NREL/TP--253-4276

DE91 002141

Synthesis of Cresols and Xylenols from Phenol and Methanol

H.W. Prengle, Jr., X. van Tran, K. Moinzadeh, F.A. Bricout, and S. Alam University of Houston Houston, Texas

NREL Technical Monitor: R. Gerald Nix

National Renewable Energy Laboratory (formerly the Solar Energy Research Institute) 1617 Cole Boulevard Golden, Colorado 80401-3393 A Division of Midwest Research Institute Operated for the U.S. Department of Energy ASTER under Contract No. DE-AC02-83CH10093

Prepared under Subcontract No. XX-7-07028-1

April 1992

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

This report describes subcontracted research. The report is unreviewed and expresses only the opinions of the author[s]. It has been prepared for reproduction from the best available copy.

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Printed in the United States of America Available from: National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161

> Price: Microfiche A01 Printed Copy A03

Codes are used for pricing all publications. The code is determined by the number of pages in the publication. Information pertaining to the pricing codes can be found in the current issue of the following publications which are generally available in most libraries: *Energy Research Abstracts (ERA)*; *Government Reports Announcements* and Index (*GRA* and I); *Scientific and Technical Abstract Reports (STAR)*; and publication NTIS-PR-360 available from NTIS at the above address.

• EXECUTIVE SUMMARY •

The objective of the work is to compare two (2) processes for manufacturing the same chemicals: a) -a conventional catalytic process, and b) -a solar photo-thermal catalytic process, in order to determine the relative process economics. The synthesis of crescls and xylenols was chosen as the products to be produced. These products are used primarily as chemical intermediates for manufacture of antioxidants, pesticides, polymerization inhibitors, resins, and others. The market demand is approximately 500 million pounds per year.

This report is the first of two reports, the one presenting the results of a process study and evaluation for manufacturing the products by a conventional catalytic process. The process generally favored in the US is the vapor-phase methylation of phenol using a high mole ratio of methanol over a solid acidic catalyst. The research reported in the literature was used as a basis for sizing the reaction system. The major pieces of equipment are: 1- reactor, 1- process heater, 4-fractionators, 11-heat exchangers, 9-pumps, and 4-storage tanks.

At the outset of calculations the plant size for break-even economics was not known; therefore an arbitrary <u>base case</u> plant size (fresh feed) of approximately 7 million kg/y (15.3 million lbm/y) was chosen, and then escalated to break-even size. Subsequent calculations indicated the following important numbers:

BASE CASE:	
1) Plant Size, fresh feed =7 E6 kg/y, produ	acts = 5.54 E6 kg/y
2) Plant Capital Cost	\$ 2.022 E6
3) Plant Operating Cost (PGC)	\$ 7.015 E6 /y
4) Plant Income (PI)	\$ 6.413 E6 /y
5) PI/POC	0.9142
BREAK-EVEN CASE:	
1) Plant Size, fresh feed = 12.80 E6 kg/y, pr	roducts = $10.22 E6 kg/y$
2) Plant Capital Cost	\$ 2.919 E6
3) Plant Operating Cost and Income	\$11.83 E6/y

Conclusion: assuming that an owner chemical company could obtain a fair share of the market, it is estimated that a profitable operation would result for a plant size greater than 12.80 E6 kg/y of fresh feed.

TABLE OF CONTENTS

Executive Summary	<u>bage</u> 11
Introduction	1
1.00 Market and Product Production	1
Table 1. Consumption of Cresols & Xylenols, 1986Table 2. U.S. Prices for Cresols & Xylenols	2 3
2.00 Process Description and Design Basis	4
Figure 1. Process Flow Diagram	5
3.00 Chemical Reaction/Reactor Section	7
Figure 2. Reaction Section	8
Table 3. Reaction Section Mass Balance	9
Table 4. Reactor Specifications and Estimated Cost	11
4.00 Equipment Sizing and Cost	12
Table 5. Summary of Equipment Costs	12
Table 6. Heat Exchanger Summary	13
Table 7a-7d. Distillation Columns	15
Table 8. Pump Summary	19
Table 9. Storage Tank Summary	19
5.00 Estimated Capital and Operating Costs	20
Table 10. Capital Cost Summary	20
Table 11. Operating Cost Summary	21
6.00 Profitability Analysis	22
Table 12. Plant Income from Products	22
Table 13. Calculation of First-Year Break-Even Point	23
References Cited	24
APPENDIX	
Physical and Thermodynamic Properties	a 1
Reactant and Product Prices	b1
Plant Utilities & Costs	cl

iv

Economic Indicators Symbols & Nomenclature **d1**

e1

. INTRODUCTION .

This report is the first of two reports concerning the manufacture of cresols and xylenols by, 1)-a conventional catalytic process, and 2)-a solar-thermal photo-catalytic process. The two reports when complete will provide a preliminary basis for comparison of the processes, and the relative process advantages and economics.

The purpose of this report is to present the work accomplished on sizing and costing a <u>conventional catalytic</u> <u>process</u> to produce cresols and xylenols from phenol and methanol. One of the standard chemical process references, Faith, Keyes and Clark [1], reviews the different processes for cresols and xylenols, and states the following: "The process generally favored in the United States is the vapor phase methylation of phenol with methanol over a solid acidic catalyst. At higher temperatures ortho-methylation is the predominant reaction, giving o-cresol and 2,6-xylenol as major products. As the temperature is raised above 350 C, meta- and paramethylation become more pronounced, leading to formation of m- and p-cresol, the various xylenols other than 2,6-isomer, and polymethylphenols".

Hence the vapor phase catalytic methylation process was chosen for economic evaluation. No process configuration, sizing, and costing were available; therefore, the necessary calculations were made to obtain the details of the process.

1.00 PRODUCTION AND PRODUCT MARKET

At the outset the reader should become familiar with the structures of the product compounds, in order to visualize the synthesis chemistry starting with phenol and methanol. In the

- 1 -

catalytic reaction, which is conducted with a large excess of methanol, the phenol provides the benzene ring structure and the methanol the methylation groups.

The reactants:

Cresol and xylenol isomers are used primarily as chemical intermediates. Principal applications include use for: antioxidants, pesticides, polymerization inhibitors, resins, and other miscellaneous uses. The annual consumption of the products [2] is shown in Table 1; it will be noted that the total cresol and xylenol consumptions were approximately equal, 208 vs. 218 million pounds per year in 1986.

Table 1. Consumption of Cresols and Xylenols

(millions of pounds per annum, 1986)

con	npound US	SA w.Eu	rope Japan		(total)	
1)	o-cresol	10	47-49	15	(72-74)	
2)	m-cresol	5-6	3	25	(33-34)	
3)	p-cresol	18-19	24	18	(60-61)	
4)	m,p-cresol	10	0	31	(41)	
5)	xylenols	110	57	51	(218)	
6)	cresylic acid	1 24	0	14	(38)	
	Totals	177-179	131-133	154	(462-466)	

- 2 -

The U.S. price history of the products is shown in Table 2; more details about current reactant and product prices are given in Appendix B.

		creso]	\$			
<u>vear</u>	ortho	meta-	para-	<u>m.p-</u>	2.6-xvl	mix-xyl
1960	0.14	0.60	0.49	0.20		
1970	0.165	0.60	0.42	0.175	ŝ	
1980	0.555	0.93	1.25	0.70		
1985	0.75	1.65	1.00	0.61		
1987	0.57	1.00	1.15	0.61	0.80	0.58
1989	0.58	1.65	1.30	0.82	(0.80)	(0.58)

Table 2. U.S. Prices (\$/1b.) for Cresols and Xylenols

2.00 PROCESS DESCRIPTION AND DESIGN BASIS

The reader is referred to the flow diagram, Figure 1 (p.5), which was produced, along with certain process calculations, using CHEMCAD II-Process Flowsheet Simulator [3]. This computer simulator is currently in use as a tool in chemical engineering design courses, as well as by chemical and refining companies for preliminary process designs and cost estimates. A complete mass balance at key points through the process as well as process temperatures are shown.

