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PARTICLE-IN-CELL (PIC) CODE
SIMULATION RESULTS AND

COMPARISON WITH THEORY
SCALING LAWS FOR

P H OTO ELECTRO N-G EN n RAT ED
RADIATION

by

Thomas M. Dipp*

ABSTRACT

The generation of radiation via photoelectrons induced off of a conducting surface

was explored using Particle-In-Cell (PIC) code computer simulations. Using the

MAGIC PIC code, the simulations were performed in one dimension to handle the

diverse scale lengths of the particles and fields in the problem. The simulations

involved monoenergetic, nonrelativistic photoelectrons emitted normal to the illu-

minated conducting surface. A sinusoidal, 100% modulated, 6.3263 ns pulse train,

as well as unmodulated emission, were used to explore the behavior of the particles,

fields, and generated radiation. A special postprocessor was written to convert the

PIC code simulated electron sheath into far-field radiation parameters by means of

rigorous retarded time calculations. The results of the small-spot PIC simulations

were used to generate various graphs showing resonance and nonresonance radia-

tion quantities such as radiated lobe patterns, frequency, and power. A database

of PIC simulation results was created and, using a nonlinear curve-fitting program,

compared with theoretical scaling laws. Overall, the small-spot behavior predicted

by tile theoretical scaling laws was generally observed in the PIC simulation data,

providing confidence in both the theoretical scaling laws and the PIC simulations.

*Military Research Associate, Los Alamos National Laboratory,
USAF AFOSR/NI, Building 410, Boiling AFB, D.C., 20332-6448



INTRODUCTION

Introduction

This paper summarizes the computational results obtained from about 50
Particle-In-Cell (PIC) simulations. Most of these simulations were performed
during a two-month period, and occupied several Sun Sparc workstations for
a total of approximately 100 SparcStation2 days. These simulations provide
a glimpse into the electron sheath dynamics and radiation generated from
a monoenergetic, perpendicular electron beam emitted off of a conducting
plate. First I will discuss the simulations and present typical graphs of the
data obtained. Next, I will analytically compare the PIC data to my theory
equations, which were presented in a previous paper [Ref. 1]. Lastly, I will
briefly discuss the major conclusions. Finally, unless stated otherwise, almost
all equations, parameters, and constants used in the paper are expressed in
the International Metric System (SI) system of measurement.

All of the PIC code simulation results presented in this paper were per-
formed using Mission Research Corporation's (MRC) MAGIC PIC code
[Ref. 2]. However, some of the PIC simulations were repeated using the
Los Alamos National Laboratory (LANL) MERLIN PIC code [Ref. 3] and
LANL Cray supercomputers to confirm the MAGIC PIC code simulation.

results. Further, most of the MAGIC PIC code simulations were performed
using Sun workstations at the Phillips Laboratory, though some MAGIC PIC
code simulations were also performed using Cray supercomputers at LANL.
The results presented and analyzed in the main body of the paper, as well as
the data listed in Appendix A, were all obtained from MAGIC PIC code
simulations performed on Sun workstations. However, Appendix B summa-
rizes some of the additional MAGIC PIC code simulation results generated
on Cray supercomputers at LANL.

The MAGIC PIC code is a commercial, two-dimensional, finite-difference,

time-domain, plasma simulation code. Based on the initial state of a problem
involving various boundary conditions, fields, particles, and such, the code
simulates the problem's physics and evolves the solution in time. MAGIC
uses the complete Lorentz force equation to push the particles and Maxwell's
time-dependent equations to obtain the fields. MAGIC performs this itera-
tive particle-pushing and field-solving process self-consistently by communi-
cating the particle and field component information through the simulation
grid. As such, MAGIC and other PIC codes obtain numerical solutions
through a basic approach that uses fundamental physics equations but few



approximations or simplifying models to operate directly on discrete parti-
cles. However, pushing lots of particles through many cells of a simulation
grid (even when using large 'macro particles') self-consistently with each
other and the boundary conditions does have its drawbacks, requiring large
amounts of computer memory and central processing unit (CPU) time. Still,
MAGIC was used for this problem because PIC codes are robust, worksta-
tion CPU time is inexpensive, and the MAGIC PIC code was a well-known,
proven code.
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PIC Code Simulations

The PIC code simulations and results will be presented in this section. First
the PIC code simulations and the parameters that were explored will be dis-
cussed. Finally, various PIC code simulation results will be displayed and
discussed. Most of the results in this section will be presented as graphs,
though the numerical data used in some of the graphs are listed in Ap-
pendix A. Also, equations will be presented to facilitate converting the
radiated energy, as calculated by the PIC code using a beam emission model
and PIC code parameters, into photon or laboratory parameter set equiv-
alents. In summary, this section will present a broad range of information
covering the details of the PIC code simulations and the behavior of various
observables.

Background

All of the MAGIC simulations used in this paper share several common
features:

1. One-dimensional simulations which reproduce 'small-spot' effects.

2. Beam emission area of 2.0 x 10-6 square meters in the z - y plane.

3. Emitted electron energy that is constant, uniform, and monoenergetic.

4. Beam current density that is either constant or 100% modulated as a
pure sine-squared type of pulse-train at a single frequency.

5. Cartesian coordinate system for the simulation grid.

6. A rectangular simulation grid whose boundaries, from left to right,
consist of a vertical conducting plate, two horizontal mirror symmetry
boundary conditions, and a vertical outgoing wave boundary condition.
The grid is 2 cells high by 100 cells long in the z- z plane. As MAGIC
is a 2-} dimensional PIC code, symmetry also exists about the z- z
simulation's sides, along the y-axis.

7. Two micron (z-axis) by one meter (y-axis) conducting beam emission
surface, spanning two cells along the grid's left z-axis boundary. The



Background

one meter length along the y-axis is the default extent assigned to the

two-dimensional x- z simulation plane.

8. Perpendicular beam emission off the conducting plate, along the z-axis.

9. One hundred microns of simulated vacuum located perpendicular to the

conducting surface, consisting of 100 cells in length along the z-axis.

10. Problems were simulated for 6.3263 nanoseconds.

One-dimensional simulations were necessary to realistically handle the

problem's diverse scale lengths involving particle dynamics, field propaga-

tion speeds, and radiation wavelengths. Realistic problem simulations need

to be self-consistent, reproduce actual small or large spot effects, and run

for realistic simulation times to reach steady-state behavior and provide rea-

sonable frequency resolution when Fast Fourier Transforms (FFTs) are em-

ployed. For example, a 2-D PIC simulation made possible by using cells with

huge aspect ratios loses self-consistency and is similar to running many 1-D

PIC simulations simultaneously and synthesizing the results. Yet 2-D PIC

simulations that are self-consistent will still basically model 1-D small-spot

diffraction effects, and generally can only be simulated for such short times

that even reaching steady state is hard, while achieving good FFT resolution
becomes even harder.

The above becomes clear when one realizes that 2-D PIC simulations that

are self-consistent are limited in aspect ratio, so that the longitudinal cell size

needed to resolve the particle dynamics, being quite small, limits the radial

cell size as well. Moreover, the small celI dimensions would then require a

correspondingly small time step due to Courant constraints imposed by the

PIC code in order to simulate the physical system being modeled. Therefore,

in order to then run the simulation for a realistic 6.3263 ns, where steady

state and a reasonable frequency resolution are obtained, around one million

plus time steps would be required. Consequently, this leads to a 100 x 10000

cell grid using a 4-to-1 aspect ratio and running for a million time steps to

perform a realistic typical 2-D run. Such a 2-D PIC simulation would not

only require large amounts of memory, but impossible amounts of CPU time

by several orders of magnitude (see Appendix C).

Clearly, 1-D runs which can provide much of the physics for small spots,

and some of the physics for large spots, are desirable. Even with 1-D sim-

ulations, various common settings were used in MAGIC to help speed up

5
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the PIC run times. These common algorithm choices were: particle-to-lield
step subcycling, electric field only calculations (no magnetic field components
need to be calculated in a 1-D problem), and nonrelativistic particle dynam-
ics. Combining 1-D problems with the above speed up techniques resulted
in an average run time per MAGIC simulation of 1.5-to-2 days on a 32-bit
Sparc2 workstation rated at two million calculations per second. Lastly, good
throughput was achieved by writing UNIX script files to automatically and
continuously run and postprocess many parameter simulations to generate
data for various graphs on many different workstations.

MAGIC simulations explored several theory parameters from my theory
paper [Ref. 1]. Theory and laboratory parameters are input into MAGIC in
terms of PIC parameters. The PIC parameters of primary interest to the
theory are: 1) beam emission area, 2) beam energy parameters, and 3) beam
current density parameters such as beam current density as a function of
time. For example, beam current density as a function of time sets the gen-
eral shape of the temporal pulse train. This shape determines the amplitude,
depth of modulation, and modulation frequency for the pure sine-squared
type of pulses used in the MAGIC simulations. I will present the conver-
sion equations relating laboratory and PIC parameters when I develop my
analytic comparison of the theory to the PIC data. For now, I will use PIC
parameters because these are the parameters actually used in the PIC sim-
ulations to generate data. For 1-D PIC simulations, it is possible to explore
the field quantities, particle dynamics, and generated radiation with respect
to modulation depth D, emitted electron energy eVb, average electron beam
current density (j), and beam current density modulation frequency Vmod.
Of course, it is understood that these parameters are given in terms of all
the previously defined common features and settings. Note that the beam
emission area A could be simulated, but only for various small spots and
never (without resorting to PIC code modifications and simulation tricks or
physical scaling) for real 2-D spots where significant diffraction effects show
up. So area scaling among small spots would be uninteresting, but doable.
The lobe pattern of the radiation with respect to far-field detector angle 0
from the 1-D emitted current line is not generated by MAGIC but by a sep-
arate postprocessor program, and is not an independent input variable into
MAGIC. Instead of trying to model an arbitrary reproduction of a real pulse
or an infinite number of pulse envelopes, a simple sin2 type of modulated
pulse train was simulated. Using a simple sin2 type of modulated pulse train



Results and Graphs

mazimized the useful information obtained from a limited number of simula-
tions because it decreased the number of independent parameters and enabled
better comparison with theory predictions. Although D could have been var-
ied as well for the sin2 type of modulated pulse train, D was kept at 100% for
maximum radiation and was not varied due to limited number of simulations

that could be performed. Consequently, for the six PIC parameters discussed
above, 0 was a dependent variable, A and D were not explored, and eVb, (j),
and Vmodwere varied.

Results and Graphs

Getting results from the MAGIC code was done in several ways, and the
first results to be presented come from graphs that MAGIC generates for
the user. These graphs represent physical quantities at a fixed time step
(such as particle plots of phase space, or field components) or quantities as
they change in time (such as field components and currents). Figures 1-6
were generated in this way by MAGIC to show quantities of interest in the
simulation grid. Note that these MAGIC graphs do not employ the theory
notation used by the rest of this paper and are instead labeled differently.
Consequently, x and y on the MAGIC graphs represent z and x respectively,
as used in this paper.

Figures 1-3 are particle phase space graphs showing particle pz momenta
per unit mass (left graph) and particle z-coordinates (right graph) versus
particle z-coordinates as snapshots at a given PIC simulation time. The left
graphs in Figs. 1-3 are time snapshots of the electron velocities multiplied by
the relativistic factor -_,such that pz = 7vz, and where the z-axis represents
the perpendicular distance off the conducting plane used to emit the elec-
trons. The right graphs in Figs. 1-3 are the corresponding time snapshots
of the electron positions in the PIC simulation grid, plotted as x versus z
coordinates. These particle trajectory graphs show emitted beam electrons
frozen in time during their various orbits and the distribution and approxi-
mate maximum 'orbit' distance of the steady-state electron trajectories.

Figure 1 particle plots show time snapshots from the early history of
an emitted pulse. When a pulse is emitted, the initial electrons escape the
conducting surface and essentially never return. Figure 1 shows the PIC sim-
ulation before steady-state, saturated behavior has been achieved. However,
the electrons that were initially emitted have already left the PIC simulation
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grid. Note that raany electrons, in returning to the conducting surface from
which they were emitted, are starting to approach orbits that are typical of
steady state. Also, the simulated electrons have stopped escaping the simu-
lation's right boundary, and the remaining electrons that did not escape that
boundary are falling back to the conducting surface from their larger, early
simulation time orbits.
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Figure 1" Time snapshots of PIC simulation particle momenta and positions
before steady-state, saturated behavior has been achieved. Emitted beam
parameters are eV_ = 1.3305 eV and (j) = 1722.0 A/m _ unmodulated.

Figure 2 particle plots show time snapshots after steady state, or sat-
uration, has been achieved. The left phase space graph essentially shows
the electrons being emitted at a given positive velocity off the surface of the
conducting plate, reaching a maximum normal orbit distance dm_ with zero
velocity, and returning to the conducting surface with the emitted velocity
in the negative direction. This is a smooth curve, but when the simulation
has reachedsaturation and the space charge is large enough, self-oscillation
becomes pronounced for the emitted electrons, and self-modulated radiation
is produced at a characteristic or natural frequency I will refer to as vn,t.

The results from my theory paper [Ref. 1] indicate that vn,t, obtained
from the processed PIC data as the primary frequency component of the self-
modulated radiation's far-field Ez component, is equal to the self-oscillation
frequency of the emitted electrons. Consequently, Vnat is proportional to
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Figure 2: Time snapshots of PIC simulation particle momenta and positions
during steady state for beam parameters that do not support self-oscillation.
Emitted beam parameters are eV_ = 1.3305 eV and (j) = 1722.0 A/m _
unmodulated.

the square root of the average emitted current density (j), and inversely
proportional to the square root of the mean emitted electron velocity v_.
This can be written as

This self-oscillation is visible in the left graph of Fig. 3 as a non-symmetric
curve due to bunching of the emitted electrons.

Figures 4-6 show selected snapshots of Ez, the electric field strength
component perpendicular to the conducting surface, graphed versus the per-
pendicular distance z from the conducting surface. Note that in the region
of the electron sheath near the conducting surface, the field strengths reach
tens of kilovolts per meter. Also, the Ez values on the graphs do not reach
zero at large z and the constant Ez offset is probably caused by the initially
emitted electrons that escaped the right boundary of the PIC simulations.

Other results can be user graphed by selecting output data from MAGIC
after the simulations are done, and manually inputting the results into a
graphics program for display. Figures 7, 8, and 11-15 were created using
the Visual Numerics, Inc. POINT AND CLICK graphics software [o graph
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Figure 3: Time snapshots of PIe simulation particle momenta and positions
during steady state for beam parameters supporting self-osdllation. Emitted
beam parameters are eV_ = 1.330_ eV and (j) = 6888.0 A/m _ unmodulated.
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Figure 4: Time snapshot of the Ez electric field strength component versus
perpendicular distance z from the conducting beam emission surface. Emit-
ted beam parameters are eV_ = 0.2 eV and (j) = 11150A/m _ unmodulated.
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Figure 5: Time snapshot of the Ez electric field strength component ver-
sus perpendicular distance z from the conducting beam emission surface.
Emitted beam parameters are e_ = 1.3305 eV and (j) = 1722.0 A/m 2
unmodulated.
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Figure 6: Time snapshot of the Ez electric field strength component ver-
sus perpendicular distance z from the conducting beam emission surface.
Emitted beam parameters are e_ = 1.:1305 eV and (j) = 15498 A/m 2 un-
modulated.
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the RFMAGIC.F results generated from various MAGIC runs. Figures 9-10
were graphed using the Los Alamos National Laboratory X-Division's POP
graphics program.

Figure 7 is an example where dmax, the approximate maximum normal
distance of the electron orbits, was estimated from MAGIC trajectory or
phase space graphs for various values of current density. The values of dm_x
were sampled quite coarsely in time (approximately every nanosecond), with
the result being that the actual maximum normal electron orbit distances in
steady state are estimated somewhat coarsely as well. The sampled data from
several constant or unmodulated, monoenergetic, perpendicularly emitted
electron current density runs were then plotted to make Fig. 7. Note that the
modulated PIC code simulations used the function j(t) = j0[1-cos(27rut)]/2
to modulate the current density in time at u, the modulation frequency. The
unmodulated PIC code simulations used a constant current density function
where j(t) = jo/2 = (j). The modulated PIC code simulations' current
density function differs from my theory paper [Ref. 1] current density func-
tion where j(t) = (j)- jocos(27rvt) and FD = D - jo/(j) are used, but
since the PIC code simulations used 100% current density modulation, then
my theory paper's j0 is equivalent to the PIC code's jo/2, and both quan-
tities are equal to (j), the average beam emission or phott)emission current
density. Therefore, for the PIC code simulations and results in this paper,
Fo = D =_ (jo/2)/(j) = 1 can be used with the theory paper's equation
j(t) = (j)[1 - Focos(27rvt)] for consistency between the two papers. Conse-
quently, for all of the PIC simulations results presented in this paper, (j), the
unmodulated or average modulated photoemission current density, is related
to jo/2, tile sinusoidal amplitude of the modulated photoemission current
density, by (j)= jo/2 at FD = D = 100%.

However, the rest of the graphs I will present as typical of the results
of all the PIC code simulations herein require knowing far-field radiation
quantities. This is a problem, since PIC codes generally do not calculate
these types of physical quantities outside of the simulation grid, and for this
problem, the far-field based on the frequency of the radiation generated is
many times larger than the size of the simulation grid. In order to solve
this problem, I created a postprocessor named RFMAGIC.F to take the
MAGIC time history data of the emitted current and calculate various far-
field radiation quantities of interest.

