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Preliminary Investigation of Force-Reduced Superconducting
Magnet Configurations for Advanced Technology Applications

J.X. Bouillard

Abstract

The feasibility of new high-field low specific weight superconducting magnet designs

using force-free fields is being explored analytically and numerically. This report attempts to

assess the technical viability of force-free field concepts to produce high-field, low specific weight

and large bore volume magnets, which could promote the use of high temperature

superconductors. Several force-free/force-reduced magnet configurations are first reviewed, then

discussed and assessed. Force-free magnetic fields, fields for which the current flows parallel to

the field, have well-known mathematical solutions extending upon infinite domains. These

solutions, however, are no longer force-free everywhere for finite geometries. In this preliminary

study, force-free solutions such as the Lundquist solutions truncated to a size where the internal

field of the coil matches an externally cylindrical magnetic field (also called a Lundquist coil) arc _

numerically modeled and explored. Significant force-reduction for such coils was calculated,

which may have some importance for the design of lighter toroidal magnets used in thermonuclear

fusion power generation, superconducting magnetic ene_'gy storage (SMES), and mobile MHD

power generation and propulsion.
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Executive Summary

In past years, it has b,.en acknowledged and documented that the state-of-the-art -.

superconductor magnet technology is being too conservative in the design of magnet structure.

The weight of these structures often exceed the limit imposed by the virial theorem. It is possible

that present magnet design could significantly be improved by using force-free fields. This

approach could open new possibilities for manufacturing large high-field magnets of low specific

weight which are critical to the development of applications such as thermonuclear power stations,

SMES, and mobile MHD generation or propulsion systems.

The design of force-reduced magnets is based on solutions to the force-free magnetic field

equation, where the current and the field lines are parallel, thereby canceling Lorentz forces. For

finite-force-free magnetic field configurations, the virial theorem sets limits on the structural mass

required to contain the magncde energy. While Lorentz forces may be eliminated in the interior of

a given force-free field region, they are actually displaced on the periphery of the region where they

can thus be compensated by structural tensile forces. Furthermore, it has been shown that the

critical current density could be raised by as much as three times when the current flows parallel to

the field lines. Therefore, potential improvements for large high-field magnets of low specific

weight need to be explored and assessed, which is precisely the objective of this study.

This objective was reached by first reviewing the principal force-free winding

configurations published to date, and identifying the possible technological applications of such

windings. The three-dimensional finite element computer code (TOSCA) was then used to help

determine magnetic field distributions and assess electromagnetic stress loads for proposed force-

reduced winding configurations. Two force-reduced configurations were computationally studied:

the rectangular torsatron and the truncated Lundquist coil. For these two configurations a force

reduction was successfully computed in comparison with conventional windings. For the

truncated Lundquist coil, the predicted solution grossly followed the theoretical Lundquist solution

in the interior region of the windings, which reinforced our confidence in the computer model

predictions. A force-reduction of about 25% was computed for a discrete Lundquist coil made of

six helices.

The computer code was initially installed on the ANL VAX 8700, which turned out to be

too slow for these types of computations. The code was then transferred and implemented on the

ANL CRAY XMP supercomputer to expedite these computations. A significant effort was

expended in implementing this code on both machines.



Although the three-dimensional modeling of discrete force-free field configurations

successfully showed a reduction of forces on the windings, further research needs to be conducted

to study more complex coil geometries to possibly obtain greater force reductions. An optimum is

to be sought which balances the structural weight reductions obtained from force-reduced designs

with the increased complexity of windings, structure and cooling systems required to support these

new types of windings.



1. Background and Motivations

In past years, there has been considerable interest in the development force reduced

superconducting magnets for a wide variety of technological applications for which high magnetic

fields are needed. Coils in such high magnetic fields are subjected to large electromagnetic stresses

which are usually contained by using heavy superstructures. By eliminating these electromagnetic

stresses by using force-free field concepts, one could expect to significantly reduce the weight of

large field magnets. Civilian and military technologies that could benefit from such concepts are

briefly reviewed.

One of the most popular superconducting magnet applications is the Magnetic Resonance

Imaging (MRI) technology which has now achieved the status of a mature industry. Typical

magnetic fields of 1.5 to 4 Teslas with a bore space of 1 m are required for research and medical

MRI superconducting magnets. The MR/industry significantly impacts the magnet industry, with

an annual turnover greater than $600M. MRI systems are already well developed and effectively

cost-engineered. However, new designs that would reduce the weight and magnetic pollution,

increase field strength, and maximize the bore space are strongly desired, especially for

transportable high-field medical and research MRI systems.

Another application of high field superconducting magnets is the development of

superconducting magnetic energy storage (SMES) devices. The use of these devices for electric

leveling grids will only be competitive with conventional systems (pumped hydrostorage) for large

units of about 1014 J or more. Since the largest magnets presently store at most 10-100 T, the use

of superconducting energy storage for electric load leveling grids is only a remote possibility. Not

only is the energy storage capacity of these systems an important characteristic, but equally

important, is the current rise time of these systems. Figure 1 shows how the cost of energy

storage varies with the size of the energy store, while Figure 2 shows distinct regions in which

particular forms of energy storage are most appropriate. Capacitors are preferred for

charge/discharge times below a few milliseconds, whereas flywheels, batteries, and homopolar

machines are best suited for times ranging between 10 to 100 milliseconds. In the range of

millisecond time rise, superconductive inductive energy storage (SMES) seems most promising.

These storage devices can be used for ground and space based systems, such as electromagnetic

vehicle launchers, hyperveloeity guns, neutral particle beam weapons, proactive defense systems,

chemical and free-electron lasers. For such devices, light weight- high energy storage capacity

superconductive magnets are desired, which could offer high energy conversion efficiency, low

maintenance, low capital costs and minimal production of chemical and magnetic pollution.
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Finally, magnetohydrodynamie (MHD) power generation and propulsion technology

would require lighter and more powerful magnets (10-12 T) to make it competitive with present

technology. This requirement becomes even more stringent for mobile generators or thrusters to

be implemented on marine ships, rockets, space platforms or laboratories. Similar requirements

also apply for large fusion magnets. For these toroidal magnets, the large forces and bendings

moments acting on such coil systems have been partly accommodated by adopting D-shape toroidal

coils. Such coils, however, are being subjected to greater constraints than those encountered in

MHD power generation or propulsion, namely they have to be stable in the presence of large

pulsed fields, offer fast safety discharge performance, and permit sufficient access to the blanket

and the first wall so that maintenance and replacement can be made periodically and in a timely

manner. Hence, the use of force-free magnets appears to be more promising for MHD applications

than for thermonuclear fusion applications, because of lesser rigid constraints imposed on the

coils.

In summary, it is clear that force reduced superconducting magnets could have significant

technical and economical impacts on each of these technological fields. All the application fields

described above could thus provide the necessary impetus to develop a strong and well-structured

research program geared to assess the technical viability and feasibility of such concepts; it is in

this spirit that this report attempts to investigate and assess the technical potential for some limited

force-reduced coil configurations.

2. Introduction

In the construction of large magnetic field superconducting coils, challenging mechanical

issues have to be resolved. These issues arise because of the existence of strong forces and

bending moments which become increasingly important at higher fields. These forces,could in

principle be minimized through the application of force-free field concepts.

2a) Review of Force-Free Solutions

Force-free coils are coils in which the field and current are everywhere parallel. The

construction of such coils with force-free conditions applied everywhere is practically not possible.

However, near force-free or force-reduced regions in the coil are possible: it is, for example,

possible to design a force-reduced torus coil surrounded by a force-bearing ring, as displayed in

Figure 3 (Wells and Mills, 1961).



There is renewed interest in force-reduced magnetic field configurations due to the recent

discovery of high-temperature superconductors. Because the materials that exhibit such behavior

tend to be quite brittle, it is important to reduce the forces they might experience if they are to be

used for high-field applications. In addition, Furth, et al. (1988) has raised the possibility that

force-free field configurations may have the potential to raise the critical magnetic field and current-

density limits in such superconductors, thus making such concepts even more attractive.

