
' _ e_-_-,c_._'1a.c:_/?i-_......?

Fermi National Accelerator Laboratory

FNAL/C--9 2/4 3

DE92 008815

Experience with MODSIM II

J. Streets,D. Berg, G. Oleynik, R. Pordes and D. Slimmer

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency th,_rcof, nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

mendation, or favoring by the United States Governn.cnt or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

February 1992

Presented at the Second International Workshop on Software Engineering, Artificial Intelligence and Expert
Software for High Energy and Nuclear Physics, L'Agelonde France-Telecom La Londe-les-Maures,
January 13-18, 1992.

MASTEB
"_ Opera_byUniversitiesResearchAssocialionInc.underContractNo.DE-ACO2-76CH03000withtheUnitedStatesDepartmentofEnergy

ill O!8TR.I_JT!ON OF TH!$ DOCUMENT !S UNLIMITED
'Ill _

Disclnlmer

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of
their employees, makes any warranty, _prees or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
narne, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States Government or any agency thereof.

|
,, _rlllrlll......

[

Experience with MODSIM II*

J.Streets, D.Berg, G.Oleynik, R.Pordes, D.Slimmer.

Fermi National Accelerator Laboratory',
Batavia, IL 60510, USA.

ABSTRACT

We present results of computer simulations for Data Acquisition systems for
_r_e f-_,ed target experiments in an object oriented simulation language, MOD-
_iivi. inis paper summarises our experiences and presents preliminary results
from the simulations already completed. We also indicate the resources required
for this project.

1 The Problem.

On Line Support at FNAL is designing a new Data Acquisition (DA) system for
the next fixed target run, scheduled in 1994. This system must serve large experi-
ments which read data from the fro_t end electronics at a rate of 100Mbytes/second,
and require a software event filter to reduce the rate of data written to tape to
10Mbytes/second. The same system should also be scalable, dowa to 1Mbytes/second
for test beam experiments. The data will be read out from multiple streams of CA-
MAC and FASTBUS. We would like to use cost effective UNIX t computers as backend
Filter Processors (FP) for online event selection.

Preliminary studies have found 1 several possible arch!tectures using'

VDAS buffers
VSB/VME dual ported (DP) memories
In house DP Stream Memories with IO adapter

DP VME/ECL memories
Vertical Busses
Ultranet, HPPI and In House Switches

2 Why Simulate ?

Each architecture listed above has potential problems with performance, cost, avail-
ability and complexity. It is impossible to build some of these systems today as not
all hardware has been designed. Limitations of people and money prohibit building
full scale test systems for several of these architectures.

Computer simulations can help decide whether these architectures will work
at the data rates required. Simulations can also help define the hardware requirements
of modules which are still to be designed. The software algorithms which must run
in the processors to build events can also be prototyped and tested in the computer
simulation.

°MODSIM II is a registered Trade Mark of CACI Products Company,
3344 North Torrey Pines Court, La Jolla, CA 92037, USA.
tSponsored by DOE contract number DE-AC02-76CH03000.

UNIX is a registered trademark of UNIX System Laboratories.

11.o i_ z_ l.o l., .
% Gate Live % Buffer Use

Time: [0:00:021 NEvents:I 2751I

RCIn RCOut 'rtpn

_ LI_ _ RCInBuf • RCOu_u.f _ BufferUN _ T_ U_

Figure 1' Example of menu and graphics widgets

A simulation of the different architectures will identify the cheapest working
solution and also help tune parameters to find potential bottlenecks and maximise
efficiencies of the different sub-systems. Once an architecture has been found the
simulation will be used to find the best configuration parameters, such as the numbers
of CAMAC and FASTBUS streams, if memory should be added to buffers or filter
processors, or how variations in the word counts from detectors will affect the system.
These changes could be found from the hardware, but it will be far easier to get an
estimate from running the simulation.

3 Why MODSIM ?

The language we choose for the simulation needs to satisfy some basic requirements.
The project should generate reusable software in order to minimise software devel-
opment for each different architecture. The various parameters of the DA sy,_tems
should be configurable at run time. The running programs should be easy to monitor
so that we can find system bottlenecks. This type of monitoring is best done with
graphical displays. The DA systems all contain many processes running concurrently,
and the simulation language must support control of these processes and interprocess
communication.

MODSIM II was chosen for its support of object oriented programming and
for large process-based simulations 2. This language has also been used by other
laboratories 3, Other simulation languages, such as Verilog and SESWorkbench were
found to be aimed at finer scale simulations, or not sufficiently developed for our use.
Writing a simulation in C was considered an inefficient use of resources.

Architecture A1A

....... Readout Controllea's
with Tokm pmmhag
Bu_ytotrlgg_veto

,

vo_s.............,........................i_ z_"_'_'_i
_°_fl I] I' "'"'."........................"
-T' .•J

'"
Olee|l|lm|e|teee|laee||llennleH_

Figure 2: Diagram of the A1A Data Acquisition architecture

4 Simple-DA, a first attempt.

Our first project was a simple DA system which contained one readout controller with
input and output buffers, a large buffer memory and a tape drive. This project took
approximately 6 person-weeks. This time include learning object oriented techniques,
and the MODSIM language.

A graphical monitoring display was then added. This took about 2 person-
weeks, again this time includes learning the MODSIM language. The results can be
seen in figure 1. Another week of trying the menu widget produced an interface to
enable the modification of initialization parameters.

