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ABSTRACT

The theoretical and computational bases of the BACCHUS--3D/TP computer

program are reviewed. The computer program is used for thermal-hydraulic

analyses of nuclear fuel bundles under normal and accident conditions. The present

program combines two models and solution procedures previously used separately,

namely, the Improved Slip Model (ISM) and the Separated-Phases Model (SPM).

The former model uses mixture equations with accounting for slip between the

phases, whereas the latter uses separate continuity and momentum equations. At the

present stage of development, both assume thermodynamic equilibrium.

Techniques used to affect smooth transition between the two models are

described, including treatment of frictional pressure drop and solution of the Poisson

and momentum equations. A detailed derivation of the computation of mass transfer

between the phases is given because it is a central and novel feature of the model.
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1 Introduction

In the framework of safety analysis of Liquid Metal Fast Breeder Reactors

(LMFBRs). the Fast Breeder Reactor Project at the Kernforschungszentrum Karlsruhe

(KfK) has sponsored the development of a computer program that describes multi-

dimensional thermal-hydraulic behaviour of fuel rod bundles under nominal and

accident conditions. The code BACCHUS-3D/SP (Single Phase) has been developed.

It describes coolant behaviour of single-phase flow, up to inception of boiling, in a

two- or three-dimensional approximation of bundle geometry, which is the

hexagonal rod array typical of LMFBRs. This version of the program was documented

from the theoretical viewpoint in 1983 in [1], and its experimental verification was

published in 1985 [2].

Unlike other well-known programs, e.g., the SABRE [3], ASFRE [4], and SABENA

[5] codes, which describe the thermal-hydraulic behaviour of LMFBR rod clusters

with the so-called "subchannel analysis" concept (triangular control cells), the

BACCHUS program relies on the concept of volume porosities, surface permea-

bilities, distributed resistances, and heat sources, typical of the "porous-body"-

model approach. The basic idea consists of grouping several subchanneh_ to form a

larger computational cell within which the actual geometrical configuration is

distributed.

The single-phase-flow version of the BACCHUS code provided the basis and the

initialization conditions for tile development of the two-phase-flow version of the

code. At an intermediate stage of evolution, documented in Ref. [6], there existed

two separate variants in which two-phase flow was described by a Slip Model (SM)

and a Separated-Phases Model (SPM).

Numerical results obtained with the SM show its limits of application when the

vapour volume fraction, ix, approaches 1.0 over wide regions of the simulated test

section. Under these conditions, the calculation of pressure drops with the

Lockhart-Martinelli two-phase multipliers becomes questionable. Theoretically, for

void fractions larger than---0.6, the liquid and vapour phases deserve separate

treatment on the basis of two coupled systems of governing equations.
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Even within its domain of application, the SM is characterized by Inherent

deficiencies: (1) the slip ratio is not constant during evolution of two-phase flow and

generally rises with increasing void fraction; (2) it is difficult to correctly define the

physical properties of the coolant mixture and to compute the time derivative of the

mixture density aPrn/at near void fractions approaching 1.0. The use of thermody-

namic quality as a weighting factor for defining the physical properties of the mixture

allows for a smooth transition between single-and two--phase-flow calculations at

inception of boiling, but becomes questionable beyond some threshold value of the

void fraction. When the phases are treated separately, this problem does not exist.

To cope with these difficulties, we first allowed for a variable slip ratio by

coupling it to the void fraction. The resulting SM is referred to hereafter as the

Improved Slip Model (ISM). Then, we coupled the separate code versions into an

integrated program, allowing a smooth transition between the SM and the model of

separated phases within the framework of a numerical algorithm that simultaneously

solves both systems of conservatioh equations.

The goal of this paper is to describe in detail the techniques and experiences

related to linking the Slip and Separated Phase models and the resolutions that we

adopted.

In Section 2, we briefly describe the geometrical model used to represent the

pin bundle typical of LMFBRs and give the fundamental equations used for both ISM

and SPM. In Section 3, we describe the solutions adopted for assuring continuity of

mass flow and pressure distribution in the transition between the models. Section 4

describes the rigorous computation of the mass of coolant vaporizing or condensing

and thereby, the enthalpy and momentum exchange between the phases, with a new

approach based on the entropy equation.

2 Geometrical Model and Conservation Equation

2.1 Geometrical Model

The BACCHUS computer programme has been structured to describe hexagonal

arrangements of rods in bundles typical of LMFBRs. A complete reactor bundle, or a
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sector bounded by either ideal geometrical or material surfaces, can be described.

Inlet and outlet bundle sections can be simulated. Additional options are provided

for simulating unheated pins. pins with different diameters, displacements of pin

axes, and grid spacers.

The local conservation equations describing the coolant flow are integrated over

appropriate control volumes. Staggered meshes are used to define dependent

variables (mass flows, pressure, and enthalpy) and, correspondingly, different cells

are used to accomplish the macroscopic balances. The main control volumes

("centered cells") used for the mass and enthalpy balances are bounded in the axial

direction by two planes perpendicular to the bundle z-axis that are a distance Az

apart; in the radial direction, by planes through the pin axes Ar apart; and in the

azimuthal direction, by two planes passing through the bundle axis. The azimuthal

direction is referred to as the s-c0ordinate. The control volumes used for the

balance of the scalar components of the momentum equations ("displaced cells") are

formed by adjacent halves of two neighbouring main control volumes. Scalar

quantities (pressure, enthalpy, temperature, etc.) are defined in the mid-point of a

centered control cell, whereas the scalar components of vector quantities (mass

flows, velocities, etc.) are defined in the mid-points of the respective boundaries of

the centered cell (which coincide with the mid-points of the displaced cells when

equidistant spacing is used).