For finite force-free magnetic field configurations the virial theorem, which can be used to

relate the stored magnetic energy of the system to the integral of the trace of the stress tensor over

the magnetic field volume, sets structural limits that must be obeyed in practice. While stresses

may be eliminated in a given region, they cannot be canceled everywhere. In general, magnetic

stresses have to be contained at the periphery of the coil region.

Several force-free configurations have already been studied. The simplest configuration is

the one given by Bobrova and Syrouastiki (1979) for a planar constant-o_ force-free configuration.

The field is given by

B =(Cos az, Sin o_z,0) (1)

in the infinite region between the fixed boundaries z = 0 and z = 1, as shown in Figure 4. The

cun'ent density, j = curl B, is given by:

j = (-0_Cos ocz,-oc Sin ocz,0)-- -o_B

which makes this configuration a force-free configuration since JXB = 0, Forces arc only

generated at the periphery of the device. Note that the periphery of the device could be made

circular, limiting the angle stresses. In this device, the planar layers of superconducting materials

could be laid on each other, thus making this configuration well suited for planar thin films of high

temperature superconductors.

For cylindrically symmetric fields, Furth, et al (1957) described the following expression
for constant et force-free solution

H 0 = A cos(kz)Jl[r{ot 2- k2)1/2], (2)

Hz = A[(a 2- k2)l/2/Cx]cos(kz) Jdr{a2- k2)1'2] (3)

Hr = A(k,/cz)sin(kz)JlIr(a 2- k2)1/2], (4)
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Figure 3. Schematic of the for_e-free torus of Wells and Mills (1961).
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Figure 4. Planar force-free configurations (constant(z)
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where A and k are constants. For k = 0, the radial component vanishes and the solution becomes

that of Lundquist (1951). The field lines of the Lundquist solution are shown in Figure 5. For

nonconstant ct cylindrically symmetric solutions, Marsh derived a set of solutions that are

presented in Figure 6 (Marsh, 1990). For axially symmetrical spherical nonconstant ct solutions,

Marsh further generalized the Grad-Shafranov equations for which the magnetic field components

are expressed in terms of the flux function. This resulted in a form of Bernouilli's equation for the

function a and an equation for the flux equation which depends on an arbitrary function of the

flux. Typical results of nonconstant alpha force-free solutions are shown in Figures 7 and 8. As

can be seen in Figure 8, the magnetic surfaces are generally toroids with banana-like cross-

sections.

For toroidal coordinates, Buck (1965) derived the constant ct force-free solution which is

illustrated in Figure 9. Tsujii (1991) generalized Buck's solution for axisymmetric torus of

arbitrary ratios in form of infinite series. Though great strides have been made in establishing

analytical solutions of force-free fieldsfor various geometries, the application of these solutions to

produce useful force-reduced magnets has been slow, if not nonexistent. Although very

promising, the theoreticzl solutions which often times assume some perfect symmetry do not easily

lend themselves to the practical manufacturing of magnets. Several practical reasons explaining the

difficulty of using such concepts to manufacture force-reduced coils may be given as: a) force-free

fields in essence are very nonuniform and, therefore, of limited use, b) coil winding is complex

and thus difficult to manufacture, c) maintenance, replacement of such coils could be difficult and

costly, and d) coils of finite-size cannot be strictly force-free. The last reason is a critical one, and

brings the question of how much structure reduction can we expect to gain using force-free

mathematical solutions truncated to a limited and finite geometrical domain? Such questions will be

explored in this report for a truncated Lundquist coil.

Several attempts in this direction have been made to produce force-reduced configurations.

One of these configurations, shown in Figure 10, has been proposed by Mawardi (1975). In this

configuration the poloidal and toroidal components have been decomposed by setting a coil

carrying a poloidal current inside a toroidal shell which supports coils carrying a toroidal current.

Of course, this arrangement is not purely force-free, but can be said to be "force compensated" or

"force-reduced". The poloidal currents form a toroidal magnetic field which is completely
contained inside the torus. The direction of the mechanical forces on the torus are compressive for

the toroidal current sheet and expansive for the poloidal current sheet. Mawardi estimated the cost

savings realized when force-free coils are used instead of conventional magnets for

superconducting magnetic energy storage applications as indicated in Tables 1 (a) and (b). His



Figure 5. Force-free cylindrical solution (LundquisO
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Figure 8. Parametric plot of _ = _Jn + lt2(r)(1 - g)P(nL" D(_t) for _.= :!: 0.1, :1:0.3, :!:0.5.

Note that g = 0 on the z _is.(Marsh, 1992).

I
I

i

a

I

Figure 9. Typical constant o_ force-free solution for toroidal geometry (Buck, 1965)
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Supporhng shell

Coilscorrying
foeoidalcurrent

Coi! carrying
poloidalcurrent

Figure 10. Reduced force energy storage concept. The poloidal coils produce outward forces

whichare in opposition to the inward forces of the toroidal coils.(Mawardi, 1975).
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Figure 11. Schematic diagram of (a) stellarator, (b) heliotron, and (c) torsatron windings.(R.

Thome, 1982)
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" Table I (a) ...........

Cost Estimates for Force-Free Coil* (1975 dollars)

Energy Stored (MJ) 3x 104 106 3.0x 107 108

Cost of superconductor ($ x 106) 2.24 22.77 261.96 489.7

Dewar cost ($ x 106) 2.0 24.6 300 58 !

Structure ($ x 106) 0.267 8.67 338 866.67

ac-dc converter ($ x 106) 0.04 1.4 54 140

Miscellaneous ($ x 106) _ 2.1 51 128

Total 5.02 59.24 51 2205.37

Table 1 (b)

Comparison of Construction Costs of Force-Free Coil

with Costs of Cylindrical Coil* (1975 dollars)

Energy Stored (MJ) 3x 104 106 3.0x 107 108

Force-free coil ($106) 5.02 59.54 1004.96 2205.37

Conventional coil ($106) 5.2 7 3.4 1641 3864

*Mawardi (1975)
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analysis revealed that no significant gains are made at low energy storage, but beyond I MJ,

substantial gains (40%) could be achieved with force-free coils.

Other magnet geometries such as the stellarator, heliotron a.ad torsatrons have been

proposed for thermonuclear fusion power generation. These magnets use helical windings of

different helicity, as shown in Figure 11. The stellarator consists of 2-1 helical wires with

alternating direction of current, but large forces exist on the helical coils. By eliminating the

appropriate set of alternate helical coils, the remaining coil set experiences no outward forces, and

this geometry is known as the heliotron. By removing the toroidal coils, one obtains a simpler

geometry eaUed the torsatron. By appropriately choosing the pitch of the windings, the torsatron

configuration can be made essentially free of external forces, thereby requiring less structural

material to support it.

Recent inventions by Prueitt, et al. have been geared towards establishing several

configurations of conductors capable of supporting extremely high magnetic fields suitable for

plasma confinements. T_pical wire arrangement proposed by Pmeitt, et al. is shown in Figure 12,

with the corresponding isomagnetic field lines shown in Figure 13 (Prueitt, et al., 1991). In this '

arrangement, the wires transport currents of opposed directions, thus canceling the large

electromagnetic forces. This arrangement is based on finding low-force configurations of electric

current carrying wires, which have been shown to be equivalent to locate stationary states for

flowing systems having localized logarithmic potentials. Campbell and Kadtke (1987a) and

Kadtke Campbell (1987b) showed that equilibrium (force-free) configurations could be possible in
some instances.

2b) Review of the Virial Theorem/Sealing Laws

Two puzzling ideas have intrigued many magnet designers regarding the structural mass

necessary to hold magnetic forces. One is, of course, the force-free concept, while the other is the

limits given by the virial theorem. Superficially, if a magnet is designed according to the force-free

concept, JXB = 0, thus one could expect that there is no need for structural force to hold the

magnetic field in place. On the other hand, the virial theorem sets a lower limit of structural

material necessary to hold the coils/field together. This dilemma is quickly resolved by realizing

that although volumetric forces are eliminated in a force-free concept, surface forces at the coil

periphery can be present. Let us review the virial theorem, and see how these two seemingly

contradicting hypotheses are in fact complementary.
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Figure 12. Schematic representation of a force-reduced configuration of eight conductors

(Prueitt, et al., 1991).