The approximate overall stoichiometry for the process is,

C6H5OH + 1.432 CH3OH --> 0.6998 C7H8O + 0.2539 C8H10O

 $+ 1.208 H_{2}O + 0.0467 CH_{4} + (3.6\% other fragments)$ (1)

The reaction is exothermic in the amount of -41,860 kJ/kgmole of phenol, with a per reactor pass phenol conversion of 58.3%.

The process flow, fresh feed to final products, proceeds as follows: fresh feed stream 1, consisting of 1.432:1 mole ratio of methanol to phenol at 25 C joins the recycle stream 2. The composite stream 3, 6:1 methanol to phenol, passes through heat exchangers E1 and E2, then through the shell side of the reactor, E3, and the process heater, E4 where it is vaporized before entering the reactor at \sim 420 C. The reactor design is based on data reported by Sumitomo Chemical Company [4]. The reactor output stream 14, consisting of cresols, xylenols, water, methane and unconverted phenol and methanol, flows to the primary fractionator (PF) as stream 15, where the water, methanol, and methane are separated from the other components. The methane is flashed from the partial condenser on the PF.

The methanol plus water stream <u>18</u> flows to the MW fractionator for separation, the methanol being recycled. Stream <u>17</u> from the PF is pumped to the phenol-cresol-xylenol (PCX) fractionator, which separates the phenol for recycle with the methanol as stream <u>2</u>. Final fractionation of the cresol-xylenol stream <u>29</u> is accomplished in the CX fractionator, with o-cresol being taken off as the tops product <u>35</u>, and mixed xylenol-cresols as bottoms stream <u>36</u>.

Heat exchange is accomplished where possible in order to reduce the need for purchased fuel; cooling water and steam are the heat media, and electric power is required for the pumps.

١

					streams an	nd flow rat	es, kg/h						
	c X	1	2	15	19	20	23	26	R	27	28	5	36
newor	04 114	556.54	384.60	392.45	0000-0	392.45	0.000.0	384.60	7.8489	0 .0000	0.0000	7.8489	0000.0
I TIENUL	270 21	270.19	1652.3	1688.3	1676.6	9.1892	1643.1	9.1893	0.0000	2.4284	33.533	0.000.0	0.0000
UCNIMULT	108 16	0000	0.000	437.97	0000-0	437.97	0.000.0	0.000.0	437.96	0.000	0.000.0	416.06	21.898
M -CRESOL	108.14	0.000	0.000	1.6221	0.000	1.6221	0.000.0	0.0000	1.6221	0.000.0	0.0000	0.000	1.6221
P-CRESOL.	108.14	0.0000	0.000	1.6221	0000.0	1.6221	0.000.0	0.0000	1.6221	0.000.0	0000-0	0.0000	1.6221
LATER	18.015	0.000	4.9580	131.78	129.01	2.6357	2.3223	2.6357	0.0000	0.13401	126.69	0.000.0	0.000
METUANE	16.043	0.000	0.44245	4.7616	0.44245	0.0000	0.44245	0.0000	0000-0	4.3676	0.0000	0.000.0	0.0000
TURI FUOI	177.17	0.000	0.000	180.81	0.000	180.81	0.000.0	0 - 0000	180.81	0.000	0.0000	0.000.0	180.81
OTHERS	1	0-0000	0.000.0	29.705	0.000.0	29.705	0.0000	0.0000	29.705	0.000	0.0000	0.000	29.705
		826.73	2042.3	2869.0	1806.1	10 56.0	1645.9	396.43	659.57	6.9300	160.23	423.91	235.66
T (C)		25	67.4	147	99	162	64.5	180	200	60	66	20	20

. Figure 1. PROCESS FLOW DIAGRAM .

÷

The major pieces of equipment are:

1- process heater; 1- reactor; 4- fractionators;

11- heat exchangers; 9- pumps, and 4- storage tanks.

Although one reactor is shown on Figure 1, two reactors are proposed in order to increase operational flexibility, as discussed in the next section of this report.

At the outset thr <u>break-even</u> capacity is not known. However, the functional form of the scaling equations is known, but not the constants in the equations; these must be determined from one case. Based on market demand and typical plant size, the following design basis was chosen for the <u>base case</u>:

Fresh Feed	6.94 million $kg/y = 15.3$ million lbm/y
Operating time	8400 h/y (downtime 360 h/y)
Cresols	3.49 million $kg/y = 7.71$ million lbm/y
Xylenols	1.52 million $kg/y = 3.35$ million lbm/y

3.00 CHEMICAL REACTION/REACTOR SECTION

The plant has two major sections: a Reaction Section and a Separation Section. The former is the most important part of the plant as it carries out the conversion of feedstock to synthesized products. In this part of the report the details of the Reaction Section are presented; the reader is referred to the flow diagram, Figure 2; the stream numbers, temperatures, pressures, and heat exchanger Q-values are shown on the diagram. Table 3 presents mass balance and composition values for streams 1, 2, 3 to 11, and 14.

The flow proceeds as follows. Recycle stream 2 is joined by the fresh feed stream 1 to produce the composite feed stream 3, which is pumped by P1 through heat exchangers E1 and E2. The pump pressure is 405 psia, selected to provide sufficient pressure drop through the equipment (E1, E2, REAC, and E3) and insure liquid phase up to the control valve at the entrance to the process heater E4. The chemical reaction is exothermic, hence in order to remove the heat evolved and maintain the reactor effluent temperature at a reasonable level, liquid stream 9 flows through the shell side of the reactor, exiting at 83 C as stream 10. Stream 10 in turn flows through the economizer E3 to the control valve which partially releases the pressure before entering process heater E4, where complete vaporization of the stream occurs. The gas mixture stream 13, mainly phenol and methanol, enters the reactor at 420 C and 30 psia.

The exothermic catalytic reaction between phenol and methanol takes place in the reactor, which is of shell-and-tube design; the catalyst peliets being packed inside the tubes. Two

-7-

Figure 2. REACTION SECTION (Note: Q-values are kJ/h) Table 3. REACTION SECTION MASS BALANCE & COMPOSITIONS

.

	strean	₽: - 	-		<u>3</u> to <u>11</u>	_	1 1 2	<u>14</u>	
Сотр	MI	եդ/հ	kg/h	kg/h	kgmols/h	X ₁	kg/ĥ	kgmols/h	YI
Скнсон	94.114	556.54	384.60	941.14	10.0000	0.1422	392.45	4.1699	0.0595
CH, OH	32.042	270.19	1652.3	1922.49	60.0000	0.8535	1688.3	52.6902	0.7524
с,Н ₈ 0	108.14	I	I	ł	ł		441.21	4.0800	0.0583
, о _с н	18.015	I	4.9580	4.9580	0.2750	0.0039	131.78	7.3150	0.1045
cH,	16.043	I	0.44245	0.44245	0.0760	0.0004	4.7616	0.2968	0.0042
4 С,Н,О	122.17	I	1	I	I	I	180.81	1.4800	0.0211
o iu Uthers	•	ı	I	1	t	ł	29.705	ł	I
		826.73	2042.3	2869.0	70.351	1.0000	2869.0	70.032	1.0000

.