RFMAGIC.F is a FOI/TRAN program that converts the time history
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Figure 7: d_, the approximate maximum steady-state orbit distance of
unmodulated, monoenergetic electrons that are perpendicularly emitted from
a conducting surface, versus j0, twice the average emitted current density.
The emitted electron energy was a constant 1.3305 eV for the graph.

data of a one-dimensional current source into far-field radiation parameters.
To do this conversion, MAGIC is first set up to do one-dimensional beam
emission simulations that dump the values of the current component in the
z-direction with respect to two parameters, z and t. The parameter z rep-
resents the normal (perpendicular) distance from the conducting surface in
meters, whereas the parameter t represents the simulation dump time step
in seconds. This creates a table of current source values that can be rep-
resented as Iz(z,t) for the one-dimensional PIC simulations. RFMAGIC.F
then reads these current values into a matrix and treats them as a current

source for the production of radiation by calculating the time derivatives
of the current values and then translating the values of this time derivative
current source into radiated far-field electric and magnetic field components.
The postprocessing code accomplishes these field component calculations by
fully implementing the necessary one-dimensional current source forms of the
equations listed in my theory paper at the start of the subsection titled Ra-
diation Equations [Ref. 1]. As such, full retarded time effects are included in
the calculations. Also, in addition to the one-dimensional cylindrical current
source, a symmetric two-dimensional slice of a hemisphere having a fixed,

13
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far-field radius is used for the observer calculations. Once the radiated field

components are known for each observer point in time and space, it is easy

to calculate the Poynting vector and d(P}/df_ for various O's, the average
power radiated through a forward hemisphere (on the emission side of the
conducting plane, without reflections) versus time, (Pr)h, and the integrated
or time-independent radiated energy through a forward hemisphere in the
far-field, Erh.

A general overview of the RFMAGIC.F code highlighting key features
and numerical techniques is listed below:

1. Reads and stores the 1-D current source data values of Iz(z,t) that
were previously dumped, periodically in simulation (source) time, from
MAGIC's simulation grid.

2. Replaces the current source I_(z, t) matrix values with their correspond-
ing time derivative values of the current ]_(z, t), using three-point dif-
ference formulaes.

3. Calculates, for each observer time step, necessary radiated electric and
magnetic field components in the observer's space and time frame using
the PIC ]z(z,t) data from the source's space and time frame.

(a) The radia.ted far-field electric and magnetic field components are
calculated in the observer's frame at regularly spaced polar angles
(in 0) over a symmetric slice of hemispherical shell having a fixed,
far-field radius.

(b) RFMAGIC.F spatially integrates the ]z(z,t) values over z in the
source's frame at retarded source times, performing the integration
for every radiated field component calculated at every point in
space (and time) in the observer's frame.

i. Integrates over the ],(z, t) source coordinates using five-point,
multistep Gaussian quadrature.

ii. Uses bilinear interpolation to calculate the corresponding value
of the I_(z, t) source for each required integration z and re-
tarded time l coordinate.

4. Calculates, for each observer time step, a variety of far-field radiation
parameters in the observer's frame using tile calculated radiated far-
field electric and magnetic field components.

14
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(a) Calculates the Poynting vector P and the instantaneous power per

unit solid angle dP/df_ at the regularly spaced polar angles.

(b) Integrates dP/df_ over the polar angles to calculate Prh, the total

instantaneous power radiated through a far-field hemisphere.

5. Evolves the far-field radiation parameters over time in the observer's

frame using all of the far-field contributions from the ]z(z,t) PIC code

simulation data to generate the PIC code simulation's far-field radiation

through a forward hemisphere.

(a) Generates quantities versus time such as Prh(t).

(b) Generates time averaged quantities such as d(P)/dl2 and (Pr)h.

(c) Generates time integrated quantities such as radiated energy Erh.

Basically two sets of PIC data exist, corresponding to two values of emit-

ted electron energy, eVb. PIC simulations at 0.2 and 1.3305 eV were con-

ducted. At 0.2 eV, a resonance curve was generated. At 1.3305 eV, a more

detailed resonance curve was constructed, as well as several other types of

graphs showing far-field radiation results. Figures 8-14 correspond to MAGIC

runs with an emitted electron energy of 1.3305 eV. Figure 15 corresponds to

MAGIC runs using an emitted electron energy of 0.2 eV.

Figure 8 was generated from several MAGIC simulations to show the

variation ._f natural frequency Unit versus twice the average emitted electron

beam current density (j). This natural frequency curve was generated by

graphing the primary FFT frequency component of the far-field radiation's

Ez(t) electric field component, as measured in the far-field at an observer

angle of 80 degrees in 0, and where the radiation was generated from the self-

oscillation of the emitted electrons. The natural frequency was simulated by

emitting a perpendicular, constant or unmodulated, monoenergetic electron

beam off of a conducting plane. For the electron energy and current values

used, sufficient space charge was generated to initiate electron bunching and

self-oscillation. However, in steady state, the j0=3444.0 A/m 2 simulation's

self-oscillation damped out. By modulating the emitted electron beam cur-

rent density (j) at its natural or self-oscillation frequency so Vmod = Unit,

while using a sine-squared type of pulse train with the same average cur-
rent density as the self-oscillating simulation, maximum radiated power was

k
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achieved. This maximum radiated power, or resonance power, occurs when
the modulation frequency resonates with the natural frequency.
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Figure 8: u,,t, the primary FFT frequency component of the 'natural' or
self-oscillation generated far-field radiation that spontaneously occurs when
an unmodulated, monoenergetic electron beam is perpendicularly emitted
from a conducting surface, versus twice the average emitted current density.
The emitted electron energy was a constant 1.3305 eV for the graph.

Figures 9-10 are graphs made from two MAGIC simulations and subse-
quent RFMAGIC.F postprocessing that show Prh, the instantaneous power
radiated through a far-field hemisphere, versus time (left graph) and Erh,
the corresponding integrated energy radiated through a far-field hemisphere,
versus time (right graph). Figure 9 shows the case used in Figs. 1, 2, 5,
7 and 8 where the self-oscillation damps out in steady state. The primary
radiation generated, in this case, seems to come from electrons emitted early
in the simulation. The PIC code itself could be contributing to damping out
the self-oscillation in steady state due to its algorithms, but this possibility
was not investigated for the purposes of this paper. Figure 10 shows a case
typical of all the rest of the MAGIC simulations where self-oscillation radia-
tion is measured, where though the electrons emitted early on form a sharp
power pulse, the generated radiation is soon dominated by the steady-state
self-oscillation radiation. The spiky nature of the P_h versus time curve is
characteristic of all self-oscillating or modulated PIC simulations. When
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Figure 9: Far-field radiated power Prh and cumulative energy Erh versus time
for a MAGIC simulation that does not display significant self-oscillation in
steady state. Emitted beam parameters are e_ - 1.3305 eV azld (_) -
1722 A/m s unmodulated.
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Figure 10: Far-field radiated power Prh and cumulative energy Erh versus

time for a MAGIC simulation that achieves self-oscillation in steady state.

The natural frequency of the self-osCillation generated radiation is v,,,t =
7.9074 GHz with a 0.15815 GHz FFT box width. Emitted beam parameters

are eVb = 1.3305 eV and (j) = 10757.5 A/m 2 unmodulated.
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Prh(t) is integrated over time for PIC simulations with self-oscillation or l/too d

modulated current density, then typically, as seen in Fig. 10, the cumulative
Erh radiated energy versus time curve increases in a very linear manner, with
only small oscillations about a best fit line through the curve.

Figure 11 shows the typical far-field lobe pattern of the calculated ra-
diation. It is a graph of d(P)/dfl versus 8 for a single MAGIC run and is
typical of the sin 20 pattern seen for all of the MAGIC runs that were sam-
pled for this pattern. Graphing d(P)/dft versus 0 is an excellent test of both
the small-spot PIC code simulations and the RFMAGIC.F code since the
pattern of the far-field radiation lobes based on the MAGIC simulation data
set and its postprocessing by RFMAGIC.F reproduces the sin2 O, or classic
dipole radiation pattern, ezpected j'or a small-spot [Ref. 1]. The dotted line
consists of the actual data points RFMAGIC.F dumps. To show how close
the data points are to a sin 20 curve, the continuous line is a sin2 Ocurve that
was normalized to the maximum value of the RFMAGIC.F data. The agree-
ment is very close even without curve fitting the normalization coefficient of
the sin2 0 equation to all of the PIC data.

v AVGRr I_WlE:RV5 POLARN_IGL[fOR 1.3305eV, j0-3444 A/m2, 633ns

_ ,_.,o-O:

i 20xi0- 9 _-
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T_A (DEGR[[S)
<_ l-O Idogic Simulalion Using j-jO,(l-COS(2.pi*freq*1))/2, Arso,,2.0o-6 m2

Figure 11" d(P)/dt2 versus # characteristic small-spot far-field radiation lobe
pattern typical of 1-D PIC simulations. The y-axis should be divided by 44.32
to scale d(P)/dl2 correctly. Emitted beam parameters are eVb = 1.3305 eV
and (j) = 1722.0 A/m 2 unmodulated.

Figure 12 is a resonance curve (Fn) generated from 19 MAGIC simula-
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tions.Itshows how modulatingtheemittedbeam currentdensityat /,/mod

frequenciesotherthanthenaturalorresonancefrequencydecreasesthetotal

Erh energyradiatedthrougha hemisphere.The naturalfrequencyofthe
self-oscillationgeneratedradiationfora constant,injectedbeam havingthe
same el_and {j)asFig.12isu,,t= 6.0096GHz, witha 0.15815GHz FFT
box width.The modulationfrequencyUmodwas simulatedoverzero(actually

an unmodulated,constantbeam emittedat(j))to18GHz sampledatevery

gigahertz.As such,thegraphspans0.0to3.0timesthenaturalfrequency.
Note thatbesidesthemain peak,anotherlessermaximum isoccurringnear
18GHz. Often,a resonanceplotismodeledby a Lorentziancurve,butthis
resonancecurve'sbehaviorismore complicated,and evenlooksGaussian

neartheresonancepeak. However,forbehaviorneartheresonanceglobal
maximum, whichisan interestingregionbecauseitmaximizesradiationwith
respectto //rood,a wellchosenLorentzianwould sufficetomodel the near-
resonancebehavior.

Rr ENERGY VS MODULATION rR(Q IrOR 1.330_v. j0-12000. A/m2, 6.33_e
xl -16 ................... . . . _.. .....25 0

i xl -16

2.0 0

i l'SxlO- 16

1.0.10_16

5"Ox}O" 17

0 3.0xi0 v 6.0xi0 V 9.0xi0 v 1 2xi0 tU I._xI0 Iu 18 I0 I0

MODULATION IrR[QU(NCY OF"CURRENT DENSITY (HERTZ)
1-D MAGIC $imulotion Using jmjO.(I-COS(2epi,freq, l))/2. Ateo=20e-8 m2

Figure 12: Fr resonance curve of small-spot, far-field radiation for emitted
I

beam parameters eVb = 1.3305 eV and (j) = 6000 A/m 2. Graph shows Erh,
the total far-field energy radiated through a hemisphere, verses Vmod, the
modulation frequency of the emitted current density.

Figures 13 and 14 are similar. Figure 13 shows Erh, the total energy ra-
diated through a hemisphere in the far field, versus EB = {PB)trun, the total
input beam emission energy, for various tr_ = 6.3263 ns PIC code simulated
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Figure 13: E_h, the total far-field energy radiated through a hemisphere,
versus EB, the total input beam emission energy, for several Umodstrategies.
Emitted electron energy was a constant 1.3305 eV for the curves.

beam emission pulse trains. Figure 14 uses the same data as Fig. 13, but
shows the radiation conversion efficiency r/rhBversus j0, where j0 for the PIC
code simulations is equal to 2(j/, twice the average emitted current density.
The conversion efficiency r/FhBis basically the total far-field energy radiated
through a hemisphere, calculated using the emitted electrons in free space
(with the conducting emission plane removed), divided by the total input
beam emission energy. So r/rhBrepresents about half of the actual conver-
sion efficiency radiated through a sphere, with or without the conducting
plane. This halving of the generated radiation occurs because Prh and Erh
were calculated by RFMAGIC.F as the power and energy radiated through
the forward hemisphere of the simulated problem with the conducting plane
removed and the radiation calculations performed for the electron sheath in
free space. This RFMAGIC.F calculated radiation can be compared with
the radiation for the problem being simulated because for small spots hav-
ing small photoemission orbit distances above the conducting plane, where
larger radiation wavelengths are involved, the forward and conducting plane
reflected radiation wavelengths generally interfere constructively from what
is essentially a point source radiator. So while RFMAGIC.F only integrated
dP/dft over a symmetric forward hemisphere to calculate Prh in free space
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Figure 14: 17rhB,the conversion efficiency of the total input beam emission
energy to total far-field energy radiated through a hemisphere, versus twice
the average emitted current density for several Vmodstrategies. Emitted
electron energy was a constant 1.3305 eV for the curves.

without the conducting plane, this result is equivalent to calculating the ra-
diation simulated from beam emission off of a conducting plane that restricts
the radiation to essentially the forward hemisphere, and where the reflected
radiation off of the conducting plane (approximately half of the total radia-

tion) was not included in the RFMAGIC.F calculations.
'TrhBand several other useful efficiency and power equations are listed

below.

(P_)h = Erh/trun (2)

(PB) = lele¼A(j) (3)
e

(PL) -- hc A(j.____) (4)e _LY

(P,)h l e Erh--
_rhB -- -- =

<Ps) I_l_vb A<j>t,_

(Ps) = lele¼"_tY
= (6)
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(Pr)h e ALYErh= (7)
t_rhL -- (PL) hc A(j)t_

(P,.), _ 2(P,.)h (8)

r/rsB _ 271rhB (9)

T}r_L ,_ 2rtrhL (10)

The above equations show how r/rhB was calculated for Fig. 14 and pro-

vide convenient expressions for converting the radiated energy simulated by

MAGIC, using a beam emission model, into other useful quantities. For

example, _?_L is an important quantity characteristic of a laboratory experi-

ment that uses a photoemission light source, that was not directly simulated

computationally by the beam emission model used, but which can be es-

timated by using the listed equations. The parameter (PB) is the average

power of the emitted beam of simulated photoelectrons, while (PL) is the

average power of the light source measured over the photoem;ssion spot area

on the conducting surface. Most of the parameters are defined in a later sub-

section titled Curve-Fitting Equations, and the MAGIC and RFMAGIC.F

postprocessed data used in this paper are listed in Appendix A. By picking

appropriate values of AL and )", tile PIC code simulation data can be con-

verted into various experimental predictions for (PL) and total input light to

output radiation through a sphere conversion e[ficiency qr_L, as well as the

intermediate input light to output electron beam energy conversion efficiency

r/BL. Note that tile elementary charge e in SI units, when written as lel in this

paper, becomes a conversion number having units of Joules per eV. So le[ is

a number having the magnitude of e in SI that is multiplied with quantities

having units of eV to convert those quantities to values having dimensions

of Joules. Consequently, the parameter e t'_, which represents the energy per

emitted electron in units of eV, is always associated with 1el in the equations.

The units of eV are always used with e}_, and later on with the work function

of the photoemission surface ¢, because they are more convenient numbers

to work with and for looking up the published ¢ values, which are usually

listed in units of eV. Otherwise, the equations and parameters in this paper

are generally applied using SI units.

Each graph in Figs. 13-1,1 is divided into three curves. Each curve is

constructed using data obtained from five MAGIC simulations. The curves

show the effect of not modulating the electron beam (E0)), of modulating
the beam at a constant 6.0 GHz (E_.0), and of modulating the beam at the

,)r)

| ' ,



Results and Graphs

natural frequency for maximum resonance radiated energy (EREs). For the
emitted electron energy and average current density used, the natural fre-
quency varies from approximately 3.2 to 9.3 GHz as the current density varies
from its lowest to highest value. Note that the lowest curve is the unmodu-
lated, or self-oscillating curve, and that the highest curve is the curve where
the modulation frequency is increased from about 3.2 to 9.3 GHz to main-
tain resonance as the average current density increases. As such, the beam
which is always modulated at 6.0 GHz peaks up to the resonance curve's
value near the middle of the graph when the beam parameters also reach
a natural frequency of close to 6.0 GHz. Note that the resonance radiated
energy and conversion efficiency values are at most only three to four times
greater than the unmodulated beam emission values for radiated energy and
efficiency. Also, for modulation frequencies less than the resonance frequency,
the decreases in radiated energy did not drop below the unmodulated beam
emission values. However, Fig. 12 shows it is possible that over-modulation,
or using frequencies greater than the resonance frequency, can decrease the
amount of radiated energy to values that are even smaller than the unmod-
ulated beam emission values.

The Fig. 15 Era versus Umod curve is similar to the Fig. 12 Erh versus
Umodcurve, except that it was simulated with an emitted electron energy of
0.2 eV, is less well resolved, and only spans 0.0 to 2.5 times the natural fre-
quency. The natural frequency of the self-oscillation generated radiation for
Fig. 15 is Unat= 4.2700 GHz with a 0.15815 GHz FFT box width. Note that
the lesser number of points on Fig. 15 do not capture the shape of Fn, the
steady-state, small-spot, resonance curve, as well as Fig. 12. More data were
generated later that were not included in Fig. 15. Appendix A lists tables
showing all of the Fn curves' Erh data generated from the PIC code simula-
tions. Still, Fig. 15 shows that the shape of the near-resonance maximum for
0.2 eV emitted electrons is similar to the shape of the Fig. 12 near-resonance
maximum for 1.3305 eV emitted electrons. The major difference between
the two curves is that the Erh radiated energy is less for Fig. 15, as theory
predicts [Ref. l] for lower emitted electron energy and lower average current
density. Together, the two resonance curves provide a variation of two levels
of emitted electron energy in an interesting region of parameter space.
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Figure 15: Fn resonance curve of small-spot, far-field radiation for emitted
beam parameters eVb = 0.2 eV and (j) = 1150 A/m 2. Graph shows Erh,
the total far-field energy radiated through a hemisphere, verses Vmod, the
modulation frequency of the emitted current density.
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This section will 'analytically' compare the PIC data with the theory equa-

tions presented in my theory paper [Ref. 1]. The graphs presented in the last

section show some of the typical PIC code simulation parameters and how

they behave. While these qualitative graphs are informative, the PIC data

can also be used to get more quantitative, analytic type results that can read-

ily be compared with the theory. The more quantitative, analytic type results

and comparisons are accomplished by means of curve fitting. Generally, this

paper will present the basic curve-fitting topics needed to understand the

comparisons of the theory [Ref. 1] and PIC code simulation results made in

this paper. If more information is desired, many excellent books exist that

explain the basics of curve fitting and data analysis [Ref. 4],[Ref. 5]. First I

will list the 'generalized' PIC parameter set theory equations with unknown

primed constant coefficients and exponents. Next I will discuss the rationale

behind selecting curve fitting to analyze the PIC code data and why it is so

useful to test theory equations versus data. Then I will explain the actual

concepts and the process involved in performing the curve fitting. Finally, I

will present and analyze the nonlinear curve-fitting results of the generalized

PIC parameter set theory constants.