Figure 13 Representation of the strength of the magnetic field with isofield contours for the

system shown in Figure 12 (Prueitt, et al., 1991).
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The virial theorem of Clausius can be extended by analogy to the case of a coil and its

magnetic field. When the electromagnetic forces are in equilibrium with elastic forces in a medium

that contains the electromagnetic field, then the Maxwell stress tensor T and the elastic stress

tensors S obey the following relationship:

V .(T+S)=0. (5)

With the summation convention, this equation can be written as

&(Tij + Sij) = 0. (6)
_xj

Forming the inner product of the coordinate vector xj with this equation and integrating over a

volume V bounded by a surface S, we have

fvXi _ + dv = 0 (7)
(Tij Stj)

_xj

Integratingby partsand applyingGauss's theorem, one obtains

fs njxi(Tij+ SijklA - fv (Tii + Sii)dv = 0. (8)

where the Maxwell stress tensor, T, is defined as

Tij = _ B 2 - BiB......._j
2_o }.to

I njxi[Tij + Sij)dA. fv (Tii + Sii)dv= 0. (9)

B2
The trace Tii of the magnetic stress tensor is + _ Thus

21.to"

yl+_"_ + Sii V ---- njxi(Tij + Sij)dA. (10)

This equation is known as the virial theorem.
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If the surface integral converges to zero at infinity, thus we have

"fv SiidV =fv B2dv2kt0 (11)

which indicates that all the electromagnetic energy stored has to be compensated by some structural

elastic energy. Note at this point, no assumption is made on the form of the field. The elastic

forces are tensile in character beCause of the sign of the left-hand side of the equation.

If the surface integral is not zero, it is positive because of the definite positive form of the

integrand. Therefore, if all the magnetic energy is not compensated by a volumetric tensile stress,

it has to be confined by surface forces on the surface S. Hence, the tensile forces are only exerted

on the periphery of the domain. This is typically the case for force-free fields, since in the volume

under consideration, no volumetric forces are present. All the magnetic forces created in the

volume must be compensated by tensile forces on the surface of the volume.

The mass of the structure is given by

= P--2-s( ISi'_dv (12)Ms
aw L

where a w is the working stress and 9s is the density of the structure. The mass necessary to

support the structure is, therefore

Ms > Ps B2
2_ aw" (13)

Moon (1982) found that for the majority of the MHD and thermonuclear fusion

superconducting magnets, the mass of the magnets scales as E = CM 4/3, rather than the linear

scaling implied by the virial theorem, as shown in Figures 14 and 15. He also underlined that all

of the superconducting magnets he studied are heavier than the limit imposed by the virial theorem,

by about an order of magnitude. He concludes his analysis by realizing that the primary constraint

on the design of these magnets is not stress, but rather current density, field strength, uniformity,

and thermal stability. Moon concluded that reduction of magnet weight, although desirable, may

not be easily to accomplished because of the many other interdependent components and

constraints involved in the construction of superconducting magnets (see Appendix A).
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As fields of the order of 20 T seem to be attainable with conventional low Tc

superconducting technology, critical fields may be raised by orienting the field in the direction of

the current. Under this condition, it has been observed that the critical current density can

significantly be augmented, which is often expressed as (Cody, et al., 1964)

Jc = ¢x/(HSine+ Bo)

where 0 is the angle between the current and the field H with o_and Bo being constants. As can be

seen, if the current flows parallel to the field 0 = 0 the maximum critical field becomes equal to

Jc = a/Bo. Furth, et al., (1988) indicate that Jell can be at least three times higher than for some

superconductors. As a result, the use of force-reduced configuration could mean the possibility of

winding magnets which could provide fields of the order of 100 T. At these high fields, the

internal conductor magnetic pressure rises quickly to the order of 100 M Pa, and hoop stresses are

of the order of 5000 M Pa which could introduce significant strain on these conductors during

normal operation and therefore decrease the critical current density (see Appendix A). It is

therefore clear that if large fields are needed the force-free concept becomes attractive since it

systematically eliminates all these concerns. In fact, force-free field concepts may be the only

practical way of cc,ntaining such large stresses.
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reactors. The virial limit is based on a design stress of 34.5 kN/cm 2 (50,000 psi) in

stainless steel (Moon, 1982)
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3. Three-Dimensional Finite Element Computer Modeling

A comprehensive computer model that can address the main design issues prior to the

construction of the magnet can be a very valuable and cost effective design tool. Most designs of

superconducting magnets rely on computer modeling. Ideally, the computer model should

calculate the magnetostatics, the structural dynamics and heat transfer performances of the magnet.

However, such complexity often leads to computer programs that are highly cumbersome and

inefficient to use. The magnetostatics and the structural dynamics must be computed

interdependently. A typical illustration of the stress dynamics is shown in Figure 16 in the work of

Chapman, et al. (1989) for the design of the yoke and collars of a supercollider dipole magnet.

The computer model predicts the mechanical stresses and deformations during various cool-down

sequences of the assembly. The computer code used in their analysis was the ANSYS finite

element code developed by Dawson Analysis Systems. In this work, another computer code,

r.amed TOSCA, was used. TOSCA only solves the three-dimensional magnetostatics but offers,

however, better solution convergence performances than the ANSI computer code. As indicated

in Appendix A, the final design of a superconducting magnet often relies on the magnetostatics,

thermal and structural analyses, which are dependent of one another. In our analysis, however,

thermal and structural effects are ignored, and only magnetostatics effects are considered. TOSCA

computer code only solves the three-dimensional magnetostatics using a finite element algorithm.

Since its solution deals only with magnetostatics, it offers better solution convergence

performances than the ANSI computer code.

3(a). Description of the TOSCA Numerical Algorithm

The three-dimensional computer code TOSCA was originally developed at the Rutherford

Appleton Laboratory, in England, to study magnetostatics and electrostatics problems. The code

was then further extended and packaged with new graphics, pre- and post-processors by Vector

Fields Limited. A copy of the computer code has been purchased by ANL.

Finite element discretization forms the basis of the TOSCA numerical algorithm, which can

be used to simulate linear, nonlinear and anisotropic phenomena. In this code, the total magnetic

field intensity (H)is decomposed into a reduced magnetic field intensity (Hm) and a current

magnetic field intensity {Hs):
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Figure 16 (a) Finite element model of a superconducting super collider dipole magnet, (b)
computed deformation of the coils and collars, (c) computed stresses on coils
(computations made using the ANSYS computer code (Chapman, et al. 1989).
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H = Hm + Hs (16)

since (Hm) represents the magnetic field where no current sources are present,

curl Hm = 0 or Hm = grad _ (17)

where g}is the reduced scalar potential. The field due to the current sources, can be expressed by

means of the Biot and Savart's Law (see derivation in Appendix B):

---- JxR
H, - - dDj (18)

J

In TOSCA, a quadrature is used to compute this integral. The requirement that divergence of the

magnetic flux is zero, leads to the following equation:

This equation is a second order elliptical equation that can be easily solved using a finite element

iterative routine. Equation (I 9) can be recast as

v 0 (20>

where _g is the total magnetic potential. In the area of interface between total and reduced

potentia_ _, the limiting con_.itions of normal and tangential B being continuous (see Appendix B)

are applied. Boundary conditions on the surfaces of the mesh are expressed as functions of the

total potential V.

In TOSCA, the conductors are represented by f'mite element brick units as shown in Figure

17. This brick is defined by 20 nodes, each of which has 3 coordinates. Thus each brick is

defined by 60 parameters. As can be seen, any conductor geometry can be fitted with this brick.

Another component which has to be superimposed upon the geometry of the brick is the current

density which crosses the surfaces of the brick. Complex conductor geometries, such as those

used in force-free coils, require detailed description of each conductor brick. The geometry

description and code formulation of the coil is often tedious and time consuming. The magnetic
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field is calculated over a three-dimensional computational mesh which covers the conductor mesh

and regions surrounding the conductor.
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4. Preliminary Comparative Study of Force-Reduced Magnets with Conventional

Magnets

Recent interests in MHD propulsion for marine vehicles have rece_ ied the U.S. and

Japan to investigate large-scale MHD propulsion systems. One of the bottlenecks of the

technology is the development of light-weight/high-field superconducting magnets. Several coil

configurations have been proposed in the literature. In the following section, these configurations

are first reviewed and a proposed force-reduced rectangular torsatron for MHD propulsion is

analyzed and compared to a conventional racetrack configuration.