For the main control volumes, the axial index is JC = 2..... MC; the radial index

is IC = 1..... NC; and the azimuthal index is IT = 1..... NTH. Indexing conventions

used for the radial and azimuthal directions are shown in Fig. 1 for one-half of a 37-

pin bundle divided into 12 azimuthal sections. Up to 48 azimuthal sectors can be

taken into account. In the following description, the node (IC. JC, IT) is indexed as

(i, J, k). Cell faces and velocity components are indexed i + I/2, j + 1/2, k +_1/2, in

the usual convention.

We impose pressure boundary conditions at the outlet of the bundle and either

pressure or velocity boundary conditions at the inlet. Velocity boundary conditions at

ideal geometrical surfaces or at material surfaces can be assumed with or without

sllp.
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All cells are characterized by a total volume V, a volume occupied by the fluid Vf0

an area Aw of the solid (wall)-fluid interfaces, by areas of lateral faces Sa (the

subscript a refers to the general coordinate direction), and cross flow areas Sfa. For

every cell, we define the surface permeabilities or area obstruction factors Ya =

Sfa/Sa as the ratio of the respective flow area to the total area. The volume porosity E

= Vf/V of a cell is defined as the ratio of the volume occupied by the fluid to the total

cell volume. In an undisturbed geometry, the volume porosity is equal to the surface

permeability in the axial direction.

An equivalent fuel pin. with geometrical data corresponding to those of real pins,

is associated with every main control volume. For every equivalent pin. we consider

the heating element (fuel or electrical heater) and a cladding, separated from tile

fuel by a gap of given width. In the axial direction, gas plena, fission, and blanket

zones can be represented with different material properties.

2.2 Conservation Equations

The governing equations for the conservation of mass, momentum, and energy of

the coolant for the ISM and SPM. are given in this section.

If we denote the general dependent variable as _. the corresponding

conservation equation has the following form for the ISM and SPM (see

Nomenclature)

(Unsteady)(Convection) (Diffusion] (Source]

which can also be written as

O(p_)/_t + _(J_i)/Oxi , (2)

with the definition of the total (convective plus diffusive) flux

J_i = puit_- F_ _)_/_)xi. (3)
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The diffusion coefficient F 0 and the source term SOare specific to each meaning

of _. These terms are given in Table I for all conservation equations, together with

appropriate densities p and velocities ui.

The single-phase--flow calculation is governed by a system of equations derived

from the mixture equations, replacing the mixture density, velocity, and enthalpy

(Pm, Um, hm) by the symbols for the liquid phase (Pl. ull. hl). and suppressing the

terms containing the slip velocity (Vsll = 0).

In the case where Vgl =Vli, one obtains, as a subcase, the Homogeneous

Equilibrium Mixture (HEM) Model.

Let us consider a control volume centered around node (i. J, k). Integration of

eq. (2) over this control volume and application of the divergence theorem yields

fvf_(p_)/_tdV + fj_idA-fj_,dA + fJ_jdAdAf,i+I/2 *IAf.i-1/2 dAf,j+I/2

OAf.j-I/2 °Af.k+I/2 OAf,k-I/2

Next, the time-dependent terms are discretized. Using the definitions of the mean

values of the fluxes Jo's over the bounding surfaces and of mean values over the fluid

volume Vf, we transform eq. (4} into an algebraic equation for the seven unknowns ¢13

(_ = 0, 1.... 6) at time level tn+l:

6

a.n+l E0% + a13¢_+I = bon. iS)
13=I

Subscript o in eq. (5) refers to the centre node (i, J, k) considered, whereas indices

(I. 2). (3, 4), (5, 6) refer to the neighbouring nodes in the three coordinate direc-

tions, respectively. The right-hand side of eq. (5) collects all terms at time level tn.

Equation (5) is formally identical with the equation that would be obtained by

discretizing Poisson's equation.

In practice, the momentum equations are actually combined with the continuity

equations of the respective phases. The densities at the new time level are then
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llnearized to form an algebraic equation for pressure. This process, the so-called

"pressure solution method" is equivalent, from an analytical viewpoint, to taking the

divergence of the momentum equation written in vector form. The analytical

development involved is complex and will not be repeated here because it can be

found in Ref. [7].

The standard numerical solution of the discretized Poisson equation, eq. (5), is

based on the L.U (lower, upper) decomposition technique developed by Doolittle [8],

a variant of the Cholesky method, which yields the exact solution. In the case of the

energy equation, and for single-phase-flow calculations only, a Runge-Kutta method

of order 4 is also available. The limits for application of the matrix decomposition

method are given by the requirement of storing the full band of the matrix of the

coefficients of the Poisson equation. The computing time increases strongly with

increasing problem size. Therefore, an alternative computational method to the

large-storage-demanding matrix decomposition technique has been provided.