Curve-Fitting Equations

The approximate steady-state theory equations for maximum electric field

strength component Ez max, maximum electron orbit distance dm_x, natural

or resonance frequency unit, and average small-spot, far-field power radiated

through a sphere (Pr)_, can be expressed as generalized theory equations, or

Generalized Scaling Laws [Ref. 1], as:

Ez m_,,, = a'flb'ij) _' (11)

dma, = a'f3b'(j) c' (12)

Unat = a'_b'(j) c' (13)
t rr,d_ ae* fJb_ l . c_

(t_), = a rD/, to 13) Fn (14)

The parameters used in ttle above equations have the following definitions.

FD = D in this paper, where D is the modulation depth of the sinusoidally

modulated beam emission or photoemission current density pulse train versus
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time having modulation frequency Vmo d. For the PIC simulations performed

in this paper, D = 1 was used for 100% sinusoidally modulated electron

current density emission. A is the electron emission area on the conducting
surface and was set constant at A = 2.0 × 10-6 m 2 for all of the PIC simula-

tions. /3 represents the emitted electron velocity divided by tile speed of light

in a vacuum. The parameter (j) is the average emitted current density, v,_t

is the natural or self-oscillation primary frequency component that sponta-

neously arises when an unmodulated, constant electron beam having current

density (j) and emitted electron energy e Vb is injected, perpendicular to the

conducting surface, into the simulation. Fn is an arbitrary term represent-

ing a resonance function that is multiplied with the resonance (Pr)s theory

equation to create an approximate nonresonance (P r), equation that allows

near-resonance power data to be analyzed. Finally, associated equations and

units of most parameters in this paper are in SI. However, eVb and ¢ are

exceptions, as they always have units of eV associated with them.

The above equations represent the theory scaling laws with primed un-

known constant coefficients and exponents, using the PIC parameter set.

Calculation of the unknown generalized theory constants from the PIC data

is best accomplished by using equations that contain the parameters actually

used by the PIC simulations, i.e., the PIC parameter set. However, to see

how the fitted constants propagate into the same equations when written in

terms of photon parameters requires applying the following two conversion
relations,

27/b,

1 XLY(PL) where (16)
(J) = b, A

hc I 1¢
bl = _ and ¢_ _- _ (17)

C c

to get the corresponding generalized theory equations converted to my photon

parameter set, which I also refer to as my ultraviolet (UV) or laboratory
parameter set,

( )(bl b'/_ ALY(PL)

EZ max "-- at]el _ -- Cs A (18)
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dmax = a'k, _ ¢, AL} (PL) (19)A

(bl )b'/2 (ALY(PL)) c'u,,_,t = a'k, _L -- ¢" A (20)

(P,.), = a'k, Fg' _L--¢, A_Y_'Ae-d(PL)eFn (21)

( 2b'k, = \m_;-__+e ) (22)

where e is the elementary charge, m_ is the electron mass, h is the Planck
constant, and c is the speed of light in vacuum.

From the conversion relations, since ¢ is the value of the conductor's

work function having units of eV, the reader can easily look up the value
of ¢ in books, which generally list the work function in eV. Also, ¢, is an
SI quantity having the same magnitude as ¢, but with dimensions of volts,
which makes it easy to input a number for ¢, into the generalized theory
equations. Finally, since ¢ and eVb are parameters that always have units
of cV, then the emitted electron energy eVb, in eV, is calculated from ¢ as

hc
eVb= ¢ (23)

Note that the parameters in the photon parameter set cannot all be fit-

ted independently in every parameter when using PIC code beam emission
simulation data as the beam emission data are described in terms of the PIC

parameter set. Consequently, marly photon or UV parameters have similar
fitted constants because the PIC parameters often represent several photon

parameters that scale as a group. For example, there are an infinite number
of values for tile wavelength of the light source AL, the photoelectric yield Y,
the average light source power (PL), and photoelectron emission area A that
can represent a single, unique value of the average emitted current density

(j). Similarly, there are an infinite number of values for AL and for the work
function of the conducting surface ¢ that can represent a single, unique value
of the classical expression for 13. As a benefit, by using the generalized theory
equations and the conversion relations, scanning a few PIC parameters is an
efficient way to search many [IV parameters. So using a parameter set de-
veloped to model PIC simulations that used a beam emission model has the
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virtue of fewer parameters to search, measure and fit. Of course, the PIC-
to-UV conversion relations must realistically capture the basic physics being
modeled. If laboratory experiments are conducted that measure variations
and take data using UV parameters, then a generalized UV parameter equa-
tion can be fitted. However, even then one would hope that the PIC-to-UV
converted parameters would be similarly scaled with respect to each other in
their fitting constants, so th¢_.tthe smaller PIC parameter space to fit could
itself act as additional information with which to constrain the fit. Since

using as much information as possible from theoretical, computational, and
laboratory research is desirable in any fitting process, one should first try
fitting the constants for the generalized PIC parameter set theory equation,
even with laboratory experimental data measured in UV or other parameter
sets. Besides, the theory equations are simpler to work with and easier to
understand when using the PIC parameter set. i

What are the values of these generalized constants (coefficients and ex-
ponents)? Table 1 shows the values for the constants based on the theory
results from my theory paper [Ref. 1].

Table 1 Theoretical Values of Coefficients and Ex )onents
Eqn. a_ "-- a' a2 --- d t a3 -'- e' a4 = b' as= c'

:'Ez m,,,, 13875 N/ A N/ A 0.5 0.5
dmax 18.415 N/A N/A 1.5 -0.5
u.at 4.0700 × 106 N/A N/A -0.5 0.5

(P,.)_ 24.657 2.0 2.0 2.0 2.0

Later, using the PIC data listed in Appendix A, several fits in one or
more theory constants will be presented to see how the PIC fitted constants
compare with the theory values. Note that the radiated power equations arc
for small spots (spatially and temporally coherent electron motion and no
significant radiation source phase differences). Also, the single-pulse model
used was one dimensional with perpendicular, monoenergetic electron beam
emission of a single, rigid, and 'virtually' thin charge sheet. However, all
the final equations were derived for steady-state resonance results, i.e., for
situations where U,,od= u.at.

The d_,_ data, as mentioned previously, were coarsely obtained by manu-
ally measuring graphs dumped by MAGIC approximately every nanosecond.
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For each PIC simulation, the phase space or electron trajectory plot with the
maximum electron orbit distance was used to approximate dm_x. The type
of MAGIC graphs used to sample the dmax data was presented in Figs. 1-3,
and the results were summarized in Fig. 7. As such, the data taken are
approximate. These data were obtained from PIC simulations having con-
stant, unmodulated beam emission at various (j) and /3 values. However,
self-oscillation usually occurred in the simulations, making it more difficult
to accurately determine dm_,x. As a result, the sampled data could range
anywhere from d_a, to d,,,ax, even though the data selected from the sample
graphs favored values closer to dm_x. Since drain appears to be more robust
and and less affected by self-oscillation, future PIC simulations and analysis
of dmi, would provide good data for testing the theory values of b' and c'.
Also, higher sampling rates would improve estimating dm_x.

The Ez max data were coarsely obtained in the same way as dmax, from
Ez versus z snapshots taken approximately every nanosecond. The type of
MAGIC graphs used to sample the Ez m_ data was presented in Figs. 4-6.
For each PIC simulation, the graph with the largest peak value of Ez next
to the conducting surface was selected to approximate Ez max. Again, an
unmodulated current density was used, and self-oscillation usually occurred,
making it more difficult to accurately determine Ez max. Note that Ez m_ is
the maximum Ez based on all of the charge in the simulation at any given
time step plus the initially emitted charge that escaped ttle simulation right
boundary, so the graphs of Ez m_x are less variable in their extremes than
dm_, where small groups of erratic macro particles can more readily increase
the sampled dm_,. In future PIC code simulations, dumping the time history
of Ez would provide easy access to more accurate Ez data to analyze.

u, at PIC data were not obtained by locating the Umodassociated with the
global maximum of a resonance curve for each {j} and/3. It was more efficient
computationally to simply inject a constant or unmodulated, monoenergetic,

perpendicular electron beam at a given (j) and/3, and use the primary FFT
component of the radiation generated from tile self-oscillation of the beam
to determine the natural frequency of the steady-state electrons. This self-
oscillation frequency v, at was graphed in Fig. 8.

(Pr), data were calculated using RFMAGIC.F to postprocess the sim-
ulated electron sheath obtained from self-oscillating, resonance, and off-
resonance MAGIC simulations. Resonance (Pr), data were obtained from
resonance simulations in which (j) was modulated at Umod= Un_,t.However,
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many self-oscillating and off-resonance PIC simulations were performed, re-
sulting in much more nonresonance than resonance radiation data. Fig-
ure 10 presented a typical self-oscillation Erh versus time graph, calculated
using RFMAGIC.F, while Fig. 13 contains curves of several Erh results versus
modulation frequency and input beam energy, where the input beam energy
was varied by changing the emitted current density. Figures 12 and 15 also
presented curves of Erh versus modulation frequency. Converting the total
radiated energy for a given pulse train into average radiated power to analyze
was easy due to the linear nature of Era versus time, which was typical of
the linear curve shown in Fig. 10. But if more complicated pulse envelopes
and pulse trains had been used, then the radiated power versus time or the
total radiated energy E,h would need to be predicted and analyzed for these
pulse trains, instead of the average radiated power.

If the resonance radiated power data and other PIC simulation radiated
power data could all be used together, a better fit might be performed in
more parameters. Instead of 5 or 6 points, 41 data points could be used
if the nonresonance (Pr), theory equation were known. For these fits, the
nonresonance (Pr), equation is approximated by the steady-state, 'resonance'
(Pr), theory equation multiplied by Fn, an arbitrarily chosen resonance func-
tion. The Ftt function chosen has tile property that for resonance power data,
_)t = 1, and tile resonance (P_), equation is recovered. So at //mod "- Vnat, Fn
obtains its maximum or resonance value of one. Also, 0 < Fn < 1, and Fn is

equal to (Pr)+ at v,,oa divided by (P_), at v,,t. For nonresonance data, but
near-resonance data (i.e. 0.0 < Vmod< 2.3Unit), a Lorentzian-type resonance
function is used to represent Fn.

The arbitrary near-resonance function is defined as:

/;)t =- a26 where (24)
(,,.,od/,,,,.<-l) +

//rood = I]n,t for resonance, and (25)

v,,at = az/3""(j) "9 = a'/3b'(j)_' (26)

j = (j)[l- Ft)cos(2rrUmodt)] (27)
jo/2

FD = D - -- (28)
0)

where for the PIC code simulations, Fo = 1 for 100% modulated current

density was used, so (j) = jo/2.
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Fa is symmetric about its maximum value located at /Jmod -" /Jnat, and
it is easy to define various Full-Width Half-Maximum (FWHM) parameters.
The frequencies defining the FWHM values of Fr are,

/tmodrwltM -- ( 1 -4- a6)Vnat (29)

so the FWHM of the Fr near-resonance curve spans

Avvwnm = 2a6Vnat (30)

and the Fn near-resonance curve widens as v._t increases.
Also, for Vmod -- 0 and Vmod/Vnat -- 2,

FR= a_ (31)
l+a62

Other relationships involving Fr are

- a6 -1 +1 ,or (32)
/]nat

Vmod/Vna t -- 1
a6 = (33)

(l/_- l) _/2

Curve-Fitting Rationale

This subsection will discuss the curve-fitting rationale. Most of the informa-
tion needed to fit the data now exists' the generalized small-spot resonance
equations in PIC and UV parameters, the theory values for the constants to
be tested, the PIC data, and a near-resonance function Fa for simultaneously
curve fitting all of the (P_), PIC data. Basically the generalized equations
and constants to fit have been presented, along with how the PIC data for
the fits were measured. Before presenting and discussing the results of fit-
ting the constants associated with the equations to the PIC data, a more
detailed explanation of the curve-fitting rationale and process should prove
beneficial. This subsection provides the rationale for using curve fitting to
compare theoretical equations with data predicted by those equations.

The rationale for curve fitting the constants in the generalized theory
equations depends upon the goal. The reasons people use curve fitting are
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many. In this case, the fits can be used to summarize the PIC data as a

convenient equation, to test the theory-versus-data scaling, to gain clues for
helping to improve the theory, and for prediction and optimization purposes.
Since the last half of this paper focuses on comparing the theory versus PIC
data, I will concentrate on the testing aspect of curve fitting.

Inherent in this testing process is the advantage of having a useful theo-
retical equation that captures the dominant physics of interest in its models,
its symbols, and the relationships among those symbols. One then tries to
find for that theory equation the value of any constants with respect to the
PIC data that cause the theory equation to best reproduce the PIC data.
Note that aT,y symbol in the theory equation, such as a number, coefficient,
variable, or exponent, as long as it does not vary with the PIC data, can
be treated as a constant that one can attempt to fit with the available PIC
data. And when a theoretical equation is used, the equation and the form
of the equation showing tile mathematical relationships among the symbols
remains fixed.

Consequently, one is not looking for which parameters and for which
quadratic, power, or other type of function best interpolates the data. Instead

of being just an arbitrary equation, tile fitting equation is chosen to express
inherent theoretical parameters, the relationships among those parameters,
and the variation of some chosen dependent variable with respect to all of
the other paraIneters. In essence, the theoretical fitting equation is chosen to
represent the theoretical scaling laws that capture the iinportant relationships
with respect to, and among, the various theory parameters. If the theory and
data are good in a given region of parameter space that is of interest, then the
fitted coeJflcients can be meaningful, and the equation ca_ be extrapolated to
an extent that depends on how well the theory and data match. If a good fit
is found, the fit can be used to improve the theory, to make better predictions,
and to find the optimum feasible paraIneters. By curve fitting the equation,
a universally applicable way of testing the data versus the theory is utilized.
As a result, any constant coefficients, exponents, or parameters in the theory
equation can be fitted, thereby providing scaling laws based on data that carl
be tested versus theory predictions. The testing can reasonably be performed
as long as both the theory and data are adequate for the testing purposes.

Of course, one could simply plot the data points versus the theoretical
predictions to test the theory. Itowever, a qualitative graph is less quantita-
tive than a curve-fit analysis. Also, qualitative graphical testing is hampered
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for complex multi-dimensional equations a_d data since it is hard to graph
more than three or four dimensions simultaneously. A 2-D graph could be
used that plots a subset of the multi-dimensional parameter space, but this
decoupling of parameters can make it more difficult to use available data
or obtain enough good data to adequately test and interpret the combined
effect of many interacting parameters. To be done unambiguously, testing
the theory versus data is best accomplished by using all of the available data
to simultaneously analyze as many fitting constants as possible in the the-
ory equations. Further, this testing is best accomplished when good data are
available that allow fitting all of the possible theory equation fitting constants
simultaneously. So when using a large number of parameters, testing theory
predictions versus data is generally better accomplished through curve-fit
analysis than by simply plotting a theoretical curve on top of either compu-
tational or laboratory experimental data, though the concepts are similar.
Consequently, numerical curve fitting is used because curve fitting a theoret-
ical equation is not only more quantitative than using a graphical technique,
but for a large number of parameters, curve fitting is preferable as it allows
all of the degrees of freedom to be analyzed simultaneously to separate out
the interacting, individual behaviors of the constants and parameters.

On a more practical basis, curve fitting all of the possible constants and
parameters simultaneously means that any data taken from any experiment
described by the theory, and which are possible for the experimentalist to
obtain, can all be used in the analysis. As such, experiments in small subsets
of parameter space, and even totally random experimental data, can all be
combined and used in the analysis. Using all of the available data, and
being able to build up the database as new data comes in, means that the
analysis will provide better results than if individual, smaller sets of the
data only were able to be analyzed. Better results are possible because
simultaneously analyzing all of the parameters, allowing any and all data
to be used, produces a synergistic effect. Provided the theory and data
are useful, an improved global fit can occur, with better and potentially
more parameter scaling estimates being fitted to the theory constants. So,
curve fitting is an efficient way to use all available data to test the theory
predictions.

Testing of the theory using PIC code simulation data is ideal. The ap-
proximations and models used by the theory to derive the theory equations
are themselves relatively simple and non-physical. The simple theory rood-
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els are used because they are approximations of the real world that simplify

the physics and make the mathematics tractable. Often a PIC code can

closely implement these simple models to test the accuracy of the deriva-

tions as well as the effects of implementing the models in an improved and

completely self-consistent, nonlinear manner. Also, real world diagnostic

measurement problems are avoided or reduced. In fact, PIC code simula-

tions do not suffer from marly of the limitations and sources of error that

plague a laboratory experiment. Some of these laboratory experimental lim-

itations and sources of error worth mentioning are equipment calibration,

limited measurement regimes, environmental influences, and diagnostic tools

and probes that themselves interfere with the operation or observation of the

experiment. In contrast, PIC code diagnostic probes are essentially 'perfect'

and do not interfere with the physics being simulated. Also, the PIC code

carl easily be set up to look at a wide variety of parameters taken over a

large and continuous range of values. This is not to suggest that laboratory

experiments are useless or that PIC code simulations are perfect. PIC codes

have other problems that need to be addressed when designing a simulation,

such as resolving all of the physics adequately, modeling tile device or experi-

ment correctly, and maintaining numerical stability to name a few. Still, PIC

code simulations complement laboratory experiments and are ideally suited

to testing theoretical models because PIC codes can often closely implement

theory models, have perfect diagnostics, and can vary all of the parameters

continuously over a wider range than the laboratory experiments.