4(a). Review of Proposed MHD Thruster Configurations

NUSC (Naval Underwater Systems Center) has proposed to study several MHD thruster

configurations. Some of these proposed configurations, shown in Figure 18 and 19, are a) the

double solenoid, b) the clustered dipole, and c) the toroidal annulus. In the double solenoid

geometry, two concentric ducts hold the electrodes with an inner and outer solenoid magnet. The

current flows radially between the radial current and the axial magnetic field creates an azimuthal

thrust that is redirected in the axial direction by means of helicoidally shaped vanes. The second

configuration is the clustered dipole geometry where several cylindrical thrusting sections with

superconducting saddle-shaped dipole magnets are clustered around a central cylindrical duct. This

clustered configuration is the one used by the Japan Foundation for Shipbuilding Advancement

(JAFSA). The third configuration is the toroidal annulus thruster configuration which is shown in

Figure 19(a) and mounted on a submarine vehicle in Figure 19(b).

For both types of configuration (saddle dipole and toroidal annulus), the large operating

magnetic field introduces a strong magnetic pressure on the central cylinder, as it is to the bucking

post of a Tokamak. This central region is prone to much of the mechanical stress resulting from

electromagnetic forces. To relax this pressure, one can devise a force reduced coil configuration as

shown in Figure 20, whereby a helicoidal torsatron of two helices is mounted around the

submarine. The water would flow between the coils and perpendicular to the plane of Figure

20(a). The resulting field in the torsatron is mainly toroidal. As discussed earlier, the torsatron is

a force-reduced configuration provided that the helical pitch is appropriately chosen.

In the following section, a brief introduction on the torsatron is first given, and an attempt

to compare electromagnetic forces for a rectangular torsatron and a racetrack configuration is then

made.
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Figure 18. Two possible thruster configurations a) the double solenoid thruster and b) the saddle

dipole thruster configurations
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Figure 19. a) Toroidal annulus thruster configuration, b) Mounted on a submarine vehicle.
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Figure 20. a) Cross section A.A. of a proposed torsatron thruster mounted on the submarine (not

to scale), b) typical toroidal magnet mounted on the submarine shell
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4(b). Torsatron Analysis

A torsatron coil configuration is made of several helices. By properly adjusting each helix

pitch, one can obtain a force-reduced coil system. Let us consider a helix which can be represented

by the parametric coordinates (as shown in Figure 21)

r = r Cos0

y = rSin0

z=hO

As readily seen, for an angle displacement 0, the point on the helix moves by h0 in the

vertical direction and rotates by the angle 0 on the circle of radius r in the horizontal plane. The

Frenet trihedron which consists of a tangent, normal and binormal, is defined by the Frenet-Serret

equations which read

d_T.=ioN
ds

dN =-k'T +xB
ds

= -xN.
ds

Where T, N and B are the tangent, the normal and the binormal vectors to the helix. _¢ and

x are called the curvature and the torsion, respectively. The tangent vector is given by

(-Sin0, Cos0, rk) where tang ot = h/r and o_is the helix angle. If another helical conductor has its

tangent vector perpendicular to the fh'st helix tangent, the perpendicularity constraint imposes that:

Sin (0 + 2n--K-) • Sine + Cose .Cos (0 + 2n_)+ (h/r)2 = 0

which is equivalent to

(h/r}2=-Cos .2_/[n

if n = 2; which is a system of two helically torsated coils; we find that h/r = 1 or ot = 45". If n = 3,

which is a system of three helically torsated wires, we find that ot = 35" (h/r = 1/f'2-). Hence, in a

"force-free" torsatron configuration, the three helices depart from the horizontal plane with a



Figure2I.Geometryofahelix



negative. The system of two helically torsated coils was shown in Figure 20(a_ and a system of

three helically torsated coils was shown in Figure 11.

4(e). Preliminary Comparison of Electromagnetic Forces Between

Torsatron and Conventional Systems

To understand why and how forces are reduced in a helical winding system, we used the

TOSCA computer code to compute the magnetic field generated by a helix and the corresponding

4-ring systems as shown in Figures 22 and 23. The helix angle is 45" and the conductor is a 0.01

cm diameter cylindrical wire. The radius of the helix and of the circular rings are 5 cm. The

current density passing through the helical coil is 10 A/cm 2 and that of the rings has been adjusted

to maintain a constant total ampere-meter number for both systems. Such argument was used by

Moses (1975) in his comparison study of superconducting magnet scaling laws. In brief, he

argued that the critical current density is fixed to a certain degree by the conductor design. Hence,

fixing a number of amperes would then fix the cross section of the conductor. By fixing the total

ampere meters for the coils, the volume of the conductor becomes fixed. Moses further argues that

the quantity of stabilizer is proportional to the ampere-meter number and so are the helium

inventory and assembly mass and costs.

The magnetic field intensity histograms for the two configurations are shown in Figures 24

and 25 and Figures 26 and 27, respectively. As can be seen, the field intensity is locally larger

inside the tings for the 4-ring system than that for the helical system, though the 4-ring system is

sustaining a spatially averaged field density 30% smaller. The Lorentz force exerted on the 4-ring

system was computed to be about 22% greater than that exerted on the helix, for the same

conductor element size basis.

This example brings about several important characteristics of these two systems. First,

the field generated by a single helical coil spreads more in space, as shown in Figures 24 and 25.

This tends to produce a smaller field gradients on the coils and thus to impose smaller

electromagnetic forces on the coils. In contrast, in a ring the field is "compressed" which tends to

create more force on the winding because of larger field gradients. This example shows that

minimum forces are created on the coils when the magnetic pressure gradients are minimum. In

the helical coil, the magnetic field spreads more in space, yielding smaller gradients in the

neighborhood of the coils, and thus smaller forces on the coils. The strength of these fields and

field gradients for these two systems are represented by a shading gray palette in Figures 24 and 25

and histogram on Figures 25 and 26.
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Figure 24. Magnetic field intensity distribution for a single wire torsatron
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Another coil geometry relevant to MHD ship propulsion was investigated. It is a two-helix

rectangular torsatron which is illustrated in Figure 28. In this configuration only two wires are

used and are crossing each other at 90". To simplify the analysis of this system only a portion of

this winding is analyzed as shown in Figure 29. At the boundary of the computational domain,

symmetry is assumed. An equivalent racetrack coil is shown in Figure 30, which has the same

radial and lateral dimensions. To compare these two systems on the same basis, the current

density in the equivalent racetrack coil is adjusted so that the total amperemeters are the same for

both configurations following the arguments discussed above. The geometrical ratios are such that

r/L = 1 and Ar/r = 0.01 (see Figure 28). These aspect ratios were suggested as typical for MHD

toroidal thruster mounted on a submarine vehicle. Schematics for these two coils configurations

are indicated in Figures 29 and 30. The computed forces exerted by the regular torsatron on the

radial portions of the torsatron are about 2.7 times smaller than that exerted on the radial portions

of the racetrack. A force reduction of about 20 times is calculated on the lateral portions of the

torsatron coil with respect to the lateral portion of the racetrack.

This example illustrates that spreading the field over the coil as it is the case in a rectangular

torsatron, yields a significant force reduction on the wires. Using such configurations, one could

therefore hope to generate higher fields with less structural constraints.

Although forces are being reduced in such configurations, one may realize that the resulting

magnetic field is tortuous and highly nonuniform. This could lead to nonuniform momentum

thrust that could induce unnecessary turbulence and possible flow reversal, thus seriously limiting

the hydrodynamic and acoustic performances of the thruster.

