This representation of the magnetic flux function

describes a magnetic island at 4) = _owhose half-width in the flux coordinate _, is given

by w = 2(l_sx/t_l )1/2. We will take _sx to have the same sign as _, so that the O-point of

the island is located at (x = 0, and the X-point of the island is located at mo(X= i-_.

B. Pressure Diffusion Equation

The requirement that the plasma pressure p be in MHD equilibrium B.Vp = 0,

demands that the pressure equilibrates on magnetic surfaces, p = p(_). To determine the

form of the pressure profile, an equilibrium pressure diffusion equation is introduced

V.DpVp =-S , (4)
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where S is the sum of the pressure sources (Ohmic or auxiliary heating and particle

sources), pressure sinks (radiation) and any other non-diffusive transport process• The

diffusive part of the pressure flux is written q =-DpVp, where ali that we require of the
h

diffusion coefficient Dp is that it be a function of the flux surface and not vary greatly in

magnitude in the vicinity of the magnetic island. Since, we would expect the plasma

density, temperatures and current to be flux functions near an equilibrium magnetic

island, this requirement is met even if Dp is a nonlinear functional of the plasma profiles.

Integrating F-xi.(4) over a volume bounded by magnetic surfaces results in the condition

[Opp'(v)as.vv] v = - Iv s(x3d3x", (5)
where

d3x, = _ dv da d; = :t:R--9- dv do_d_......... (6)

to x - B° _ 2to[V + VsxCOS(moO0] '

Ro Vv dot d;ds = VV _]da d; + .... , (7)

toX ---- ao/2t;tv +V x o (mo( )l
and _ = (V_ x V0.V_) -1 = (Vx x Vt_.V_) -1 = Ro/B o is the Jacobian and is assumed to

vary weakly. The plus-minus sign refers to the sign of x (plus sign for x > 0).

Equation (5) is solved in three different regions: I) on toroidal flux surfaces

located radially inside the island (J_ > I_sxl and x < 0); II) on flux surfaces located inside

the separatrix (IvI< lagsxl);and III) on toroidal flux surfaces located radially outside the

magnetic island (1_1> IVsxl and x > 0). For each region a boundary condition on the

pressure profile is introduced.

In region I, on a flux surface very far from the island region we prescribe the

• value of the pressure gradient. For surfaces located far from the island region (x >> w),

the flux surfaces are basically described by the radial variable _. Therefore, we prescribe

Vp/IV_I -) dp/dOi_,- r_,. This can be viewed as the exterior solution of the pressure



profile in a boundary layer theory for a small island. 3'4 Equation (5) now gives an

equation for p'(_) in region I,

2_ _ 2n

D _¢[dPlj2 _ ' I2a S(xg''a)pg _ d_toX(V,_)_ p:.]=- _av" _ . . , (8)V.. a to×(/g,a)

where g¢¢ = Vdp.V_ at the rational surface and _** is the location of the flux surface of

the boundary condition in the coordinate, _g. The source term S is assumed to be in
.

independent of toroidal angle _. We define the coordinate k which also labels the helical

flux surfaces near the island by

k2 =.- 2_sx -_- , (9)#*

¥ + _sx hol

where k = 1 is the separatrix of the island and k --_ 0 as the island width goes to zero.

The factor t_/Itol is added so that k 2 > 0. Using this coordinate, Eq. (8) is rewritten

k 2g

, _ _ k"_0_-'"toX_k',_)dPI _ P,o +

d_" 2n Dpget_ 2_ '
da tox(k,,a) _ tox(k,c0

Po, 1 k 2Kk(E2
+ _dk" nk.2 S(k') , (10)toW 2E(k)/_k Dptog ¢¢ 2E(k)/rck ek

where e2 = 12Wsx/(Woo+ Wsx)l, gaO= V4).Vcb at the rational surface, K(k) and E(k) are .:

elliptic integrals of the first and second kind, respectively, and the second form of F_xl.