Strictly speaking, in testing tile theory versus data using curve fitting,

the null hypothesis (H o) should be tested using a statistical significance test.

The curve-fitting process, given knowledge of tile errors inherent in the data,

can provide an independent goodness of fit criterion against which to judge

the fit. But often only the data set, and not its errors, are available. Without

independent estimates of the errors inherent in the data to fit, no indepen-

dent goodness of fit criterion is available, and another significance test will

be used. So the assumption or null hypothesis that will be tested is that

any apparent deviations or (tifferenccs arising between the theory equations'

predictions versus tile PIC code simulation data are only duc to random

variations from the theory equations' predictions, and are therefore of an in-

significant, nature. As such, to within theory and PIC differences or 'errors'

from each other or from perfect real experiments, some of which can be es-

timated from the fits, the theory equations should predict the PIC data and
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the PIC data should display the scaling laws inherent in the theory equations.
The null hypothesis can be statistically rejected when there is significant and
unreasonable disagreement between the theory equations and the PIC data,
which could then be considered as different. Accepting or rejecting the null
hypothesis does not claim that the decision is always correct, just statisti-
cally known for a certain error probability, generally chosen to be 0.05, 0.01,
or 0.001, where certain assumptions about the distributions have also been
made. As discussed in the previous paragraph, PIC code simulation results
should be ideally suited for testing the theory models, as the PIC code can
implement most of the theory models perfectly, and then simulate them in
a fully self-consistent, nonlinear manner. However, there do exist differences
between the theory models and PIC code simulations, and much like in the
laboratory, perfect computational or PIC data are hard to obtain. Even
with perfect model simulation and perfect PIC data, differences still would
be expected to arise due to the PIC code's fully nonlinear, self-consistent
computational solutions versus predictions based solely on simple analytic
theory.

Consequently, when comparing the theory equations to PIC code simula-
tion data, any careful, well-performed, strict significance testing would likely
reject the null hypothesis unless, assuming the theory predictions and PIC
code data are inherently different and limited but not basically incorrect, a
good way could be found to identify, quantify, and eliminate or include all of
the total error inherent in both the theory and PIC predictions when doing
the significance calc,dations. Essentially, using only part of the larger total
error by estimating the total error from just the sample variance of tile fit
errors increases tile likelihood of rejecting the null hypothesis. So if signif-
icance testing of the differences between the theory and fitted equations is
performed using only the variance of the fitted equation versus PIC code data
as an estimate of the total variance, then significant rejection or borderline
acceptance of tile null hypothesis could become definite acceptance if the
total errors were known and accounted for in the testing. Since it is difficult
to identify, let alone quantify, all of the sources of error contributing to the
total error, the less strict goal of these comparisons will be to find at best
general, though not necessarily statistically significant, agreement among the
theory equations and PIC code data with large disagreement expected to oc-
cur if the theory equations and PIC data did not generally agree. So for
large disagreements, one could conclude that either the theory equations or
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the PIC data (or both) are probably different. But if the theory equations

did generally agree with the PIC results, then while not proving that the

equations and PIC data match or are correct, the general agreement would

provide satisfying additional confidence in the theory equations, i

Agreement between both the simple, ;imited, and inherently different PIC

code results and theory equations' predictions would not only provide con-

fidence that those results are not fundamentally incorrect, but would also

provide some measure of confidence that the theoretical and computational

results were also representative enough of actual photoelectron-generated ra-

diation to be useful in predicting and optimizing laboratory experiments.

Of course inherent differences will exist arnong the theoretical, computa-

tional, and laboratory, sample results, as well as each of the sample results

having differences from the parent or true results. But the simple, ideal the-

ory and PIC results, by themselves showing agreement, could also indicate

thai the inherent differences are not so great as to prevent the theory and

computational results from being able to also provide useful predictions and

scaling laws for laboratory experimental results. However, similar testing of

the theory equations versus laboratory data would be needed for more direct

confirmation of the usefulness of the theory scaling laws and predictions with

respect to laboratory experiments.

In summary, since quantifying the total errors in the theory and PIC and

postprocessed data is not easy, significance testing of the null hypothesis is

difficult to accomplish accurately. Fortunately, significance testing of the null

hypothesis may be !ess useful to this analysis than other testing considera-

tions. Ideally', ifthe theory did exactly match the PIC data and if there were i,

enough well sampled, accurate, and precise PIC data, then regardless of the

cost function used the fitted constants should consistently match the theory

constants, and the fit errors should approach zero. But a very sinlple analytic

theory will be tested versus a small set of data that at times were coarsely

sampled and thai were generated by fully self-consistent, nonlinear PIC sim-

ulations that contain various inconsistencies with the theory, models as well

as potentially significant numerical solution errors. Consequently, instead of

looking for an exact match between the theory and PIC data set, it is more

productive t,o see how close the two do agree and whether any differences

are acceptable. Realistically, both the fitted theory equation predictions and

the fitted theory equatioll constants should reasonably approximate the de-

rived theory' equation values so that the tit errors should be reasonably small.
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Therefore, for the theory versus data set agreement to be considered good,

the fitted equations should approximately reproduce the theory equations,

any large variations of the fitted constants from the simple theory constants
should be reasonable, and the fit errors should be reasonably small.

Curve-Fitting Process

Next I will discuss the curve-fitting process. The fitting process involves

topics related to performing the curve fit. It is a somewhat arbitrary split

from the curve-fitting rationale discussed above which stressed the concepts

involved in testing the PIC data versus theory. Curve-fitting process topics

that will be discussed next include good data, the curve-fitting program, and
various cost functions.

To be useful to testing and the curve-fitting process, good data meeting

several requirements are necessary. These requirements involve taking data

for testable theory parameters and predictions. The data points and theory

parameters have to correspond to one another to be compared and should

ideally capture theoretical or experimental features that are both important

to test and optimal for the testing process. As such, important considerations

include: how many parameters are involved, which parameters call or need

to be tested, how many data points are needed, where are the data to be

sampled, and what are the accuracy and precision of the measured data?

These requirements are inherent in the theory, since in order to test whether

the predicted behavior of the theory is correct, the theory itself tells us

what parameters must be studied, where the parameters and predictions can

best be tested, what is the range of parameter space that must be explored,

and what trade-offs are involved. Trade-offs exist among the number of

parameters being tested, the nature and extent of the theoretical scaling laws

being tested, the number of data points needed, where the data are measured

in parameter space, and the error inherent in the measurements. So good

data that overlap the theoretical scaling being tested well enough to extract

useful information from the fitting process arc essential in simultaneously

solving for the theoretical scaling constants and in testing the theoretical

scaling laws.
Several items should be mentioned about the curve-fitting program that

l wrote and used to compare the theory and PIC data. The program used

is basically a Monte-Carlo code with added powerful heuristics that make it

37



COMPARING THEORY AND PIC RESULTS

much more efficient than a pure Monte-Carlo code. A Monte-Carlo technique

was used because it can directly handle complicated nonlinear equations, di-

verse cost functions, and an 'auto-no-slack' feature. While not needed for

this analysis, the fitting code can even handle discontinuous functions and

algorithms. So the fitting program operates on nonlinear equations or sys-

tems of equations directly and does not require linearized equations and the

necessary adjustments to the cost function that linearized equations require.

However, linear elements in the nonlinear equation can be calculated analyt-

ically, provided the standard least squares cost function is used. Otherwise,

any cost function can be used, and several are.

The program can use as much information as is available to help constrain
the solution. Constraints or information can bc in the form of the data set

itself, ranges and limits on the constants being fitted, the parameter set

selected such as using the PIC parameter set equations which have fewer

unknowns, and estimated or best guess values for constants. The program

is interesting because it can use various constraints, any set of functions or

algorithms, as well as any cost function, while at the same time solving for

underdetermined, determined, and overdetermined solutions.

Curve fitting often involves underdetermined and overdetermined solu-

tions to various of the constants when marly parameters and complex equa-

tions are involved. The program automatically identifies which are the un-

derdetermined or weakly determined constants, what I refer to as slack con-

stants. In the same way, the program also identifies the not-so-slack, or

principal, constants required for a good fit without the usual need for for-

ward or backward stepwise regression techniques. This auto-no-slack feature

frees the user from constantly adjusting which constants to fit as new data

becomes available for various parameters.

Like standard curve fitting, this data-versus-theory comparison program

takes the generalized theory equations and fits tile constants using the PIC

data points. But the process is different from standard curve fitting where

only the PIC data would determine the constants being fitted, si_lce the user

can also input ideal best guess constant values that the program will try

and fit as well. Consequently, the program used to do the fits for this paper

can, in essence, also be set to use the PIC data to automatically push the

constants away from any user specified theoretical or otherwise determined

best guesses, as needed. As such, the program can set any of the constants

being fitted to their user inputted best gucss values if the data match the
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theory or if the data for finding those constants are nonexistent or poor• Only

when the data do not readily support the ideal constant values of the theory

equations do the data push the values of the generalized theory equations'

constants being fitted away from their ideal values. Therefore the automatic

pushing of the constants away from their user inputted ideal values provides

a relatively definite and unambiguous indication of data set versus theory

disagreement• So while the program can do, and for this paper usually does

do, standard curve fitting, it is more accurate to think of the program as a

data-versus-theory comparison tool for answering the question, how different

is the data set from tile theory?

The fitted results will be presented for several different cost functions.

The cost functions typically used in this paper are defined in Table 2 and
will be referred to as F1 to F5.

• • • .

_= _ Squared Values of the Absolute Errors

] F 2 i_@ = _ Squared Values of the Relative Errors

[ F3 1__(_ = F1 multiplied by F2

[ F4 [ _!(AI : _ Absolute Values of tile Absolute Errors
_ I_,_1= _ Absolute Values of tile Relative Errors

The cost function is what the curve-fitting program minimizes when try-

ing to find the best combination of fitted constants for tile generalized equa-

tions that reproduce the data. Tile cost function is calculated in terms of the

sum of some type of error, or difference, between the predicted and exper-

imental dependent variable values. For each sum, the predicted dependent

variable values are calculated for a given set of experimental data points'

independent variable values using the generalized scaling equations and one

of the many trial sets of program generated fitting constant values that the

curve-fitting program will test to minimize the cost function. Various stan-

dard cost functions are typically used due to mathematical and robustness
considerations, and l used several others as well. Often these cost functions

involve the type of error, either absolute or relative, and whether the value is

then squared or taken as the absolute value. The lea.st squares curve fitting

most often seen in introductory texts uses the sum of the squared values of
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the absolute errors as the cost function [Ref. 4, pp. 204-206], while the sum
of the absolute values of the absolute errors is considered to be a more robust

cost function in that the curve fit is less biased by any outliers in the data

set [Ref. 5, pp. 70, 133-137].

By presenting various fits for different cost functions, a more unbiased

set of fitted constant values is obtained that can also give a feel for the

variability in the fitted constants. However, different cost functions have

different characteristics and cannot all be used equally well in all situations.

In an ideal situation, where the theory is exact and correct, and the data

exactly fit the theory and there are enough data, then any choice of cost

function will eventually converge to tile correct coefficients, ttowever, even

with perfect theory alid data the convergence rate can vary with the various

cost functions and adversely affect computational efficiency. In a situation

that is not ideal, where the data have errors, a cost function should be chosen

that represents and accounts for ai, the uncertainties in, the yi data points,

as well as the type of error inherent in each of the data points. Thereby,

the effect of the error inherent in each individual data point will be correctly

'weighted' to determine the proper amount of each data point's contribution

toward calculating the best values for the fitted constants. But since the

total uncertainty in each y; data point is often unknown, it will be assumed

that all of tile uncertainties call be described by a single constant such that

ai - a. Selecting a constant a simplified the cost functions used in fitting

the constants as well as the calculation of the fit or sample error variance,

as a constant a can be ignored in the minimization process and cancels out

in the calculation of the fit variance. However, a constant a requires the

user to select a type of error that is both constant and most representative

of all of the total uncertainties or errors of all of the individual data points

taken over the entire range of the curve fit. In selecting a cost function that

is best suited to fitting the PIC data, I will generally assume that the PIC

data points obtained are relatively accurate with respect to each other unless

significant measurement and other types of errors external to the PIC code

are present or t,hat PIC code uncertainties across PIC simulations, such as

for different tenl!_oral and spatial resolutions of the varying electron sheaths,

are significant. As such, for PIC data points with large and small y, values,

the small values are assumed to be more likely to remain relatively accurate,

rather than reflecting random noise or measurement errors of a given size.

For example, if the yi PIC, data point values of the depetldent variable are

4O



Curve-Fit ring Process

relatively accurate and span several orders of magnitude, a relative error cost
function is required, as an absolute error cost function will tend to see tile
information contained in the smaller data values as noise. This happens to be
the case when fitting the nonresonance (Pr), equation using all of the near-
resonance power data. The smallest to largest values of the near-resonance
power data span three to four orders of magnitude, so that the smaller values
of the radiated power are not well represented by a absolute error fit. Further,
the radiated power data include two resonance curves, where the smaller of
the two curves is somewhere between two to three orders of magnitude smaller
than tile larger curve. Because the smaller curve's radiated power information
is largely dwarfed by the error of an absolute cost function fit, an absolute
error fit largely ignores the resonance frequency and near-resonance curve
width information contained in the smaller curve. For the fitting process to
fairly weight the equally valid information contained in the smaller radiated
powers of the smaller resonance curve, it is necessary to use a relative error
cost function. So the F2 cost function, which uses the sum of the squares
of the relative errors, would be a better choice than the F1 cost function for
fitting and testing the near-resonance radiated power data.

Based oil the previous arguments, this paper will generally consider F2
to be the overall best PIC data curve-fitting cost function. However, there
are exceptions. For instance, the data sampling of the oscillating dm_x and
Ez ,,,x observables was very coarse and resulted in fitted constants and fit
errors that reflect the coarse sampling of those oscillating values. Further,
the range of the dm_x and Ez ,,,,,x values is not large. So while the PIC
simulation results are themselves often relatively accurate, it still can be
difficult to predict which cost function should be considered the a priori best
for din,, and Ez m_. due to sampling technique or measurement errors that
could be larger than the inherent relative errors for a given set of data points.

The F3 cost function minimizes both the absolute and relative errors

so that one is not nfinimized at the expense of large errors in the other.
Consequently, the F3 fit is good at, reproducing the qualitatiw.' aspects that
one would try to achieve in manually matching a graph to data points, and is
generally a more robust cost function than either F1 or F2 alone. In practice,
this cost functiotl is useful when the dominant error inherent in the data set

being fitted is not well known. Therefore, the F3 cost function has been
included in this paper. So, the F3 cost function helps both types of errors
to become acceptably minimized, with the minimization mostly effecting the
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type of error having the most. variability in its respective sample standard
deviation between the F1 and F2 fits.

But generally the PIC data are relatively accurate if extracted correctly,
and can even be accurate in an absolute sense for certain observables and

carefully set up PIC simulations. For example, the Unatdata set represents a
PIC code simulation observable that is usually fairly accurate, was calculated
very precisely with quantified FFT box width errors, and does not span a
relatively large range of unit dependent variable values. In fact, u,,,,t data are
accurate and precise enough so that the PIC data for Vnat could be good to
approximately one gigahertz of error in an absolute sense, and to about FFT
resolution in a relative error sense. Also, over half of the radiated power
data describe two Ft_ resonance curves, and the resonance frequency and
near-resonance curve width information should be robust across different PIC
code simulations. So u,,_t and near-resonance width data should be robust
across all of tile PIC simulations, and should be relatively insensitive to cost
function. Consequently, fitting the u,_t data should result in consistent fitted
constants that are insensitive to the choice of cost functions, and with errors
that rival tile FFT resolution.

Finally, while (P_), is calculated relatively accurately within resonance
curve runs, and is somewhat relatively accurate across PIC simulations, it
may not be particularly accurate in an absolute sense. The postprocessor
calculated (P_), data may not be particularly accurate in an absolute sense
because of such effects as not modeling the actual physics exactly (nor even
tile theoretical models used in testing), like silnulating perpendicular pho-
toemission, and effects of the coarse spatial and temporal resolutions used in
simulating and postprocessing the electron sheath to calculate the radiated
energy. While needing more study, a few PIC simulations conducted to look
at the effect, of computational resolution indicate that coarser resolutions in
space and tinw tended to increase the amount of calculated radiation from
otherwise similar simulations. This evidence provides one of several possible
explanations as to why the fitted radiation equation results discussed in the
next subsection seem to be three to four times larger than the theory pre-
dictions for a', while still generally reproducing the theoretical scaling laws
in the radiation equation's other fitted constants. Fortunately, the other ob-
servables that will be discussed in the next subsection were found to be less

affected by spatial ant] temporal resolutions.
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Curve-Fitting Results

This subsection will present and discuss the curve-fitting results. The fitting

results will be presented in tables. First the small-spot, coefficient and con-

stant fit results will be presented for various equations and will be followed

by the small-spot, near-resonance fit results. Coefficient and constant fit re-

sults will be presented for Ez max, dm_x, unit, and (Pr)s PIC data, whereas

near-resonance results will focus on (Pr)s fits. However, fitting the near-

resonance (P r), equation will sometimes involve simultaneously fitting the

unit equation for various constants. For fitting self-oscillating and resonance-

modulated PIC data, only one or two of the scaling equation constants will

be fitted, and auto-no-slack is not used in calculating any of the fitted con-

stants. For the near-resonance data, simultaneous fits involving 2, 3, or 7 of

the constants will be presented. Curve fits involving only 1, 2 or 3 of the

constants will not use the auto-no-slack feature. Currently, simultaneously

fitting 7 of the 9 total constants is the most that the available PIC data carl

attempt to fit, and even then only enough data exist to fit either a4 or as,

but not both. So auto-no-slack is used to a small degree in simultaneously

fitting 7 constants but only to fit the three constants aT, as, and a9. The

auto-no-slack feature was primarily designed for analyzing the laboratory's

UV parameter data set when it becomes available, with its larger number of

parameters and fitting constants in the theory equations and more limited
data.