4(d). Comparative Study of Toroidal Pod and Toroidal Annulus
Conventional Configurations for MHD Propulsion

To gain further insight and provide a basis for magnet performance comparison, two

conventional geometries were studied and are presented in Figures 31 and 32 for a six racetrack

toroidal pod and a 8 racetrack toroidal annulus configurations. A same current density 4000 A/cm 2

is assumed in both configurations, which is an upper bound for the current density presently used

in superconducting magnets. As a reminder, the 6 Tesla ANL superconductor (Nb (48%) Ti)

dipole magnet was designed for a current density of about 2000 A/cm 2. As can be seen in Figure

33, this current is well within the envelope of the conductor characteristics.
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Figure 29 Two-helix rectangular torsatron
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The first configuration consists of 6 racetracks as shown in Figure 31. Each individual

racetrack length is about 10 m. Two diametrically opposed racetracks are separated by about l m.

The radial size of each racetrack is about 1 m. Each racetrack winding supports a conductor cross-

section of 20 cm radially by 10 cm azimuthally. The total current flowing in each racetrack is 4000

x 20 x 10 = 8 105 Amps turn. In Figure 34(a), a plot showing the magnitude of the magnetic field

is presented. The magnetic field was evaluated at mid-axial length of the racetrack. The peak field

occurs in the inner leg portion of the racetrack coil at a value of 2.7 Teslas. The field inside the

racetrack volume drops to a value of 1.0 Tesla. The peak field in the outer leg of the racetrack is

about 2.2 Teslas. As can be seen in Figure 34(a), the field is highly nonuniform in the toroidal

propulsing volume between the racetracks. This design for an MHD thruster would likely produce

nonuniform thrust, with a thrust maximal in the regions close to the inner radius core of the

magnet. Figure 39(b) shows a similar plot from another point of view. This figure illustrates

better the rapid change of the field near the center core of the magnet configuration. Figure 34(b)

also shows a relatively low field in the central portion of the magnet. The resulting large field

gradients are causing a strong implosive force on the inner legs of the racetracks.

The other eight racetrack configuration, shown in Figure 32, has racetracks of the same

dimensions as those used in the six coil configurations discussed above. They are equally spaced

over a larger internal diameter of 10 m. For the same current density (4000 A/cm2), the peak value

of the field drops to 1.9 Tesla, while the inner toroidal value of the field in a racetrack cross-section

is reduced to 0.7 Tesla (Figure 35). The field drop-off between the racetracks is less pronounced

than that for the 6 racetrack configurations because it follows 1/rvariations with r, the radius being

larger. The magnitude of the field is likewise much smaller. In the eight racetrack configuration,

the working field is only about 0.4 T between two racetracks. As can be seen, the field between

two racetracks is also nonuniform, but to a lesser extent than that for the 6 racetrack pod. The ratio

of peak field to inner-racetrack field is also about 3.

These two examples show that such proposed configurations are far from being ideal for

MHD propulsion and need improvement. To further gain insight on these systems, a force

calculation on each racetrack was performed. A typical racetrack is discretized in 18 elements as

shown in Figure 36, with each individual element numbered from 1 to 18. Elements 9 and 10

constitute the inner legs of the interior central portion of the magnet, while elements 1 and 18

constitute the outer legs. The forces in x, y, and z directions for both the six and eight racetrack

configurations are shown in Tables 2 and 3, respectively. For both magnet configurations, the

greater forces are exerted on the inner leg elements 9 and 10. For the six racetrack configuration,
an inward force of about 4 x 106 N over a surface of 50 x 10 cm 2 results in a pressure of 80 MPa
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acting on the inner legs. Note that the magnetic pressure inside the windings is only of the order of

B 2/2_o which only translates into a pressure of 3 MPa. A quick evaluation of this term can be

made by consulting the chart of Figure 42, where the magnetic field strength is directly converted

into pressure. Typical superconducting windings can easily sustain a pressure of up to 180 MPa

(NbTi) or 300 MPa (Nb3 Sn). In our example, the structural pressure exerted on the central

bucking post is well below the commonly used structural material yield stress limit (300 MPa).

Stronger materials can sustain even larger stresses of up to 1000 MPa.

For fields of the order of 10-20 teslas, the superconductor Nb3Sn seems to be most

appropriate. At these fields, the magnetic pressure in these superconductors is of the order of 10

MPa, which translates into a strain of 0.01%. (Assuming a commonly used Young Modulus of

about 105 MPa for the conductor). The Nb3Sn superconductor belongs to the chemical composite

category and has a strain sensitivity which is illustrated in Figure A-4. For a 20 T magnet, hoop

stresses may reach about 20 x 2 x 107 = 400 MPa (current density of 2 x 103 A/cm 2 and 1 m

length coil radius assumed). This limit comes very close to the limit offered by the strongest

structural superconductor materials available. In force-free configurations, these stresses should in

principle become minimal, thereby opening the possibility of high field low specific weight

magnets.

As explained earlier, true force-free mathematical solutions have often been established for

infinite domains. For fininitc coil geometry, however, these fields arc no longer force free. It is,

however, important to quantify how much force reduction could one expect when a force-free

solution is truncated to a f'mitc geometry. A numerical approach to this problem is discussed in the

following section, for a Lundquist coil.

uncated Force.

Free Field Geometry

In practice, force-free mathematical solutions over infinite domains may loose their force-

free characteristics if they are implemented for finite volume magnets. If the force-flee solution is

discredzed and truncated, the solution is no longer "force-free" but may still be "force-reduced". It

is the objective of this section to investigate the possibility of such force reductions.
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Figure 36 Layout of the 18 internal elements each racetrack
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Table 2 Force ca'.culation on each raccu"ackof the 6 raccu'ack configuration

COIL SECTION Force (X) Force (Y) Force (Z)
PART ! 1437889.000 0.040085200 0.0
PART I. 43552.00000 -0.00283669 12300.50000
PART 3 36510.30000 0.004469120 36545.20000
PART _ 12551.70000 0.017964700 44694.00000
PART s" 0.0 -0.00499147 382395.0000
PART | -18483.4000 -0.00267346 65952.80000

PART "I -56727.6000 0.004630310 56329.40000
PART _ -78166. 5000 0.018257300 21239. 80000
PART _ -3999647.00 0.047695800 0.342595000

PART |0 -3999647.00 -0.01439790 0.342595000
PART 11 -78166. 5000 -0.00293056 -21239. 8000
PARTn. -56727 6000 0.004485580 -56329.4000
PART t_ -18483. 4000 0. 017331400 -65952. 8000
PART e_ 0.0 -0.00267093 -382395.000
PART i%" 12551.70000 -0.00299228 -44694.0000
PART I_ 36510. 30000 0. 004158740 -36545. I000

PART I_ 43552. 10000 0. 016920500 -12300. 5000PART I 1437889. 000 0. 021979000 0.0
ALL -5245042 0. 164484 0. 611328

Table 3 Force calculation on each racetrack of the 8 racetrack configuration

COIL SECTION Force (X) Force {Y) Force (Z)

PART i 744222.0000 1778.650000 0.0
PART _ 35273.70000 24.78880000 10101.30000

PART S 30492.30000 19.55240000 30505. 90000
PART It 10196. 50000 9. 739222000 35704.00000
PART 5" 0.0 55.98920000 234591.0000
PART 6 -10276. 6000 2. 639370000 35991. 60000
PART "I' -30752.7000 -16.1223000 30761.90000
PART _ -35677.5000 -32.4309000 10208.10000

PART 5 -777606.000 -2737.29000 0.047461300
PART lo -777606.000 -2737.22000 0.047461300
PART II -35677.5000 -32. 4499000 -I0208.1000
PART I_. -30752.7000 -16.1223000 -30761.9000

PART i_ -I0276. 6000 2.658245000 -35991.6000
PART ILl 0.0 55.99410000 -234591.000
PART _ 10196.50000 9.720674000 -35704.0000
PART |b 30492.30000 19.55280000 -30505.9000

PART _I_ 35273. 80000 24.80750000 -10!01.3000PART 744222.0000 177a. 640000 0.0
ALL -68256.2 -1788.9 0. i19!4
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Figure 37 Magnetic pressure B2/21.t0 as a function of B. The magnetic pressure is equal to the
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4(e.l) Lundouist Solution

A single force-free cylindrical solution was proposed by Lundquist (1951). This solution
takes the form:

Hz = AJo (ar) (2 l)

H0 = AJ1 (otr) (22)

Where Jo and J 1 are the flu'st order Bessel functions. The field solution is schematically illustrated

in Figure 38(a). An implementation on a finite geometry coil was proposed by Furth, et al. (1988)

with four helical windings of the varying pitches as shown in Figure 38. For our _,_odel of the

Lundquist coil, only six helical windings are used as shown in Figures 39 and 40.