(10) is valid if S is independent of a. If we make a further assumption that S varies

slowly in space [S >> _g(_}S/_)] so that w_ can take it as some constant So, _. (10) can - :

be integrated to give

Psx_______ S-- _- _O- (11)

d¥ toW 2E(k)/_k Dptog _¢ '

where



" " lim W$o 2E(ek)

Psx = Poo ek w-_0 Dpg_ m k (12)

is dp/d@ at the rational surface if no island were present. If we further assume that S is

. constant throughout the plasma cross-section and that the flux surfaces in the limit that.
p

the island disappears are concentric circles, • _=Bor2/2, so that Psx-=-So/2BoDp, we can

write Eq. (11) as

d--Pl --" Psx{ -1 + _ } . (13)
d¥ toW 2E(k)htk to_ o

Since w << _o by assumption, the second term in Eq. (13) and the corresponding second

term in Eq. (I 1) is much smaller than the first tenn. The first term is a generalization of

earlier calculations of pressure profiles near magnetic islands 3'4'6'8'13 where the pressure

profiles near the island were essentially given as the exterior pressure profile averaged

over the modified surfaces. Since, the second term in Eq. (13) due to localized pre_ure

sources and sinks is smaller than the first, the modified pressure profiles to leadipg order

in w/_ o can be constructed in region I by assuming a constant thermal flux through each

magnetic surface. Thus, near the island the distot_don of the profile is dominated by the

rearrangement of the field-lines by the insertion of the island and negligibly affected by

the corresponding changes in the source profile in the helical coordinates.

In region II, the pressure gradient must go to zero on the magnetic axis of the

magnetic island. Using this condition, the pressure profile inside the island separatrix is

given by

¥

Dpg_,odPlt _ da ,toX(V, )= - _ . (14)
" d¥ -V_x toX(llt',a)

Recalling the definition of the flux curface label k from Eq. (9) where k = 1 represents the

island separatrix and 1/k = 0 is the magnetic axis of the island and if we further assume

that S = S(¥), Eq. (14) can be rewritten as



1/k

dPii _ 1 J dk_-I K(1/kk'!S(k'-'--_}_

dv - - DpgOCto E(1/k)-(1-k-2)K(l&) " (15)

For S = So, the pressure gradient in region Ilis given by

dPI_.._£= _

dv Dpgq_to , (16) ,

which is the same gradient as the second part of Eq. (11), the pressure gradient in region

I. Thus, if sources dominate over sinks inside the island separatrix (SO> 0), the pressure

profile peaks (slighdy) on the axis of the magnetic island.

In region III, the boundary condition used is the requirement that the flux across

the island separatrix is continuous. 19

PlII(llt)lsx = - PI(V)lsx + 2PlI(V)lsx , (17)

'" where the change in sign going from region I to III is because x changes sign across the

separatri x ,_nd the factor of 2 in the last term comes from the fact that the pressure flux

flows out from the inside through the separatrix orr both sides of the island. The pressure

profile in region III is given by

k

Iak"2g_tk')_s0()
dPli I _ Pi{i_(_)lsx _ 1 nk '2

d_ - toW2E(k)/klt - Dpgq_to w 2E(k)/kTt '

- ......- s° (18)
toW 2El,k)/rck DptogqX_ '

where the second form of Eq. (18) is evaluated with S = So. With the exception of a sign

on the first term (due to x changing signs) this is exactly the same as the pressure profile

in region I, given by Eq. (11).

CombiLing the results of sourced diffusion equation calculations of each region,

the pressure profile can be succinctly written



dE Psx sign(x) e(IxFI- I_sxl) So_...._= ',. (19)
• g_ 'd_ toW 2E(k)/_k Dpto

where O is the Heaviside step function. The pressure profile in the vic;.nity of a magnetic

. island is given by two pieces. The first piece describes the continuity of thermal flux

across magnetic surfaces. This corresponds to the standard picture of the effect of an

island on the pressure profile since this portion of the pressure profile is flattened inside

the island separtrix. Furthermore, this part of the pressure profile is odd in x across the

island separatrix. (Recall, however, that _ is double valued around the island, so that

dp/d_ changing sign across the separatrix corresponds to Vp having the same sigfi on

either side of the separatrix.) The second term in Eq. (19) describes the effects of a

localized set of sources and sinks near the island. If sources dominate the sinks (plasma

heating dominating radiation losses), this term describes a peaking of the pressure profile

on the magnetic axis of the island. However, this term is order w/_ o smaller than the

first term.