This alternative consists of an advanced variant of the Alternating Direction

Implicit (ADI) method, which we adapted to the two-phase-flow simulation. This

scheme requires almost no additional core storage and. unlike older schemes, can be

vectorized to a high degree. Thus, it is faster by a factor of ten with respect to

classical variants. For problems with more than ---5000 meshes, it becomes faster

than the Cholesky matrix decomposition technique. Both solution methods yield the

same numerical results. Details of the ADI variant used for two-phase flow are given

in Ref. [9].

3 The Integrated-Code Version

The current version of the BACCHUS code combines the ISM and the SPM into

an integrated program that allows for a description of boiling with a smooth transi-

tion from one model to the other. "This holds for both the evaporation and condensa-

tion processes. In this section, we explain the techniques used to couple the two

models, experiences encountered, and potential limitations. We give an overview of

the ISM and SPM, emphasizing the topics that must be considered in the linking

process. We also discuss the problems that were solved to allow a smooth transition

from one model to the other and give an overview of the integrated models.



' 3.1 Overview of the Improved Slip Model and the Separated-Phases Model

The slip model can be used by specifying either a fixed slip ratio given by

H i = Ugl [i = r, s, z) (6)
uli

for the three coordinate directions, radial, azimuthal, and axial, or a normalized slip

velocity given by

N Ug i - Ugl
Us_i = (i = r, s, z). (7)

Umi

In the second option, the slip ratio is not constant but varies according to

Ug i N Uml
Hi = _ = I + Usa_ (i=r, s, z). (8)

ugi Ull

These two options extend the classical sllp models found in the literature [10]. They

are applicable to small or moderate void fractions (0 < a _ -0.6), i.e., as long as the

coolant can be represented as a mixture. When utilized above c_- 0.6, experience

shows that the computed vapour velocities are too small compared to the liquid and

mixture velocities; thus, the pressure drops are underestimated and the evolution of

the two-phase flow-region is not correctly reproduced.

The normalized slip velocity is given as a function of the void fraction

UsaN = f(_), (i=r, s, z), (9)

where, usually, f(a) = 18 a. We also model the two-phase pressure drop multiplier as

a function of (x by

_i2 = I + Ki = I + ClUmiIUNi (cx) (i= r, s, z), (I0)

with c - 1+1.5.

Because the slip ratio is now dependent on the void fraction, more realistic

vapour velocities, hence pressure drops, are computed. The applicability range of

the ISM thus extends to relatively large void fractions (a ~ 0.9 - 0.95), although the
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physical representation of the coolant as a mixture is no longer correct. The limits

of applicability of the ISM are reached when relatively large regions of a bundle are

at, or close to, dry-out conditions.

The main physical assumption on which the SPM is based is that the phases flow

separately, but in thermodynamic equilibrium so that only one temperature,

corresponding to the saturation pressure, needs to be computed. Furthermore, the

assumption of equal pressure in both phases within a computational celi is retained

for the SPM. The liquid phase is assumed to wet the surfaces of pins or hexagonal

canning, whereas the vapour is assumed not to come in contact with them before

dry-out.

Because of these modeling assumptions, the SPM is not reasonably applicable to

void fractions below a given threshold, which can be assumed as amin -__0.5 to 0.6.

For this reason, the code version based on the SPM, though originally developed to

stand alone, has now been integrated with the ISM.

3.2 Coupling the ISM and SPM

The main experiences encountered in linking the ISM and SPM code versions

are summarized in this section.

3.2.1 Solutionof Poisson Equationfor Pressure

The SPM is based on the assumption that the pressure in the two phases within

a computational cell is equal. It would be possible to compute the pressure

distribution within the SPM with either of the two Poisson equations (for the liquid

or for the vapour phase). For small and moderate void fractions, the Poisson equation

for the liquid phase is more suitable, for large void fractions the vapour-phase

equation performs better. The problem arises when switching from the ISM (small

a) to the Poisson equation for the'liquid phase only (moderate a), to the one for the

vapour phase (large ct). If we sum the two Poisson equations of the SPM model, the

problem is simplified for two reasons: I) there is only one switch needed between

ISM and SPM; 2) the compressibility term Opm/Ot can be treated in the combined
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Poisson equation in exactly the same way as it is treated in the ISM. This contributes

to a smooth transition between the two models.

3.2.2 Computatlonof Velocity Components

In the ISM, the mass flow components, hence the velocity components of the

mixture, are first computed from the mixture momentum equation. Then, the

velocity components of both phases are given as a function of the normalized slip

velocities given by eq (9}.

In the SPM, the situation is reversed: the velocity components of the phases are

first computed from the momentum equations and then the velocity components of

the mixture are obtained directly by means of their definitions. These values are

needed for the solution of the enthalpy equation in terms of mixture quantities.

In the h'ansition between IsM and SPM, the velocity components must not

undergo discontinuity. A smooth transition would not be possible in the usual SM,

but has been attained in the ISM by proper choice of normalized slip velocities as a

function of the void fraction. Smooth transition of the velocity components also

ensures a continuity in the pressure-drop computation, as discussed in Sec. 3.2.4.

3.2.3 Momentum Exchange Between Phases

The momentum exchange between phases is due to wall friction, interface

(liquid-vapour) friction, and mass exchange due to vaporization or condensation.