Before discussing the finite element discretization of the Lundquist solution, let us review

the concepts governing this solution. For a field vector F, the following equality applies.

V x V x F = V{V. F)-(V. V)F. (23)

For a field H with zero divergence, one obtains the equality

V x V x H =-VZl-I. (24)

In the case of a force free field, where V x H = ocH = j, one obtains

V x V x H = -VZH = V x (otH) = V.ot x H + ot.V x H (25)

and for constant ot fields, one obtains the following wave equation:

V2H + ot2H = 0 (26)

which becomes without loss of generality

VzI-I + H = 0. (27)

We are seeking a field which has the following characteristics

H = (0, H0' Hz) with H = H(r).
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Figure 38 a) Lundquist force-free mathematical solution in an infinite medium,
b) typical applications of Lundquist solution for a cable of four

helical windings of varying pitch (l::urth, et al., 1988)
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The wave equation defined above thus becomes

-_] + Hz = 0 (29)
r

0r _r _r (rH0) + H0 - 0. (30)

Equations 29 and 30 may be recast in the following form:

r2 _ +r_ 0H0 + H0(r2 - 1) = 0 (31)2 &-

and

r2 02Hz /)Hz+ r -- + r2Hz = 0. (32)
2 ar

As can be seen Equations 31 and 32 are special cases of the more general Bessers differential

equations which read

r2H '' + rH'+ {r2 - n2) H = 0 (33)

whose solutions are

Jn(r) and J.n(r) for n nonintegers

and

Jn(r) and Yn(r) for n integers

Since Yn(0) is unbounded, the solution field becomes

H 0 = aJl(o_r) (34)

Hz = bJ0(o_r) (35)
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4(d.2) Verification of the Force-Free Conditions

It is known that the solutions of the wave equations are not necessarily the solutions of the

force-free field equations. To show that solutions 34 and 35 are indeed force-free let us calculate

VxH;

V x H = (0. bJ 1, aJ0) (36)

which equals to H if and only if a = b. Hence, the force-free solution becomes

H = (0, J1, J0) (37)

4(d.3) Boundary Conditions

We are interested in a force-free solution within a bounded region, say r in [0, a]. In this

region, the force-free field is governed by the wave equation V2H + ct2H = 0, but outside this

region, where no currents exist, the wave equation becomes V2H = 0. The exterior fields is thus

governed by the following equation:

0
-- (rH o) = kr (38)
3r

but at r = .o the field must be bounded, thus k = 0, and Ha varies as 1/r. For Hz, r_ (Hz) should

also be constant, k, so the field varies as k In r. Since the field cannot become infinite at r = oo,

thus k = 0, and the field Hz is zero throughout the external region. The external field is then

represented by

H = (0, k/r, 0). (39)

In the interior region, where the conductor is present (o_# 0)force-free solution is still represented

by

H = (O, J1, J0) (40)

boundary conditions at r = 0 are implicit in the sense that they are somewhat given by the Bessel

functions. They are:

H0 (0) = 0 (41 )
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0_H___&z (0) = 0. (42)
0r

The boundary conditions at ar = a are given by H0(a) = Hi = ka

and Hz(a) = Jo(a) = 0. Hi denotes the interface field.

4(d.4) Force Calculations on the Lundquist Force-Reduced Coil

To calculate the forces on the conductors, one may use the Maxwell stress tensor

T = _ H2I - HH. (43)
Z

In the radial direction, the force is

/9T13

I_ (rTlI)"½_TI2 "_"TI2-r-LT22 +_ (44)Fr = (V'T)r = r Or /gz

where

T11 = 1/2B2 (45a)

T12 = 0

1 2
T22 = _'(Hz - Hxy2). (45C)

The radial force becomes

/gT11

Fr = 1 (T11 " T22) +- Or

= 1. Hxy2 + 1. 0H2. (46)
r 2 Or

Where Hxy represents the azimuthal field magnitude in the xy plane.

4(d.5) Examples

As example, one may take the Bessel function representation of the force-free field. In this

case, the radial force Fr given (46), becomes
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+ l _Jo2 + J l2Fr r 2 _r

indicating that the field is indeed force-free. Note that this results is independent of the truncation

radius chosen. The forces acting on external regions can be similarly evaluated by

Fr = _. k k = 0 (48)
r r 2i.-,

here again no radial forces are exerted in the outer domain. Hence, the solution given by Equations
39 an d 40 is force-free in both the interior and exterior domains.

4(d.6) Compressive Forces in a Conventional Cylindrical Conductor

If a longitudinal cylindrical conductor is used to create an azimuthal magnetic field Hi at the

surface of the conductor, the field inside the conductor is given by

H0- Ht_), for, r in [0, ri] (49)

The force exerted inside the conductor is given by Eq. 46 or

(Hr-_.}22_Hil2r_ 0. (50,Fr =_H2r+ r = • ri /ri2

We see that for a conventional wire, a non-zero internal force is exerted in the interior of the

conductor. The maximum radial force takes place on the surface of the conductor (r = ri), the force

being equal to 2 Hi2/ri (force per unit of volume). Note, on the other hand, that for the same

external field Hi, the Lundquist solutions indicates that no forces reside inside the conductor (Eq.

48).

To gain further understanding on how much force reduction can be accomplished using a

force-free coil made of six helical windings, a three-dimensional computer finite-element model

analysis is performed in the following section by using the TOSCA computer code.

4(d.7) Finite-Element Computer Modeling of Force-Free Fields

A discretization of the Lundquist's solution is presented below for which six evenly spaced

concentric cylindrical conductors were chosen to follow the helical system described by Equations



(21) and (22). The helix generators are shown in Figures 39 and 40 (top) with the final six
cylindrical conductors shown below (Figure 40 bottom). In the numerical simulations, A in

Equations (1) and (2) is assumed to be unity and _r varies from 0 to 10. The Lundquist
conductor is truncated at o_r = 2.5, value for which I0(ar) becomes zero.

To solve this problem, each conductor was defined by four conducting elements to limit the

total number of conductors under 100. Such crude resolution of the conductors was initially

attempted on the VAX, but it took 10 hours of VAX CPU just to compute, on a very crude mesh

the field generated by the six helices. A decision was made to use the ANL CRAY supercomputer
to accelerate the resolution of this problem.

Figure 4 l(a) provides a schematic representation of the computer model for the coils with

the tl'u'ee-dirr_nsionalfinite element mesh on which magnetic field calculationsare performed. The

fields are computed only in this mesh, which limits computation running time. As can be seen in

Figure 41(b), the computed field is cylindrical with a preferential field orientation pointing towards

the z axis near the z axis center. In Figure 42, two histograms of the magnetic field strength are

presented which show a continuous decreasing function of the field as r increases. In Figure 43

(top), the azimuthal strength of the field is presented and qualitatively follows the theoretical .11

Bessel function which is presented in Figure 45. It has a maximum at r = 1.56 (x = 1.1, y = 1.1)

and decreases as r increases beyond r - 1.6. The total field strength is shown at the bottom of

Figure 43. It shows that at x = 1.8 (r = 2.5) the field is about 1000 Gauss, which is about hal/"the

central value of the field. This result is consistent with the Lundquist solution which predicts a

field reduction of about 50% at the first zero of the Bessel function Io (see Figure 45). In Figure

44, the poloidal field is represented. As can be seen beyond r = 2.8 or × = y = 2.0, the poloidal

field is zero and that is indeed what is expected with a truncated Lundquist solution.