- 9 -

heat transfer phenomena occur in the reactor: a) -as the heat is released by reaction inside the pellets it flows transversly by conduction and convection to the tube surface, and b) -then through the tubes to the the liquid on the shell side. Detailed calculations were carried out on the reactor, first assuming that a single-reactor would be used, and second assuming a tworeactor case. Table 4 summarizes the reactor design parameters for both cases.

w/ hine

The reactor effluent stream <u>14</u> at 450 C flows through E3 where the temperature is reduced and partially condensed (to approximately 35 mole π liquid), and thence as stream <u>15</u> to the primary fractionator (PF) to begin the separation and recycle sequence.

Table 4. REACTOR SPECIFICATIONS

	Item	Single-Reactor Case	Two-Reactor Case (per reactor)
1)	Туре	Fixed bed, shell and tube, o inside tubes	catalyst pellets
2)	Catalyst	CeO ₂ /SiO ₂ , 3 x 3 mm pe	ellets
		mass = 137.6 kg volume = 0.3112 m ³	68.8 0.1556
3)	Tubes	15 4.026" id. x 9' long, stain	7 less steel
		volume = 0.4668 m^3	0.2334
4)	Shell	32" id. carbon steel 3.5" tube clearance 36" baffle spacing	24" id. 2.5" 36"
5)	Space velocity	0.5113 (kgmols/h,kg	catalyst)
6)	Q (exo)	92,100 kJ/h	46,050
7)	Re (tube)	861.3	927.5
8)	Re (shell)	1894	1043
9)	ΔT_{Lm} , deg		254.5
10)	h (tube)	58.45 (kJ/m ² h K)	62.16
11)	h (shell)	31.24 "	33.61
12)	U (overall)	20.36 "	21.81
13)	A (heat transfer)	12.76 m^2	5.956
14)	Estimated Cost (per reactor)	\$13,644	\$7745

- 11-

4.00 EQUIPMENT SIZING AND COST

Specifications and costs for the individual pieces of equipment are presented in Tables 6-9 incl. Costs were estimated using the functions and charts given by Guthrie [5] based on 1974 data, which were escalated to 1989. The cost escalation index (see Appendix D) was calculated by, I(1974) = 202.5, I(1989) = 391.0, giving Ic = 391.0/202.5 = 1.931.

The costs by catagory are summarized in Table 5, as follows.

Table 5. SUMMARY OF EQUIPMENT COSTS (fresh feed = 6.94 million kg/y = 15.3 million lbm/y)

catagory	<u>number</u>	<u>Cost (\$)</u>
1) Reactors	(2)	15,490
2) Heat exchangers, incld process heater	(12)	221,600
3) Distillation columns	(4)	141,200
4) Accumulators	(4)	32,000
5) Pumps with spares	(9)	24,400
6) Storage tanks	(4)	119,200
		(553,890)
7) Process Instruments & Controls (15%))	83,100
8) Computer (data logging & control)	(1)	100,000
9) Catalyst, initial charge	(1)	1,000

Total Equipment

<u>\$738.000</u>

Table 🗸 - HEAT EXCIIA	INGER SUMMARY				ΔΤ,			
	Duty kJ/h	Fluids TS/SS	T _{in} (c)	Tout	U ^{Lm} Атеа	MC	Estimated cost	
Ll Feed Preheater #1	0.0991E6	Feed CX Top	60 190	77.8 70	42.27 K 250 9.45 m ² = 102 ft ²	304 SS CS	\$ 2018	
E2 Feed Preheater #2	0 •05465E6	Feed CX Btm	60 · 212	77.8 70	47.82 250 4.57 = 49.19	304 SS CS	\$ 1938	
E3 Economizer	1.925E6	Feed (L) RX Effluent	8 3 450	183 90	71.4 250 107.8 = 1160	304 SS CS	\$34,439	
Ē4 Process Heater	1.842E6	Feed (L+G) Combusti	183 on Gas	420	Refra	304 SS ctory/CS	\$15,738	
E5 PF Col. Condenser	3.910E6	CW PF Ovhd	32 62.15	54 62.15	16.8 7560 30.79 = 331.3	304 SS CS	\$25,251	1
E6 PF Col. Reboiler	n.5933E6	Steam PF Btm	180 162	190 162	42 1430 23.05 = 248.02	304 SS CS	\$19 , 857	

- 13 -

.

Table 6 - NEAT EXC	ILANGER SUPPLARY	(continued)	• ,	·	۸Ŧ			
	Duty kJ/h	Fluids TS/SS	T _{in} (c)	Tout	u U Area	MC	Estimated cost	· · · · ·
E7 MW Col. Condenser	· 2.322E6	CW MW Ovhd	32 62 . 74	54 62.74	19.74 7560 15.56 = 167.4	304 SS CS	\$14,468	
E8 MW Reboiler	2.661E6	Steam MW Btm	100 66	100 66	34 14:30 55.73 = 599.7	304 SS CS	0E6 * 6E\$	
E9 PCX Condenser	2.681E6	CM PCX Ovhd	32 180	54 180	137.8 1675 11.62 = 125	304 SS CS	\$1C , 169	
ElO PCX Reboiler	2.767E6	Steam PCX Btm	242 200	242 200	42 1430 46.07 = 495.7	304 SS CS	\$33,444	
Ell CX Condenser	1.217E6	CV CX Ovhd	32 195	54 195	$151.73 \\ 1675 \\ 4.79 = 51.52$	304 SS CS	\$ 6094	
F.12 CX Reboiler	1.224E6	Steam CX Btm	242 200	242 200	42 1430 20.38 = 219.3	304 SS CS	\$18,262	
						T. t. 1 (()	101 FUB	

ZZ1,608 Total (\$)

- 14 -

Table 7a. PF Distillation Column

Feed stream 15; overhead stream 18; bottoms stream 17

Cargon and P¹² - Constant and Con		Top of	Bottom of
Parameter		ດວ່ມຫາ	column
		· · · · ·	_
Z, comp. factor	-	1	1
Temperature	C	62.15	162.04
Pressure	atm 3		1
Liq. density	Kg/m	/53.040	\$31.280
Gas density	kg/m ³	1.10	2.83
Gas av. mol. wt.		30.29	100.98
Liq.surface tension	dyn/cm	19.66	25.04
Feed flow	kg/h	2838.9	
Vapor fraction in feed		0.65	
Reflux ratio		0.72077	
Dist. flow	kg/h	1812.61	÷
Gas flow	kg/h	3119.08	934.07
Liq. flow 0.5	kg/h	1306.47	1960.36
$(L/G) (\rho_1 / \rho_2)^{0.5}$		0.01602	0,1157
Trav spacing	in.	18	18
K .	ft/s	0.29	0.25
Vmax	m/s	3.1	1.9
Gmax	ke/hm^2	1.212E4	1,953E4
"Active" area	2	0.26	0.05
Calc. column dia.			1 98 f+
n en		0.00 # -	
Condone ar trino			partfal
Food flow		ke/h	2020 C Dailtat
Food topportture		с. С	2030.9
iv/uv		U	yotor / Ph OH
Perovers of IV in overhead	a	2	og
Recovery of HV in overhead	4. A	Z	0.001
Recovery of fix in overnea		~	0.001
Actual stages			9
Operating reflux ratio			0.7208
Feed stage			7 top down
Condenser duty		kJ/h	3.514E6
Reboiler duty		kJ/h	0.5933E6
Overhead temperature		С	62.2
Bottom temperature		C	1(2.0
Distillate flow		kg/h	1812
Bottom flow		kg/h	1026
Design pressure		psig	200
Column dimensions [d x h	(stos)	1	2! id x 2?!
			CS/304 SS
Fetimated Cost			\$10,300
Lo LIMALEU UUSL			Y AV 9 JUU