To illustrate these problems, we refer to the axial component of the momentum

equations for both phases from eqs 1.6 and 1.7 in Table I, given by

_'_,ptwz/ + pl - =-(1- a) - P_gz- Rlz-

(a)

-
(b) (c)
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- - - rz - .
(a)

+K(w,-w_)-([o.M]w,-[o.-M]w_), _-_,_,z_. c,_.)
(b) (c)

Summing the coefficients of the Poisson equations of both phases is equivalent to

summing the momentum equations, which yields

Op
= _z Pmgz- Rtz- Rgz (i = r,s,z). (131

In the summing process, terms (a}, representing wall friction, are conserved,

but terms (b) and (c} cancel each other. These two latter terms represent the

momentum exchanges due to the interphase friction and mass exchange,

respectively. It is clear that these physical processes cannot be neglected; therefore,

the problem consists in devising a. modelling approach that takes them into account,

while retaining the assumption of equal pressure in both phases, which allows for

solving only one Poisson equation. These problems have been solved as follows:

Terms (a).

If a = I, Rez = 0, and Rgz _ 0. Let amln be the lower threshold of applicability of

the SPM. If Otmin 6 ot < I, we model a liquid film wetting cell surfaces while it is

assumed that the vapour does not come into contact with these surfaces.

Therefore, Rtz _ 0, while Rgz = 0. Thus, formally, we can use the term Rgz.

which is not cancelled in equation (12} to model the momentum exchange due

to interface friction.

Terms (b).

By letting

- Rgz = K(wt- Wg), (I 4)
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we model the interface friction for the vapour phase only.

Terms (c).

We model the momentum exchange due to mass transfer by assigning it only to

the phase that acquires it (and neglecting the momentum lost by the other

phase). For both M > 0 and M < 0, we may assume [I I] that i

: 0 by evaporationGl = [0,{-[0,M]wl + [0,-M]wg}] IMlwg by condensation, (15el

and

Gg = [0,{[0,M]w t - [0.-M]wg}] {: M wI by evaporation0. by condensation. (I 5b)

Calculation of the evaporation or condensation rate M is made taking into

account both enthalpy transfer and pressure variations, as explained in Sec. 4.

Summing Eqs. (I 1) and (12) and taking into account Eqs. (14) and (15) results

in

_(PmWm) + "_,--"[(P/Utl)Wl + (pgUgl)Wg - _l.l _)Xl [lg'_i J --uz-i [_

_P_z \ )(dP_ + G, + Gg (i = r,s,z), (16)- Pmgz- "5"2"_
2¢

with the definition

Idpl:IdP) IdP)_Z 2¢ "_ZZ l "_" i

= Rtz- K(w t - Wg) (i = interface). (17)

3.2.4 Calculation of Two-Phase Pressure Drops

Smooth transition between ISM and SPM also requires continuity in the

calculation of two-phase pressure drops. In the transition region, continuity is

ensured by letting
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= = #SPM. ( 181
_Z 2_ qUlSM_,_ZJm = Rlz + Rgz _ZZt -_Zg

which allows for a refined calculation of _2pM, replacing the value given by eq. (I0).

3.3 Overview of the Integrated Code Version

Traditional criteria for two-phase flow regimes are based on the theoretical

approach of Ref. [12], where geometrical parameters, like vapour volume fraction or

interfaclal area per unit volume, are correlated with a dimensional quantity, usually

the mass flux of the mixture Gm.

The report by Ishll and Mlshlma [13] has shown that this approach is inadequate

to characterize the regimes in transient flows where the dependence of geometrical

parameters on relative phase velocities should not be neglected. Furthermore. it is

insufficient to evaluate phase velocities from a given slip ratio; it is mandatory to

compute them directly from field equations.

Because implementation of complex-flow-regime maps proposed in Ref. [13]

would imply elaborate coding and a multitude of constitutive relations, most

advanced computer programmes, like RELAP5/MOD2 [14] or TRAC-PD2 [15], rely on

simplified versions of the maps proposed in Ref. [12], i.e., on maps drawn in the (Grn,

a) plane. However, it is generally recognized that the dependence on a dimensional

parameter, like Grn, casts doubt on the reliability of empirical data from which maps

have been devised.

By modeling the flow regimes in the BACCHUS code, we have dropped

dependence on the dimensional parameter Gm, thereby simplifying the resulting

map, which is reduced to three sections of the (0 _- a _- 1) interval. Below a lower

threshold, we simulated a bubbly flow regime with vapour bubbles dispersed in a

continuous liquid phase; above an upper threshold, we assumed an annular-flow

regime with a static liquid film of coolant wetting the pins or structural surfaces. In

the middle range, a transition between the two flow regimes occurs. In the code, an

input value of the void fraction amin {--0.5 to 0.7) Is given, below which only the ISM

holds. When this threshold is reached in a cell, a smooth transition from the ISM to

the SPM is modeled within the range ¢Xmln_ ot _ amin + 0. I. Above the value a =
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0_min + 0.1, only the SPM holds. The main feature involved in the coupling consists

in making a weighted average of the coefficients of the two Poisson pressure

equations for the separated phases. Otherwise, the link is made as explained in the

previous section. An overview of the resulting integrated code version is given in the

Appendix.