C. Time-Dependent Islands

Up to this point, islands in magnetostatic equilibrium have been discussed. There

are many instances in toroidal discharges where the islands are not static; rather they are

growing or decaying in time. The question to then address is how much of the previous

anMysis presented is valid when the island width is changing with time. Now there is a

coml_tition between the diffusion process discussed in the last section and convection of

the pressure by a growing island. To make a quantitative comparison, we construct the

, ratio R = C/D, where C is the change in the flux of normalized pressure in a volume V

due to a growing island and D is the flux of normalized pressure through the volume

enclosing area by a diffusion process:

C = Iv d3x" d_-_s--_- Iv d3x" t°w dw cos(moOt) (20)dt - 2 dt '
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D = DpfaVds.Vv, (21)

where we use a constant-li I and :;ingle harmonic approximation for the island. The

volume is picked to be bounded by a surface at fixed k [see Eq. (9)] and at infinity where

there is no contribution to D (no perturbed diffusive flux at infinity), The quantity R is

given by

t. 2 dw _ [E(k)(1.k2/2) _ (1.k2)K(k)]
ow _ 3_k 2

R = Dvg_Xl_tow2E(k)/krc " (22)

We can examine this expression asymptotically. Very far from the island (k -_ 0) R

becomes approximately

dw
w-_ w 2

R = Dpg_ (x) , (23)

so that very far from the island (x >> w), diffusion dominates. This just means that very

far from the island the island producing magnetic field doesn't distort the magnetic

surfaces appreciably. Closer to the vicinity of the island, R becomes

dw ,. d_Sr
w-di- or-aT

R = - . (24)
Dpg_ Dp

where 8r = w/IVt_l is the radial extent of the magnetic island. The requirement that

diffusion processes dominate the pressure evolution is given by R << 1_ For constant-V
p

magnetic islands that grow at the Rutherford rate, l0 R _=.(A w)ll/_toD p where A'is the

tearing mode matching parameter, and rl/Po is the magnetic diffusion coefficient. The

constant- V assumption demands that A'w be smaller than unity. Thus, so long as rl/l.toDp

is not too large (rl/lloD p is generally smaller than unity in present day tokamak plasma3),

R << 1 for tearing modes in the Rutherford regime. For islands produced by the

fluctuating bootstrap current 8'9'13, R -="[3prl/I.toDp where 13pis the poloidal beta. As long

as the pressure diffusion is anomalous (larger than the neoclassical prediction for

10



e._ectron-ion particle diffusion in the banana regime), R < 1 and pressure diffusion

dominates over convection due to a growing island.

1/2.,
For islands that grow at the Sweet-Parker timesc,':de (dw/dt = roSM"/xR, where, SM

¥

is the magnetic Reynolds number and x r is the resistive diffusion time), R .--_.

S1M/2(w/ro)(rl/I.t0Dp). For fast growing islands with R >>1, the procedure used in the

previous _ction is invalid. Instead of diffusing, the pressure is fixed to a magnetic

surface and moves with the surface as the island grows. In this case, the gradient of the

pressure on that part of the surface that is closest to the X-point of the island is fixed.

Using the notation previously used, the pressure gradient in the vicinity of the island is

then given by

•e(I -IV ) -= , - = ±p'x e(lvlqV x0 t° (25)
d_ toXmin _ 2(_-_rsx ) '

where Xmin is the smallest distance in magnitude on a particular flux surface from a point

on that surface to the X-point of the island, and the sign is associated with the sign of x.

This process predicts a dramatic steepening of the pressure profile in the vicinity of the

magnetic island, t.._.:_r_quently, fast growing magnetic islands may be, susceptible to

_condary ideally growin il pressure driven instabilities. 20

III. APPLICATIONS

Up to this point the magnetic islartds used to derive the pressure profile have not

been derived se.lf-consis ently. In this ruction we couple the pressure evolution equation

.. to the MHD equilibr;.,m equations to derive an island Grad-Shdarnov equation xlear the

magnetic island, In particular, we extend earlier work on Pfirsch-SchliJter current

" induced magnetic islands 3'4 by accot_nting for paralieI currents resulting from a pressure

gradient inside the island separatrix, lt is assumed that the vacuum magnetic surfaces are

fairly well defined so that the surface breaking is solely due to the plasma pressure. We

