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PERFORMANCE OF MHD INSULATING MATERIALS
IN A POTASSIUM ENVIRONMENT

K. Natesan, J. H. Park, D. L. Rink, and C. A. Thomas"’

ABSTRACT

Experiments were conducted to evaluate the compatibility of the MHD
insulating materials boron nitride and silicon nitride in liquid and vapor
potassium environments. Detailed microscopic examination of the exposed
specimens showed substantial penetration of potassium in boron nitride
samples, while the silicon nitride material was almost unaffected. Electrical
conductivity measurements of the exposed specimens showed 5 to 6 orders
of magnitude increase in conductivity of boron nitride, while a maximum of
1-order increase was observed in silicon nitride.

OBJECTIVES

The objectives of this study are to evaluate the compatibility of the MHD
insulating materials boron nitride and silicon nitride in a potassium environ-
ment at temperatures of 1000 and 1400°F (538 and 760°C, respectively)
and to measure the electrical conductivities of the specimens before and
after exposure to potassium. Based on the test results, an assessment is to
be made of the suitability of these materials for application as insulator
materials in an MHD channel.

BACKGROUND

The life of an MHD channel is determined chiefly by the design and
material selection of the internal wall elements-—electrodes, sidebars, and
insulators—which are collectively called the gas-side design. Adequate
performance of materials selected for the MHD channel construction is
mandatory for successful application of this techaology in retrofit and
commercial coal-fired energy systems. In the high-temperature environ-
ment of the MHD channel, vaporization of several coal/seed components
and subsequent deposition of these materials on the walls of the channel
can occur. This hostile environment, in general, contains potassium
compounds, sulfur compounds, and ash/slag constituents.

*Pittsburgh Energy Technology Center.



The MHD channel design has evolved over the years. The early
-workhorse channel had a design life of 100 h and was used to study the
channel performance as function of various operating conditions. In the
1A] workhorse channel electrode and sidewall elements, a water—cooled
copper-base element capped with either Type 446 stainless steel or 75W-
25Cu alloy was used to extend element life.! Cross sections of the anode
and cathede wall elements are shown in Fig. 1. All gas-side surfaces were
grooved to promote slag retention. A boron nitride ceramic insulator was
used at the corner joint of the sidewall and cathode wall, as shown in Fig. 2.

The 1A4 channel is the first MHD channel subjected to prototypical
long-term operation with coal as a feedstock.2 This channel is a major
component in a 1000-h MHD Integrated Topping Cycle Proof-of-Concept
test to be conducted at the Component Development and Integration Facility
(CDIF) in Butte, Montana. Design of this channel was based on the 1A}
experience and the proof-of-concept (POC) program requirements. The
anode and cathode designs in this channel also utilize boron nitride as an
insulating material, as shown in Figs. 3 and 4.
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A concern in the gas-side design of the channel is the integrity of the
insulating material that separates the cathode segments. The gas side can
be coated with a deposit of molten potassium and slag constituents. At any
given temperature, the vapor pressures of the potassium compounds are
generally much higher than those of the slag constituents; therefore, posi-
tively charged potassium ions will migrate toward the cathode, condense
first on the channel wall, and be in contact with the electrode and the
insulator materials. Figure 5 schematically represents the channel wall
and the deposit layers anticipated during operation. Anticipated thickness
of the deposit layer is 2-3 mm and the expected temperature range is
1000-1500°F (538-816°C). Under these conditions, if potassium migrated
into the boron nitride and degraded its insulating properties, shorting
and/or arcing between the electrodes can occur and affect the channel
performance.

This study was conducted to examine the compatibility of the boron
nitride material in liquid potassium and also to evaluate an alternate material
(silicon nitride) exposed to the same environment. Furthermore, changes
in electrical conductivities were measured for these two materials before
and after exposure to the potassium environment.