Table 7b. MW Distillation Column

Feed stream 19; overhead stream 21; bottoms stream 22

ľ

		Top of	Bottom of
Parameter		column	column
Z, comp. factor	1	0.9817	1
Temperature	С	64.74	65.97
Pressure	atm 3	1	1
Liq. density	kg/m	750.000	899.000
Gas density	kg/m ³	1.18	7.13E -1
Gas av. mol. wt.	-	32.00	19.84
Liq. surface tension	dyn/cm	18.99	33.22
Feed flow	kg/h	1806.16	
Vapor fraction in feed		1	
Reflux ratio		0.28	
Dist. flow	kg/h	1645.89	
Gas flow	kg/h	2106.74	186.36
Lig. flow o 5	kg/h	460.85	346.63
$(L/G) (\rho_1 / \rho_2)^{0.5}$	-	0.00866	0.05238
Tray spacing	in.	18	18
ĸ	ft/s	0.28	0.27
Vmax	m/s	2.1	3.2
Gmax	kg/hm ²	9022.15	8298.13
"Active" area	 m	0.23	0.02
Calc. column dia.		0.57 m = 1.89	ft
Condenser type			total
Feed flow		kg/h	1806
Feed temperature		C	35
ік /нк		•	MeOb/Water
Recovery of LK in overhead		%	98
Recovery of HK in overhead		X X	1.8
Recovery of main overneau		~	
Actual stages			14
Operating reflux ratio			0.2834
Feed stige			7 top down
Condenser duty		kJ/h	2.322
Reboiler duty		kJ/h	2.661E6
Overhead temperature		С	64.7
Bottom temperature		С	66
Distillate flow		kg/h	1646
Bottom flow		kg/h	160
Design pressure		psig	
Column dimensions [d x h ([stos]		2' id x 30'
MC	· -		CS/304 SS

Estimated Cost

CS/304 SS \$13,500

Table 7c. PCX Distillation Column

Feed stream 20; overhead stream 25; bottoms stream 29

	i i	Top of	Bottom of
Parameter		column	column
7 comp factor		0.9764	1
Temperature	С	180.37	199.16
Pressure	atm _	1	1
Liq. density	kg/m ³	930.000	900.160
Con donates	100/m3	2 30	2 88
Cas av mol wt	Kg/m	87 71	111 61
lia surface tension	dun/cm	19 66	25 04
End flow	ko/h	10.26.29	
Vapor fraction in feed	×6/ 14	1	
Reflux ratio		- 12.0176	10 - A
Dist. flow	kg/h	396.424	
Gas flow	kg/h	5160.49	5260.74
Lig. flow	k_{g}/h	4764.07	5890.60
$(L/G) (\rho, \rho)^{0.5}$		0.04592	0.06333
Tray specing	1 m	18	18
K	ft/s	0.29	0.28
Vmax	m/s	1.8	17.0
Gmax	kg/hm^2	1.465E4	1.758E5
"Antive" area	2 ²	0.35	0.03
Calc. column dia.	L .	0.71 m = 2.32	ft
Condenser type	<u>ى ئەرىپى بەر بالەر بەر بەر بەر بەر بەر بەر بەر بەر بەر ب</u>		total
Feed flow		ko/h	1026
Feed temperature		()	162-0
LK/HK			phOH/o-cresol
Recovery of LK in overhe	ad	X	98
Recovery of HK in overhe	ad	X .	0.001
Actual stages			80
Operating reflux ratio		1	12-0176
Feed stage			60 top down
Condenser duty		k.I/h	2.681E6
Reboiler duty		k.I/h	2.7674
Overhead temperature		C	180
Bottom temperature		C	199
Distillate flow		kg/h	396.5
Bottom flow		kg/h	629.8
Design pressure		psig	200
	h (c + c -) 7		2 51 44 - 1201
Coronn armensions [a X	וניטיין		20 X II X II
Fictimated Cost			\$62 900
ESTIMATED COST			γ04 , 700

....

Table 7d. CX Distillation Column

Feed stream 30; overhead stream 31; bottoms stream 32

аналан аналаган талан талан талар талар Г		Top of	Bottom of
Parameter		column	column
Z, comp. factor	-	0.9764	
Temperature	C	194.46	212.66
Pressure	atm 3	1	
Liq. density	kg/m	930.000	900.160
Gas density	kg/m ³	3.186	3.017
Gas av. mol. wt.		107.84	120.27
Liq. surface tension	dyn/cm	19.66	25.04
Feed flow	kg/h	629.86	
Vapor fraction in feed	-	1	
Reflux ratio		5.844	
Dist. flow	kg/h	423.908	
Gas flow	kg/h	2901.23	2533.02
Liq. flow 0.5	kg/h	2477.32	1738.97
(L/G) (ρ ₁ /ρ ₂)		0.04998	0.06260
Trav spacing	in.	24	24
K	ft/s	0.40	0.40
Vmax	m/s	2.1	2.2
Gmax	kg/hm ²	2.377E4	2.388E4
"Active" area	m ²	0.122	0.0106
Calc. column dia.		0.42 m = 1.3	63 ft
Candona en tran			+ . + . 1
Food flow		kath	670 Q
Feed formerature		кв/п С	
reeu cemperature			0 - cres ol /m - cres ol
Becovery of IK in overhead		7	Q5
Recovery of HK in overhead	а.	r Y	0.001
Recovery of man overnedd			0.001
Actual stages			70
Operating reflux ratio			5.844
Feed stage			55 top down
Condenser duty		kJ/h	1.217E6
Reboiler duty		kJ/h	1.244E6
Overhead temperature		С	195
Bottom temperature		С	200
Distillate flow		kg/h	423.9
Bottom flow		kg/h	206.0
Design pressure		psig	200
Column dimensions [d x h	(stos)]		2' id x 150'
			CS/304 SS
Estimated Cost			\$54,500
			· • • • •

Table 8. PUMP SUMMARY

Pump	Inlet stream	Capacity (gpm)	$\Delta P(psi)$	BHP	Cost(\$)
P1	<u>3</u>	16	500	10.6	5 679
¥2	18	16	135	2.86	2581
P3	17	6	135	1.10	2080
P4	21	20	135	3.59	2712
P5	22	1	135	0.20	1910
P 6	25	30	135	6.11	2990
P7	29	4	135	0.72	1937
P8	31	17	135	3.05	2591
P9	32	1.5	135	0.27	1914

(Centrifugal, stainless; costs for pump + spare + common motor)

Total \$24,400

Table 9. STORAGE TANK SUMMARY

(Based on approxiante 10 -day storage time)

CS	633 600
	3.55,000
CS	29,9 00
CS	30,7 00
CS	25,000
	CS CS CS

Total \$119,200

5.00 ESTIMATED CAPITAL AND OPERATING COSTS

The methods used to calculate the process economics follow standard chemical engineering procedures as presented by Guthrie [5], Peters and Timmerhaus [6], and Perry's Handbook [7].

factor	\$/1000
	738.0
(15% A)	110.7
vision	
(40% A)	295.2
(30% A)	221.4
1,	
(20% A)	147.6
(10% A)	73.8
	(1586.7)
(8% A+B+	C) 126.9
	_1713.6
(8% BSC)	137.1
(10% BSC) 171.4
	\$ 2.022 E
	(15% A) visior. (40% A) (30% A) (20% A) (10% A) (8% A+B+ (8% BSC) (10% BSC)

Table 10. Estimated Capital Cost (fresh feed = 6.94 million kg/y = 15.3 million lbm/y)

It has been shown by a number of authors [5,6,7] that plant capital cost can be correlated by a 6-tenths-power relationship. For this plant [F = 6.94×10^6 kg/y, Ic (1989) = 1.931] the equation becomes,

C (\$) = Co Ic $F^{0.60}$ = (82.257) Ic $F^{0.60}$

which can be used as the capital cost scaling-equation for different size plants. For example, for a plant of $F = 14 \times 10^6$ kg/y the estimated cost is \$ 3.081 \times 10^6.