1I



'also examine thermal effects which have been suggested as a mechanism for producing

magnetic islands in the edge of tokamaks. 11,12

Ao Pfirsch.Schliiter Current Driven Magnetic Islands

Variations in the magnitude of the magnetic field strength on a magnetic surface

cause parallel currents to flow within that flux surface to guarantee quasineutrality. It is '

important in stellarator designs to try to minimize these currents since unfavorable

neoclassical transport scalings and guiding center orbit losses accompany large field z

strength variations. 21 Additionally, resonant Pfirsch-Schlitter currents can des/roy

magnetic surfaces through magnetic island formation even when the vacuum m,'gnetic

configuration has reasonably well-defined magnetic surfaces. 2 5

The field strength variation is quantified by the Jacobian for the magnetic

coordinates _1= (VOxVcx.V_) "1 = I/B2. 3'4'22 Assuming a three-dimensional equilibrium
, !

magnetic configuration, the Jacobian is written

= _n _lranexp(im0- in;) . (26)

The Jacobian describes the structure of the equilibrium magnetic field. In particular, the

specific volume dV/d_ = V" is given by =

2n 2_

V'= _ 2n J = Joo(*) • (27) -'¢

The derivative of the specific volume describes the normal curvature of the configuration,

where V'" > 0 (< O) indicates a magnetic hill (weil) and determines the low-[_ stability of ._

plasma in toruses against resistive interchanges. The specific volume of a closed flux . -_

tube at the rational surface t = to = no/m o is given by
b

_=_t._x/a_B 2 d_ - J = iZJlmolno exp(ilmo°0 ' (28)
lt

12
z



where the quantity inside the integral is expressed as a function of _, o_= 0- to_ and _.

For general three-dimensional equilibria the_ dl/B criterion 23 is not satisfied since the

quantity in Eq. (28) is not a surface function at the rational surface. For simplicity, in this
w

• work we will assume that the resonant value of the Jacobian J is given by the first two

terms in the Fourier expansion

B

:] = J00 (_) + _monoc°S(moet + _) ' (29)

where we have imposed the reality condition and _ is a constant phase angle.

We follow the calculation of refs. (3) and (4) to determine the currents and

magnetic fields near the island. What is different about this calculation is the addition of

a pressure gradient inside the island separatrix due to localized sourced and sinks which

produces its own Pfirsch-Schliiter current. We will determine to what extent these

additional currents ctaange the results of earlier work.

A boundary layer theory is used to determine the self-consistent width of the

magnetic island, lt was shown in refs. (3) and (4) that in the limit of the island width

going to zero, the parallel current profile is singular at the rational _;urface for a general
i

three-dimensional equilibrium. This singt/lar solution constitutes the exterior solution of

the boundary layer theory. The singularity is resolved in the interior solution by allowing

the magnetic island width to have finite amplitude. The two solution._ are matched by

equating the integrated parallel current in the interior region to the amplitude of the

current singularity in the exterior region. This calculation is similar to the boundary

layer theory used extensively in tearing mode analysis. 18 Using the standard definition of

the tearing mode matching parameter A', the matching condition ise,

• ._ 2I idx _ dot
A _gsx = g_ ..** _ cos(moa) Q , (30)

13



where Q = J.B/B 2 is the parallel current profile in the vicinity of the island, and A'Vs x =

ax_/I+ is the radial mismatch of the derivative of the magnetic potential across the rational

surface, the magnitude of the current singularity.

The parallel current is determined by solving the MHD equations near the island.

The quasineutrality condition B.VQ = V.J.L and force balance J.L= B x Vp/B 2 give the

equation to leading order in w/_ o

m

V_.V_gx VQ= -V_.Vp x V_ (31)

after averaging over the angle _. Since p = p(W), Eq. (31) has the solution Q = -p'(_t)"- +

• f(v), where f(_) is an undetermined function of _. The projection of the equilibrium

resistive Ohm's Law along the magnetic field gives the condition

-B.Vq_ = rt J.B , (32)

where cp is the electrostatic potential and rI is the plasma resistivity. By averaging Eq.