(4.d8) Radial Force Comparisons

By using Equations 46 and 50, one can estimate and compare the radial forces exerted

between a force-reduced and a conventional coil. At r = 2.5 (c_ is set to unity), the inward

compressive force exerted at the periphery of the force-reduced coil is about 25% smaller than that

for a conventional wise of same radius. To physically understand how forces are reduced in a

force-free winding, one can first look at the field distribution created by a conventional straight

cylindrical wire. The field exterior to the wire varies as _, and the field interior to the wire varies

linearly with the radius r. At the conductor surface the field is continuous, but there is a

discontinuity in the field gradient, which results in a force compressing the wire. In a force-free

winding, the helical coils produce a poloidal field inside the conductor. This field build-up is
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Figure 41. a) Schematic representation of the computational mesh'used around the riested
conductors.

b) Computed magnetic field vector in the xy plane
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analogous to a pressure build-up which would tend to compensate the internal compressive force.

It is this force compensation which brings a global reduction of the internal compressive force on
the wire.

These encouraging results are only preliminary. They show that force-reduction is indeed

possible by using truncated force-free solutions. An optimization study in which the discretization

of the Lundquist coil is made finer should be carried out to possibly establish larger force

reduction. Because of time constraints, this optimization study could not be carried out.

Howqver, it is believed that a more thorough understanding of force-reduced fields for discrete coil

geometries was provided by this study.

Quite an intriguing comment can be made that would need further investigation. It has been

shown that the ideal Lundquist coil displays no forces in its interior and its exterior domains.

However, nothing has been said about the coil periphery. To satisfy the virial theorem, a surface

force should be present at the periphery of the coil. We also know that although ti_e Maxwell

stress tensor is continous at the interface, its derivatives are discontinuous. This leads to surface

forces which could not be calculated by the procedure followed in this study. It is speculated,

however, that this surface force is responsible for the low force reduction (25%) found in this

study. Further work is needed to provide clear understanding on the nature and strength of the

forces exerted at the periphery of the force-reduced coil.
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5 .0 Needs and Directions for Future R&D

As indicated in this report, the development of analytical closed form solutions for force-

free fields is worth pursuing. At the same time, the problem should also be tackled numerically for

a variety of boundary conditions and coil geometries. As indicated in this preliminary study, a

substantial amount of computer time is necessary to solve even the simplest problem. It is,

therefore, anticipated that the entire discretization and field computation for complex coils may

require advanced and highly performant supercomputers and computational algorithms. In this

study, we purposely ignored the design influences of force-free concepts upon the complexity of

winding and cryogenic design. As stated in Appendix A, the design of an advanced

superconducting magnet not only requires field analyses, but also structural, thermal, and

conductor analyses. It is only within this envelope of constraints, that benefits from force-free

field concepts can be assessed.

On the same front, small-scale experimental magnets designed with force-free concepts

should be built and tested. This step is important to validate the analytical and computer models

and gain physical understanding of the practical limits of such concepts.
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6.0 Conclusions

In this study several new fore-reduced magnet configurations were reviewed and studied.

A helicoidal torsatron, a rectangular torsatron and a truncated Lundquist coil were analyzed

numerically. Significant force reduction was found on the windings of these systems. However,

the field homogeneity/uniformity generally becomes worse than those generated by conventional

magnets. Other disadvantages of such magnets namely the complexity of their windings, design,

construction, maintenance, and repair have to be considered. Some of these considerations may

outweigh the possible weight reduction benefit that could be accrued by using force-free field

concepts. From this preliminary analysis, it is perceived that a tremendous research and

development effort will be required to design and optimize these new coil configurations. This

study clearly shows that force-reduced magnet configurations are possible and grossly follow the

trends of proposed theoretical models. It remains to refine these models, show that larger force

reductions are possible and that such magnets configurations can find a use for various

technological applications.
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AppendixA:
Review of Superconductnng Magnet Design Procedures

If weight reduction of a superconducting magnet by force-free concepts is sought, not only

has the design of the coils to be modified to take advantage of the structural weight reduction, but

in addition the whole magnet design may have to be revisited to accommodate these new coil

configurations.

The design of the superconducting magnet usually starts by the definition of the

characteristics of the magnet which are the magnetic field distribution, flux density, configurations

volume, uniformity, leakage's, etc. (as shown in Figure A-1). Then, these requirements lead to

the identification of the winding configurations with the specification of current densities. This

type of study of requirements is called the Field Analysis. Then these conductor configurations

have to hold together and may require the specification of the underlying structure of the magnet.

This study is called the structural stress analysis, which takes into account the gravity, seismic, and

the electromagnetic forces. To maintain the coil in a superconducting state, a thermal analysis is

necessary to assess heat losses due to cool-down procedures, field charging, conduction and

radiation. These heat loss mechanisms mainly deal with solid, liquid, and gas conductions,

convection, radiation between the coils at low temperatures and their shields, and Joule effects on

the coils and current leads. After these heat losses are evaluated, the cryostat requirements and

design can be established. Once the field, stress and thermal analyses are performed, the specific

design of the conductor with its stability analysis are performed. This analysis will set

requirements and specifications on the power supply syetem, the protection system and current

leads. In designing a superconductor magnet, one has to keep in perspective the guidelines listed

in Table A-1. The second item "simplicity of winding design" is important to those who want to

devise new windings as those proposed for force-free/reduced coils. An economic cost benefit

analysis has to be ultimately performed to assess the economic gains proposed by force reduced

coils.
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Figure A-1 Typical design procedure for the development of superconducting magnets (M.
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Table A- 1'

practical Considerations for Superconducting Magnet D¢sign

Simplicity of conduct or design

Simplicity of winding design
Cost of conductor fabrication

Cost of winding fabrication

Expenses for quality assurance

Possibility of internal shorts

Vacuum tightness

Thermal efficiency during steady refrigeration

Stiffness of the winding

Possibility of internal disturbance

Stability against external heat input

Self-recovery from normal state

Pressure increase due to fast discharge

Reliability in case of cryogenic system down

Magnetic environmental pollution

As can be seen from Figure A-1 and Table A-2, the final design of the magnet hinges on

several analyses that are all interdependent. Hence if one wants to apply a new winding concept,

strong repercussions may ensue in the stress, thermal and conductor design analyses. A savings in

one particular area may not mean a final savings especially if it is counter-balanced by an increase

in complexity and cost in other areas.

Basic Design Considerations for Superconducting Magnets

(1) Cooling

One of the basic selection to be done for the coil cooling is the type of cooling. The major

types of cooling are the pool-boiling cooling (PBC), force-flow cooling (FFC) and the

superfluid cooling (SFC). Among them, SFC provides low operating temperature of 1.8 K

and the critical current of superconductors and heat transfer characteristics are highly

improved at this temperature when compared to those at 4 K. However, the thermal

efficiency for the refrigeration at 1.8 K is low and SFC is not suitable for the application to

the large magnet systems. Therefore, the actual cooling selection for large coils is PBC or
FFC.
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(2) Winding current density

Present status of achievements on the winding current density is shown in Figure A-2. The

upper limits of current density for reliable design based on the present technology are 25-30

A/ram 2 for 8-T Nb Ti toroidal coils and 40 A/mm 2 for 12-T NB3Sn toroidal coils.

(3) Practical superconducting materials and conductor design

Practical superconducting materials to be used in large scale coils include NbTi and NbTiTa

for alloy conductors, and Nb3Sn and (NbTi)3Sn for chemical compound conductors.

Relationships between critical current density and magnetic field for such conductors are

shown in Figure A-3. A field of 12 T is possible for a NbTiTa conductor in the reduced

temperature region below 1.8 K. The reliability of a Nb3Sn coil, however, was recently

reported. Nb3Sn conductors could be applied to toroidal coils to generate fields greater than

10 T. Note that the typical following characteristics of the superconducting materials have to

be considered when designing a superconductor coil.

(1) Critical current density of multifilamentary Nb3Sn as a function of temperature and

magnetic field. For example, between 2 and 6 K, the critical current density follows

the formula.

Je(B, T) = Jc(B, 4.2)(1 - (T - 4.2)/(10.7 - 0.61 x B)). (14)

This formula shows how the critical current density is reduced by temperature or field

strength increases

(2) Stress dependence of the critical current density in a multifilamentary Nb3Sn conductor.