The simulation was not designed to be expandable to a larger system, and
so was not developed further. However it was found useful as a tool to learn about
the functionality of the MODSIM class library, and some of its limitations.

5 VME bus simulation.

The next project was to write a set of re-usable set of classes to simulate a VME
bus. The VME object is present in ali proposed architectures and has a potential
for limiting event throughput. We used ROSE* to both design and document the
project.

A class of objects were written to simulate a \"ME bus with either a coarse
or fine granularity. The coarse grained b_s has the ibllowing properties.

- Only one master can use Bus.
- Masters are queued in order of request.

The fine grained bus has these additional features.

*Rational Rose is a tradmark or Rational,
3320 Scott Boulevard, Santa Clara, CA 95054-3197, USA.

- Obeys priorities (0-3) and slot position.
- Round Robin or priority scheduling.
- Timeouts are implemented.
- Single word and block transfers are recognised.
- Data can be written in 256 byte blocks.

These objects took approximately four weeks for one person to implement. Some of
this time was spent learning the ROSE CASE tool.

6 AIA, a second attempt.

Our next attempt was a DA system which is similar to the fastest DA running 4 at
FNAL, but modified for our requirements. This took 3 weeks for one person to design
and implement. The system required over 200 initialization parameters, and we found
that the MODSIM menu interface was unsuitable, so we wrote our own class called
ConfigFile, which has a similar format to Xdefaults' files. This took about a week.

The A1A simulation uses no inheritance and the use of MODSIM interrupts
was restricted to the Exabyte t simulation routines (a feature of the architecture).
Only the random number generator was used from the MODSIM class library.

Consistancy checks performed to verify correct working of the model include

The number of words read from the front end modules equals the number
of words written to tape.

The event numbers from subevents are compared during event building.
The front end modules receive the same number of triggers.
The measured deadtime compares well with the prediction from the front

end module read out time.

7 Using the AIA simulation.

We used the model to simulate the readout from a proposed Kaon experiment 5. By
varying the number of VME crates in the system we could find the most cost effective
solution to the problem of how many VME crates should be used for the fixed number
of Filter Processors in the system. The number of events processed during one full
spill, as a function of the number of VME crates used to distribute 16 processors, was
as follows.

1[Number of VME crates 'Events processed 1]
16 300OOO
8 288000
4 274000
2 252000
I, 226000

The jobs ran for 16 hours on a Sun 4/75 (SPARCstation 2), and required
170 Mbytes of virtual memory. Each job simulated 120 seconds of beam time. The
decreasing number of events can be explained by the protocol used to queue the
processors by the event builder controller. The simulation suggests that we can halve
the number of VME crates with only a 4% loss in event throughput.

*x WindowSystem is a trademark of the Massachusetts Institute of Technology
tExabyte is a trademark of the Exabyte Corporation

8 Next Steps.

We would like to use the VME bus object to verify results from the AIA model.
We are adding graphics to A1A to aid identification of bottlenecks, _nd presentation
to customers. We want to find a set of parameters to satisfy the requirements of
the FNAL experiments which will run in 1994. We plan to create models of other
architectures mentioned above (testing the reusability of the code). It will also be
possible to force errors in the system, to see how the models recover from hardware
and software failures, such as power supply failure, system floating point interrupions
and bit errors in the front end modules, We will later simulate the run control and
system initialization, and upgrade to a later version of MODSIM.

9 Summary and Impressions.

We have used MODSIM to simulate a data aquisition system, and found useful results.
We have used the MODSIM librarian to support multi-user environment. Response
from the CACI telephone support is quite good. Courses are available and we have
found them instructive but not necessary. The SunOS* graphical displays are suf-
ficiently compatible that, although MODSIM is supported only under the SunOS
UNIX operating system, we can run the programs from any X terminal.

Our simulations are near the reasonable limits of CPU and memory, and
we are near the limits of version 1.6 of the MODSIM II compiler, as we have found
several problems. We find that MODSIM is easier to use w_thout inheritance, and
is more suited to large scale simulations. We have found difficulties in producing
object oriented code which is reusable without minor modifications of the original
definitions.

Finally, we wish to stress that the results of a computer simulation are only
as good as the assumptions and predictions upon which it is based.

References

1. D.Berg, G.Oleynik, R.Pordes, J.Streets and D.Slimmer. DART- A New High
Speed Data Acquisition System, System Concept. FNAL Internal Note DS217,
October 1991.

2. CACI Products Company. MODSIM H The Language for object oriented pro-
gramming- Tutorial. May 1991.

3. E.C.Milner, A.W.Booth, M.Botlo and J.Dorenbosch. Data Aquisition Studies for
the Superconducting Super Collider. Proceedings of the IEEE Seventh Conference
REAL TIME June 1991 p. 30.

4. See for instance

AC.Gayand S.Bracker. Transactions on Nuclear Science, N8-34, 4 1987, and.Baumbaugh. The Video Data Acquisistion System (VDAS) FNAL internal re-
port, July 1990.

5. S.Childress, S.Cihangir, R.Coleman, M.Crisler, R.Ford, Y.B.Hsiung, D.Jensen,
E.Swallow, Y.Wah. Design Report and Impact for the KTev Program FNAL Re-
port, June 1991.

*SunOSis a registered trademark of Sun MicroSystems

i