(32) over a flux surface, the left hand side is annihilated and a constraint on the parallel

current is derived (<Q> = 0), where, the flux surface average is defined by

dcx

<*> - l - . (33)

Flux surface averaged quantities satisfy B.V<*> = 0. Using the constraint derived from

Eq. (32), the parallel current profile is given by

Q = p'(v)[<3>-:l]

= p'(v){V"(<x>- x) + .lmono[<c°S(moa + ¢)>- C°s(mo°t + @)1} , (34)

,_r_ V _'where we have used Eq. (29) and expanded J00 + V"x using Eq. (27). The term

0roportional to V'" in Eq. (34) describes the parallel current arising due to a low-beta

resistive interchange perturbation. Note that to this point we have neglected the effects of

14



geodesic curvature which are important in determining the stability of resistive

interchange modes. 24 In the guise of magnetic island formation, these effects have been

accounted for previously, 4 and although this effect is not derived here, we will include its

" effect in our final answer. As a practical concern, the E + F criteria of Glasser, et al., 24

(which includes both the effects of normal and geodesic curvature) should be used to

determine the width of the magnetic island. 25 The term proportional to J mono was not

included in previous analysis of this problem. However, because of the radial parity of

the pressure profiles used in refs. (3) and (4), this term did not affect the matching

procedure. This term will contribute if a pressure gradient is present inside the magnetic

island separatrix.

The part of the interior parallel current that contributes to the matching condition

of Eq. (30) has even radial parity near the island. Using Eqs. (19) and (34), the current

with even radial parity is given by

Qe,'en = Psx V'" sign(x) O(1_1-I_sxl) (<x>- x)
toW 2E(k)/rrk --

- ----S-9------ [<cos(moOt + _)> - cos(moOt 4. ¢)] (35)
Dptog** Jmono

where the term proportional to V"_conies from that part of the pressure profile that is odd

in x, while the term proportional to _mono results from that pm of the pressure profile

with even radial pari:y. Recall from the discussion following Eq. (19) that the part of the

pressure that has even radial parity comes from the localized scurces and sinks and is

w/* o smaller than the pressure profile due to thermal convection across the flux surfaces.

The first term in Eq. (35) is the perturbation resulting from a saturated resistive

,o interchange instability. The reason that such a term appears is that a three-dimensional

equilibrium can be viewed as a two-dimensional equilibrium with saturated three-

dim_.nsional instabilities. The restriction from the _ dl/B criteria is not applicable at

ratioaal surfaces for a general stellarator equilibrium where the assumption of well-

15



defined rational surfaces does not hold. Consequently the distinction between symmetry

breaking magnetic perturbations from instabilities and equilibrium magnetic fields is lost.

As mentioned above, a more general description of the resistive interchange criteria must

take into account the effects of geodesic curvature in addition to the normal curvature

described by V". 24 Following the derivation of ref. (4), this can be accounted for and the a,

V'" criteria is replaced by the E + F criteria of ref. (24), where E + F > 0 indicates

instability to the resistive interchange. To the order of the calculation presented here,

E+F PsxV," I
to2 g_l_

• 2

+ PI_S_. I I (_ d;/Ercj'2I/gCta) (_ dUEn]I/g4_)2] (36)
to2 gO-'-_ [g_ - ,

wkzre _ = _ - J are the nonresonant variations of the Jacobiau at the rational surface, I =

B.Ox//)_ is the toroidal projection of the magnetic field in the covariant basis and the

terms I/g_ appearing outside the integrals are averages of I/g ¢_ over _.

The second term in Eq. (35) describes the resonant Pfirsch-Schltiter current

flowing because of the localized source. This current flows both inside and outside the

island separatfix. Inserting Eq. (35) into Eq. (30), we get

4I

A'_s x = -0.5 tow[(E + F) + I_m°n°S°L-D 2g0_2 ] ' (37)pto

where the absolute value sign indicates that the island will pick the phase of the magnetic

island (relative to _) so as to find the most destabilizing perturbation. The ratio of the

amplitudes of these two terms is given by 4_mono/V'"_ o, assuming ISol_o/Dpg ¢_ IPsxl.

For most realistic stellarator designs this is a small number so that the second term makes

a small contribution.