The estimated plant operating cost is presented in Table 11. It is assumed that the plant is a process unit within an existing chemical plant where necessary utilities and other services are available.

	Table 11. Plant Operating Cost (8400 operating h/y) Item	\$/v
1)	Raw Materials (phenol, methanol, supplies, make-up catalyst)	5.214 E6
2)	Operating labor & supervision (3-operators, 1-technician, 1/2 foreman, per shift)	0.5292
3)	Utilities (nat'l gas, steam, cooling water, elec- tric power)	0.2029
4)	Maintenance & Repair (7% of capital cost/y)	0.1416
5)	Plant overhead (75% operating labor) 0.3969	
6)	Plant G/A (25% operating labor)	0.1323
7)	Depreciation (15 y life, loan payment) 0.1348	
8)	Interest on borrowed capital (10%/y, 15y, on declining balance)	0.2022
9)	Taxes and Insurance (3% of capital cost/y)	0.0607
10)	TOTAL OPERATING COST	\$ 7.0146 E6
11)	Unit COST of PRODUCTS SOLD (7.0146/11.134)	\$0.6300 /lbn

The profitability analysis and break-even capacity now can be calculated !

6.00 PROFITABILITY ANALYSIS

Now it is necessary to determine whether or not the base case plant size would be a profitable venture. First, the plant income from sale of products can be calculated, as shown in Table 12.

	product			lbm/y		<u>\$/lbm</u>	<u>\$/v</u>	
1)	methane		i.	80,88	2	0.0307	2484	•
2)	o-Cresol	l		7.705	E6	0.58	4.469	E6
3)	mixed X	yleno	ls	3.348	E6	0.58	1.942	E 6
<u></u>		Total		11.134	4 E6		6.413	E6
5)	Average	unit	income	(\$6.41	3/11.1	.34)	\$0,570	50 /lbm

Table 12.Plant Income from Products

Comparing the average \$/lbm income with the cost/lbm (Table 11) it is obvious that the base case is below break-even, and the capacity will have to be escalated to find the break-even point. The operating cost items in Table 11 can be written in equation form and programmed as a function of plant capacity; some items are directly proportional, and some less than proportional, to size (e.g. capital cost), while others are constant. Table 13 presents a computer print-out for determination of the first-year break- even point, giving the following values:

1)	Fresh Feed	12.80 E6 kg/y
2)	Products	10.22 E6 kg/y
3)	Capital Cost	\$ 2.947 Ę6
4)	Operating Cost & Income	\$ 11.83 E6/y

The qualifier "first-year" is used because the interest payment declines each year as the principal is reduced.

Finally, the report provides the following evaluative conclusions for the process:

1. -a plant producing greater than approximately 22.5 million poounds per year would be a profitable venture.

Table 13. Calculation of First-Year Break-Even Capacity

SYMBOL	S & NOMER	NCLATURE							
C		plant cost (\$) fresh feed, base case fresh feed (kg/y)							
F , F	0								
Inc		annual income (\$/y)							
Rn		raw materia							
Sf plant capacity scale factor, F/Fo									
Top plant operating cost (\$/y)									
TABLE	1 - Base	Case Size			······ <u></u>				
Fo(kg/	y)								
104000									
574000	0								
TABLE	0 2 - Prof	itability An	nalysis as f	(plant capa	city)				
TABLE J	0 2 - Prof Sf	itability An C(\$)	nalysis as f Rm(\$)	(plant capa Top(\$)	icity) Inc(\$)	Inc/Top			
TABLE J	0 2 - Prof Sf 1.0000	itability An C(\$) 2021953	nalysis as 4 Rm(\$) 5214000	(plant capa Top(\$) 7014555	6413000	Inc/Top 0.9142			
TABLE J 1 2	0 2 - Prof Sf 1.0000 1.4409	itability An C(\$) 2021953 2517418	5214000 7512968	(plant capa Top(\$) 7014555 9535126	6413000 9240634	lnc/Top 0.9142 0.9691			
TABLE J 1 2 3	0 2 - Prof Sf 1.0000 1.4409 1.7291	itability Ar C(\$) 2021953 2517418 2808433	5214000 7512968 9015562	(plant capa Top(\$) 7014555 9535126 11173807	6413000 9240634 11088761	Inc/Top 0.9142 0.9691 0.9924			
TABLE J 1 2 3 4	0 2 - Prof Sf 1.0000 1.4409 1.7291 1.8012	itability An C(\$) 2021953 2517418 2808433 2878070	5214000 7512968 9015562 9391210	(plant capa Top(\$) 7014555 9535126 11173807 11582645	6413000 9240634 11088761 11550792	Inc/Top 0.9142 0.9691 0.9924 0.9972			
TABLE J 1 2 3 4 5	0 2 - Prof Sf 1.0000 1.4409 1.7291 1.8012 1.8372	itability An C(\$) 2021953 2517418 2808433 2878070 2912470	5214000 7512968 9015562 9391210 9579035	7014555 9535126 11173807 11582645 11786954	6413000 9240634 11088761 11550792 11781809	Inc/Top 0.9142 0.9691 0.9924 0.9972 0.9996			
TABLE J 1 2 3 4 5 6	0 2 - Prof Sf 1.0000 1.4409 1.7291 1.8012 1.8372 1.8444	itability An C(\$) 2021953 2517418 2808433 2878070 2912470 2919318	5214000 7512968 9015562 9391210 9579035 9616599	(plant capa Top(\$) 7014555 9535126 11173807 11582645 11786954 11827806	6413000 9240634 11088761 11550792 11781809 11828011	Inc/Top 0.9142 0.9691 0.9924 0.9972 0.9976 1.0000			
TABLE J 1 2 3 4 5 6 7	0 2 - Prof Sf 1.0000 1.4409 1.7291 1.8012 1.8372 1.8444 1.8732	itability An C(\$) 2021953 2517418 2808433 2878070 2912470 2919318 2946601	5214000 7512968 9015562 9391210 9579035 9616599 9766859	(plant capa Top(\$) 7014555 9535126 11173807 11582645 11786954 11827806 11991190	6413000 9240634 11088761 11550792 11781809 11828011 12012824	Inc/Top 0.9142 0.9691 0.9924 0.9972 0.9996 1.0000 1.0016			
TABLE J 1 2 3 4 5 6 7 8	0 2 - Prof Sf 1.0000 1.4409 1.7291 1.8012 1.8372 1.8444 1.8732 1.9452	itability An C(\$) 2021953 2517418 2808433 2878070 2912470 2919318 2946601 3014086	5214000 7512968 9015562 9391210 9579035 9616599 9766859 10142507	(plant capa Top(\$) 7014555 9535126 11173807 11582645 11786954 11827806 11991190 12399454	6413000 9240634 11088761 11550792 11781809 11828011 12012824 12474856	Inc/Top 0.9142 0.9691 0.9924 0.9972 0.9996 1.0000 1.0018 1.0061			
TABLE J 1 2 3 4 5 6 7 8 9	0 2 - Prof Sf 1.0000 1.4409 1.7291 1.8012 1.8372 1.8444 1.8732 1.9452 2.0173	itability Ar C(\$) 2021953 2517418 2808433 2878070 2912470 2919318 2946601 3014086 3080578	alysis as 4 Rm(\$) 5214000 7512968 9015562 9391210 9579035 9616599 9766859 10142507 10518156	(plant capa Top(\$) 7014555 9535126 11173807 11582645 11786954 11827806 11991190 12399454 12807454	6413000 9240634 11088761 11550792 11781809 11828011 12012824 12474856 12936888	Inc/Top 0.9142 0.9691 0.9924 0.9972 0.9996 1.0000 1.0018 1.0061 1.0101			

END OF CALCULATION (7-10-89)

-

2. -the configuration of the process indicates the equipment complexity, which extends to the capital investment required.