4 Mass Transfer Rate Between the Phases

The mass transfer rate between phases, considered positive for evaporation, is

determined by the enthalpy transfer between the phases and by pressure oscillations

•in the coolant. The smooth variation of pressure in the transition between bubbly

and annular flow regimes, obtained as explained in the previous section, is of

paramount importance in the calculation of the mass transfer rate, which must

likewise vary smoothly with time.

From the analytical viewpoint, it is advantageous to treat the problem in terms of

specific entropy of the phases. The analytical treatment proceeds through the

following steps.

1. Derivation of the Gibbs equation, which expresses the total time derivative of

coolant-specific internal energy in terms of specific entropy.

2. Transformation, by means of the Gibbs equation, of the instantaneous local form

of the internal energy equation for a continuum (single-phase) fluid into the

local entropy equation.

3. Derivation of the volume-averaged entropy equations for both phases using the

phase-indicator function and volume-averaging procedures.

4. Computation of the mass transfer rate using the volume-averaged entropy

equations.

This mass exchange model is motivated by that developed by Lyczkowski and Solbrig

[16].
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4.1 Gibbs Equation

Formal differentiation with respect to time of the thermodynamic relations

expressing the internal specific energy u as function of specific entropy and density u

= u(s, p) yields the Gibbs equation, in its first form, as [17]

d_.._u= T d.._s_ pd(I/p..._..._). (19)
dt dt dt

Use of the continuity equation transforms eq. (19) Into the second form of the

Gibbs equations,

d__uu= TdS P(V • v). (20)
dt dt p

4.2 Entropy Equation for a Continuum

The local internal energy equation for a continuum can be written [18] as

a(pu)
Bt + V* (puv) = - V • q+ T:Vv + pr. (21)

In eq. (21), T is the stress tensor and r is a specific heat source.

Expanding the stress tensor in pressure and shear stress components

T = -pI + _ (22)_mm m.

and using the Gibbs eq. (20), we derive, after some analytical calculation, the entropy

equation for a continuum

_(ps)
+ V. (psv) 1(V • q) +=--- _ T

4.3 Volume-Averaged Entropy Equations for the Phases

The entropy equations of both phases are derived from the local instantaneous

entropy equation for a continuum, eq. (23), by means of the volume-averaging

procedure, explained in detail in Ref. [19]. It consists of multiplying the local

continuum equation by the "phase indicator" Xk(X,t) (which has a value of I or 0,
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according to whether the point x lies within phase k or not) and then averaging over

the volume. Thus, eq. (23) yields

xk_(ps) + xk v • (psi) = - (v • _) + _:v_) + xk _. (241

The terms in eq. (24) can be reformulated using the average quantities defined for

every phase (k = t, g) in Table If. With these definitions and the identity

_X-----kk+ v!, VXk = 0, (25)_t

which holds for the phase indicator Xk [19], eq. (24) can be rewritten as

+ Es--"k+ a"'kDs"--k+ _k'kP_¢_k x'p. (26)

Keeping in mind that symbols now denote mean values, in the following, we

drop the bars and relative superscripts. The first term on the right-hand side of eq.

(26) represents the entropy source due to the mass transfer Mk and its associated

heat transfer. The last term represents intrinsic heat generation. These terms are

modeled as follows:

For the vapour phase (k = g and Mg = M).

Consistent with the assumption that in the SPM, as long as a < 1, there is no heat

transferred directly to the vapour, but the heat transfer occurs only by means of

vaporization or condensation of the liquid film, we have

hgsM _-_-g (27)
Sgi M = ,Is = ,is,

asg = 0. (28)

For the liquid phase (k = l, Mt = -M).

st iMl = htsM = __.t.__ . Qt , (29)
Ts Ts TsVr

ast = 0. (30)
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Equations (27) and (29) define 0g and Ct, the specific power sources of the vapour

and liquid, respectively. It is further assumed that the mass transfer occurs under

conditions of thermodynamic equilibrium between the phases. Thus, both phases are

assumed to have the same temperature "Is and the specific enthalpies hrs. and hgs are

computed along the saturation lines.

Combining eqs. (27) and (29), we obtain

with

Therefore. the entropy equations for the liquid and vapour phases become

_t Ct Qt + R l, (33)[(_- _)pt_t]. v. [(_- o:)pts_vt]= % %vf

%

with the definitions

R I =-V • (I- oe)_ ¢ + Est + (I- a)Dst, (35)

Rg =-V * a_ + Esg + CtDsg. (36)

We retain the superscript x to distinguish the entropy fluxes ¢_ and ¢_ from the

specific power sources Ct and 0g.

4.4 Derivation of Mass Transfer from Entropy Equations

Summing eqs. (33) and (34). we have a combined entropy equation

_ Ct QI
+ Rg + R t. (37)Ts TsVf
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Equatign (37} is the generalization of eq. (I) of Lyczkowski and Solbrlg [16]. Their

methodology is used to derive the mass transfer rate.

Expanding the differentials and using the continuity equations, we derive

Q1 + Rg + R l -

r r ,g ] (os, ]]-- Lttpg_'-_'- + Vg " VSg + (1- a)p I _ + vt" Vs/ . (38)

From the thermodynamic relationships dq = T • ds = dh - dp/p, we derive for either

phase and for the three coordinate directions xi

0Sk 0hk _ 0P (k = g,1) (39)% = -0-i-- pk a-Y'

and

Ts0Sk = 0h k 1 0p (k = g,1) {40)
0x'-'? 0xi Pk 0xi (xi = r, s, z).