TEST PROCEDURE

Two types of data were developed for the boron nitride and silicon
nitride materials: (1) corrosion compatibility in potassium liquid and vapor
and (2) measurement of electrical conductivity before and after exposure to
potassium.
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Sheet samples of boron nitride and block samples of silicon nitride
were obtained from the Pittsburgh Energy Technology Center. The boron
nitride samples were designated as hexagonal BN Grade H.P.and produced
by Carborundum, Niagara Falls, NY, Most of the samples were =75 x 25 x
1 mm in size, while a few pieces were 2.5 mm thick. In addition, a few
archive pieces of boron nitride from Argonne National Laboratory (ANL)
stock were included for evaluation. In addition, silicon nitride samples
termed NORALIDE NC-132 and manufactured by Norton Company were
included for evaluation. These samples were 25 x 32 x 6.3 mm. Table 1
lists the physical and mechanical properties of the two materials.

Chemical Compatibility

Testing of chemical compatibility was at temperatures of 1000 and
1400°F (538 and 760°C) and for times of up to 250 h. Capsules were fabri-
cated from Type 304 stainless steel, and solid potassium was inserted into
the capsules so that half the internal volume of each capsule would be
occupied by liquid potassium at elevated temperatures. Samples of boron
nitride and silicon nitride were inserted into the capsules, and baffles were
used to isolate the set of specimens for vapor-phase exposure from the set
for liquid potassium immersion (see Fig. 6). The capsules were evacuated
with a mechanical pump, backfilled with a partial pressure of argon gas, and
welded shut: they were then exposed in resistance-wound furnaces at 1000
and 1400°F. The vapor pressure of potassium at 1000 and 1400°F is 0.07
and =1.0 atm, respectively.
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Table 1. Physical and mechanical properties of boron nitride and
silicon nitride

Boron Silicon

Properties | Nitride Nitride
Flexural Strength at ~20°C (MPa) 110 990
Compressive Strength at 20°C (GPa) 0.12 3.0
Fracture Toughness, Kic (MPa. m9-5) - 5.4
Young's Modulus {GPa) 68 310
Poisson’s Ratio | - 0.28
Density (g/cm3) 2.2 3.2
Hardness, KHN100 (kg/mm?2) 205 2000
Thermal Expansion (°C-1) 3.2x 106 3.5 x 10-6
Thermal Conductivity (W/m K) 55 32
Maximum Use Temperature (°C)2 850 1300
Critical Quench AT (°C) - - 600

a[n oxidizing environments.
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Fig. 6. Schematic diagram of specimens and capsule assembly
for potassium exposure
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Electrical Conductivity

Measurements of electrical conductivity measurements were made by a
two-probe method using a conductivity cell constructed at ANL. The cell,
schematically shown in Fig. 7, consisted of an alumina chamber in which a
sample of either boron nitride or silicon nitride was inserted with lead
wires of gold attached. The temperature measurements were made with a
Chromel-Alumel thermocouple. The portion of the cell centaining the spec-
imen was inserted in a resistance furnace. The alumina chamber was sealed
with a Teflon cap outside the furnace and the chamber had a flow of high-
purity (99.999 vol.%) argon gas during the conductivity measurements.
Measurements were made on both boron nitride and silicon nitride mate-
rials before and after exposure to potassium vapor and liquid at 1000 and
1400°F.

RESULTS

Detailed microstructural analyses of the exposed specimens were con-
ducted with a scanning electron microscope (SEM). Figure 8 shows SEM
micrographs of surfaces of boron nitride and silicon nitride specimens
before exposure in the potassinm-containing capsules. The boron nitride
specimens seemed more porous ihan the silicon nitride specimens. The
boron nitride specimens, being mechanically weak, were more susceptible
to cracking than the silicon nitride specimens.
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Fig. 8. SEM micrographs of boron nitride (top) and
silicon nitride (bottom) samples before
exposure to potassium



Surface Analysis

Figure 9 shows macroscopic views of the potassium-exposed speci-
mens. Visual examination showed a number of cracks in the boron nitride
samples exposed under all conditions. The silicon nitride samples were
relatively unaffected. Figures 10 and 11 show SEM microphotographs of
boron nitride specimens after exposure at 1400°F in potassium vapo: and
liquid phases, respectively. It is evident that the specimens developed a
number of cracks and significant spallation of the material from the surface
regions. Energy-dispersive X-ray (EDX) analysis of the surfaces showed
substantial amounts of potassium. Figures 12 and 13 show SEM photographs
of boron nitride samples after exposure at 1000°F in potassium vapor and
liquid, respectively. Substantial cracking of the specimens can be seen and
the surfaces exhibited large amounts of potassium (as in the samples
exposed at 1400°F). Figure 14 shows SEM photographs of the surface of
ANL~archive boron nitride after exposure at 1000°F in liquid potassium.