3. -the major item of operating cost is raw materials (feedstock) -- primarily phenol cost.

4. -in total, the report provides a basis for comparison with a projected solar photo-catalytic process.

REFERENCES CITED

- [1] F.A. Lowenheim and M.K. Moran, <u>Faith, Keyes</u>, and <u>Clark's</u> <u>Industrial Chemicals</u>, fourth edition, p288; John Wiley & Sons, NY, (1975).
- [2] T. Gibson, H.J. Lutz, and M. Tashiro, Report: "CEH Product Review - Cresols, Xylenols and Cresylic Acid", SRI International. Nov 1987.
- [3] COADE-CHEMSTATIONS Inc., Engineering Software, 952 Echo Lane, Suite 450, Houston, Texas 77024: <u>CHEMCAD II - Process Flowsheet</u> <u>Simulator.</u> May 1989.
- [4] A. Tasaka, A. Morii, and Y. Matoba, (Sumitomo Chemical Co.Ltd.), CHEMICAL ABSTRACTS #14463x, "o-Methylphenols", <u>73.</u> 330 (1970).
- [5] K.M.Guthrie, <u>Process Plant Estimating Evaluation and Control</u>, Craftsman Book Company of America, Solana Beach, CA 92075, (1974).
- [6] M.S. Peters and K.D.Timmerhaus, <u>Plant Design and Economics for</u> <u>Chemical Engineers</u>, third edition, McGraw-Hill Book Company, NY (1980).
- [7] F.A. Holland, F.A. Watson, and J.K. Wilkinson, Section 25: <u>Process</u> <u>Economics - Perry's Chemical Engineers' Handbook</u>, sixth edition; McGraw-Hill Book Company, NY (1984).
- [8] Schnell Publishing Co., Inc., <u>Chemical Marketing Reporter.</u> 19 June 1989 issue.

APPENDIX A - PHYSICAL & THERMODYNAMIC PROPERTIES

	Phenol, C ₆ H ₅ OH		·			1	
1) Molecular We	ight, M	•		94.113		
2) T _c (K), P _c (atm), V _c (cm ³ /	gmol), Z _c		694.3,	60.5, 229.0	0, 0.244
3) Acentric fac	tor; dipole mo	ment		$\omega = 0.43$	26, μ = 1.(60 D ·
4) $T_{tp}(K), T_{b}$ (K)			315.7,	455.0	
5) At 298.16 K,	ρ ₁ (g/cm ³)			1.071		
6) At 298.16 K	Cp(1)	Ср°	S°	$\Delta H^{\mathbf{v}}$	∆H _f °	∆g _f °
	a)	46.94 (ca	24.75 ls/gmol, 1	75.43 K)	10.90 (k	-23.03 cal/gmol)	-7.860
	b)	196.5 (k.	103.6 J/kgmol, K	315.7)	45,627 (k.	-96,404 J/kgmol)	-32,902

2) Liquid density, $\ln \rho_1 = 0.34854 + 1.13438 [1 + (1 - T/0.6942E3)^{0.3212}],$ (kgmo1/m³)

3) Vapor pressure: ln P (torr) = 17.2917 - 4027.98/(T - 76.701)ln P (atm) = $9.76704 - 2913.8/T - 697154/T^2$

- $\ln r (atm) = 9.76704 = 2913.871 = 09719471$
- 4) Mole $Cp^{\circ}/R = -0.638357 + 0.0510768 T 0.227204E-4 T^{2}$
- 5) Mole Cp(1) = 101.961 + 0.31714 T, (kJ/kgmol, K)
- 6) $\Delta H^{V} = RT^{2} \Delta Z$ (d ln P/dT)
- 7) Surface tension, $\sigma = 0.0745 (1 T_r)^{1.0767}$, (N/m)
- 8) Viscosity, vs: log vs (cp) = 1405.5 (1/T 1/370.07)

<u>A2</u>	- M	ethanol, CH ₃ OH			i.			
	1)	Molecular Weight	, M			32.042		
	2)	T_{c} (K), P_{c} (atm)	512.58, 79.9, 117.8, 0.222 $\omega = 0.5656$, $\mu = 1.70$ D					
	3)	Acentric factor;						
	4)	T _{tp} (K), T _b (K)			175.7, 337.8			
	5)	At 293.16 K, P1	(g/cm^3)			0.792		
	6)	At 298.16 K	Cp(1)	Ср⁰	S°	∆H ^V	∆H °	∆G _£ °
		a)	46.52	2 10.49 (cals/gmol, K)	57 . 29	8.426 (k	-48.08 cal/gmol)	-38.84
		b)	194.7	43.9 (kJ/kgmol, K)	239.8	35,271 (k.	-201,263 J/kgmol)	-162,584

Equations

1)	Liquid volume, $V_1 = 5.4628 (5.7 + 3T_r)$, (cm ³ /gmol)
2)	Liquid density, $\ln \rho_1 = 0.18706 + 1.62055 [1 + (1 - T/0.51263E3)^{0.17272}],$
	(kgmol/m ³)
3)	Vapor pressure: 1n P (torr) = 18.5097 - 3593.39/(T - 35.225)
	$\ln P (atm) = 11.9921 - 3679.33/T - 126059/T^2$
4)	Mole Cp [°] /R = 1.85019 + 0.0124255 T - 3.49129E-6 T ²
5)	Mole Cp(1) = - 39.9665 + 0.787208 T, (kJ/kgmol, K)
6)	$\Delta H^{v} = RT^{2} \Delta Z \ (d \ln P/dT)$
7)	Surface tension, $\sigma = 0.04327 (1 - T_r)^{0.7676}$, (N/m)
8)	Viscosity, vs: log vs (cp) = 555.3 (1/T - 1/260.64)

Equations

<u>A4 - Water</u>, H_20

1)`	Molecular Weigh		18.02	i.	9		
2)	T _c (K), P _c (atm	647.35,	218.29, 63	.494, 0.230			
3)	Acentric factor; dipole moment				$\omega = 0.3$	48, μ = 1.8	DD
4)	T _{tp} (K), T _b (K)				273.16,	373.15	• •
5)	At 277.16 K, ρ ₁	(g/cm^3)			1.00		,
6)	At 298.16	Cp (1)	Ср⁰	S°	$\Delta H^{\mathbf{V}}$	ΔH _f °	∆G _f °
	a)	18.02 (cals	8.03 /gmol, K)	45.11	9.717 (k	-57.8 cal/gmol)	-54.64
	b)	75.4 (kJ/k	33.6 gmol, K)	188.8	40,675 (k	-241,951 J/kgmol)	-228,723

Equations

- 1) Liquid volume, $V_1 = 2.552 (5.7 + 3T_r), (cm^3/gmo1)$
- 2) Liquid density, $\ln \rho_1 = 1.52903 + 1.33888 [1 + (1 T/0.64729E3)^{0.23072}], (kgmol/m³)$
- 3) Vapor pressure: $\ln P (torr) = 18.3036 3816.44/(t 46.13)$ $\ln P (atm) = 11.6572 - 3761.58/T - 218339/T^2$ 4) Mole $Cp^0/R = 2.37293 + 0.0160161 T - 7.40155E-6 T^2$
- 5) Mole Cp(1) = 32.4953 + 0.124601 T, (kJ/kgmol, K)
- 6) $\Delta H^{v} = RT^{2} \Delta Z$ (d ln P/dT)
- 7) Surface tension, $\sigma = 0.1386 (1 T_r)^{1.6866}$, (N/m)
- 8) Viscosity, vs: $\log vs (cp) = 656.25 (1/T 1/238.16)$