Writing pressure p without subscript k, we implicitly make use of the previous

hypothesis of equal pressure in both phases within a given computational cell.

From the previous two equations, we obtain

_ 0Sk0Sk + v k • Vs k = 0Sk + URi_ =
0t 0t 0xi

_ 1 Ohk 1 Op (Ohk_ ± o_p]1 {k= g.,) (41)
- Ts Ot PR Ot + Uki_,OXl Pk dxiJJ (xi = r,s,z)"

Introducing eq. (41) into eq. (38), dividing by (Sg- st), and using

Ts (Sg - st} = hfg, (42)

we derive

Rg + R lM = ) Qt + _
hfg hfg Vf Sg - s t
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- [a'L'gi + (1- alutl ]}. (t=r, s, z) (43)

Because, on the saturation lines, the liquid- and vapour specific enthalples are

functions of pressure only, we can write

_h_.._kk= dhk 0p (4 4)
_)t dp _t'

Ohk dh k 0p (k = g,l)

i)xi dp 0x i" (x I = r, s, z)

Hence, we derive, identically,

apg_,--_-- + Ug I Ox i j + (1 - a) Pl ( 0t + uli ()xi J =

OpF dhg dh t ]= _-L_pgTp+(I-_)pt-_-p+

+ 0x--_, Ug_-_p + (t - _)p_u,_-_-pj. (45)

Combining eqs. (45) and (43) produces

__( ._ff) Rg + R/ 1 {_)p [ dhg dh ]
M = I __ Qt + -- + (I- a) pl t 1

hfg Sg- s t hfg _" apg dp dp
(a) (b)

°'+ +('°>>I+ _Pg Ugl dp + (1- a).pl uti dp Ugl - ut! '

(c)

Term (a)in eq. (46) gives the mass transfer rate that would be generated if only the

heat transfer through the liquid film and to the liquid film were considered. Using

the definitions shown in eqs. (35) and (36). we rewrite term (b) in eq. (46) as

Term (b) = Rg + Rl =
Sg- St
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Sg-- st

Equation (47) represents the rate of vapour mass generation by heat production due

to conductive transfer (_l_, Esk) and viscous dissipation (Dk). Term (b) is usually

smaller than term (a) but not negligible with respect to term (c). Term (c)

represents the contribution of time and space variation of pressure to the rate of

vapour mass generation. If the pressure is constant both in time and space, term (c)

vanishes. If heat power [term (a)] is suppressed, term (c} becomes dominant because

vapour production or condensation is then governed essentially be pressure

variations.

The theoretical derivation of vapour mass transfer rate M, explained above in the

frame of the SPM, is general and can also be applied to the ISt,' In the limiting case

of equal phase velocity (HEM) (H = lug I/luLl = I), eq. (46) simplifies to

1 __ Qt +
M{HEM} = hfg Sg- s t

[ dhg dht lld p
Pm x- + (1- x)
hfg dp dp Pm -d"t' (48)

Equation (48) extends eq. (23) of Lyczkowski and Solbrig [16].

5. Code Verification

The code was extensively verified by numerically simulating several series of

electrically heated rod bundle experiments ranging from 7 to 37 pins. The

experiments were performed at the Institut ffir Reaktorentwicklung (IRE) of KfK.

Because it is beyond the purpose of the present article to report the numerical

verification of the code, we refer the reader to Table Ill for a summary of the relative

work of the past years. The table summarizes the experimental series involved and

gives references to both data evaluation and theoretical interpretation of the

experiments.
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6. Conclusions

The criteria for traditional two-phase flow regimes depend on geometrical

parameters, llke vapour volume fraction or interfacial area per unit volume,

correlated with a dimensional quantity, usually the mass flux of the mixture.

However, the dependence on a dimensional parameter casts doubt on the reliability

of empirical data from which maps have been devised.

By modelling the flow regimes, we have dropped the dependence on

dimensional parameters, thereby reducing the resulting map to three sections of the

0 -_ a -_ I interval. Below a lower threshold (a ---0.6), we simulated a bubbly flow

regime with vapour bubbles dispersed in a continuous liquid phase; above an upper

threshold (a ---0.7), we assumed an annular flow regime with a static liquid film of

coolant wetting the pins or structural surfaces. In the middle range, a transition

between the two flow regimes occurs.

By linking the two-phase models, a smooth transition between the numerical

solutions of the respective systems of governing equations must be ensured.

Problems related to the link concern

• Computation of mass flows and velocity components of both phases. In the

transition between ISM and.SPM, the velocity components must not undergo

discontinuity. A smooth transition would not be possible in the usual SM but

has been attained in the ISM by proper choice of slip velocities as a function of

void fraction. The smooth transition of the velocity components also assures a

continuity in the pressure-drop computation.

* Calculation of pressure drops, taking into account both wall and lnterfaclal

friction. In the SPM, the latter is assigned to the vapour phase only.

* Computation of momentum exchange between the phases. We model the

momentum exchange due to mass transfer by assigning It to the phase that

acquires it, and neglecting the momentum lost by the other phase.