Each table not only shows both the theory equation arid the fitted equa-
tion constants for several cost functions, but also shows the error statistics

associated with each set of theory and fitted equation constant values as

well. It is important to note that the error statistics are descriptive and

can be used to judge the fitted equations and constants independent of the
cost function rased to obtain the fitted constants. However, each cost function

does minimize its closest associated error statistic, so that minimizing F1 also

minimizes the absolute error variance statistic while minimizing F2 also min-
imizes the relative error variance statistic. The absolute error is calculated

as the difference of the fitted equation's value calculated for the dependent

variable minus the PIC code data point's value of the dependelJt variable.

The relative error is then calculated as the negative value of the absolute

error divided by the fitted equation's value of the dependent variable. Next,

the values of these two types of error are averaged over all of the P IC data
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points for a particular fit to determine the fit's average absolute error and
average relative error. If a tabled average absolute error is negative, then the
fitted equation is on average located below the data points. Note that the
absolute errors have units of volts per meter, meters, hertz, and watts, and
are oll the order of kilovolts per meter, microns, gigahertz, and nanowatts
for the l-D, small-spot PIC calculations. The sample standard deviations
for the absolute (and similarly for the relative) type of errors are correctly
calculated using tile degrees of freedom available after the curve fit (fd) as
calculated from the number of constants fitted (he) and the number of PIC
data points used in the fit (N).

The type of errors used in the calculations to perform the curve fits as
well as the error statistics presented in the tables will now be expressed as

equations and discussed. Let y/= y/(x) denote the value of the dependent
variable calculated using the fitted equation, where x = (xl,x2,..., x,,,) and
n_ is tile number of independent x/variables in the fitted equation. Also, for
the i = (1,2,..., N) PIC code (x/, y/) data points, let Yi denote the ith value
of the dependent variable. Finally, let _a and _R denote the absolute and
relative errors respectively. Then for each PIC code simulation data point,

_A =-- Yf(Xi) -- Yi and y, = yl(xi) - _A (34)

_n - Yi- Yl(xi) and y, = [1 + _n]y/(xi) (35)
vi(x,)

The curve-fitting program minimized the F1 through F5 cost functions
to simultaneously determine the optimum values of the various constants in
the generalized scaling law equations that were fitted to the PIC code data.
In the tables, for each cost function the associated fitted constants and fit
errors are listed. Tabled error averages are straight-forward to calculate, and
the error sample standard deviations were calculated based on the general
definition of the variance of a curve fit being [Ref. 4, p. 187]:

s2 = N-_ (36)N __L

Specifically, the fit error statistics were calculated over the PIC code data
points as follows:

E, N, _A (37)
_Aavg : N
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N E'u--' _'_ (38)
_2A_d = N-n_ N

_vg = N (39)

N _iNl _ (40)= N-n N

where the PIC data's a_ variances were assumed constant, with a, -- a, in

deriving the minimization functions and sample error variances for each type

of absolute and relative error used. So the average absolute error of the

fit is _A_g, the sample standard deviation of the absolute error of the fit is

_A_d, the average relative error of the fit is _n_, and the sample standard
deviation of the relative error of the fit is _n_d. The above error statistics

for each curve fit are listed in the same order in the tables, after the fitted

constants, such that for the a' and the a' and c' fit tables the error statistics

are abbreviated as "Abs Avg Err", "Abs SD Err", "Rel Avg Error", and

"Rel SD Error" respectively. The degrees of freedom left over after a specific

curve fit, and which are available to use in calculating the sample variance of
the fit errors, are calculated as fd = N - n_, where again, N represents the

number of PIC code data points used in a specific curve fit and n_ represents

tile corresponding number of constants that were fitted.

Since all of tile curve-fitting result tables show not only the fitted con-

stants but the corresponding error statistics for each fit as well, these tables
can be used to make statistical predictions of the probability of seeing var-

ious y/ dependent variable values for a given set of independent parameter
x values. Consequently, the fitted equation's sample variance error statistics

can be used to create Monte-Carlo scatter graph predictions, or simply to
determine standard deviation or confidence interval curves, about the fitted

equation's predictions which represent the sample average estimate of the

true average. For example, using the F1 fit and a student's t-distribution

with to,yd = l(c_, fd) set to some value determined by selecting a desired cen-
tral, or two-sided, error probability (a) and by using the degrees of freedom

(fd) of the FI fit, then the statistically predicted value of the dependent

variable y, can be expressed as

t_.fd c

= Yj+  A d (41)
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So the parameter to,f,_ in the above equation allows one to specify a desired
confidence interval, above and below the fitted mean value of the dependent

variable (y/), to use in creating the predicted confidence interval curves (yp).
Therefore, for all of the tables, it is now easy to use y! and the error statistics
to generate the yp = y! predicted average curve, as well as any predicted
confidence interval desired about yr.

Tables 3-6 and Tables 8-11 show fit results for various of the generalized
theory equation constants. Tables 3-6 only fit the a' coefficients for the
various curve-fit equations, while Tables 8-11 fit both the a' and d constants.
I will refer to Tables 3-6 fits as coefficient fits and to Tables 8-11 fits as

constant or hybrid fits. Tables 3-6 and Tables 8-11 are arranged to show
Ez m_x, dm_x, v,_t, and (l_)s fit results respectively. All tile fit results in
Tables 3-6 and Tables 8-11 are 'standard' curve fits which only minimize the
F1-F5 cost functions and do not use the auto-no-slack feature to adjust the
cost functions. Also, all tables show the values of tile fitted constants and the
error statistics they generate when used in the captioned theory equations
to generate data to compare with tile PIC code data. Lastly, all tables show
the errors generated when just the theory constants are used. These pure
theory errors act as yardsticks for comparing the pure theory with th_ data
and for comparing the theory equations with the fitted equations and the
effect of different cost functions and constants being fitted.

All of the PIC code simulations were performed at only two levels of
emitted electron energies, and all of the tables show the results of curve
fitting all of the resulting, usable 0.2 and 1.3305 eV small-spot data points
to calculate the fitted constants, ttowever, Tables 6 and 11 had no 0.2 eV

data to fit. Also, Tables 3-5, 8-10, and 15 only had a single 0.2 eV data
point to use in the fits. Unfortunately, this single 0.2 eV data point and the
few other 1.3305 eV data points only provide the necessary minimum of two
levels of/3 needed to fit b', so while b' could have been fitted, it was not.

Basically, it was decided that not enough poir_ts at 0.2 eV (let alone at other
levels of eVb) were simulated with the PIC code to accurately fit b' (except
for Table 14, and indirectly in Tables 12 and 13) for comparison with the
theory. So while all of the applicable 0.2 and 1.3305 eV small-spot data were
used in fitting the a' and d constants, due to the small number of points to
fit, tile errors involved, and [laving only one extra fl point at a different /3
level, the b' constant was not fitted. Consequently, simultaneously fitting a',
b', and c' to all of the applicable data would be too unreliable. 'Fables 6 and
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11 show the results from fitting 5 data points, and Tables 3-5, 8-10, and 15
each used 6 data points to calculate the curve-fit results (and Tables 12-14
used 41 data points), where the sixth point is the single 0.2 eV data point
that was available for those fits. Finally, Tables 6 and 11 used resonance
radiated power data in calculating the fitted constants, while Tables 3-5, 8-
10, and 15 used self-oscillating data (and Tables 12-14 show fit results for all
usable radiated power data).

Tables 3-6 are ideal for comparing the theory predictions for small-spot,
steady-state, resonance conditions with PIC data from simulations that im-
plemented many of the theory models. By directly comparing the theory
value of the a' constant with the various fitted values, and by noting the
respective errors, one can get a good feeling for how well the simple analytic
theory equations match the PIC code results. Other items to look at for all of
the tables showing curve-fit results are the consistency of tile fitted constant
values and resulting errors plus the nature of the data used in the fitting
process, such as the data's approximate accuracy, precision, and IJumber of
points. By understanding the data, the theory, and tile size of the fit errors,
as well as the closeness and consistency of the errors and fitted constant
values, and how they compare to tile theory, conclusions can be drawn as
to the general goodness of the fit. Of course, the comparison of the theory
equations with the PIC data should also take into account the fact that the
simple theory was developed to make rough predictions and to develop the
general scaling laws for use with testing, understanding, and optimizing ob-
servables of interest, and for using the PIC and laboratory data to improve
the simple theory results. In a previous subsection, the problems with sig-
nificance testing were discussed. Briefly restated, as a consequence of the
differences and errors inherent in the theory and the PIC code simulations,
the theory does not exactly match the PIC code simulations. Therefore, the
best that can be expected of the theory-versus-PlC comparisons is that the
fitted constants should be close to tl_e theory values, any large deviations of
the fitted constants from the theory values should be reasonable, and that
the size of the fit error statistics should be reasonable as well.

Several numbers based on Tables 3-6 will now be presented for Ez m_,
dm_,,,,u,_,t, and (f_)_ respectively. From the relative average error statistic
(R,_g obtained for the data versus theory, the average ratio between the
PIC code data and the Yt theory curve is given by (y,/yt(x,)) _- _rt,_,,g+ 1,
or for the various curves by 2.0,1, 0.939, 0.913, and 3.84 respectively. As
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Table 3: a' Coefficient Fits and Errors of Ez max = at_ b'lj) c'
Cost a' b' c' Abs Avg Abs SD Rel Avg Rel SD
Func Fitted Err, kV/m Err, kV/m Error Error

Theory 13875 0.5 0.5 -49.326 54.415 1.0352 1.0449
F1 27767 0.5 0.5 -1.0921 10.054 .016950 .079975
F2 28376 0.5 0.5 1.0201 10.378 -.0048523 .076307
F3 28131 0.5 0.5 .17144 10.171 .0037942 .076895
F4 27241 0.5 0.5 -2.9203 10.298 .036608 .088857
F5 29259 0.5 0.5 4.0856 11.869 -.034883 .083128

Table 4: a' Coefficient Fits and Errors of dmax = a'/3 b'(:i) c'
Cost a' b' c' Abs Avg Abs SD Rel Avg Rel SD
Func Fitted Err, #m Err, pm Error Error

Theory 18.415 1.5 -0.5 3.8364 8.4950 -.060880 .21411
F1 14.137 1.5 -0.5 -2.1489 5.89,13 .22332 .38164
F2 18.120 1.5 -0.5 3.4239 8.9273 -.045599 .23392
F3 16.285 1.5 -0.5 .85695 6.9153 .061928 .26317
F4 13.373 1.5 -0.5 -3.2174 6.0328 .29319 .44613
F5 18.554 1.5 -0.5 4.0307 9.4879 -.067911 .23526

.....

.... =a'_b'lj)_'Table 5: a' Coefficient Fits and Errors of v._t

Cost a'/106 b' c' Abs Avg Abs SD Rel Avg Rel SD
Func Fitted Err, GHz Err, Gltz Error Error

Theory 4.0700-0.5 0.5 .66615 .75097 -.087263 .090287
F1 3.6700 -0.5 0.5 -.039241 .17807 .012229 .031177
F2 3.7172 -0.5 0.5 .044121 .20178 -.00064419 .027803
F3 3.6923 -0.5 0.5 .00012968 .18362 .0061083 .028771
F4 3.7062 -0.5 0.5 .024612 .19234 .0023391 .027995
F5 3.7321 -0.5 0.5 .07041,1 .21748 -.0046370 .028146

48



Curve-Fitting Results

a'FTable 6: a' Coefficient Fits and Errors of (Pr), = o A /3
Cost a' U c' d' e' AbsAvg AbsSD RelAvg RelSD
Func Fitted Err, nW Err, nW Error Error

Theory 24.65'7 2 2 2 2 -107.48 129.43 2.8446 2.9114
F1 74.722 2 2 2 2 -12.693 24.139 .26866 .37751
F2 97.261 2 2 2 2 29.980 68.620 -.025334 .17795
F3 78.693 2 2 2 2 -5.1748 26.660 .20464 .31543
F4 70.539 2 2 2 2 -20.613 26.922 .34389 .45443
F5 100.63 2 2 2 2 36.366 77.692 -.058002 .18176

,,,

such, the values of the the PIC code data are on average about 2.04 times
larger than the values of those same dependent variables when generated
from the theoretical curve for Ez m_x. So while the average PIC data values
as compared to the theory equations are about right for dm_xand u,_t, the
values of the PIC data are on average larger for the other observables. When
these same ratio factors are calculated for all of the fitted equations using

the various cost functions in each table, where (yi/yl(xi)) = _laavg + 1, and
are multiplied with the fitted a_ to adjust the fitted curve to compensate
for the average relative error, the adjusted a_ is largely independent of the
different cost functions and results in adjusted a:t values of 2.82× 104, 17.3,
3.71 × 106, and 94.8 respectively. Unfortunately these new average values, if
used to recalculate the error statistics, would generally cause the _,d error
statistics to increase even though the _vg error statistics would decrease,
since to try and further decrease both the (_vg and _,d error statistics would
require an ad hoc extra degree of freedom in the theory equations to represent

.--. ,Ithe average offset error, such that y a,flb'(j)c'+ konset for example. Since
the PIC code nonlinear solution of the problem is self-consistent, and since
the average differences of the PIC data versus the theory do not always show
consistent variations from the theory, the average differences tend to highlight
tile approximate nature of the simple theory. Still, the simple scaling laws
work better than might have been expected, being well within an order of
magnitude in predicting the PIC simulation results.

The .k"2 chi-square independent goodness-of-fit criterion is [Ref. 4, p. 202]:

,_2=_ 1: ["'- (42)
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and requires knowing a, for the data points, where again, ai ----a was set

equal to a constant as used for the curve fits in this paper. Note that k"2

is the least-squares cost function that determines the optimum values of the

fit constants when it is minimized with respect to each of the fit constants

simultaneously. Since a is generally unknown for the PIC data, and there-

fore generally unavailable for a k_2test, a simple significance test using the

student's t-distribution for small .fd degrees of freedom can be used instead

to get a rough ideal of the merit of the null hypothesis (H0). Let tc be the

calculated test statistic. Then using the Fl curve-fit results for Yf, along
with the derived theory equation and theory constants for Yt,

tc = I(Yj - y,)lv_" __ lY_- Y, lV_ __ t¢:A,,,sv, - _A,_g,Iv_ (43)
S 5; _Asd F1

where the fitted equation's dependent variable Y/ = f(x) represents the
sample mean value for the dependent variable estimated from curve fitting

the: values of the (x,,y,) N PIC data points. The population mean value

for the dependent variable is, for the purposes of this test, assumed to bc

the theory equation's Yt = f(x). Finally, O represents the respective fit and

theory equation dependent variable values averaged over the N PIC data

points, calculated ms

E_=, y(x,) (44)
Y= N

Table 7 summarizes the significance test results obtained from using the

tabled theory-versus-fiLLed equations' F1 error statistics for the a' only curve

fits. If t( > t,_,I_, for a given t_,,j_ as determined by both tile degrees of
freedom of the fit fd and bv the selected error probability value of c_, then

there are significant differences between the theoretical mean values of Yt

and the estimated mean values of YI' and therefore that there are significant
differences between the theory and the PIC code simulation results. Conse-

quently, if t_ > t.,l _, then the null hypothesis must be rejected. So based on
this significance test of tile a', F1 fits, the null hypothesis is rejected for the

Ez m._, u._t, and resonant-driven (f_)_ comparisons, and is accepted for the

dm,,_ and self-oscillating (P_}, comparisons between the theory predictions

and computational PIC code simulation data. ttowever, the tabled signifi-
cance tests do not include all of the total differences between or total errors in

the theory predicted and PIC code simulation calculated (and experimental
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and true) results, so any careful significance testing based only upon the fit-

ted error statistics is expected to show significant differences if enough good

data points are sampled and fitted. So even large, rejected tc values could be

acceptable since the total error was not used, and despite the differences, the

theory and computational PIC data are both based on simple, fundamental

physics and still appear to be useful in predicting and optimizing the various

dependent parameter values. In summary, this look at the curve-fit results in

Tables 3-6 (and 15) finds ttle expected general, but not usually statistically

significant, agreement among tile theory predictions and PIC data.

Table 7: Significance Testing Results of FI_ a' Fits Versus Theory

Equation Table N nc f_ tc to,In to,l n to,/n H0
Tested Used o=.05 o=.01 a=.001

Ez max 3 6 1 5 11.751 2.571 4.032 6.869 R

dmax 4 6 1 5 2.4873 2.571 4.032 6.869 A

//nat 5 6 1 5 9.7032 2.571 4.032 6.869 R

(Pr)_ 6 5 1 4 8.7804 2.776 4.604 8.610 R

(PT), 15 6 1 5 0.3017 2.571 4.032 6.869 A

The next few paragraphs will examine the fits presented in Tables 3-6 and

'Fables 8-11 with respect to each fitted observable, in more detail. Various

explanations will be put forth as to how some of the differences from the

theory could have occurred. The general types of explanations that make

the theory-versus-PIC disagreements seem more reasonable are listed below.

Sometimes the way tile PIC code performed the simulations, or how the

postprocessor worked, can be invoked to help explain various results, such

as for Ez max and (P r),. Other times, the behavior of the observable being

sampled, the coarse sampling, and limited number of data points can be

cited, as for Ez max and dm_x. Even data that are fitted well, such as for

Unat, cause tile number of error standard deviations to be large by tile very

fact that the fits are generally consistent and good, having small errors.