The corrosion behavior of this specimen was similar to that of the
Carborundum-supplied boron nitride, indicating that the potassium attack of
this material is its inherent behavior and is independent of material source.

Fig. 9. Macroscopic view of potassium-exposed speci-
mens; exposed at 1000°F (left) and 1400°F
(right); to potassium vapor (top image in each
pair) and liquid (bottom image in each pair)
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SEM micrographs of boron nitride specimen
after exposure at 1400°F in potassium vapor
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Fig. 11. SEM micrographs of boron nitride specimen after exposure at
1400°F in potassium liquid

Figure 15 shows SEM photographs of silicon nitride specimens after
exposure at 1400°F in vapor and liquid potassium. Potassium was seen in
isolated areas on the surface of the specimens but no cracks were observed,
indicating the better resistance of this material to potassium attack. This is
much more evident in the samples exposed at 1000°F (see Fig. 16) in the
vapor and liquid phases. Globules of potassium were confined to the surface
of the specimens, and the silicon nitride material beneath the material was
barely attacked.

Analysis of Cross Sections

Figures 17 and 18 show SEM micrographs of cross sections of boron
nitride samples after exposure at 1000°F in potassium vapor and liquid,
respectively. Also shown in the figures are the X-ray mapping for potassium.
The lighter regions in the mapping photographs represent a high concen-
tration of potassium. It is evident from these figures that potassium has
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Fig. 12. SEM micrographs of boron nitride specimen
after exposure at 1000°F in potassium vapor




SEM micrographs of boron nitride specimen
after exposure at 1000°F in potassium liquid
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Fig. 14.

SEM micrographs of ANL-archive boron nitride
specimen after exposure at 1000°F in potassium
liquid
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Fig. 15. SEM micrographs of silicon nitride specimens
after exposure at 1400°F in potassium vapor
(top) and liquid (bottom)
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Fig. 16. SEM micrographs of silicon nitride specimens
after exposure at 1000°F in potassium vapor
(top) and liquid (bottom)
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SEM micrograph and potassium
mapping of cross section of boron
nitride specimen after exposure at
1000°F in potassium vapor
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Fig. 18. SEM micrograph and potassium mapping of
cross section of boron nitride specimen
after exposure at 1000°F in potassium liquid
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penetrated the boron nitride samples throughout their entire cross sections.

The exposed samples were very fragile and disintegrated even with a light
touch.

The boron nitride specimens exposed to potassium at 1400°F failed
catastrophically, primarily due to potassium impregnation of the specimens
and associated swelling of the specimens. A substantial number of cracks
were detected, making it difficult to handle the specimens and to examine
them by SEM. Figure 19 shows an SEM photograph and potassium mapping

of the cross section of the sample after exposure at 1400°F in potassium
vapor.

The silicon nitride samples exposed at both temperatures and in vapor
and liquid potassium exhibited very little degradation. In fact, because the
materials are mechanically strong, they could not be cut and had to be
broken with a hammer to examine their cross sections. Figure 20 shows the
cross section of a silicon nitride sample after exposure at 1400°F in potas-
sium vapor. Even though surfaces of the silicon nitride samples showed
evidence of potassium (see earlier figures on surface analyses), none was
detected in their cross sections.