With these improvements, coupled with validation of th,_ model with

experiments, a viable integrated solution procedure has been produced that is

superior to using the two separately.
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Nomenclature

A Surface area (m2)

Cp Specific heat (J/kg)

D Entropy source due to viscous dissipation (W/m3K)

Dh Hydraulic diameter (m)

dm Coefficient multiplying pressure increment in the dlscretized momentum

equation (s/m)

E Interfacial entropy source (W/m3K)

f Friction Coefficient

G Momentum transfer by vaporization or condensation (kg/m2s 2)

g Gravity acceleration (m/s 2)

H Slip ratio

h Specific enthalpy (J/kg)

I Identity tensor

j Convective plus diffusive flux of momentum (kg/m s2)
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t

K Drag function (kg/m3s)

M Mass transfer rate (kg/m3s)"

i

p Pressure (N/m2)

Q specific power (w/m 3)

q Energy flux (W/m 2)

R Friction pressure losses (kg/m2s 2)

Re Reynolds number

r Radial coordinate (m)

S_ Generalized source (dimensions given for momentum equation) (kg/m2s 2)

s Azimuthal coordinate (m); specific entropy (J/kg K)

T Temperature (K)

T Stress tensor (v/m 2)

t Time is)

UN Slip velocity normalized to the mixture velocity

u Component of coolant velocity (m/s); internal specific energy (J/kg)

Mass flux resulting from discretization of momentum equation (kg/m2s)

T,V Velocity vector (m/s)

w Component of coolant velocity (m/s)

X Phase indicator function

x Thermodynamic quality; coordinate direction (m)
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z Axial coordinate (m)

Greek

a Volume fraction

F Diffusion coefficient (dimensions given for momentum equation) (kg/m s)

7 Surface permeability

8 Liquid film thickness (m)

q Weighting factor

_. Thermal conductivity (W/m.K)

Dynamic viscosity (kg/m.s)

p Microscopic density (kg/m 3)

p' Macroscopic density (kg/m3); p_ = apg; P_ = (1 - ot}pl

a Entropy source due to intrinsic heat generation (W/kgK)

Shear stress (kg/m.s 2}

Transported scalar; specific power source (W/m 3)

_x Entropy flux (W/m2K)

_2 Two-phase pressure-drop mult!plier

¥ Friction coefficient

Operators

V • Divergence

V Gradient
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v Q

d
-- = --+ i7 • V Total derivative
dt _t

[a,b] Denotes the maximum of the two real numbers a, b

Indices

f Fluid

g Vapour

i Dummy index/interface

ISM Improved Slip Model

k Phase indicator

t Liquid

m Mixture

n Superscript for time discretization

s Saturation/entropy

Sl Slip

SPM Separated Phases Model
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APPENDIX

Sequence of _ Calculations Performed to Allow
a Smooth Transition from ISM to SPM

I
i) Solve the Poisson eouatlon for _)ressure__

For a -_ {Xrnln,

6

An+lpon+l An+Ip_,+l pn+lmo - L_,_ = --mo" (A. 1)
1

For (Xml n < (X -_ (Xmin+ 0.1,

..^n+l
[,tCLmo+ (I-TI)(Ap+I + A_+1)]pn+1-

6

[ .n+15_n+11 _nn+l (I 11)(R_o+1+ o- Z_'llAnm'_l + (1- 11)(A_+1+ _g_ }p_ j = qr_rno + - Rgno+1)
I

Tl = I - {a - amln)/0.1 (A.2)

For a > amin + 0. I,
_t

6

n+l - Z _ _g_ } + "'go • (A.3)(A_+I + Ag o )pon+l (A_+I + ^n+l,p_+l = R_+I _n+l
1

li} Update physicalpropertiesofboth phases accordingtothe new pressure

distr_buti0n

ill} Compute mass flow components for both phases of mixture

For a -_ (Xmin,

(Pm _n+l d A _n+lUm)i+i/2 = fim,i+I/2 - m,i+I/2 Pi (i = r, s, z}. (A.4)

Hence c0mpute mass flow components of liquid and vapour phases

, ,n+l = (P_Um)i+i/2[l_ xuN(0_)],+I/2Ptut}l+l/2

(p_ Ug)i+l/2\n+l ,= - ,tPg.i+l-2-u,r + U_umji+l/2No1 (| = r. S. Z). (A.5)
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For (Xmln< _ -_ (Xmln + 0.1,

Let us denote with superscripts 1 and 2 values calculated with the ISM and SMP,

respectively. Then take the weighted values.

(Pm Um)l+l/2 -- TI(PmUrn)l+1/2.1 + C1 - TI)CPmum)l+l/22 .