 $\underline{A5 - m - Cresol}, C_7 H_8 O$

1)	Molecular Weight, M				108.14		
2)	T _c (K), P _c (atm)	, V _c (cm	³ /gmol), Z _c		7 05.8, 4	5.0, 310.0,	0,248
3)	Acentric factor;	dipole	moment		ώ = 0.464	4, $\mu = 1.80$	D
4)	Τ _{τυ} (K), Τ _b (K)				284.1, 43	75.4	
5)	At 293.16 K, ρ ₁	(g/cm ³)			1.034		
6)	At 298.16 K	Cp(1)	Cp°	S°	$\Delta H^{\mathbf{v}}$	^{∆H} f [°]	∆g _f °
	a)	55.29	29.27 (cals/gmol, K)	85.27	11.33 (ko	-31.63 cal/gmol)	-9.69
	b)	231.4	122.5 (kJ/kgmol, K)	356.9	47,427 (k.	-132,403 J/kgmol)	-40,562

Equations

 Liquid volume, V₁ = 15.0581 (5.7 + 3T_r), (cm³/gmol)
 Vapor pressure: ln P (torr) = 18.3036 - 3816.44/(T - 46.13) ln P (atm) = 7.66037 - 1479.07/T - 1030280/T²
 Mole Cp⁰/R = - 0.366755 + 0.0587816 T - 2.42517E-5 T²
 Mole Cp(1) = 559.336 - 1.86259 T + 0.2258292E-2 T², (kJ/kgmol, K) (assumed same as o - Cresol)
 ΔH^V = RT² ΔZ (d ln P/dT)
 Vis cosity, vs: log vs (cp) = 1785.6 (1/T - 1/370.75)

- a5 -

 $\underline{A6 - p - Cresol}, C_7 H_8 O$

1)	Molecular Weight, M			108.14			
2)	T_{c} (K), P_{c} (atm), V_{c} (cm ³ /gmo1), Z_{c}			704.6, 50.8, 318.0, 0.246			
3)	Acentric factor; dipole moment			$\omega = 0.51$	5, µ = 1.60	D	
4)	$T_{tp}(K), T_{b}(K)$				308.7, 4	75.1	I
5)	At 293.16 K, p ₁	(g/cm^3)			1.035		•
6)	At 298.16 K	Cp(1)	Ср	S°	$\Delta H^{\mathbf{v}}$	∆H f	∆G _f °
	a)	55.29 (ca	29.75 1 /gmol, K	83.09 ()	11.34 (k	-29.97 cal/gmol)	-7.38
	b)	231.4 (k.)	124.5 //kgmol, K)	347.8	47,469 (k	-125,454 J/kgmol)	-3 0,893

Equations

1)	Liquid volume, $V_1 = 15.0901 (5.7 + 3T_r)$, (cm ³ /gmol)
2)	Vapor pressure: ln P (torr) = 16.1989 - 3479.39/(T - 111.3)
	ln P (atm) = 8.90052 - 2416.26/T - $861641/T^2$
3)	Mole Cp [°] /R = 0.105993 + 0.0572001 T - 2.31614E-5 T ²
4)	Mole Cp(1) = 559.336 - 1.86259 T + 0.2258292E-2 T ² , (kJ/kgmol, K) (æsumed same æs o - Cresol)
5)	$\Delta H^{v} = RT^{2} \Delta Z$ (d ln P/dT)
6)	Vie cosity $x = 100 x (cn) = 1826.9 (1/T - 1/372.68)$

- a6 -

<u>A7 - 1</u>	Methane, CH ₄			·			
1)	Molecular Weigh	16.042					
2)	T _c (K), P _c (atm	·	190.63,	45.4, 99.4	99.418, 0.290		
3)	 3) Acentric factor; dipole moment 4) T_{tp}(K), T_b (K) 			,	ω = 0.01	$\mu = 0.00$	D
4)					90.6, 11	1.7	
5)	At 109.16 K, ρ ₁	(g/cm ³)			0.415	· ·	
6)	At 298.16 K	Cp(1)	Ср°	S°	$\Delta H^{\mathbf{v}}$	∆H _f °	∆g _f °
	a)	(105.80) (ca:	8.54 ls/gmol,	44.52 K)	19.55 ()	-17.89 (cal/gmol)	-12.15
	b)	(442.89) (kJ	35.74 /kgmol, K	186.36)	81,836 (1	-74,888 (J/kgmol)	-50,860
Equa	ations						
1)	Liquid volume,	$V_1 = 5 (5.7)$	+ 3T _r),	(cm ³ /gmo)	1)		
2)	Liquid density,	$\ln \rho_1 = 1.0$	05536 + 1	.24445 [1 + (1 -	T/0.190581	23) ^{0.277}],
		-				(kgmo)	L/m ³)
3)) Vapor pressure:	: ln P (tor	r) = 15.5	i99 - 968	.132/(T	- 3.72)	
- •	• •						ה

 $\ln P (atm) = 8.7119 - 880.601/T - 10430.6/T^2$

4) Mole
$$Cp^{\circ}/R = 2.06518 + 7.61373E-3 T - 8.78641E-7 T^{2}$$

5) Mole
$$C_{P}(1) = 26.6835 + 0.265361$$
 T, (kJ/kgmol, K)

6)
$$\Delta H^{V} = RT^{2} \Delta Z$$
 (d ln P/dT)

7) Surface tension,
$$\sigma = 0.035684 (1 - T_)^{1.092}$$
, (N/m)

8) Viscosity, vs: $\log vs (cp) = 114.14 (1/T - 1/57.6)$

<u>A8 - 2,3 - Xyleno1</u>, $C_8H_{10}O$ 122.17 1) Molecular Weight, M 2) T_{c} (K), P_{c} (atm), V_{c} (cm³/gmo1), Z_{c} 722.9, 48.0, 310.0, 0.251 Acentric factor; dipole moment $\omega = 0.464, \mu = 1.80 D$ 3) 348.2, 491.2 4) $T_{tp}(K)$, $T_{b}(K)$ 5) At 298.16 K, ρ_1 (g/cm³) 1.1695 Cp° ∆G_f° ΔH^{V} At 298.16 K $C_{P}(1)$ S° ∆H_f° 6) -37.57 62.34 11.33 a) 25.66 93.51 -9.69 (cals/gmol, K) (kcal/gmol) 47,427 261.0 107.4 391.4 - 157,268 -40,562 b) (kJ/kgmol, K) (kJ/kgmo1)

Equations

 Liquid volume, V₁ = 15.0581 (5.7 + 3T_r), (cm³/gmol)
 Vapor pressure: ln P (torr) = 17.2878 - 4274.42/(T - 74.09) ln P (atm) = 9.53837 - 3239.93/T - 657234/T²
 Mole Cp⁰/R = 5.40946 + 8.73061E-2T - 7.24616E-5 T² + 2.49691E-8 T³
 Mole Cp(1) = 145.723 + 0.386692 T, (kJ/kgmol, K)
 ΔH^V = RT² ΔZ (d ln P/dT)
 Vis cosity, vs: log vs (cp) = 1785.6 (1/T - 1/370.75)

APPENDIX B: REACTANT AND PRODUCT PRICES

Reactants: [8]		
Substance	Basis	Price
Phenol	synthetic, tank cars	\$ 0.46/1b
Methanol	synthetic, barges	0.49/gal 0.074/1b
Benzene	industrial, barges	1.15/gal 0.156/1b
n h exane	industrial, tank cars	0.74/gal 0.134/1b
	95%, tank cars	0.85/gal 0.154/1b
n heptane	industrial, tank cars	0.68/gal 0.179/1b
	95%, tank cars	0.95/gal 0.166/1b

Products: [8]

Substance	Bas is	Price
o-Cresol	99% pure, bulk	\$ 0.58/1Ъ
m-Cresol	95-98%, drums	1.71/1Ъ
	tanks	1.65/1b
p-Cresol	bulk	1.30/1b
m,p-Cresol	bulk	0.82/1Ъ
mixed xylenols	bulk	0.58/1Ъ

Gases (current Gulf Coast prices):

Substance	Mi	\$/10 ⁶ Btu	\$/1b
Hydrogen (H ₂)	2.016	1.30	0.0792
Methane (CH ₄)	16.042	1.30	0.0310

APPENDIX C: PLANT UTILITIES & COST

(8400 operating hours/y)

.