To find the self-conslstent island width, an asymptotic evaluation of Ampere's

Law is used. This results in the relation 2"4
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IV_lr°A' toC (38)/ltsx(l+ 2m° ) = ,

• _ ,2 2 2 2Po/B 2 plasma beta, and RO is thewhere C _- ([_g /t o moRo)(]mono/J00 ), 13= is the

major radius of the torus. The term C on the right hand side of Eq. (38) is the
m,

contribution to the island width from the interaction of the equilibrium pressure profile

' and resonant Jacobian that does not contribute to the matching procedure. 2 The width of

the magnetic island is derived by using Eqs. (37) and (38). This yields the equation

w - pl2 + 4 (pl2) 2 + 41CI , (39)
IV_lr o

where

,2 41_I_2

(E + F) + I:lmonoSol(4I/Dpto g ) (40)
p = mo •

Equation (39) is similar to Eq. (72) in ref. (4). The difference between this work and that

of ref. (4) is the inclusion of the additional resonant Pfirsch-Schltiter current due to the

local sources near the island. One may interpret this additional term in Eq. (40) as a

three-dimensional modification to the resistive interchange stability criteria. Since the

original work of Glasser, et al.24 assumed the existence of well-defined flux surfaces a

priori, this additional piece was not found in the linear stability analysis. As a practical

matter, since this term makes a small contribution to Eq. (40), the local sourcing of the

plasma pressure profile has little impact on the self-consistent construction of the

equilibrium magnetic island. Thus, under normal conditionsresonant Pfirsch-Schltiter

currents on flux surfaces interior to the island separatrix do not dramatically affect the

island itself.
B
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B. Thermal Effects

In Ohmically driven tokamak plasmas, self-consistent temperature variations near

a magnetic island cause variations in the parallel current profile through the resistive

Ohm's Law:

3_T (41)
Jllo - 2 TO '

where Jllo= El/rio is created from ai_externally applied toroidal loop voltage where rio is

the resistivity evaluated at To. Assuming the analysis used in Sec. II for the pressure

profile can also be used for the temperature profde, the perturbed temperature is given by

_iT = Ts"x sign(x) O(1_1- IYsxl) f2 d_ _ STtoW E(k)/r& nsxZTtogq_ (_- _sx)' (42)
_sx

where 8"I'= I'- Tsx, Tsx is the temperature at the island separatrix, the diffusive heat flux

is written qT = -nsx_TVT, where V.qT = ST and _F_ST/(_It<< ST is assumed. To see the

effect of this current perturbation on the magnetic island, we use the same matching

procedure used for the Pfirsch-Schliiter cu_ent-driven magnetic islands:

, 2RoA _sx = - _ _ cos(moO0 8j, , (43)
g --_

where ROis the major radius of the tokamak. From the radial parity constraint, the only

part of _Jllthat contributes to Eq. (43) comes from the second part of Eq, (42). Therefore,

A'Vsx _ 6jiloR° ST Ye cos(moe)= - _q_2 fil¥ (_1/- Vsx) $ dot , (44)
nsxTsxg ZTto-Vsx 2rc 0xV(¥,o0

where _'c is some cutoff for the integral. Assuming that q_ = Bor2/2 so that the flux

surfaces are concentric circles in the limit of the island width going to zero, and Jllo =
lr

2B0/ro, Eq. (44) is rewritten

18



q'e cos(moO0
_'¥sx - 3 ST 8r Vsx fdr (1 - W) ff dm , (45)

nsxTsx _T _ -1 2_ _/[W+c°s(mo°0]/2

A

where s = - r (dt/dr)/t, z_ is the logarithmic derivative of the exl_,'xior vector potential

" with respect to the variable r, 8r = w/IVcbl is the radial extent of the magnetic island, and

= W_sx"

In the transport models of refs. (11), (12), and (17), the underlying assumption

concerning the thermally driven magnetic islands is that these islands are imbedded in a

stochastic sea. Consequently, it is reasoned that the magnetic surfaces are destroyed

outside the magnetic island separatrix. If we use this assumption, We = 1, and Eq. (45).