As seen in Figure 19, the critical current density in a multifilamentary Nb3Sn conductor

depends strongly on strain. The critical current density peak occurs at the strain which

corresponds in magnitude to the compressive prestrain introduced into the surrounding

matrix material. The relationship between critical current density and strain is described

by the following formula:

Jc = Jem(1- a_o11.7)°'5((1- t2X1- tm2)_(( 1 - bX1- bm))2 (15)

where % = e - tin. t= T/I'c*(¢),b = B/Be*If.E), Wc* and Bc* are the critical temperature and the

critical field of Nb3Sn bulk, and a is 900 for e < 0 and 1,250 for e 2 0.
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This section clearly denlonstrates how field requirements have a profound repercussion on

the choice of superconductors, on the definition of cryostat requirements and structural

requirements. It is clear that all these disciplines play interdependent roles and thus improvements

of superconducting magnets can only be made by dealing with these disciplines globally rather than

individually.
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Appendix B
Basic ConceDts In Maanetostatics

Biot.Savart Law

In this Appendix, the basic governing equations in magnetostatics arereviewed and their

boundaryconditions discussed, because they areimportant in setting all the parameters requiredby

the TOSCA finite element computer code. A discussion on the possible gauges to close these

magnetostatics governing equations is also provided, since they lead to different types of P.D.E.

equations to be numericallyresolved.

Consider a currentcarrying wire themagnetic field produced by this wire is given by Biot-
Savart law which reads:

dB= Ia0_j (x',y',z)xaR dlds 03-1)
4nR2

where an, is the unit vector linking the point (x', y', z')to (x .y.z)and the elementary field dB is

calculated at a distance R from the currentflowing me_um which can be expressed as

R=[(x-x')2+ (y-y')2 + (z-z')2]ta 03-2)

The total currentis J ds. The magneticfield due tothe currentin a volume v is then:

_to[ J(x', y',z')xaR dr' 03-3)B(x,y,z) =_--_ R2
dv

i

Def'minga vectorpotentialA(x,y,z) as

A(x,y,z) = .}_°I J(x',y',z') dv' 03-4)R

and since

then
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but

hence

B(x,y,z)= V x A (B-9)

An essential property of the magnetic field is determined by taking the divergence of the magnetic
field vector.

V.B=V.(V×A)=0  -I0)

or

V. B=0 00-11)

Boundary Conditions

Let's consider a boundary between two medi "_erent physical pr0perties. A coin-shaped

volume element of thickness h, surface arez a its broad faces pDallel to the interface

penetrates the boundary and con_s l:ortions of both media. We have

n.D1 = n. D2 00-12)

and the normal component of the D xield is continuous and since

D1 = elE1 and D2 = e2E2 00-13)

for two general media, then

n'E___L= __Z 00-I4)
n.E 2 el

O1"

elEnl = e2En2 (B-15)
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and the normal component of the E field is discontinuous when the permitivities are different.
Now

V. B=0 (B-16)

and

h---_0 h---_0

or

•
n.B 1 = n.B2 03-19)

and the normal component Of the B field is continuous. Using the definitions

B1 - glH1 and B2 ---I.t2H2 03-20)

then

' n_Hl,=___-_ (B-21)

n.H 2 Ix1 - .

or

[,i,1Hnl - _l,2Hn 2 (B-22)

and the normal component of the H field is discontinuous when the permeability of the media are
different. Also

V.J = 0 (B-23)

and

|m Iv(V.j)dv= jm _J.ds= 0 (B-24)h---_0 h---_0

and
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(n.J1) As- (n.J2)As = 0 (B-25)
..

or

n.J1 = n.J2 03-26)

and the normal component of the current is continuous. With Ohm's law for the two media, i.e.,

J1 = olE1 and J2 = o2E2 (B-27)

then

n'Et =o2 " 03-28)
G1n.E 2

or

OlEnl = o2En2 03-29)

and the normal component of the E field is also discontinuous when the electrical conductivities are

different. Assuming that the magnetic field is produced by a steady current, then
• ..

V x H = J 03-30)
.....

and

I, f,im (V.H).ds = |m H.dl = Im J.ds 03-31)
b---)O s b-->O b-cO $"

consequently,

(n x H1) AI - (n x H2) A1 = JsA1 03-32)

where Js is the surface current density. Thus, the jump in the tangential component is due to the

surface current, i.e.,

N x fill - H2) = Js 03-33)

In many problems, the surface current is negligibly small, thus,
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n x H1 = n x H2 03-34)

and the tangential component of the H field is continuous. Again, using the relations, Eq. (2.166),

n x B 1 = It_.L 03-35)
nxB 2 la_

or

IX2B,r1 = IXlBx2 03-36)

and the tangential component of the B field is discontinuous when the permeability's are different.

Ma_netostatics Governin_ Eauations

The quasi-static electromagnetic field governing equations at low frequency can be represented by:

V.D = p (Gauss's Law)

V.B=0

0B
V x E = _ ('Faraday's Law)

V x H = J (Ampere's Law)

where D,B,E,H are the usual field vectors, p and J the free charge and current densities

respectively. The field vectors are not independent since they are further related by the material

constitutive properties (see also previous section);

D =eE 03-37)

B = (B-38)

where £ and Ix are the material permitivity and permeability respectively. The current density in a

conductor moving with relative velocity v is generated by the Lorentz force and is given by:

J = a(E + v x B) (Ohm's Law) (B-39)

where a is the material conductivity. In practice IXand 0"may often be field dependent quantifies,

and furthermore, some materials will exhibit both anisotropic and hysteretic effects. The current

cc,ntinuity condition is:
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V.J = 0 (B-40)

The four field vectors must satisfy the following conditions at the interfaces between regions of
different material properties;

(B2 - B 1)'n = 0 (B-41)

(D2- D1).n = 03 (B-42)

(1-12-H1)xn = K (B-43)

(E2 - E 1)xn = 0 (B-44)

where K and _ are the surface current and charge densities respectively. These relations follow

directly from the limiting forms of field equations (see previous section).

Magnetic Vector Potential

Since the field vector B satisfies a zero divergence condition, it can be expressed in terms

of a vector potentialA as follows:

B = V x A (B-45)

and then, it follows that,

V x(E+_A)= 0, (B-46)

and hence by integrating togive,
"

- + VV 03-47)
i)t

where V is a scalar potential. Neither A nor V are completely defined since the gradient of an

arbitrary scalar function can be added to A and the time derivative of the same function can be

subtracted from V without affecting the physical quantities E and B. These changes to A and V are

the so called gauge transformations, and uniqueness is usually ensured by specifying the

divergence (gauge) of A and sufficient boundary conditions. Thus, the field equations in terms of
A and V are as follows:
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-vxlvxA,,_--. w/- J, (B-48_VxH
g _a !

+ VV = 0 (B-49)

where Js is the current source density. In the above expressions, eddy currents are expressed by

In the region, where no conductors are present (o---0), one obtains

VxH = Js 03-51)

Since V.B =0, one can define a magnetic scalar potential, _, such that

B = I.tV, with (H - V,) (B-52)

with

v .(_,v,)=o . o3-53),

Coulomb - Lorentz Gau2es

To ensure uniqueness of the Magnetic Vector Potential and of Electric potential, two gauges, the

Coulomb and the Lorentz gauges, are generally used to close system of equations.

(a) Coulomb Gauge

For the Coulomb gauge, we set V.A = 0. The governing equations for A, can be re-written as

/
with

v  )+vovv_0 o,,,
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which leads to the uncoupled equation in A:

(b) Lorentz Gauge

The governing equations for A with no gauge applied are re-written as

and

V.a-- + V.aVV = 0 (B-58)
_t

As can be seen these two equations are not independent. The Lorentz Gaugecondition can now be

used to obtain a sufficient set of def'mingequationswith A and V defined independently. The low
frequency formof the Lorentz gauge is,

V.A = -I.taV (B-59)

Combinhagthese equations leads to:

Vx!VxA = -or---+ a •A 03-60)
_t

and

.l.to2_gV--+ V.oVV = 0 (B-61)
_gt

where a is assumed piece wise constant. Thus this approach reflects the classical motivation for

the l.zrentz Gauge namely, to decouple the vector potential from the scalar potential.
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