.
.

T miu‘;! manuscript has been authored
by contractor of the U.S. Government
under contract No. W-31-108-ENG-38.
Accordingly, the U. S. Government retains a
nonexclusive, royalty free license 10 publish
or reproduce the published form of this
contribution, or aliow others to do so, for
U. S. Government purposes.

ANL-HEP-TR--92-129

DE93 011765

Database Computing in HEP--Progress Report*

C.T.Day, S. Loken, J.F. MacFarlane
Lawrence Berkeley Laboratory

E.May, D. Lifka, E. Lusk, L..E. Price
Argonne National Laboratory

A. Baden
Department of Physics
University of Maryland

R. Grossman, X. Qin
Department of Mathematics, Statistics, & Computer Science
University of Illinois at Chicago

L. Cormell, P. Leibold, D. Liu, U. Nixdorf, B. Scipioni, T. Song
Superconducting Supercollider Laboratory

i f §ma :
DISCLAIMER L7050 1 e ammy
- ORI NI P
This report was prepared as an account of work sponsored by an agency of the United States ATy
Government. Neither the United States Government nor any agency thereof, nor any of their b T 5

employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

* Work supported by the U.S. D ivisi i i
tvork suppol W-3¥-109»ENG-§%WCM of Energy, Division of High Energy Physics

ok

BISTR! '
BUTION F THg DOCUMENT 1S UNLimyTEy

ANL-HEP-TR-92-

Database Computing in HEP—Progress Report

¢ T. Day. 5. Loken. J. F. Maclarlane

Lawrence Berkeley Laboratory

E. May. D. Lifka. E. Lusk. L. E. Price

Argoune National Laboratory

A. Baden

Department of Physics
University of Maryland

R. Grossman. X. Qin

Department of Mathematics, Statistics, & Computer Science
University of lllinois at Chicago

L. Cormell. P. Leibold. D. Lisi. U. Nixdorf. B. Scipioni. T. Song

Superconducting Supercollider Laboratory.

The major SSC' experiments are expected to produce up to 1 Petabyte of data per
vear each. Once the primary reconstruction is completed by farms of inexpensive
processors. [/ becomes a major factor in further analysis of the data. We believe
that the application of database techniques can significantly reduce the 1/0 per-
formed in these analvses. We present examples of such I/0 reductious in prototypes
based on relational and object-oriented databases of CDF data samples.

Introduction

The SDC' and GEM experiments at SCC'L are sized to produce up to 1 Petabyte (10
bytes) of data per year each. The dominant C'PU load of primary reconstruction is
expected to be handled by farus of inexpensive processors. However, subsequent analysis
represents an 1/0 load about four orders of magnitude beyoud our current expericnce.
Since 1/0 performance historically has not kept up with CPU performance gains, we have
proposed [1] moving [rom the traditional. serial access. tape-based analysis systems of the
past to more sophisticated database approaches. The database organization will allow
a program to read ounly the portions of an event it actnally needs. thereby significantly
reducing the amount of 1/O required.

To test these ideas. we have huilt prototype systems [2] based on 100-200 Megabytes
of CDF data. \We have constructed svstems nsing a conventional relational database sys-
tem. an ohject-oriented database system and Plool. an home-hrew object storage system.
We report on the performance of each prototype. In addition, we describe some of the
data modeling considerations involved in adapting to the two types ol system. Finally. we
discuss some of the design considerations raised by the need for a flexible data structure
in a physics research enviroument coupled with the enormous size of the database and
consequent expense of rest rueturing it.

o e T R TR L TRAERR LU T TG LTV L LT

129

R T

Databases

(‘ommercial relational database systeins organize inforiation into tables with each row
in the table representing one datum and ¢ ch column describing a [eature of that datum.
For example. a table of Employvees might have columns for Taxpayer 11). Name, Job ('lass
ID. aud salary. A table of Jobs might have columns for Jobh Class 1D, Job Title and salary
range. To find the Job Title of the Employee with Taxpaver 11 343-88-2134, the systei
finds the row in the Employee table with matching Taxpayer ID. picks out the Job Class
LD from that row. then finds the row in the Jobs table with the matching Job Class 1D
and returns the Job Title.

We have also worked with a commercial object-oriented database system. It ne-
tions by making otherwise ordinary C'++ objects persistent. That is, data placed in such
an object can he recovered by auother program even alter the crealor has exited. This
is true even of links between structures. In the example above. the joining of the tables
on Job Class ID would be replaced by a simple link from an Employee structure to the
corresponding Job structure.

PTool [3] is a persistent object storage system developed at the University of Illinois
at (‘hicago. It provides persistence by using the mmap() lunction to map persistent liles
to regions of virtual memory.

Data Modeling

We have taken data from C'DI''s 1988-89 run. analyzed the event Ybhos hank structures
and recast them into an Entity-Relationship model suitable for both kinds of databases.
The E-R tnodel was theu coded by hand into SQL to create relational tables and into
C'++ to create persistent objects.

Traditionally. all the banks representing an event arve stored together. Programs
analyze eveuts by reading in all banks. deciding if the event is of interest and plotting
some meaning{ul quantity. The filtering aund plotting calculations rarely require all of the
event banks, but they are read anyway. Since many analyses require limited calculation
once recoustruction is done, this produces a great deal of unnecessary [/0.