المراجعين ومعا	Utility Amount		Amount	Unit Cost	\$/h	\$/y	
1)	Natl.	gas		2.183E6 Btu/h*	\$1.30/E6 Btu	2.838	2.384E4
2)	CW			2.429E5 lbm/h 2.916E4 gal/h	\$0.10/1000 gal	2.916	2.449E4
3)	Steam,	150	psia	3.573E3 1bm/h	\$1.58/1000 lbm	5.645	4.742E4
		500	psia	5.01E3 1bm/h	\$2.20/1000 lbm	11.02	9.257E4
4)	Electr a) pum	ical ps	power,**	7.650E3 kJ/h	\$0.041/kWh	0.8713	7.319E3
	b) lig com	hts, p.	instru.,	7.650E3 kJ/h	\$0.041/kWh	0.8713	7.3 <u>19</u> E3

\$24.16/h \$0.2029E6/y

* 1 Btu = 1.055 kJ

** plant generated

- c1 -

CURRENT BUSINESS INDICATORS

	LATEST	PREVIOUS	YEAR AGO
CPi output index (1977 = 100)* CPi value of output, billion \$ † CPi operating rate, % Construction cost index (1913 = 100) Producer prices, industrial chemicals (1982 = 100) ‡ Index of industrial activity (1967 = 100) Hourly earnings index, chemical & allied products (1977 = 100) Productivity index, chemicals & allied products (1977 = 100)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Feb. '89 = 143.8 ^R Jan. '89 = 145.0 ^R Feb. '89 = 704.1 ^R Jan. '89 = 708.6 ^R Feb. '89 = 68.0 ^R Jan. '89 = 89.0 ^R Apr. '89 = 4570.9 Mar. '89 = 4567.6 Mar. '89 = 116.9 Feb. '89 = 117.6 Apr. 29, '89 = 177.2 Apr. 15, '89 = 176.7 Mar. '89 = 200.9 Feb. '89 = 200.4 Feb. '89 = 157.0 Jan. '89 = 158.5 '89 = 158.5	Mar. '88 = 137.4 Mar. '88 = 661.7 Mar. '88 = 67.5 May. '88 = 4493.2 Apr. '88 = 103.3 May 8, '88 = 171.5 Apr. '88 = 195.4 Mar. '88 = 149.5
	OUTPUT VALUE	(\$Biilions) CPI OPERA	TING RATE (%)
170 _ 740 _		100 -	
160 - 720 -		95	
150 - 700 - 9		90	
140 _ / / / 680 _ /		85 _	
		80 - ¹	
J F M A M J J A S O N D J F	FMAMJJA	SOND JEMAM	JJASOND
*To convert to 1967 = 100 base, multiply by 1.675. ¹ Revised as of Jan 1987 - 1967 - 100 base, multiply by 3.524. ⁹ To convert to 1967 = 100 base, multiply by 3.5	- multiply values from Jan. 19 5241. P = Preliminary, R = Rev	82 to Jan. 1987 by 0.9586 to convert to values star vised. For an explanation and additional information ca	rting with Jan. 1987; [‡] To convert to all: (212) 512-6931 or (212) 512-6793

1988

1989

CHEMICAL ENGINEERING/JUNE 1989

SYMBOLS & NOMENCLATURE

<u>upper case</u> (chemical element symbols not included)

A	heat transfer area
C, Co	plant capital cost, correlation constant
Cp(l), Cp ⁰	liquid heat capacity, perfect gas state heat capacity
СХ	cresol-xylenol fractionator
F, Fo	fresh feed, base case fresh feed
G, L	gas mole flow rate, liquid mole flow rate
ΔGrº	Gibbs free energy of formation
Gmax	maximum gas flow rate
ΔHrº, ΔH v	enthalpy of formation, enthalpy of vaporization
Ic, Inc, PI	cost index, income, plant income
LK, HK	light key, heavy key components
Mi	molecular weight
MC	material of construction
MW	methanol-water fractionator
P, Pc	pressure, critical pressure
PCX, PF	phenol-cresol-xylenol, primary fractionators
POC, Top	plant operating cost, total operating cost
Q	heat transfer rate
Re	Reynolds number
REAC, Rm	reactor, raw material cost
So	perfect gas state entropy
Sr, SS, TS	scale factor, shell-side, tube-side
Tb, Tc, Ttp	n-boiling point, critical temperature, triple point
ΔTLM	log-mean temperature difference
U	overall heat transfer coeficient
V, V(1), Vc	volume, liquid volume, critical volume
Vmax	maximum vapor velocity
Xi, Yi	liquid and vapor mole fractions
Z, Zc	compressibility factor, critical Z
lower case	
h	individual heat transfer coefficient
V S	liquid viscosity

<u>Greek</u>

=

E

μ	dipole moment		
pg, pl	gas density, liquid density		
σ	surface tension		
ω	acentric factor		

Document Control Page	cument Control Page	1. SERI Report No.	2. NTIS Accession No.	3. Recipient's Accession No.	
4. Title and Subtitle Synthesis of Cresols and Xylenols from Phenol and Methanol			5. Publication Date April 1992		
			6.		
 7. Author(s) H. W. Prengle, Jr., X. van Tran, K. Moinzadeh, F. A. Bricout, S. Alam 			8. Performing Organization Rept. No.		
 9. Performing Organization Name and Address University of Houston 4800 Calhoun Houston, Texas 77004 			10. Project/Task/Work Unit No.		
			11. Contract (C) or Grant (G) No.		
			(C) XX-7-07028-1		
			(G)		
12. Sponsoring Organization Name and Address Solar Energy Research Institute 1617 Cole Boulevard		13. Type of Report & Period Covered Technical Report			
	Golden, Colorado 80401-3393		14.		
15.	5. Supplementary Notes SERI Technical Monitor: R. Gerald Nix, (303)231-1757				
16.	16. Abstract (Limit: 200 words) This report is the first of two reports that concern the manufacture of the same chemicals using two processesa conventional catalytic process and a solar photothermal catalytic processto determine the relative process economics. The results of a process study and evaluation for the synthesis of cresols and xylenols using a conventional catalytic process are presented in this report. (The solar photothermal catalytic process is evaluated in the second report, Synthesis of Cresols and Xylenols from Benzene and Methanol.) The process was a vapor-phase methylation of phenol using a high mole ratio of methanol over a solid acidic catalyst. An arbitrary base case plant size (fresh feed) of about 7 million kg/y (15.3 million lbm/y) was chosen and then escalated to a breakeven size. It was concluded that if a chemical company could obtain a fair share of the market, an estimated profitable operation would result for a plant size greater than 12.80 E6 kg/y of fresh feed.				
17.	 7. Document Analysis a. Descriptors Catalytic process; cresols; xylenols; synthesis; phenol; methanol 				
	b. Identifiers/Open-Ended Terms				
	c. UC Categories 248				
18.	Availability Statement National Technical Information Service U.S. Department of Commerce		19. No. of Pages 42		
5285 Port Royal Road Springfield, VA 22161		20. Price AO3			

Form No. 0069E (6-30-87)

DATE FILMED 7/3/92