' - +(I-(pgug),+I/2- vlCPgug)i+I/2 g),+I/2 (i=r. s.z). (A.6)

For amin + 0. I < oz,

(p_ _n+lul]i+i/2 = l_t,i+I/2 - d/,i+I/2Api,

in+l
(Pg Ug/i+i/2 = Ug,l+I/2 - dg,l+I/2APi (i = r, s, z). (A.7}

Hence, compute mass flow components of the mixture

(Pm xn+l [ _n+l _n+l
Um)i+I/2 -- oz • _pgUg}i+i/2 + (I - g(Plul]i+l/2 (i = r, s, z). (A.8)

iv) Compute two-phase pr,j_ure drops

For a c_0Zrnln,

= Uml) {UrnlJt}ISM, (A.9}
_i _ '+2SM4 2_h tPm n+l 2

I+ Ki = I + ClUg,,- ual = I+ clu_IU_i(a) (i= r.s,z) (A.IO}(_2SM=
(c = I - 1.5)

For 0Zmln< 0z _ OZmin,

(dp) ' (A.I I)

_)2pM = 1+ 3008/D h. (A. 12}
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For (Xmin 4-0. I < (x,

) f(aet)n+l
dp = R,,= (p,w,)"+*lw,l"+'. (A.14)
_zz _ 2D h

2_/iPgW_

: { 2_ipgw_Dh (I + 3008/Dh)}

f(Reg)n+l (pg wg)n+l[wg[ n+l
_2pM : Idp) _b2pM, (A. 15)= Dh -_" g

with

io l  (pgwg n+1,,n+1_Z g 2 D h [Wg[ , (A. 16)

(_2pM --(1+ 3005/Dh)n . (A.17)
)

v) Solve Poi#son equation for Cnthalpv

6

"A_*'h_*2- _ "A_*lh_a_ - "R_._. CA.181
1

vi) Update physical properties of liquid vaDour and mixture according to new

enthaIDv distribution

vii) Compute updated void fraction (from the continuity equation)

(xn.l p_.l 1 p_+l p_+l_ pn + T i'_i"i A('YiPmUmi)n+l (I= r,s,z).(A.19)I

vii) Compute uDdated thcrm0dynamlc quali_
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4,

xn+l h_ +I- h_ +I= , (A.201
h_+I _ h_+I"



Table I. Terms for Equations in the General Form of Eq. (I). Ri represents friction pressure losses, K is a drag function o

representing momentum exchange between the phases, and [a, b] represents the maximum of the two real numbers a and b.

Improved S.lip M0d¢l {ISM}

mixture continuity Pm I UmI 0 0 T-I. I

Pmgi - Ri - _p/_xi T-I.2

mixture momentum Pm Umj Umi _m - _[x(1 - x)pmVs_,iVstd]/_xj

mixture energy Pm hm uml Xm/cpm _p/c)t +Um _p/_xl + Q T-I.3
-3 [x(l- x)pm(hgf- hl) Vsg, i]/_xi

+ [ot(l -a)/pm](Pt-Pg) VStl _P/_x!

Separated Phases Model (SPM]

vapour continuity p_ I Ugi 0 0 T-I. 4

liquid contin airy Pt 1 uti 0 0 T-I.5

vapour momentum p_ Ugl Ugl _tg p_g! - Rgl - ot Dp/_xl + K(Utl - Ugi} T-I.6
+ [0, M] utl -[0,-M] Ugi

liquid momentum Pt ugj ugl _It Ptgl - Rtl - (I - a) _p/3xi - K(uti - Ugi) T-I.7
- [0. M] utl -[O.-M] U_l

mixture energy Pm hm Uml Xm/Cpm _p/_t + Um _p/3xl + Q T-I.8
- _ [x(l - x)pm(hgf- hl) Vsg, i]/_xi

+ [ot(l- ot}/pm](Pg-Pg} Vsgl _P/_xl
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Table II. Definition of Volume-Averaged Quantities for the

Phases ( k = l, g) (v I = interface velocity}

Phase volume fraction

= (11.11

Density

_" = _ lkg/m 31 (II.21
11k

Velocity

v_¢'p = XRPV (m/s} (II.31
ak Pk

Entropy

x.-"3 Xkp s
sk = m (J/kg K} (II.4}

Entropy flux

ak

Mass transfer rate

M"-k = p(v- vi), V X k (kg/m3s} (II.61

Interfacial entropy transfer

Ski MR = ps(v - vi) • VX k {W/m3K) (II.7)

Interfacial entropy source

Esk = q * V X---_k (W/m 3 K) (II.8)T

Entropy source due to viscous dissipation

Ds-"_ = __ (Wlm3K) 111.91
ak

Entropy source due to intrinsic heat generation

x-"_ XkP r
¢_sk = ----- {Wlkg K} (If.I01

a--'k"o_T
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Table HI. Summary of Experimental Sede_j Providing Data
for the Validation of the BACCHUS-3D/TP Program

References for
, , ,,,,, ,, ,,!, , ,,,,,

Analysis of
Expe rim en tal Experim en t Exp erim en tal

Series Characteristics Data Simulations
I I III I = llll III I

Loss--of-flow sodium

I. NSK {7-2) 7-Pin boiling expts. Slow (runs 20 2, 6
Bundle Expts.. Runs 16. 24) and fast (run 28)
16, 24. 28 transients

2. NSK (7-3) 7-Pin Loss-of-flow sodium

Bundle Expts.. Run 21 boiling expts, with one 2 1 2
unheated pin

3. KNS 37-Pin Bundle Loss-of-flow sodium

Expts.. Runs S I I, L03 boiling "expts. with 22. 23 2. 6. 24. 25
(single phase). Runs cosinus--shaped axial

L22. L60. L58 (two power profile
phase)

14.KNS 37-Pill Bundle Steady-state boiling 26. 27 27
Expts.. Run $33 experiments

.................
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Caption for Fig. I

Control volumes and indexing conventions shown for one-half of a 37-pin bundle
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