This brings up the question of the overall accuracy and precision of the

PIC data obtained, how well the PIC simulations and resulting PIC data

match the theory models the data are being compared to, and whether the
PIC data set for the models used is itself accurate in a relative, absolute, or

both relative and absolute sense. In general it should be stressed that while
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Table 8: a' and c' Constant Fits and Errors of Ez max = atfl b'lj) c'
Cost a' b' c' Abs Avg Abs SD Rel Avg Rel SD
Func Fitted Fitted Err, kV/m Err, kV/m Error Error

Theory 13875 0.5 0.5 -49.326 54.415 1.0352 1.0449
F1 47972 0.5 0.44013 .51470 10.033 -.024340 .10500
F2 29960 0.5 0.49354 .72722 11.233 -.0048192 .085023
F3 34516 0.5 0.47652 -.18495 10.511 -.0029576 .087053
F4 42960 0.5 0.44845 -3.0216 11.006 .015370 .10165
F5 42960 0.5 0.44845 -3.0216 11.006 .015370 .10165

Table 9: a' and c' Constant Fits and Errors of dmax = a'fl b'' j)c'
Cost a' b' c' Abs Avg Abs SD Rel Avg Rel SD
Func Fitted Fitted Err, #m Err, pm Error Errorh,

Theory 18.415 1.5 -0.5 3.8364 8.4950 -.060880 .21411
F1 2.4109 1.5 -.28181 -1.1236 4.8363 .16019 .50874
F2 18.622 1.5 -.50323 3.4400 10.051 -.045588 .26150
F3 6.8397 1.5 -.39852 .27814 5.9348 .077375 .33978
F4 1.6004 1.5 -.23703 -1.7793 5.0209 .20954 .60546

F5 22.204 1.5 -.52032 4.3418 11.284 -.074925 .26491

Table 10: a' and c' Constant Fits and Errors of Vnat : a'_ b'(j)c'
Cost a'/lO 6 b' c' Abs Avg Abs SD Rel Avg Rel SD
Func Fitted Fitted Err, GHz Err, GHz Error Error

Theory 4.0700 -0.5 0.5 .66615 .75097 -:087263 .090287
F1 4.6716 -0.5 .47327 -.0060936 .12645 .0014293 .025464
F2 4.3934 -0.5 .48059 .015210 .13873 -.00039380 .024304
F3 4.5629 -0.5 .47600 -.0024320 .12774 .0013984 .024825
F4 4.8246 -0.5 .46968 -.0021617 .12817 .00014079 .026600
F5 4.8246 -0.5 .46968 -.0021617 .12817 .00014079 .026600
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Table 11" a' and c' Constant Fits and Errors of/Pr), = a'F_'A_'flb'lj)c'
Cost a' b' c' d' e' Abs Avg Abs SD Rel Avg Rel SD
Func Fitted Fitted Err, nW Err, nW Error Error

.... ........

Theory 24.657 2 2 2 '2 -107.48 129.43 2.8446 2.9114
F1 4383.3 2 1.5726 2 2 .59156 4.0681 -.022356 .068135
F2 2113.9 2 1.6516 2 2 1.3256 8.6550 -.0010763 .042353
F3 3231.7 2 1.6046 2 2 -.52564 4.6785 -.0049996 .050839
F4 4835.9 2 1.5618 2 2 .37308 4.2345 -.024276 .073370
F5 2246.3 2 1.6471 2 2 4.3117 11.861 -.021425 .049914

the PIC data and sampling are not necessarily perfect, the simple theory
itself may be the limiting factor in trying to make too close of a comparison
with the generally better, self-consistent PIC code modeling and solutions.
Therefore, this paragraph ends with a warning not to expect to find too close
of an agreement or consistency between the theory and PIC results, because
both the theory and PIC simulations do have differences and limitations.

EZ max WaScoarsely sampled data that came directly from tile PIC code
graphs, and represents six self-oscillating simulations. The fits turn out to
be fairly good in the size of the errors, since errors of that size were expected
due to the coarse sampling of the variations in the oscillating Ez m,x peak
values. The errors do not, clearly indicate that any of the cost functions is
necessarily best. In fact, the fitted a' coefIicients are fairly consistent, and
indicate that the maximum electric field strength predicted by the steady-
state theory is about half of what tile coarsely sample peak values of the PlC
code simulation data suggest.

The increased electric field strength found in the PIC data could be the
result of several factors. One explanation is that the increased electric field
strength in the simulation is the result, of the self-oscillation causing higher
peak field strengths to have been sampled. But this is not true, and is shown
by one of the PIC simulations, where a damped self-oscillation steady-state
Ez was reached. For this damped self-oscillation simulation, the coarse sam-
pling should have accurately, if not very precisely, measured the average
Ez max,because there were no significant oscillations affecting the last sam-
pled graph that was dumped in time, from which these data were taken.
Calculating the value of a' for this essentially non-oscillating Ez data still
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results in a single-point solution a' = 29259, that closely matches the 6 point
curve fit and is also about twice as large as predicted. Since the single point
non-oscillating solution for a' represents the average Ez maxand agrees with
the 6 point curve-fitted solutions, this indicates that the coarse sampling of
Ez max turns out to have been somewhat randomly distributed about the
average values of the oscillating Ez max. Consequently, it is more likely that
the higher than expected electric field strengths are due to the inherent dif-
ferences between the simple theory and PIC code simulation results. Two
examples of such differences in the PIC code simulations versus the the-
ory results are: 1) the fully self-consistent, nonlinear PIC code solutions,
and 2) the PIC code not returning the charge of the initially emitted elec-
trons that escaped the simulation boundary at z = 100 pm, to the emitting
conductor. Note that Figs. 4-6 indicate that roughly 2 kV/m (0.2 eV) and
14 kV/m (1.3305 eV) Ez field strength increases occurred due to the escaped
charge. When treated as systematic errors and subtracted from the Ez max

data given in Table 16, the new a' fit using the F2 cost function calculates
that a' = 24637, with _a_g = --.0057977 and (rod = .083410. As such, com-
pensating for the escaped charge appears to only result in a 13.2% decrease
from the previous F2 fitted a'. Itowever, future simulations would help to
confirm tim causes and the extent to which each cause contributed to the

difference between the theory and PIC data.
The poorly sampled dm_x PIC data come directly from the PIC code,

being measured from graphs that MAGIC created. The dominant type of
error inherent in the data is difficult to identify for determining which of the
cost functions is necessarily best. However, due to the nature of the data set
with its limited number of data points and relatively large errors, all of the
cost functions result in fitted constants that are generally close to, though
sometimes less than, the predicted theory value, and that have fit errors
reflecting the expected sampling error. Further, because the sampling error is
somewhat large, along with the fact that only six data points exist, allowing
the c' constant to also be fitted in Table 9 does not give very consistent
results. In essence, either more accurate data or more data of the same
accuracy would be needed to predict a more consistent set of fitted constants
in 'Fable 9. Still, the constants in Table 9 do show the right trends. Finally,
as noted in discussing Ez m,x above, the electric field strengths simulated by
the PIC code do indeed seem to be about twice as large, on average, than
predicted by the theory. This should have the effect, of decreasing the average
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dmax by half, which is only partially supported by the values of the fits to the
oscillating dm_x. As was done for the average electric fields, the damped Sun
workstation PIC simulation data for dm,,xcan be used to calculate a steady-
state, one-point solution for a' = 11.355. This value of a' corresponding to
the steady-state damped solution is about half of what w_ predicted and is
nearly consistent with the doubled electric fields.

But what does the damped solution value for a' indicate? If the damped
solution for a' represents the average dm,,x, then since a' = 11.355 is lower
than all of the fitted values for a', this could simply indicate that dm_xwas
sampled above tile average values for tile oscillating dm,,_. But based on all of
tile momentum graphs, as represented by the momentum graphs in Figs. 2-3,
it appears that drain is fairly constant versus steady-state simulation time,
and that it is close to the damped solution for a'. Also, the electric fields
appear randomly sampled about the average, and the maximum orbits were
similarly mea_sured. So based on tile above arguments, it is probable that
the damped solution for dm_xof a' = 11.355 actually represents tile minimum
oscillating d,,,x, with dm_ oscillating about an average a' value somewhere
between 11.355 to 18.554 or greater. Unfortunately, the true average orbital
distance d,vs based on all of the particles in an oscillatin9 simulation is hard
to determine from these momentum graphs, where potentially a few macro
particles, for perhaps short portions of their orbits, and appearing at large
dm_ distances, could bias the results. From the new Cray runs, using the
MAGIC graph of the damped simulation in Fig. 2 results in non-oscillating
one-point a' solutions for drain, davg, and dm_,_of approximately 11.39, 11.52,
and 11.66 respectively. And using only the parabolic like part of the electron
trajectories for the oscillating simulation shown in Fig. 3, the one-point a'

solutions for dmin, davg, and d,n_,_are approximately 9.966, 10.39, and 10.82
respectively. In conclusion, the average of the sampled dm_,,,oscillations is
represented by the various fits, while the actual average d,n,_ could be lower,
reflecting increased electric fields, and where the more accurately measured
data for damped a' solutions for the average Ez max and d_ s show nearly
consistent deviations from the theory.

u,_,t data are probably tile most robust and accurate data produced by
the PIC code simulations and subsequent radiation postprocessing. For Unit,
values ranged from abollt 4 to 9 GHz, st) there was not even much varia-
tion in the range of the dependent variable used in the cost functions. The
absolute errors from FFT resolution considerations were the same for this
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set of 6 PIC simulations, with the Una t PIC data from each simulation being
relatively accurate with respect to other simulations, and could be accurate
to within one gigahertz from the true values in an absolute sense. Compu-
rationally the FFT box width, which defines part of the total error in the
postprocessed u,_t data, was 0.15815 GHz for all of tile MAGIC simulations.
As a result of the relatively accurate and precise u,.t data having small vari-
ations in error, all of the fits listed in Tables 5 and 10 give very similar fitted
constant values with small errors that approach the width of the FFT boxes.
So from Table 5 results based on fitting 6 PIC data points, the estimated
value for the a' constant is close to the theory value, tile fits are all very
consistent, and the fit errors are very good. It would appear that the simple
theory equation for u._t works surprising well despite the rough approxima-
tions used to convert the orbit of a 'virtually' thin, rigid, single-pulse charge
sheet into a steady-state, pure sinusoidal current source having a predicted
orbital frequency. However, the curve-fit deviations from the simple theory
are not even fully self-consistent among all of the different generalized theory
equation fit results (such as the electric field strengths increasing and elec-
tron orbital distances decreasing, but the natural frequency not increasing),
so any very close agreements or consistent deviations among some of the
theory and fitted equations could be just coincidental.

In comparing the (Pr), fitted constants with theory, the (t_), fitted con-
stants reflect the more complex nature of the (Pr), data. As seen in Table 6,
the fitted coefficient appears to be three to four times larger than the theory
constant. Also, the theory curve lies below the data points by an average
of about 107 nW. In looking at the errors, the fitted constant values cause
the error statistics to decrease, especially for the relative errors. (Pr), data
are not as robust and accurate as tile u.,t data, as the coarseness of the
spatial and temporal resolutions used in the PIC code and tile postproces-
sor affect the results. And preliminary test runs designed to look into this
problem indicate that coarser simulation grid resolutions increase tile calcu-
lated power. Also, tile theory is not only simple, but may actually represent
the lower values of the self-oscillation radiated power (see Table 1,5), rather
than the larger values of the externally imposed _',,od= u,,t driven resonance
effects and resulting powers. In addition, Table 11 indicates that the value
of the c' constant is also too large, and that the data have a slightly less
than quadratic scaling with respect to the current density of the emitted
beam (which is also the scaling for the power of the light source when us-
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ing laboratory parameters). Still, (Pr), behaves approximately as expected
and the simple, limited nature of the theory, as well a_ssimulation modeling,
resolution, and goodness-of-data issues, probably account for most of tile
differences observed between the simple analytic theory predictions and the
PIC code simulations.

You may have noticed that the F4 and F5 cost function fit results are
identical in Table 8, as well as in Table 10. They are identical because the
F4 and F5 cost functions use the sum of the absolute values of the errors

(and not the sum of the squared values of tile errors) to determine the fitted
. constants. A result of using tile sum of tile absolute values of the errors as

_ ! the cost function is that it creates a fitted equation that exactly intersects
the number of data points necessary for a minimum solution, while giving

i the best fit error from the remaining points that were not intersected by the

i fit [Ref. 5, pp. 135-137]. With only six points and two constants to fit, two
points were fitted exactly and it was not unlikely that sometimes the F4
and F5 cost functions would both select the same two points for minimizing
the sum of the absolute values of both the absolute and relative errors. As

stated previously, the error statistics are descriptive and can be interpreted
separately from the cost functions. However, each cost function has caused
its related fitted error sample standard deviation to be minimized, even for
the cases where the cost function results in discretely intersecting a subset
of the data points.

Also for the same reasons given in the previous paragraph, note that the
single point Ez m_ solution for a' using the damped self-oscillation data point
is the same a' fitted solution seen in Table 3 where all six data points are

fitted using the F5 cost function, and where only one data point is exactly
intersected. Not unexpectedly for randomly sampled data about a mean,
especially where a few points are involved, the point intersected as the best
solution to minimize the total error from all the data points turns out to
be, for the F5 cost function in this case, the steady-state damped one-point
solution thai, represents the average value of the sampled Ez m_. A match
between tlm one-point direct solution and multi-point curve-fit solution for
a' (lid not occur with the d,,_ data because the minimum dm,,_solution for
a' seems to have been calculated from the one-point damped sinmlation, and
this solution did not minimize the total fitted error for either the F4 or F5

cost functions, since the sampled data were always greater than or e(lual to
the one-point solution. Consequently, the F4 and F5 fits represent the larger,
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average values of dmax that were sampled.

In summary, Tables 3-6 and Tables 8-11 provide useful curve-fit results

for comparing tile theory and fitted equations' constant values and fit errors.

Tile values in Tables 3-6 are especially useful for direct comparisons of how

well the theory equations, with their theory constants for parameter scaling,

compare to theory values. And by analyzing the results of Tables 8-11 along

with the results shown in Tables 3-6, greater insights into the nature of

the data set as it compares with ttle theory were gained. The results are

generally quite good, showing that the theory predictions agree in sign and

general rnagnitude with the PIC code simulation data. In one sense, the

Ez m_x fit showed tile worst agreement of the PIC data with theory equation

predictions, having the worst tc/t,,f d significance test ratio for any given c_
error probability. In another sense, the worst colnparison comes from the

more complex (Pr), equation, where the PIC fitted curve turns out to be

three to four tiInes larger on average than the theory curve values. That

difference is not bad, and considering the simple nature of the theory, along

with results of preliminary testing of resolution effects, these differences seem

acceptable. Later, Table 15 will take another look at explaining this theory

versus PIC data radiated power difference. In conclusion, Tables 3-6 and

Tables 8-11 show that the theory predictions and PIC simulation data do

riot, usually agree in a significant way (based on a simple significance test

that used only the fitted equation estimates of the total error), but that the

agreement is generally good and within an order of magnitude on average,

which is quite good when all the limitations, errors, and model differences of

the simple theory and PIC simulations are considered.
Tables 12-1,t use most of the PIC simulation radiated power data points

to obtain additional fitting results. As previously discussed, to do so required

an ad hoc I'_ resonance function. Consequently, only data points in the first

resonance maximum could be used (0 _< b'mo d (2.3Unat), allowing 41 of the

48 total t)IC, data points to be used. As a result, the ad hoc Lorentzian

function used should provide for a better u,_t estimate of constant a_, as well

as providing an approximate estimate of constant a6. Also, fitting all 41 data

points allows a4 to be reliably determined. Of course, one can then check
how other constants take on fitted values when using the ad hoc Fn function

and 41 data points by comparing previously fitted constants with those same

constants fitted to 41 data points. The fit errors are calculated as t,efore.

Note that I only use the F1, F2, an(l F3 cost functions in these tables. Again,
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tile F2 cost function estimates for the fitted constants, which more equally
weights and uses the information from tile smaller 0.2 eV FI_ curve, is best
for these radiated power fits. Finally, tile previous caveats concerning coarse
grid resolution and the limited nature of the simple analytic solution, as used
in discussing tile resonance/I_), results from Tables 6 and l l, also apply to
the results in Tables 12-14.

Table 12: Small-Spot, Near-Resonance, Constants Fits and Errors of

(t5), = atF_)2a_'3/i_'(j)ast"n where Fn =-- a_/ [(/]mod/b'nat- l) 2 + a62],

u,_t = ar_P"(j} _'" Ft_ = D = 100% and A = 2.0 × 10 -6 m 2 were used.
Constants Theory F 1 F2 F3
and Errors Values Results Results Results

a, Vi'tted 24.657 80.751 116.85 ..... 83.900
a2 2.0 2.0 2.0 2.0
a3 2.0 2.0 '2.0 2.0
a4 2.0 2.0 2.0 2.0
a5 2.0 2.0 2.0 2.0

a6 Fitted None (.62(}31) .72546 .62031 .74495
aT 4.0700x lOt; 4.0700x 10 6 4.0700x 10 6 4.0700x 10 6

as -0.5 -0.5 -0.5 -0.5
a9 0.5 0.5 0.5 0.5

_ , c)Avg Abs Err -41.208 nW 5.1694 nW 12.514 nW -2.62,8 nW
SD Abs Err 68.673 nW 13.803 nW 40.064 nW 14.577 nW

Avg Rel Err 3.4327 .21635 -.064616 .15216
SD Rel Err 3.6250 .4089,1 .26063 .36535

Three sets of constants were fitted to the,ll PIC data points, resulting in
three tables. ]'able 12 fits the al and (26 constants, which are generally the
minimum number of constants that can be meaningfully fitted. Table 13 fits
the al, a6, and (2_constants for simultaneous estimates of both the (I5), and
u,,,t coefficients. Appropriately, the curve-fit results in Table 13 are similar to
the previous curve-fit results for the u,_t and (l_), coefficients as presented
in Tables 5 and 6 respectively. ]'able 14 simultaneously fits the al, (24,as, a6,

aT, as, and a9 constants to the ,11near-resonance data points, using auto-no-
slack applied to the aT, as, and a9 constants to act as an additional constraint
in helping to determine how a,t and as should be adjusted for a best fit. From

59



COMPARING TtIEORY AND PIC RESULTS

several trial fits, a4 was found to be more critical and as was found to be
more slack. This previous result was automatically enforced by the applied
auto-no-slack option.