Electrical Conductivity Data

Figures 21 and 22 show conductivity values as a function of temperature
for boron nitride specimens before and after exposure at 1400°F and
1000°F, respectively, to potassium vapor and liquid. The conductivity values
of the as-fabricated boron nitride are reported (by suppliers) as in the range
10-13 to 10-15 (ohm-cm)-! at room temperature. The measured values for
the present material (see data for unexposed boron nitride in Figs. 21 and
22) agree with the vendor-specified values. It was shown eariier that
exposure of these materials to potassium vapor or liquid results in signifi-
cant penetration of potassium into the material. Potassium penetration
increases the conductivity (or decreases the resistivity) of the materials by
3 to 7 orders of magnitude after exposure at 1400°F. The increase in
conductivity values for 1000°F-exposed material is in the range of 2 to 4
orders of magnitude. Note that the exposures were conducted in a static
mode in capsules and with a stagnant liquid boundary layer on the speci-
mens immersed in the liquid phase. In the MHD channel, the initial
condensation of potassium from the plasma will be via vapor that will
accumulate and be present as liquid when the slag constituents deposit
and become frozen. However, the boron nitride specimens impregnated
with potassium have poor mechanical integrity.



SEM micrograph and potassium mapping
of cross section of boron nitride specimen
after exposure at 1400°F in potassium
vapor
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Fig. 20. SEM micrograph of cross section of silicon
nitride specimen after exposure at 1400°F in
potassium vapor

In the silicon nitride specimens, exposure to potassium (either vapor or
liquid) had very little effect on electrical conductivity, as shown in Figs. 23
and 24. The conductivity values for unexposed silicon nitride are essentially
similar to those Yor unexposed boron nitride, especially at temperatures
above =1100°F. The effect of potassium exposure resulted in at most a
1-order of magnitude increase in conductivity. In fact, there is virtually no
change in conductivity for silicon nitride specimens exposed to potassium at
1000°F, indicating that adsorption and penetration of potassium into this
material is very minimal. This is consistent with the microstructural
observations presented above.

IMPLICATIONS FOR MHD CHANNEL DESIGN

Reliable performance of an MHD channel is strongly dependent on
adequate behavior of functional components such as electrodes, insulators,
sidebars, etc. This requires chemical compatibility in the hostile MHD
environment, mechanical integrity, and acceptable electrical properties.

From the standpoint of chemical compatibility, the boron nitride
sample exhibited substantial degradation upon exposure to a potassium
environment. The alkali metal penetrated almost the entire thickness at
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1000°F, and the sample was virtually destrcved at 1400°F by cracking and
swelling/spallation. On the other hand, silictn nitride specimens exhibited
virtually no attack in a potassium environment. While the hexagonal-
structure boron nitride (used in this study) is easily machinable and can be
custom-fitted between the electrodes, the silicon nitride is difficult to cut
and may not be amenable to a close fit between electrodes.

From the mechanical-integrity standpoint, the potassium-impregnated
boron nitride exhibited significant swelling and cracking and lost almost all
of its strength. This occurs even after 1000°F exposure but more so after
1400°F. The silicon nitride was virtually unaffected by potassium exposure,
as evidenced by the difficulty in cutting of the unexposed and exposed
samples for conductivity measurements.

From the standpoint of electrical conductivity, the boron nitride
samples exhibited a substantial increase in conductivity (decrease in
resistivity) after potassium exposure, especially after 1400°F. The values
obtained for the specimen exposed at 1400°F in potassium vapor are high
enough to consider this material a noninsulator. It is true that only
hexagonal-structure boron nitride (the candidate selected for the proto-
typical MHD channel) was tested in this study. No testing was conducted on
cubic boron nitride. On the other hand, the electrical conductivity values for
the silicon nitride specimens were similar to those of boron nitride in the

as—fabricated form. Further, exposure to potassium vapor or liquid did not
alter the conductivity of the silicon nitride.

On the basis of this study, it may be advantageous to replace boron
nitride with silicon nitride as the insulating material in the MHD channel.
This could lead to better reliability for the insulating material with regard to
chemical compatibility, mechanical integrity, and electrical properties.
However, the problem of the hardness of silicon nitride in regard to channel
assembly would have to be resolved.
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