In contrast. we have stored all of the entities of a given type for all events together.
either in one table per entity type in a relational system or in one object database per
entity type in an object-oriented one. As much or as little of any given event as needed
can be analyzed by doing table joins oun the event ID field. or by lollowing links: neither
system tetehes data until it is actually tonched. This way. analysis programs can read in
ouly those portions of events that they will actually use.

Hand conversion ol the E-R model to code was a laborous process. largely due to
the variable lengtlis of the original Yhos banks. Neither database handles repeated suby-
strnetires within a table/object well. so additional entities were created. We are working
with automated tools to help with this process. Lor the relational system. we have used
ERDraw [1] to generate SQL from a graphical version of the E-R model. T'his tool shows
considerable promise and works with several commercial databases. For the commereial
object-oriented system. we are looking at the schema construction tool supplicd with it
Crrrently, this tool has rather limited capabilities,

Database Object- | Relational | PTool | Ybos | units
oriented

Ybhos Data Loaded 215 42 42 109 | MDBytes

Database Size 241 115 721 109 | MBytes

Time to Load 3.75 2 2 0 | hours

Mass Query 40 610 30 | 810 | seconds

Table I: Prototype Database Perforimmance Results

Performance

\We have comparcd our prototype databases with native Ybos operations by selecting
events with a di-muon mass in the range ol the . All tests began with the same 215
MByte set of Yhos data which contained 12 different bank types. By historical accident
and limits on resources. the tests did not all include the same Yhos banks into their
databases. The commercial obhject-oriented test did include all 12 banks. For the other
three tests, an intermediate Yhos file was made by dropping three of the banks not
involved in the event selection. For the Yhos test, this file was read sequentially and
completely. For the remaining tests. eight of the remaining nine banks were loaded into
databases from this lile: the query was then run against the resulting databases. We have
measured the sizes of the resulting databases. the time to fill the databases and the time
to perlorm the event selection. All tests were performed on a SPARCstation I The results
appear in Table .

For the Yhos case. we consider the intermediate file to be the “database”™. henee it
takes no additional time to fill. The code which loaded the commercial object-oriented
database also had to swap the data from VAX byte ovder and Hoating point format to
the SPARC equivalent:this task aloue takes 1.75 hours. The other two databases loaded
from a harvdware-neutral ASCII format file.

The mass qnery benchmark in the Yhos case was a FORTRAN program which
used the standard Yhos routines. These routines treat the file sequentially and rvead in
complete events. Approximately 2000 events satisflied the selectiou. In the commercial
ohject-oriented and P'lool cases. the queries were C'++4 programs which only referenced
three banks making np less than 3% of the database. The relational query was written in
SQL aud similarly only touched the relevent data.

Both object-oriented databases show a dramatic improvement in analysis time over
the native Ybos. The commercial system achieves this with only a small space overhead
of 12%. abonut half of which appears simply to be incompletely filled database segments.
The more than 707 space overhead of Plool is not currently nnderstood.

The relational performance is disappointing. hut we have not exhausted all avennes
ol optimization. In particular, the very large space expansion must be controlled il this
database system is to remain as a viable option,

Design Considerations

The tree structure of banks in an event can reach depths of four or more. In simple
relational designs. leaves of the tree need unique keys obtained by concatenating keys
from all the layers above them. This can lead to considerable storage overhead in very
large dlatabases. Furthermore, piecing together an event by doing joins at ruu time could
lead to the time for a single event growing with the size of the entire database.

For object databases. keys are replaced by fixed size poiuters, regardless of depth
of the event structure. Furthermore. run time joins are not needed, so the overall scaling
behavior may be better than relational systems. Ilowever. the scale up for S5C is so
enormous that more study is needed for both systems.

As analysis proceeds, eveuts often have new banks attached to them. Tor rela-
tional systems, one just delines a new table with the proper keys; all the old data is
undisturbed. For object systems, however, if the event has a fixed set of pointers to its
component banks. adding a bank could lead to a complete restructuring of the database,
a prohibitively expensive proposition. A Lisp-like list structure may be more stable and
is under investigation.

References

[1] A. Baden and R. Grossman, “Database computing and high euvergy physics,” Com-
puting in High-Energy Physics 1991. edited by Y. Watase and F. Abe, Universal
Academy Press. Inc.. Tokyo. 1991, pp. 59-66.

[2] R. Grossman. A. Baden. (". Day. D. Lifka. E. Lusk. E. May. and L. Price, “Analyziug
High Euergy Physics Data Using Database Computing: Preliminary Report.” Lad-
oratory for Advanced Computing Tcehnical Report. Number LAC9L-R17, University
of Hlinois at Chicago. December. 1991.

3] R. CGrossman and X. Qin, “PTool: A Software Tool for Working with Persistent
Data™. Laboratory for Advanced Computing Technical Report Number 92-11, Univer-
sity of Illinvis at C'hicago, 1992. To appear. "

[1] E. Szeto and V.M. Markowitz, “ERDRAW 2.2, Reference Manual®, TR LBL-PUB-

J08{. Lawrence Berkeley Laboratory. May 1991.