Table 13: Small-Spot, Near-Resonance, Constants Fits and Errors of

(P,.), = a,F_A_3fla'(j)"_Fn where Fn - a261[(Vmod/Vnat- 1) 2 + a62],

v,_,, = aT13"'(j) _9 Fo = D = 100% and A = 2.0 × 10-c m2 were used.
Constants Theory F 1 F_2 F3
and Errors Values Results Results Results

al Fitted 24.657 80.772 116.82 86.313
a2 2.0 2.0 2.0 2.0
a3 2.0 2.0 2.0 2.0
a4 2.0 2.0 2.0 2.0
as 2.0 2.0 2.0 2.0

a6 Fitted None (.62031) .7253S .6207-1 .72253
a7 Fitted ,t.0700×106 4.0723×106 4.0667×106 4.2928x106

as -0.5 -0.5 -0.5 -0.5
a9 0.,5 0.5 0.5 0.5

Avg Abs Err -41.208 nW -5.1629 nW 12.53.5 nW -2.2706 nW
SD Abs Err 68.673 nW 13.983 nW 40.640 nW 14.742 nW

Avg Rel l),rr 3 4327 91590 .064615 12492
SD Rel Err 3.6250 .41397 .26,104 .36020

,,,

The fitting process is being used to compare the simple theory equations
with the hopefully better solutions obtained from using MAGIC. Since the
constants in 'Fables 12-14 were fitted with data points spanning several or-
ders of magnitude in the dependent variable, and because the computational
errors are mostly relative since the same MAGIC simulation grid was used,
the 1;'2cost function provides the best estimates of the fitted constants. If the
PIC and radiation postprocessing calculations are basically correct, even if
only in a relative sense among the PIC simulations, then the deviations from
the theory constants could largely be due to the fully self-consistent nature
of solving the simple theory models using the MAGIC PIC code. For exam-
ple, in Table 14 the constant as has a fitted value of about 1.77 compared to
the theory value of about 2.0, and this difference could be due to the theory
models being solved approximately for the analytic theory, while being im-
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plemented and solved more directly using the MAGIC PIC code. While tile
fits and errors do not look exceptionally good, they appear acceptable given
various other considerations such as numerical simulation concerns like grid
coarseness, and the fact that the theory is itself very simple and does not
fully represent nor reproduce tile better modeled, nonlinear solution achieved
using the MAGIC PIC code. So tile data fitted in Tables 12-14 should be
relatively correct across PIC simulations and the fitted equations appear to
provide generally good agreement and errors when compared with the theory.

Table 14: Small-Spot, Near-Resonance, Constants Fits and Errors of
(I_), = a,,tg., _- (j)_sb_ where Ft_ - a_/ (Umod/U,,t 1)2+a ,

..,it = ar/_""(j) "9 Po = D = 100% and A = 2.0 x 10-6 m s were used.
Constants Theory ....F 1 F2 F3
and Errors Values Results Results Results

_- ,,,_ , "'

al Fitted 24.657 3.2884×105 6.4056x103 2.4914×105
a_ 2.0 2.0 2.0 2.0
aa 2.0 2.0 2.0 2.0

a4 Fitted 2.0 2.6821 2.3307 2.6543
as Fitted 2.0 1.5560 1.7650 1.5677
a6 Fitted None (.62031) .72390 .64194 .72618
aT Fitted 4.0700× 106 4.0700×106 4.0700×106 4.0700×106
as Fitted -0.5 -0.5 -0.5 -0.5
a9 Fitted 0.5 .48377 .49827 .48545

Avg Abs Err -41.208 nW .16012 nW 3.3773 nW .20198 nW
SD Abs Err 68.673 nW 5.1505 nW 15.598 nW 5.2233 nW

Avg Rel Err 3.4327 -.057077 -.055610 -.063484
SD Rel Err 3.6250 .29058 .25896 .28383

Due to the number of constants fitted, auto-no-slack was used in Table 14,
and has affected the fitting process by finding the at, as, and a9 constant
values closest to the theory values that create a good fit. As such, several
constants exactly or closely match the theory values, indicating good theory
versus data agreement or insufficient good data to pull those constant values
away from the theory values. Only when a constant has changed significantly
from its theoretical value would that show that the data required a different
value to reduce the errors and obtain a good fit. As it turns out, the applied
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auto-no-slack shows that out of aT, as, and ag, tile fitted constant a9 WaS least

able to maintain its theory value without causing a large increase in error for

tile fit. So a9 was pushed slightly away from its theoretical value by the PIC
data. Table l0 shows a similar trend in its fitted d constant. Constant a4

was also pushed slightly from its theory value when the auto-no-slack option

set the as constant to its theory value. The fitting program set as to its

theory value because as had less affect on decreasing the fit error than a4

and because only enough levels of/3 exist to fit one of the two constants.
Finally, a4 was reliably fitted in only two levels because there were two sets

of points at the two/_ levels.
Now each of the fitted constants of Table 14 will be examined. For con-

stants a2 and a3, there was only one level of PIC data sampled exploring

modulation depth and illuminated spot area, and timse level values are listed

in the table captions. As such, these constants could not be fitted and were

simply set to their theoretical values. Constants aT, as, and a9 were 'slack

constants', remaining mostly unchanged from the theory values by the PIC

data. Constants al and a6 were allowed to go to any value, since there were

normalization questions about al, and a6 had not been calculated from the-

ory. Constants a4 and a5 were found to have varied from the theory values.

As a consequence, the value of al had to adjust itself to cornpensate. How-

ever, from a comparison viewpoint the constant differences that exist seem

acceptable.

Besides the constants, how good are the overall fit errors? The standard
deviation of the absolute errors varies from about 5 to 16 nW. To understand

what that means and to put it into perspective, the smallest (/°r), measured

was .076901 nW, while the largest was 352.91 nW. From the two resonance

scans, the peak for the 0.2 eV curve was 0.48531 nW, wllile tile peak for

the 1.3305 eV curve was 78.197 nW. Of course these small (P_), values are

for a very small spot having an area of only 2.0 x l0 -6 square meters. So,

16 nW is less than 5% of the maxinmm (P_), value fitted, and less than 20%
of the 1.3305 eV resonance curve maximum. For tile standard deviation of

the relative error, the values range from about 26% to 29%, and represent

the relative error with respect to all the fitted points. This number means

that while the data points varied widely from .076901 nW to 352.91 nW,

the calculated values based on the theory equation using the fitted constants

remained close in a relative sense to most of those points. This radiated

power PIC data set was obtained precisely and should generally be considered
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relatively accurate over wide scales. This is especially true when fitting
Tables 12-14 to all of the data set, with its huge variation in radiated power
from .076901 nW to 352.91 nW. Again, when the fit errors are compared
with tile data, tile errors are generally good given the simple theory and PIC
code differences and limitations.

One last table I would like to present looks at a fit of the power radiated
due to the self-oscillation of the emitted beam. In this case, the beam current

density (j) has not been modulated to obtain resonance or off-resonance
! driven radiation. Table 15 presents the a' fit of (Pr),, similar to Table 6,

but for self-oscillation generated power. When Table 15 is compared with
' Table 6, where tile only difference in tile PIC simulations is that tile Table 6

Tabl( 15" a' Coefficient Fits and Errors of (PT>_= a'F_)'Ac'/3b (j)c'• .

Cost a' b' c' d' e' Abs Avg Abs SD Rel Avg Rel SD
Func Fitted Err, nW Err, nW Error Error

' ,.,.. .... ' , ,

Theory 24.657 2 2 2 2 -2.26,i5 5.8101 .13219 .26i37
F1 24.170 2 2 2 2 -3.0333 6.2424 .15500 .30385
F2 29.024 2 '2 2 2 4.6279 13.858 -.038151 .21397
F3 2.1.926 2 2 '2 '2 -1.8393 6.533.1 .11995 .27743
F4 22.999 2 2 '2 2 -,1.8823 6.9198 .21383 .35355
F5 32.633 2 '2 2 2 10.325 22.457 -.14453 .24475

simulations were driven at resonance, the comparison shows that driving the
simulations at resonance increased the radiated power about three to four
times above the self-oscillation values. Also note that the fitted values of a'

are close to tile predicted theory values for the resonance-modulated radiated
power. Since the theory is quite simple, the theory mall actually represes, t
the self-oscillation radiated power, as the fits to the PIC simulation results
presented in Table 15 (and the significance testin 9 presented in Table 7) seem
to su99est. If so, the externally driven sin2 type of current density modulation
and its affect on increasing the radiated power is not really modeled by the
simple theory. Regardless, one of the main purposes of the simple theory was
to extract scaling laws to compare with the PIC data, and for that purpose
the scaling laws have performed well.

This section has demonstrated that the theory equations and theory scal.-
ing laws show good general agreement with the computational Particle-ln-
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Cell code simulations. The PIC code simulation results were ideally suited
for comparison with the theory models as the PIC code implemented many
of theory models directly and then simulated those models in a fully self-
consistent, nonlinear manner. However, even with perfect nonlinear model
simulation and perfect data, differences would be expected to arise from
the predictions based solely on analytic, linear theory. Worse, much like in
the laboratory, perfect data are hard to obtain. Hence, when the theory
equations and PIC simulation data are compared, only general agreement
can be expected at best, while large disagreement would tend to show up
if the theory equations and PIC data did not generally agree. While inher-
ent theory-versus-PIC disagreement was expected and in general significantly
demonstrated by the tables, the differences seen seem reasonable based on
the limited nature of the simple theory and data obtained via PIC code sim-
ulation. And it was shown that. the theory equations did generally agree
with the PIC results in sign and magnitude, and while this does not prove
that the theory equations and PIC data agree or are correct, the general
agreement provides satisfying additional confidence in the theory equations
and scaling laws. In the end, tile simple theory was able to predict the PIC
code results to well within an order of magnitude on average from the PIC
code simulation data values.

In summary, there are many potential sources of differences between the
theory and PIC simulation results, some of which I have listed below.

1. A coarse grid was used in the PIC simulations, and preliminary PIC
simulation studies seem to indicate that as tile computational grid is
made coarser (with an automatically recalculated, fixed percentage of
the Courant condition, increase in the allowed time step), the postpro-
cessor calculated radiated power increases, even though other simula-
tion parameters are held constant.

2. The postprocessor calculated radiated power was calculated in the time-
domain over all frequencies and then averaged in time, and does not rep-
resent only the u,,,t frequency component of the total radiated power.

3. Since the theory is simple, the theory predictions for resonance radiated
power (Pr)., may actually represent the self-oscillation values calculated
by the PIC code, as suggested by the curve fits of the PIC simulation
results presented in Table 7 and by the Table 15 significance testing.
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4. Postprocessor calculated radiation frequency and PIC code electron
orbit parameters are hardly affected by changes in the computational
grid coarseness.

5. Both the self-oscillation and resonance Ez max (and dm_x) values were
similar on the PIC simulation graphs, and //nat is defined by the theory
as the primary self-oscillation frequency.

6. The PIC code, while implementing many theory models exactly, imple-
mented some theory models better, and some models differently such
as the Ez fields actually simulated by the PIC code runs including
contributions from charge that initially left the simulation.

7. Even if the theory correctly modeled the PIC simulations, the simple
analytic, linear theory results cannot be expected to exactly agree with
the full nonlinear PIC simulation results, and the fitted scaling laws
and constants would reflect any differences.

8. The errors of tile fits generally reflect the errors estimated for the fitted
data, as is the case for Ez m_x, dmax, and unit with respect to oscillating
observables and FFT box width considerations.

9. PIC simulation results can 'drift' when one to two million steps are
used in the simulation, as was required for these PlC simulations.

10. If the PIC data and theory scaling laws did not generally agree, then
substantial disagreement from the theory could easily cause much worse
curve fits than were actually achieved.

Therefore, the results and comparisons presented in the tables should have
and would show inherent differences when using careful significance testing
unless all sources of 'error' are identified, quantified, and removed or included
in the comparisons. Yet, with all of tile potential sources of error, good
general agreement between the theory and PIC code simulation results has
still been demonstrated. Consequently, tile theory equations and scaling laws
are tentatively supported by the PIC simulation data that currently exist and
appear to be useful for making predictions and for optimizing photoelectron-
generated radiation.
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Conclusions

The MAGIC PIC code simulations and subsequent radiation postprocess-

ing produced a wealth of information. Information concerning the extent,

dynamics, and field strengths of the electron sheath layer were generated.

For typical problems, the electron sheath in steady state extended on the

order of dmax _ 10 #m from the conducting surface. Also, typical elec-

tric field strengths perpendicular to the conducting surface would peak at

around Ez max _ 100 kV/m near the conducting surface. Essentially one-

dimensional, or small-spot, PIC code simulations of the electron sheath were

required in order to effectively handle the diverse particle and field scales

involved in simulating realistic, self-consistent problems. Postprocessing the
PIC simulations' emitted current as a function of location and time provided

realistic, far-field radiation results. The small-spot predictions for the av-

erage radiated power (Pr)_ from all PIC code calculated frequencies cannot

easily be extrapolated to large-spot predictions where diffraction effects are

significant. However, my theory paper [Ref. 1] showed that typical real met-
als illuminated with low-power, low-energy (less than 5.0 eV) photon sources

have small photoelectron yields and are often limited to generating small-

spot radiation. In any case, the theory, PIC simulation, and curve-fit results
for Ez max, dmax, and /2na t can be applied to understanding both small and

large spots.
Many of the PIC code simulations were performed to explore the behav-

ior of the radiation generated by the emitted electrons. The radiation lobe

patterns were found to have the expected small-spot, dipole sin20 shape.

Further, for unmodulated, monoenergetic, and perpendicular electron emis-

sion, a self or naturally oscillating frequency //nat WaS foulld to arise for the

emitted electrons, causing far-field radiation with that frequency. PIC simu-

lations were used to generate two resonance curves of radiated energy versus

Umod, by varying the current density sinusoidal modulation frequency Umod

about the natural frequency u,_t. Typical radiation frequencies simulated

were around //nat Z 6 GIlz. The generated radiation's primary FFT fre-

quency always matched the externally imposed current density modulation

frequency Umod. As expected, the maximum radiation was generated when

//mud WaS set equal to //nat, and was three to four times greater than the

power radiated due to self-oscillation alone. However, modulation at fre-

quencies higher than //nat was seen to cause decreases in radiated energy that
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can fall below the self-oscillation values. Equations were presented to facil-

itate converting PIC code simulated results into various quantities such as

radiated power and radiation conversion efficiencies. The maximum emitted

electron beam energy to radiated energy conversion effÉciency r/rsB simulated

was 8.5574 x 10 -6. Converted to r]rsb, tile estimated maximum total light en-

ergy to radiated energy conversion efficiency simulated, using _L = 532× 10-9

meters and }" = 0.1, was 4.8854 x 10-7.

Finally, the theory scaling laws were analytically compared with the P IC

simulation data using nonlinear curve-fitting techniques. Appendix A lists

the PIC code data used for the curve-fit analysis. Curve fits of Ez max, din,x,

Unat, and (Pr)s were performed using the PIC data. The curve fits were per-

formed with respect to the generalized theory equations for each observable,
and were performed for one or more of the constants simultaneously. Several

cost functions were used in tile curve fits, and error statistics for each set of

theoretical and fitted constants were generated.

While not perfect, the theory and data do generally agree. The simple

theory and PIC code simulations were not expected to statistically match

each other due to differences inherent in the theory and simulations. Yet the

theory and tile PIC data are well within an order of magnitude of each other

in their predictions. The self-oscillation (Pr)s and dm_x fits were closest to

the theory in significance testing and were close in magnitude as well, while

the unit fit was close in magnitude alone. The worst agreement came from

the Ez ,,_x and resonance (Pr), fits, which performed poorly in significance

testing and were on average two to four times larger than the theory pre-

dictions. Where differences occurred, the differences seem acceptable due

to the limited nature of the analytic solutions inherent in any simple theory

equation when compared with the solutions obtained from the theory models

as implemented in the MAGIC PIC code simulations. So from a compari-

son viewpoint the differences that exist in the theory versus fitted constant

values, as well as the size of the fit errors, both appear acceptable, and the

simple theory scaling laws arid PIC simulation results generally agree and

provide confidence in each other. As a consequence, the results presented

in this paper indicate that the basic physics investigated is understood and

that the simple analytic theory scaling laws perform, if anything, better than

might be expected.
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APPENDIX A

Appendix A

This appendix presents tabled summaries of the PIC code simulation data

that were used to create various graphs and tables in this paper. All of the

tabled data listed in this appendix were generated from MAGIC simulations

performed on Sun workstations, and these were tile only data used to per-

form the curve fits. However, Figs. 1-3 and 9-10 were missing graphs that

were recreated by running MAGIC on one of the Los Alamos National Labo-

ratory's Cray supercomputers, using the same decks that were originally run

on the Sun workstations. Also, Cray runs of some of the same decks used

on the Sun workstations, but with new data outputs, ]lave been performed

after the main body of this paper was written. Some of those Cray results

have been summarized in Appendix B.