becomes

8r2(8r +m o_- ro ST, ,

where we have used the large mode number assumption A" =-2mo/r o for the tearing

mode matching parameter. In order for Eq. (46) to have a nontrivial root, _/S T has to be

negative. For tokamak plasmas with _' > 0, this requires lhat the plasma temperature

profile be hollow within the island separatrix because the temperature sinks dominate

sources (radiation losses are greater than plasma heating). If we assume that the

equilibrium temperature profile is given by nsx_H(dTsx/dr) = - roSH/2,where Si[ > 0 is

taken as the heating source and XH is the transport coefficient outside the island region,

the island width assuming ST < 0 is given by

5_
8r = - mo LT , ¢47)

STXH

" where L r =-Tsx/(dTsxldr ). Clearly, unless _'P/_H << 1, (i. e., the thermal diffusivity is

much smaller inside the island than outside of it) this predicts a very large island which

causes a breakdown in the theory.

In tokamak plasmas, another potential mechanism for causing micro-magnetic

island formation is the fluctuating bootstrap current. 8'9'13 Near a magnetic island the
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neoclassical pressure gradient driven current in the banana collisionality regime is given

by

Jbc 1.46"_f_ R--Qd-d-p-<0xr> , (48)
t d_"

where recall that 0xgt = toX(_,oQ and 8 is the invers_ aspect ratio. That part of the

pressure profile that produces a current that contributes to Eq. (4 3) is that part that is odd ,

in x, the first term in Eq. (19). Using only that piece of the pressure gradient, Eq. (48)

becomes

_F-R, , e(lWI- IWsxI)
Jbe = - 1.46 e Psx .... (49)

t 4E(k)K(k)/rc 2 "

Using 8iiI--Jbe + 38Tjl10/2Tsxin Eq. (43), the island width equation is given by

___L_.I_ + 128 8r 1,
A'=-2.2 8r 5n roSaLT _ '

(50)

where X = XHST/ZTSH, Lq= -t/(dt/dr), Lp = - p/(dp/dr), and _p = 2p/B_ is the poloidaltt

beta. Assuming that A" = -2mo/r o and that_ > 0 (thermal effects are stabilizing), Eq.

(50) predicts a steady-state island gi"en by

8r mo5gLT_ --"------

r-o-= 128Lq {_/[l+lT.5Nf'815pL_/Lpl.q, m2xl - 1} . (51)

In the limit of m_ becoming large, 8r =: 1.1 ro_8 13pLq/Lpmo which is the result of refs.

(8), (9), and (13) where no thermal effects were accounted for. If the transport properties

of the plasma within and outside the island separatrix are not too dissimilar so thatX ._ 1,

bootstrap current driven magnetic islands with mo > 4.281/4_lp/2Lq/LT are not appreciably

affected by the thermal effect.

A number of potentially important effects have been omitted in the single-helicity

analysis of this section. In particular, island dynamics have been ignored. Also, since the

size of the magnetic islands derived in this section is larger than the average distance

between rational surfaces, island interactions must also be accounted for. As pointed out

20



in ref. (13), island growth, interaction and decay rnay play an important role in the

transpotX properties of tokamak plasmas.

IV. CONCLUSIONS

The plasma pressure profile is insensitive to sources and sinks that are located
%

i

near magnetic islands. The pressure profile can be computed by flattelfing the profiles

inside the island separatrices and assuming a conservation of thermal flux through each

topologically toroidal magnetic surface. Because of this lack of sensitivity to the local

pressure gradients ir,_ide island separatrices, flattening the profiles inside the island

separatrix is an excellent assumption for three-dimensional MHD code work. In

particular, the additional pressure gradient does not have much effect on plasma pressure

induced magnetic islands in stellarator equilibria or appreciably change the Glasser

criteria24 for resistive MHD modes.

Gradients of the electron temperature inside the island separatrix can affect the

formation of rnicro-magnetic islands in tokamak plasmas through a thermal effect. If the

temperature is hollow (temperature is higher at the X-point of the island than at the O-

point) due to radiation losses dominating plasma heating, then thermal instabilities can

cause the formation of magnetic islands in the absence of any other island producing

effect. For medium-m mode number magnetic islands produced by fluctuating bootstrap

currents, the thermal effect is small as long as there is not much difference between the

transport properties of the plasma within and outside the island separatrtix.
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