Table 16 presents tile data from the self-oscillation PIC simulations for

Ez m,,_, dm_, and u,,t. Table 17 presents the both the unmodulated and

resonance-modulated (P_)_ data, in terms of the far-field energy radiated

through a hemisphere, Erh. The conversion relationship used to convert

radiated energy to average power was (t_)., = 2.0E_h/l_,,, where t_n WaS the
total simulated run time of the PIC code. So both the self-oscillation and

resonance Era data are listed for various PIC runs in Table 17. Also, note that

while damped self-oscillation radiated energy data were included in Table 19

and were used in creating various graphs and 'Fables 12-14, the data from

those runs were less representative of the runs that displayed steady-state

self-oscillation. Consequently, the unit and (P_), data from the damped self-

oscillation PIC simulation were not used when fitting the smaller data sets

shown in Tables 16-17. Tables 18-19 displa.y tile 48 nonresonancc, or total

radiated power data points, from which the 41 near-resonance (P,.)_ data

points were selected to curve fit. Note that some of the data in Tables 18-19

repeat the data in Table 17, and that I have listed unmodulated run data
from Table 17 as data with zero modulation frequency in Tables 18-19. So fits

in Tables 3-6, 8-11, and 15 were performed using the PIC data in Tables 16-

17. And fits in Tables 12-14 were performed using the near-resonance (P_),
data in Tables 18-19.

The independent parameters that were varied in each run include eVb,

(j), and un,od. The independent parttmeters that were constant for all of the
PIC code simulations were t_,. = 6.3263 × l0 -9 seconds, D = 100%, and

A = 2.0 x l0 -6 m 2. The simulation grid was constant for all of the PIC code
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runs used in this paper, as was the calculated FFT box width, which was
equal to 0.15815 G Hz.

Table 16: PIC Code Simulation Ez max, dmax, and //nat Data
Data e_ 2(j) Ez max dmax /2nat

Point eV A/m 2 kV/m /_m GHz
i 0.2000 2300.0 27 17A5, " 4.2700 ....

2 1.3305 3444.0 58 29.83 damped osc
3 1.3305 7749.1 90 23.4'2 5.0608
4 1.3305 12000.0 unavailable unavailable 6.0096
5 1.3305 13776.0 108 24.37 6.4841
6 1.3305 21525.0 152 19.32 7.9074
7 1.3305 30996.0 150 17.17 9.3308

....

Table 17: PIC Code Simulation Self-Osc and Res {I_), Data
Data eVb 2(j) Erh self-oscillation Erh resonm, ce

Point eV A/m _ Joules Joules
..... , ',....

1 0.2000 2300.0 2.4625 × 10-19 unavailable

2 1.3305 3444.0 damped osc damped osc
3 1.3305 7749.1 3.3101 × 10 -17 1.1244 × 10 -16

4 11.3305 12000.0 7.7809 x 10-17 2.4735 x 10 -16

5 1.3305 13776.0 1.0201 x 10-16 3.1458 x 10-16
6 1.3305 21525.0 2.0451 X 10 -16 6.4757 × 10 -16

7 1.3305 30996.0 3.6396 x 10-'6 1.1163 x 10-is
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Table 18" PIC Code Simulation 0.2000 eV (Pr}, Data
Data eVb 2(j) Umod Erh _ll
Point eV A/m 2 GHz Joules
.....1 .....0.2000 2300.0 0.000012.4625× 10-1Q

2 0.2000 2300.0 0.1000 2.4325 × 10-19
3 0.2000 2300.0 0.5000 3.2776 × 10-19
4 0.2000 2300.0 1.0000 5.8831 × 10-19
5 0.2000 2300.0 2.0000 1.1155 × 10-18
6 0.2000 2300.0 3.0000 1.4359 × 10-18
7 0.2000 2300.0 4.0000 1.5351 × 10-Is
8 0.2000 2300.0 5.0000 1.4807 × 10-is
9 0.2000 2300.0 6.0000 1.2841 × 10-18
10 0.2000 2300.0 7.0000 1.1208 × 10-Is
11 0.2000 2300.0 8.5000 4.1302 × 10-19
12 0.2000 2300.0 10.000 4.2274 × 10-19
13 0.2000 2300.0 18.000 4.2839 x 10-19
14 0.2000 2300.0 30.000 4.4951 × 10-19
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Table 19: PIC Code Simulation 1.3305 eV (Pr), Data
Data eVb 2(j) Umod Erh all
Point eV A/m 2 GHz Joules....

1 1.3305 3444.0 0.0000 1.3981 x 10-1s
2 1.3305 7749.1 0.0000 3.3101 x l0 -17
3 1.3305 13776.0 0.0000 1.0201 x l0 -16
4 1.3305 21525.0 0.0000 2.0451 x 10-16
5 1.3305 30996.0 0.0000 3.6396 x 10-16
6 1.3305 3"444.0 6.0000 1.1322 x 10-17
7 1.3305 7749.1 6.0000 1.0510 X 10 -16

8 1.3305 13776.0 6.0000 3.1429 x l0 -16
9 1.3305 21525.0 6.0000 6.0420 x l0 -16
10 1.3305 30996.0 6.0000 9.5021 x l0 -16
11 1.3305 3444.0 3.1630 2.9665 x l0 -17
12 1.3305 7749.1 5.0608 1.1244 x 10-16
13 1.3305 13776.0 6.4841 3.1458 x l0 -16
14 1.3305 21525.0 7.9074 6.4757 x 10-16
15 1.3305 30996.0 9.3308 1.1163 x l0 -'s
16 l.oouo 12000.0 0.0000 7.7809 x l0 -17
17 1.3305 12000.0 1.0000 1.1084 x 10-16
18 1.3305 12000.0 2.0000 1.4501 x l0 -16
19 1.3305 12000.0 3.0000 2.0265 × 10 -16

20 1.330o 12000.0 4.0000 2.3492 x 10-16
21 1.3305 12000.0 5.0000 2.2378 x 10-16
22 1.3305 12000.0 6.0000 2.4735 X 10 -16

23 1.3305 12000.0 7.0000 2.3508 x 10-16
24 1.3305 12000.0 8.0000 2.0502 x l0 -16
25 1.3305 12000.0 9.0000 1.6438 x l0 -16

• r:,26 1.330o 12000.0 10.000 1.4238 x l0 -z6
27 1.3305 12000.0 11.000 1.4867 x 10 -16

28 1.3305 12000.0 12.000 1.1349 x 10-16
29 1.3305 12000.0 13.000 3.5428 X 10 -17

" r. . ( r. 1730 1.330o 12000.0 14 000 3.99o3 x 10-
31 1.3305 12000.0 15.000 6.0431 × 10 -17

3'2 1.3305 12000.0 16.000 8.0218 x 10-iv
33 1.3305 12000.0 17.000 8.6706 × 10 -17

34 1.3305 12000.0 18.000 8.7,158 × 10-17
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Appendix B

This appendix [)resents a short summary of some MAGIC results that were
simulated using a Cray computer at Los Alamos National Laboratory after
the main paper was written. Tile 1.3305 eV self-oscillating MAGIC decks
used for tile Sun workstation simulations were modified to dump new and
better output data, and simulations were performed. A! of tile fit results
listed in this appendix were calculated using tile F3 cost function, and only
involve fitting the a' constant to the self-oscillation data. Further, the amount
of additional electric field strength due to tile initial emitted charge escaping
out of the simulation was precisely calculated.

The new curve-fit results are _, follows. The Cray PIC data confirmed
that tile average Ez .,,. fit is a' = 2744,1, with {A,d = 1.30 kV/m. These runs
also found that for all of tile 1.3305 eV simulations, the Ez fields in tile grid
were increased by a constant 13.322 kV/m due to tile escaped ch_trge that was
not returned to the conducting surface. When subtracted from the Ez max

data, this decreases the fitted value of a' for Ez ,,,_ by roughly 10%. Next,
the Cray runs show that fitting dmi,,, using carefully dumped and sampled
PIC data, results in a'= 10.2, with _A,d-- 1.1 Itm. For u_=t, the fitted Cray
PIC data give a' = 3.555 × 106, with {A,d = 0.137 GHz. Finally, for (f5),
the fitted Cray PIC data give a'= 25.08, with {A_d= 7.60 nW.
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Appendix C

This appendix discusses [low to do useful, experimentally realistic, two-

dimensional PIC code simulations, using existing PIC codes. As discussed

at the beginning of this paper, it would normally take about a million time

steps and a million grid cells to do a realistic simulation of an actual two-

dimensional experiment using standard PIC codes. However, there is a way

to study realistic two-dimensional problems and physics by scaling the prob-

lem parameters. To do so, scaling runs can be designed to allow PIC code

simulations to be performed using the capabilities of existing PIC codes. The

results of these scaling runs can then be adjusted to the unsealed parameter

settings to determine the results in the region of parameter space of interest.

This scaling process is greatly facilitated because theoretical scaling laws ex-

ist that can be used to reduce the number of PIC code runs necessary to

design the scaled simulations and to unscale the results.

However, scaling is something of an art. Scaling involves identifying

all the necessary parameters and understanding the geometry, scales, and

physics of the problem. And the researcher must know why a PIC code is

limited and cannot perform the simulations as the problem specifies. For

this t)roblem, the scale lengths of the electron trajectories versus the size

of the problem, the electromagnetic propagation speeds, and the size of the

generated radiation arc basically too diverse, so the PIC simulation can not

readily solve the real problem directly. The researcher must then change

selected parameters so as to allow performing a valid two-dimensional sim-

ulation that preserves all or a significant part of the physics being investi-

gated. The scaling process can be further complicated by various parameters

that are linked, so that desired changes in the scaling of one parameter may

create undesired changes in another. However, the process of scaling these

low-energy photoelectron problems is made easier by having an analytic the-

ory, one-dimensional PIC simulation results, and experience with PIC codes.

I,astly, for these problems and scaling laws, tests will need to be performed

in one and two dimensions to confirm that the scaling laws actually work and

apply to the scMed results. But once the above considerations are satisfied,

one can feel confident that the scaling performed applies to the physics being

investigated.
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Below, I list some general scaling rules of thumb to try and satisfy as
much as possible. Generally,

1. Keep as close to the original parameters and scaling of interest when
possible.

2. Keep significant relative geometries and ratios.

3. Keep relevant characteristic spatial and temporal scales and effects.

For these specific photoelectron problems, the parameters could be easily
scaled by either increasing tile frequency or energy of tile problems. Either
scaling will allow 2-D runs looking at realistic area effects. Frequency scaling
requires simultaneous scaling increases in u,_t,/3, and (j) while maintaining
realistic electron trajectories on tile order of microns, and correspondingly
small PIC simulation time steps (roughly, grid cell sizes of 1 micron in z, by 3
to 5 microns in r). Fortunately, tile smaller wavelength requires fewer radial
cells (such as with respect to scaled diffraction, for instance), and fewer time
steps are needed to simulate 10 high frequency cycles that roughly would be
oil the order of 300 Gltz to 3000 GHz for a 1 mm to 100 ltm wavelength.
Essentially, with frequency scaling tile grid size and number of ceils shrinks,
as does tile number of time steps necessary to run 10 cycles. Energy scaling
requires scaling increases in/3, (j), and din,x, thereby significantly increasing
tile size of the PIC simulation time step, while maintaining both the realistic
problem frequencies (1 to 10 GHz) and realistic problem radial spot sizes.
Essentially, with energy scaling the larger grid cell size requires fewer grid
cells to reproduce realistic radial spot sizes, and also increases the size of
the time steps, so that the number of time steps needed to simulate a few
realistic u,_t cycles decreases. I have chosen to present energy scaling since I
am more interested in maintaining the original parameters for frequency and
spot size than for realistic electron trajectories.

For energy scaling of the specific problem,

1. Want to do two-dimensional area simulations to look at area diffraction,

more realistic current distributions in space and time, realistic two-
dimensional sized and shaped structures, all solved self-consistently,
and want to be able to reproduce any two-dimensional experimental
data that might exist.
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2. Keep simulations classical, like tile original problem, so that /3 < 0.1
or/3 < 0.3 at most.

3. Even with energy scaling, keep dm_x << Art << R, like the original
problem, and to satisfy this model constraint that was used in devel-
oping tile theory radiation equations. Note that Art = Amod,and that
Amod= A,_,t to satisfy tile steady-state resonance condition. Then

A._t R (45)l<< <<era----:
where the second condition can always be satisfied by moving the ob-
server accordingly.

4. Keep 1 _<Umod<_l0 GIIz, as for the original problem.

5. Keep 1 _<u,,,t _< l0 Gllz, as for the original problem.

6. Use a grid size Zma x ,-_ )_nat, where the electron sheath is only simulated,
and the radiation must be postprocessed similar to tile 1-D PIC results
presented in this paper.

where for the PIC simulations, the scale lengths for the particles and fields
are now closer together, allowing two-dimensional problems with larger time
steps while maintaining good spatial and temporal resolutions while increas-
ing fl, (j), and the z-axis cell size.

To roughly show how the energy scaling would work, I will now discuss
two examples using energy scaling to construct workable two-dimensional,
cylindrical, axial symmetric, PIC code simulations. These examples illus-
trate techniques that can be used to set up other two-dimensional scaled
PIC code simulations involving similar low-energy photoelectron problems
while demonstrating the typical simulation designs and run times that can
be achieved by scaling. The first example will be for emitted photoelectrons
scaled to an energy such that fl --- 0.1, and the second example will scale
the problem to a approxirnate maximum case where /3 = 0.3. The larger
that/3 gets, the easier the PIC simulation is to perform, and the further the
problem becomes scaled from the original problem parameters. The other
independent parameters selected will be A,,,t and t_,,,. From fl, A_,t, and t_,
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where the coefficients can be selected from theory or from various cost func-
tions for tile a' only fits to the PIC data. Also, the power equation is for
testing 1-D scaling at high energies, and if it holds, then a similar, modified,
generalized power equation could be fitted to the large-spot PIC code data
and scaled back to lower energies. Finally, tile number of cells depends on
various nonuniform cell strategies used to speed up tile PIC code simulation
versus a uniform cell size in each dimension.

Table 20 lists tile various results for setting up energy scaled PIC code sim-
ulations for examples 1 and 2, using the F3 cost function's a' fitted coefficient
values in the scaling calculations. So example 1 would require 40000 time
steps and 250 by 500 cells, which is a medium size, doable, two-dimensional
problem. Even better, example 2 would require 11800 time steps and 75 by
200 cells, which is an easy, fast, two-dimensional PIC code simulation of the
problem.

Preliminary PIC code simulation 1-D scaling runs were performed using
Sun workstations to test tile scaling laws at predicting PIC code results at
emitted electron energies up to a maximum value of/_ = 0.3. It should be
noted that the equations used to do the far-field radiation postprocessing
should work with classical and relativistic particles, as long ms the PIC code
correctly handles the simulation. For these runs, relativistic particle treat-
ment was turned on in the MAGIC co,qe as a precaution in case relativistic
effects began to noticeably affect the results, though later tests showed that
relativistic particle treatment was unnecessary as differences arising from
simulation results using nonrelativistic particle treatment were not signifi-
cant. To do the runs, an expert system MAGIC deck was set up that would
automatically generate tile MAGIC simulation grid and outputs with appro-
priate spatial and temporal resolutions, similar to the more simple worked
examples shown in Table 20, for various inputs of/3, Umod= lJ,_,t,and t_.
Data were not (:ollected to test tile scaling laws for Ez with these PIC simu-
lations. But, tile runs sho_ved that the scaling laws worked exceptionally well
all the way up to the maxitnum value of/_ = 0.3 tested for predicting dmax

and t,._t. In addition, it was also found that these observables were very in-
sensitive to changing spatial and temporal resolutions tests that were easy to
perform by changing the rules for those resolutions in the automatic MAGI(?,
input deck. [lowever, (P_)_ was found to be sensitive to resolution changes,
and the few simulations performed showed that as the grid became coarser,
the value of the postprocessed radiation increased. The effect of spatial and
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Table 20: Two Example PIC Code Energy Scaling Problems
Parameter Units [Relation Example 1 Example 2 ......

-- 0.1 0.3
unat GHz - 3.0 3.0
t_ ns __ 10.0 10.0

_, = 1.0050378 1.048285
eVb eV = 2574.3 24674

Anat/dmax - 49.9 16.6
/\nat mm = 100.0 100.0
dm_ mm = 2.01 6.02
(j) A/m 2 = 65900 198000
Az mm ,_ 0, 0.33333
Ar mm = 0.66666

Z_n mm _= 0.0
Zm,,x mm = l_.....,j 100.0
rmin mm - 0.0 0.0
rm_x mm = 50.0 50.0

z cells = 50 45
at Az mm = 0.1 0.33333
z cells - 450 155
at Az mm = 0.1 to 0.322 0.33333 to 0.76344
r cells = 250 75
at Ar mm = 0.2 0.66666

Ate. ps _< 0.29834 0.99450
At_un ps - 0.25 0.85

time steps = 40000 11800
z cells total = 500 200
r cells total = 250 75
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temporal resolutions in calculating the radiation must be understood to do
the scaling runs. Since the PIC simulation results in the rest of the paper
were at fixed spatial and temporal resolutions for all of the runs, the scaling
laws should generally capture the scaling in the parameters, with any major
problems from increased radiation primarily affecting the fitted a' coefficients
with a systematic error showing up as generally larger or smaller values.

In conclusion, scaling can be used to perform two-dimensional simulations
uf the problem using standard PIC codes, and energy scaling seems best in
my opinion. The results solve the basic nonlinear problem self-consistently.
Due to 2-D symmetry constraints, cylindrical problems will generally need to
be illuminated perpendicularly, whereas Cartesian problems can be illumi-
nated at an angle. Otherwise, realistic problems can begin to be simulated in
two dimensions. PIC code modified theoretical scaling laws were tested and
found to be useful in designing scaled PIC code simulations and in unsealing
the PIC code results for the observables tested. One problem that must still
be addressed is the effect of grid resolution on the predicted radiation, and
what maximum grid resolution can be used while giving consistent radiation
predictions at various emitted electron energies. Still, manual scaling involv-
ing more computer runs and little reliance on the scaling laws could still be
performed in one and two dimensions to scale and unscale the problems. In
summary then, carefully designed, scaled PIC code simulations are a doable
and powerful way of doing self-consistent, two-dimensional PIC code simu-
lations exploring experimentally realistic and interesting problems involving
the photoelectron sheath behavior, generated field strengths, and generated
far-field radiation.
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